JP5176950B2 - Film having fine irregularities and method for producing the same - Google Patents

Film having fine irregularities and method for producing the same Download PDF

Info

Publication number
JP5176950B2
JP5176950B2 JP2008501781A JP2008501781A JP5176950B2 JP 5176950 B2 JP5176950 B2 JP 5176950B2 JP 2008501781 A JP2008501781 A JP 2008501781A JP 2008501781 A JP2008501781 A JP 2008501781A JP 5176950 B2 JP5176950 B2 JP 5176950B2
Authority
JP
Japan
Prior art keywords
film
thin film
shape
convex
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008501781A
Other languages
Japanese (ja)
Other versions
JPWO2007097454A1 (en
Inventor
恵美 藤田
貢 上島
俊秀 村上
耕也 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2008501781A priority Critical patent/JP5176950B2/en
Publication of JPWO2007097454A1 publication Critical patent/JPWO2007097454A1/en
Application granted granted Critical
Publication of JP5176950B2 publication Critical patent/JP5176950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Description

本発明は、微細な凹凸形状を有するフィルム、およびその製造方法に関する。   The present invention relates to a film having a fine uneven shape and a method for producing the same.

光の特性を制御する光学フィルムは、例えば、液晶ディスプレイ等に代表される光エレクトロニクス機器等に使用されている。光学フィルムとしては、光拡散フィルム、偏光フィルム、プリズムフィルム、反射フィルム、反射防止フィルム、位相差フィルム等が挙げられる。これらの光学フィルムは、フィルムを構成する材料の分子配向を制御したり、機能を付与する材料をフィルムに含有させたり、フィルム表面の立体構造を制御したりすることによって得られる。
液晶ディスプレイなどの表示装置では、表示画面の大面積化の検討が進められている。これに伴い、大面積の光学フィルムを高精度で生産することが要求されるようになった。
Optical films that control light characteristics are used in, for example, optoelectronic devices such as liquid crystal displays. Examples of the optical film include a light diffusion film, a polarizing film, a prism film, a reflective film, an antireflection film, and a retardation film. These optical films can be obtained by controlling the molecular orientation of the material constituting the film, adding a material imparting a function to the film, or controlling the three-dimensional structure of the film surface.
In a display device such as a liquid crystal display, studies are being made to increase the display screen area. Accordingly, it has been required to produce a large-area optical film with high accuracy.

フィルム表面に微細立体構造を形成する方法としては、リソグラフィーに基づく方法や表面に型を押し付ける方法が従来から知られている。
リソグラフィー法は、高精細な加工が可能であるが、大面積への加工には向かず、また加工コストが高くなる場合がある。
一方、ホットエンボス技術やナノインプリント技術など表面に型を押し付ける方法は、高精度な微細構造の形成が可能となってきているが、該手法は、高精細・大面積の型の製造が難しく、型が高価である。この方法で得られた凹凸形状を有するフィルムは、構造が微細になるほど、擦れ等により傷が付きやすく、凹凸形状が潰れるおそれがあった。また、紫外線硬化樹脂などを用いて、表面に型を押し付ける方法で得られる表面に凹凸形状を有するフィルムは、使用条件などによりそりが発生することがあった。
Conventionally known methods for forming a fine three-dimensional structure on the film surface include a lithography-based method and a method of pressing a mold against the surface.
The lithography method can perform high-definition processing, but is not suitable for processing to a large area and may increase the processing cost.
On the other hand, methods for pressing a mold against the surface, such as hot embossing technology and nanoimprint technology, have made it possible to form a high-precision fine structure, but this method is difficult to manufacture a high-definition, large-area mold. Is expensive. The film having an uneven shape obtained by this method is more likely to be damaged by rubbing or the like as the structure becomes finer, and the uneven shape may be crushed. Moreover, the film which has an uneven | corrugated shape on the surface obtained by the method of pressing a type | mold on the surface using ultraviolet curable resin etc. may generate | occur | produce a curvature by the usage conditions.

フィルム表面に立体構造を形成する別の方法として、特許文献1には、基板に樹脂を塗布し、基板を湾曲させた状態で樹脂を変形させる方法が提案されている。しかし、この方法では、付与した構造の凸部頂点間の距離、凸部の高さと幅との比(アスペクト比)の形状制御が容易でなかった。
特開2003−266570号公報
As another method for forming a three-dimensional structure on the film surface, Patent Document 1 proposes a method in which a resin is applied to a substrate and the resin is deformed while the substrate is curved. However, in this method, it is not easy to control the shape of the distance between the convex vertices of the provided structure and the ratio (aspect ratio) between the height and the width of the convex part.
JP 2003-266570 A

本発明の目的は、凹凸形状の凸部頂点間の距離、凸部の高さと幅との比(アスペクト比)、およびそれらの分布が自在に制御され、耐擦傷性に優れ、過酷な使用条件下でもそりなどが生じない、表面に微細凹凸形状を有するフィルムを提供することにある。
また本発明の目的は、凹凸形状の凸部頂点間の距離、凸部の高さと幅との比(アスペクト比)、およびそれらの分布が自在に制御できる表面に微細凹凸形状を有する大面積のフィルムの製造方法を提供することにある。
The object of the present invention is to freely control the distance between the convex vertices of the concavo-convex shape, the ratio between the height and width of the convex part (aspect ratio), and their distribution, and has excellent scratch resistance and harsh use conditions. An object of the present invention is to provide a film having a fine uneven shape on the surface, in which no warpage occurs.
Another object of the present invention is to provide a large area having a fine concavo-convex shape on the surface where the distance between the vertices of the concavo-convex shape, the ratio between the height and width of the ridge (aspect ratio), and the distribution thereof can be freely controlled. It is providing the manufacturing method of a film.

本発明者らは、前記課題を解決すべく検討した結果、フィルム基材の少なくとも一方の表面に薄膜を形成して積層体を得、次いで該積層体を面内の少なくとも一つの軸方向に収縮させることによって、表面に微細凹凸形状を有するフィルムを容易に大面積で得ることができ、しかも、凸部頂点間の距離、アスペクト比およびその分布度合いを自在に制御できることを見出し、この知見に基づいて本発明を完成するに至った。   As a result of studying to solve the above problems, the present inventors have obtained a laminate by forming a thin film on at least one surface of the film substrate, and then contracted the laminate in at least one axial direction in the plane. Based on this finding, it is possible to easily obtain a film having a fine concavo-convex shape on the surface in a large area, and to freely control the distance between the apexes of the protrusions, the aspect ratio, and the degree of distribution thereof. The present invention has been completed.

すなわち、本発明は、以下の態様を含む。
(1) フィルム基材の少なくとも一方の表面に薄膜を形成して積層体を得る工程、および
該積層体を面内の少なくとも一つの軸方向に収縮させて薄膜を褶曲させる工程を含む、
表面に微細な凹凸形状を有するフィルムの製造方法。
(2) 主たる収縮方向の収縮率ΔLを式〔1〕、主たる収縮方向に直交する方向の収縮率ΔMを式〔2〕で表した時、ΔLおよびΔMが式〔3〕および式〔4〕を満たす、前記の表面に微細な凹凸形状を有するフィルムの製造方法。
式〔1〕:ΔL=(L0−L1)/L0×100 (L0:主たる収縮方向の収縮前の長さ、L1:主たる収縮方向の収縮後の長さ)
式〔2〕:ΔM=(M0−M1)/M0×100 (M0:主たる収縮方向に直交する方向の収縮前の長さ、M1:主たる収縮方向に直交する方向の収縮後の長さ)
式〔3〕:ΔL>0
式〔4〕:−(ΔL×0.3)≦ΔM≦ΔL
(3) ΔLおよびΔMが式〔5〕を満たす、前記の表面に微細な凹凸形状を有するフィルムの製造方法。
式〔5〕:−(ΔL×0.2)≦ΔM≦(ΔL×0.2)
(4) 微細な凹凸形状が、面内でストライプ状に細長く伸びた構造である、前記の表面に微細な凹凸形状を有するフィルムの製造方法。
(5)微細な凹凸形状は、凸部の頂点間の距離の変動係数が40%以下である、前記の表面に微細な凹凸形状を有するフィルムの製造方法。
That is, the present invention includes the following aspects.
(1) forming a thin film by forming a thin film on at least one surface of the film substrate, and bending the thin film by contracting the laminated body in at least one axial direction in the plane;
A method for producing a film having fine irregularities on the surface.
(2) When the contraction rate ΔL in the main contraction direction is expressed by the equation [1] and the contraction rate ΔM in the direction orthogonal to the main contraction direction is expressed by the equation [2], ΔL and ΔM are expressed by the equations [3] and [4]. The manufacturing method of the film which has the fine uneven | corrugated shape on the said surface which satisfy | fills.
Formula [1]: ΔL = (L0−L1) / L0 × 100 (L0: length before contraction in the main contraction direction, L1: length after contraction in the main contraction direction)
Formula [2]: ΔM = (M0−M1) / M0 × 100 (M0: length before contraction in the direction orthogonal to the main contraction direction, M1: length after contraction in the direction orthogonal to the main contraction direction)
Formula [3]: ΔL> 0
Formula [4]: − (ΔL × 0.3) ≦ ΔM ≦ ΔL
(3) A method for producing a film having fine irregularities on the surface, wherein ΔL and ΔM satisfy the formula [5].
Formula [5]: − (ΔL × 0.2) ≦ ΔM ≦ (ΔL × 0.2)
(4) The manufacturing method of the film which has the fine uneven | corrugated shape on the said surface whose fine uneven | corrugated shape is the structure extended elongated in stripes in the surface.
(5) The method for producing a film having a fine concavo-convex shape on the surface, wherein the fine concavo-convex shape has a variation coefficient of the distance between the vertices of the convex portions of 40% or less.

(6) 前記薄膜の厚さが1nm〜50μmである、前記の表面に微細な凹凸形状を有するフィルムの製造方法。
(7) 前記薄膜が無機物質からなるものであり、かつ前記薄膜の厚さが1nm〜500nmである、前記の表面に微細な凹凸形状を有するフィルムの製造方法。
(8) 前記薄膜が有機物質からなるものであり、かつ前記薄膜の厚さが100nm〜50μmである、前記の表面に微細な凹凸形状を有するフィルムの製造方法。
(6) The manufacturing method of the film which has the fine uneven | corrugated shape on the said surface whose thickness of the said thin film is 1 nm-50 micrometers.
(7) The manufacturing method of the film which has the fine uneven | corrugated shape on the said surface whose said thin film consists of an inorganic substance, and the thickness of the said thin film is 1 nm-500 nm.
(8) The manufacturing method of the film which has the fine uneven | corrugated shape on the said surface whose said thin film consists of organic substances, and the thickness of the said thin film is 100 nm-50 micrometers.

(9) 前記有機物質が硬化性樹脂からなるものであり、硬化性樹脂からなる薄膜を形成する時の熱処理温度を基材フィルムのガラス転移温度より5℃以上低くする、前記の表面に微細な凹凸形状を有するフィルムの製造方法。
(10) 微細な凹凸形状の凸部の頂点間の平均距離が50nm〜50μmである、前記の表面に微細な凹凸形状を有するフィルムの製造方法。
(11) フィルム基材が、面内の少なくとも一つの方向に分子配向しているフィルムである、前記の表面に微細な凹凸形状を有するフィルムの製造方法。
(9) The organic substance is made of a curable resin, and the heat treatment temperature when forming a thin film made of the curable resin is lower by 5 ° C. or more than the glass transition temperature of the base film. A method for producing a film having an uneven shape.
(10) The manufacturing method of the film which has the fine uneven | corrugated shape on the said surface whose average distance between the vertices of the fine uneven | corrugated shaped convex part is 50 nm-50 micrometers.
(11) The method for producing a film having a fine concavo-convex shape on the surface, wherein the film substrate is a film in which molecules are oriented in at least one direction in the plane.

(12) 表面に微細凹凸形状Bを有する第一層と、前記凹凸形状Bの上に積層され且つ前記凹凸形状Bの形状に対応するように褶曲している第二層とを含んでなる、凸部の頂点間の平均距離が50nm〜50μmである微細な凹凸形状Aを有するフィルム。
(13) 第二層の平均厚さが、微細凹凸形状Aの平均高さの10%〜100%である、前記の微細な凹凸形状Aを有するフィルム。
(14) 第二層の厚さの変動係数が20%以下である、前記の微細な凹凸形状Aを有するフィルム。
(15) 微細な凹凸形状Aは、凸部の頂点間の距離の変動係数が80%以下である、前記の微細な凹凸形状Aを有するフィルム。
(16) 微細な凹凸形状Aは、2次元フーリエ変換して得られる空間周波数のパワースペクトルが一の方向に分布している、前記の微細な凹凸形状Aを有するフィルム。
(17) 微細な凹凸形状Aが、面内でストライプ状に細長く伸びた構造である、前記の微細な凹凸形状Aを有するフィルム。
(18) 微細な凹凸形状Aは、凸部の頂点間距離の変動係数が40%以下である、前記の微細な凹凸形状Aを有するフィルム。
(19) ヘイズが50%以上であることを特徴とする、前記の微細な凹凸形状Aを有するフィルム。
(20) 前記の製造方法で得られる微細な凹凸形状Aを有するフィルム。
(21) 前記の微細な凹凸形状Aを有するフィルムを含んでなる光学素子。
(12) comprising a first layer having a fine concavo-convex shape B on the surface, and a second layer laminated on the concavo-convex shape B and bent so as to correspond to the shape of the concavo-convex shape B. The film which has the fine uneven | corrugated shape A whose average distance between the vertexes of a convex part is 50 nm-50 micrometers.
(13) The film having the fine concavo-convex shape A, wherein the average thickness of the second layer is 10% to 100% of the average height of the fine concavo-convex shape A.
(14) The film having the fine concavo-convex shape A, wherein the variation coefficient of the thickness of the second layer is 20% or less.
(15) The fine concavo-convex shape A is a film having the fine concavo-convex shape A in which the coefficient of variation in the distance between the vertices of the convex portions is 80% or less.
(16) The fine concavo-convex shape A is a film having the fine concavo-convex shape A in which the power spectrum of the spatial frequency obtained by two-dimensional Fourier transform is distributed in one direction.
(17) The film having the fine concavo-convex shape A, wherein the fine concavo-convex shape A has a structure elongated in a stripe shape in a plane.
(18) The fine concavo-convex shape A is a film having the fine concavo-convex shape A in which the coefficient of variation in the distance between the apexes of the convex portions is 40% or less.
(19) The film having the fine concavo-convex shape A, wherein the haze is 50% or more.
(20) The film which has the fine uneven | corrugated shape A obtained by the said manufacturing method.
(21) An optical element comprising a film having the fine concavo-convex shape A.

本発明の製造方法によれば、表面に微細な凹凸形状を有するフィルムを容易に大面積で得ることができ、しかも、微細な凹凸形状の凸部頂点間の距離、アスペクト比、およびそれらの分布を自在に制御できる。
本発明の微細な凹凸形状を持つフィルムは、耐擦傷性が良好で、そりも少なく、光学素子として好適である。
According to the production method of the present invention, a film having a fine uneven shape on the surface can be easily obtained in a large area, and the distance between the apexes of the fine uneven shape, the aspect ratio, and their distribution Can be controlled freely.
The film having a fine concavo-convex shape of the present invention has good scratch resistance and little warpage, and is suitable as an optical element.

実施例3で得られた凹凸構造の表面走査型電子顕微鏡写真像を示す図The figure which shows the surface scanning electron micrograph image of the uneven structure obtained in Example 3 図1の電子顕微鏡写真像の2次元フーリエ変換像を示す図The figure which shows the two-dimensional Fourier-transform image of the electron micrograph image of FIG. 実施例4で得られた凹凸構造の表面走査型電子顕微鏡写真像を示す図The figure which shows the surface scanning electron micrograph image of the uneven structure obtained in Example 4 本発明で得られる構造の断面模式図Schematic cross-sectional view of the structure obtained by the present invention 本発明で得られる構造の断面模式図Schematic cross-sectional view of the structure obtained by the present invention 比較例1(従来技術)で得られる構造の断面模式図Schematic sectional view of the structure obtained in Comparative Example 1 (prior art) 比較例2(従来技術)で得られる構造の断面模式図Schematic sectional view of the structure obtained in Comparative Example 2 (prior art)

符号の説明Explanation of symbols

1,11:第一層(フィルム基材)
2,12:第二層(薄膜)
3,13:フィルム基材
4:紫外線硬化層
1, 11: First layer (film substrate)
2, 12: Second layer (thin film)
3, 13: Film base material 4: UV cured layer

〔表面に微細凹凸形状を有するフィルムの製造方法〕
本発明の表面に微細な凹凸形状を有するフィルムの製造方法は、フィルム基材の少なくとも一方の表面に薄膜を形成して積層板を得る工程、及び該積層体を面内の少なくとも一つの軸方向に収縮させて薄膜を褶曲させる工程を含むものである。
[Method for producing a film having fine irregularities on the surface]
The method for producing a film having a fine uneven shape on the surface of the present invention comprises a step of forming a thin film on at least one surface of a film substrate to obtain a laminate, and at least one axial direction of the laminate in the plane. And a step of bending the thin film.

(フィルム基材)
本発明の製造方法に用いるフィルム基材は、薄膜を積層させた後に、面内の少なくとも一つの軸方向に収縮させることができるものであれば特に限定されない。例えば、フィルム基材自身が加熱などの手段によって収縮するものであってもよいし、一軸延伸させたときに延伸方向に直交する方向が収縮するものであってもよい。
(Film substrate)
The film substrate used in the production method of the present invention is not particularly limited as long as it can be contracted in at least one axial direction in the plane after the thin films are laminated. For example, the film substrate itself may be shrunk by a means such as heating, or the film substrate may be shrunk in a direction orthogonal to the stretching direction when uniaxially stretched.

フィルム基材の収縮前の平均厚さは、ハンドリングの観点から通常5μm〜1mm、好ましくは20〜200μmである。   The average thickness of the film substrate before shrinking is usually 5 μm to 1 mm, preferably 20 to 200 μm, from the viewpoint of handling.

フィルム基材は、通常、樹脂や、ゴム若しくはエラストマーで形成されている。
樹脂としては、スチレン系樹脂、アクリル樹脂、メタクリル系樹脂、有機酸ビニルエステル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、オレフィン系樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、熱可塑性ポリウレタン樹脂、ポリスルホン系樹脂(例えば、ポリエーテルスルホン、ポリスルホンなど)、ポリフェニレンエーテル系樹脂(例えば、2,6−キシレノールの重合体など)、セルロース誘導体(例えば、セルロースエステル類、セルロースカーバメート類、セルロースエーテル類など)、シリコーン樹脂(例えば、ポリジメチルシロキサン、ポリメチルフェニルシロキサンなど)などが挙げられる。
The film substrate is usually made of resin, rubber or elastomer.
Examples of the resin include styrene resin, acrylic resin, methacrylic resin, organic acid vinyl ester resin, vinyl ether resin, halogen-containing resin, olefin resin, alicyclic olefin resin, polycarbonate resin, polyester resin, polyamide. Resin, thermoplastic polyurethane resin, polysulfone resin (eg, polyethersulfone, polysulfone, etc.), polyphenylene ether resin (eg, polymer of 2,6-xylenol), cellulose derivative (eg, cellulose ester, cellulose, etc.) Carbamates, cellulose ethers, etc.), silicone resins (eg, polydimethylsiloxane, polymethylphenylsiloxane, etc.).

なお、脂環式オレフィン樹脂としては、特開平05−310845号公報や米国特許第5179171号公報に記載されている環状オレフィンランダム共重合体、特開平05−97978号公報や米国特許第5202388号公報に記載されている水素添加重合体、特開平11−124429号公報や国際公開99/20676号公報に記載されている熱可塑性ジシクロペンタジエン系開環重合体及びその水素添加物等が挙げられる。   Examples of the alicyclic olefin resin include cyclic olefin random copolymers described in JP-A No. 05-310845 and U.S. Pat. No. 5,179,171, JP-A No. 05-97978 and U.S. Pat. No. 5,202,388. And the thermoplastic dicyclopentadiene ring-opening polymers described in JP-A No. 11-124429 and WO 99/20676, and hydrogenated products thereof.

またゴム/エラストマーとしては、ポリブタジエン、ポリイソプレンなどのジエン系ゴム、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体、アクリルゴム、ウレタンゴム、シリコーンゴムなどが挙げられる。
フィルム基材の材料は、これらのうち、製造が容易な点から熱可塑性樹脂が好ましい。
Examples of the rubber / elastomer include diene rubber such as polybutadiene and polyisoprene, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, acrylic rubber, urethane rubber, and silicone rubber.
Among these, the material of the film base material is preferably a thermoplastic resin from the viewpoint of easy production.

フィルム基材を構成する熱可塑性樹脂は、特に限定されないが、加工の容易さの観点からガラス転移温度が60〜200℃であるものが好ましく、100〜180℃であるものがより好ましい。なお、ガラス転移温度は示差走査熱量分析(DSC)により測定することができる。   Although the thermoplastic resin which comprises a film base material is not specifically limited, From a viewpoint of the ease of a process, that whose glass transition temperature is 60-200 degreeC is preferable, and what is 100-180 degreeC is more preferable. The glass transition temperature can be measured by differential scanning calorimetry (DSC).

また、フィルム基材を構成する熱可塑性樹脂は、ポリスチレン換算の重量平均分子量が、好ましくは5,000〜500,000、より好ましくは8,000〜200,000、特に好ましくは10,000〜100,000である。重量平均分子量がこの範囲にあることにより成形加工性が良好となり、機械的強度を向上させることができる。この重量平均分子量は、ゲル・パーミエーション・クロマトグラフィーにより測定することができる。   The thermoplastic resin constituting the film substrate preferably has a polystyrene-equivalent weight average molecular weight of 5,000 to 500,000, more preferably 8,000 to 200,000, and particularly preferably 10,000 to 100. , 000. When the weight average molecular weight is within this range, molding processability is improved and mechanical strength can be improved. This weight average molecular weight can be measured by gel permeation chromatography.

フィルム基材を構成する樹脂や、ゴム又はエラストマーは、顔料や染料のごとき着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、紫外線吸収剤、帯電防止剤、酸化防止剤、塩素捕捉剤、難燃剤、結晶化核剤、ブロッキング防止剤、防曇剤、離型剤、有機又は無機の充填剤、中和剤、滑剤、分解剤、金属不活性化剤、汚染防止剤、蛍光増白剤、抗菌剤、拡散粒子、熱可塑性エラストマーその他の配合剤が適宜配合されたものであってもよい。   Resin, rubber or elastomer constituting the film base is a colorant such as pigment or dye, fluorescent brightener, dispersant, thermal stabilizer, light stabilizer, ultraviolet absorber, antistatic agent, antioxidant, Chlorine scavenger, flame retardant, crystallization nucleating agent, antiblocking agent, antifogging agent, mold release agent, organic or inorganic filler, neutralizing agent, lubricant, decomposition agent, metal deactivator, antifouling agent, An optical brightener, an antibacterial agent, diffusing particles, a thermoplastic elastomer or other compounding agents may be appropriately blended.

フィルム基材は、その製法によって特に制限されない。フィルム基材の原反は、前述の樹脂等を公知のフィルム成形法で形成すること等によって得られる。フィルム成形法としては、キャスト成形法、押出成形法、インフレーション成形法などが挙げられる。   The film substrate is not particularly limited by the production method. The film base material can be obtained by forming the above-described resin or the like by a known film forming method. Examples of the film forming method include a cast forming method, an extrusion forming method, and an inflation forming method.

加熱などの手段によってそれ自身が収縮するフィルム基材は、通常、面内で分子配向していることが好ましい。本来、分子は原子間結合角に応じた低いエネルギー配置状態になろうとする。分子が面内で規則的に並んだ状態は分子の結合状態に歪を含んでおり、高エネルギーの配置状態と言える。この高エネルギーの配置状態になっているフィルム基材を加熱などしたときに、分子が低エネルギーの配置状態に戻ろうとし、フィルム基材全体が収縮するのである。分子配向の状態は、公知の方法で測定することでき、例えば、自動複屈折計KOBRA21ADHを用いて測定することもできる。   In general, it is preferable that the film base material that shrinks itself by means of heating or the like is molecularly oriented in the plane. Originally, a molecule tends to be in a low energy arrangement state corresponding to an interatomic bond angle. The state in which molecules are regularly arranged in a plane includes distortion in the bonding state of the molecules, and can be said to be a high energy arrangement state. When the film substrate in the high energy arrangement state is heated, the molecules try to return to the low energy arrangement state, and the entire film substrate contracts. The state of molecular orientation can be measured by a known method, for example, using an automatic birefringence meter KOBRA21ADH.

加熱などの手段によってそれ自身が収縮するフィルム基材は、例えば、前述の樹脂等を公知の成形法で原反フィルムに形成し、該原反フィルムを延伸することによって得ることができる。また、延伸処理の代わりに、磁場や電場を掛けて又はラビング処理して分子を配向させ収縮性を示すフィルム基材とすることができる。ゴム又はエラストマーを公知の成形法で弾性フィルムに形成し、該弾性フィルムを面内方向に引っ張った状態にすることで、弾性による復元力を利用した収縮性を示すフィルム基材とすることができる。さらに硬化性樹脂からなるフィルムをあらかじめ溶剤等で膨潤させ、該膨潤フィルムが乾燥する時に生じる収縮を利用して本発明に用いるフィルム基材とすることができる。これらのうち、原反フィルムを延伸することによって得られる収縮性を示すフィルム基材が好ましい。   A film base material that itself shrinks by means of heating or the like can be obtained, for example, by forming the aforementioned resin or the like on a raw film by a known molding method and stretching the raw film. Moreover, it can be set as the film base material which applies a magnetic field, an electric field, or a rubbing process instead of an extending | stretching process, orientates a molecule | numerator, and shows contractility. By forming a rubber or elastomer on an elastic film by a known molding method and pulling the elastic film in an in-plane direction, it can be a film base material that exhibits shrinkage utilizing resilience due to elasticity. . Furthermore, a film made of a curable resin is swollen in advance with a solvent or the like, and the film base used in the present invention can be obtained by utilizing the shrinkage that occurs when the swollen film dries. Among these, the film base material which shows the contractility obtained by extending | stretching a raw film is preferable.

原反フィルムを延伸することによって得られる収縮性を示すフィルム基材は、その延伸方法によって特に制限されず、一軸延伸法、二軸延伸法のいずれで延伸したものであってもよい。二軸延伸の場合は、通常、フィルム面内の二つの方向に収縮することになる。
延伸処理する方法としては、ロール側の周速の差を利用して縦方向に一軸延伸する方法;テンター延伸機を用いて横方向に一軸延伸する方法等の一軸延伸法;固定するクリップの間隔を開いての縦方向の延伸と同時に、ガイドレールの広がり角度により横方向に延伸する同時二軸延伸法や、ロール間の周速の差を利用して縦方向に延伸した後、その両端部をクリップ把持してテンター延伸機を用いて横方向に延伸する逐次二軸延伸法などの二軸延伸法;横又は縦方向に左右異なる速度の送り力若しくは引張り力又は引取り力を付加できるようにしたテンター延伸機を用いてフィルムの幅方向に対して任意の角度θの方向に連続的に斜め延伸する方法;などが挙げられる。
The film base material exhibiting shrinkage obtained by stretching the raw film is not particularly limited by the stretching method, and may be stretched by either a uniaxial stretching method or a biaxial stretching method. In the case of biaxial stretching, it usually shrinks in two directions within the film plane.
Stretching methods include a method of uniaxial stretching in the longitudinal direction using the difference in peripheral speed on the roll side; a uniaxial stretching method such as a method of uniaxial stretching in the transverse direction using a tenter stretching machine; At the same time as stretching in the longitudinal direction using the guide rail, the biaxial stretching method that stretches in the transverse direction depending on the spread angle of the guide rail, and the longitudinal direction using the difference in the peripheral speed between the rolls, and both ends thereof A biaxial stretching method such as a sequential biaxial stretching method in which a clip is gripped and stretched in the transverse direction using a tenter stretching machine; a feed force, a pulling force, or a pulling force at different speeds can be applied in the lateral or longitudinal direction. And a method of continuously and obliquely stretching in the direction of an arbitrary angle θ with respect to the width direction of the film using a tenter stretching machine.

主たる収縮方向の収縮率が大幅に高くなると、主たる収縮方向に直交する方向に伸びが生じることがあり、その伸びによって凹凸形状に亀裂が生じることがある。この収縮時の亀裂発生を抑制することができるという観点から、(i)延伸時の縦方向の収縮を好ましくは20%以下、より好ましくは15%以下に抑えて横方向に一軸延伸する(横一軸延伸法)か、(ii)縦方向及び横方向に二軸延伸するの(二軸延伸法)が好ましい。   When the shrinkage rate in the main shrinkage direction is significantly increased, elongation may occur in a direction perpendicular to the main shrinkage direction, and the elongation may cause cracks in the uneven shape. From the viewpoint of suppressing the occurrence of cracks during shrinkage, (i) uniaxially stretching in the transverse direction is preferably performed with the longitudinal shrinkage during stretching preferably controlled to 20% or less, more preferably 15% or less (transverse) (Uniaxial stretching method) or (ii) biaxial stretching in the machine direction and transverse direction (biaxial stretching method) is preferred.

延伸に用いる装置として、例えば、縦一軸延伸機、テンター延伸機、バブル延伸機、ローラー延伸機等が挙げられる。   Examples of the apparatus used for stretching include a longitudinal uniaxial stretching machine, a tenter stretching machine, a bubble stretching machine, and a roller stretching machine.

延伸時の温度は、フィルム基材を構成する材料のガラス転移温度をTgとしたときに、好ましくは(Tg−30℃)と(Tg+60℃)の間、より好ましくは(Tg−10℃)と(Tg+50℃)の間の温度から選択される。
延伸倍率は、使用するフィルムの引張り特性に応じて、所望する凹凸形状のアスペクト比になるように適宜選択すればよい。なお、ここで言うアスペクト比とは凹凸形状中の凸部の垂直断面形状の高さと幅との比(=高さ/幅)である。なお、凸部の垂直断面の形状が長方形または正方形以外のときには、アスペクト比を求めるときの凸部の幅は凸部の高さの1/2の高さにおける凸部の幅である。
The temperature during stretching is preferably between (Tg-30 ° C) and (Tg + 60 ° C), more preferably (Tg-10 ° C), where Tg is the glass transition temperature of the material constituting the film substrate. It is selected from temperatures between (Tg + 50 ° C.).
What is necessary is just to select a draw ratio suitably so that it may become the aspect-ratio of a desired uneven | corrugated shape according to the tensile characteristic of the film to be used. The aspect ratio referred to here is the ratio (= height / width) of the height and width of the vertical cross-sectional shape of the convex portion in the concavo-convex shape. In addition, when the shape of the vertical cross section of a convex part is other than a rectangle or a square, the width | variety of a convex part when calculating | requiring an aspect ratio is a width | variety of the convex part in the height of 1/2 of a convex part height.

高アスペクト比の凹凸形状を得たい場合には、薄膜の膜質や厚さにもよるが、おおむね延伸倍率を高く設定する。低アスペクト比の凹凸形状を得たい場合には、延伸倍率を低く設定する。具体的には、主たる延伸方向の倍率R1を、通常1.01〜30倍、より好ましくは1.01〜10倍、より好ましくは1.05〜5倍にする。主たる方向の延伸倍率R1が1.01倍より小さい倍率では、凹凸形状が発生せず、30倍より大きい倍率では、フィルム強度が低下する恐れがある。   When it is desired to obtain a concavo-convex shape with a high aspect ratio, the stretch ratio is generally set high, although it depends on the film quality and thickness of the thin film. When it is desired to obtain a concavo-convex shape with a low aspect ratio, the draw ratio is set low. Specifically, the magnification R1 in the main stretching direction is usually 1.01 to 30 times, more preferably 1.01 to 10 times, and more preferably 1.05 to 5 times. When the draw ratio R1 in the main direction is less than 1.01, the uneven shape is not generated, and when it is more than 30 times, the film strength may be lowered.

(薄膜)
次に、フィルム基材の少なくとも一方の表面に薄膜を形成する。薄膜の収縮率は、フィルム基材を収縮させる条件下において、フィルム基材の収縮率の20%以下であることが好ましく、10%以下であることがさらに好ましい。薄膜の収縮率が大きすぎると微細な凹凸形状が形成しない場合がある。
(Thin film)
Next, a thin film is formed on at least one surface of the film substrate. The shrinkage rate of the thin film is preferably 20% or less, more preferably 10% or less, of the shrinkage rate of the film substrate under the condition of shrinking the film substrate. If the shrinkage rate of the thin film is too large, a fine uneven shape may not be formed.

薄膜の収縮前の平均厚さは、1nm〜50μmであることが好ましい。薄膜の厚さは、透過電子顕微鏡にて、薄膜の垂直断面を写真撮影し、該写真像から厚さの平均値を求める。   The average thickness of the thin film before shrinkage is preferably 1 nm to 50 μm. As for the thickness of the thin film, a vertical section of the thin film is photographed with a transmission electron microscope, and an average value of the thickness is obtained from the photograph image.

薄膜としては、無機薄膜及び有機薄膜がある。
本発明に用いる無機薄膜は無機物質からなるものである。薄膜を構成する無機物質としては、金属;金属酸化物や金属窒化物などの金属化合物;非金属;非金属酸化物などの非金属化合物などが挙げられ、具体的には、アルミニウム、珪素、マグネシウム、パラジウム、白金、亜鉛、錫、ニッケル、銀、銅、金、アンチモン、イットリウム、インジウム、ステンレス鋼、クロム、チタン、タンタル、ジルコニウム、ニオブ、ランタン、セリウム、等の金属若しくは非金属;またはこれらの酸化物や窒化物;又はそれらの混合物が挙げられる。本発明の製造方法で得られるフィルムを光学素子として使用する場合には、可視光を透過する無機物質を選択することが好ましく、その具体的な例としてITO、In23、SnO2、SiO2、CuI、TiO2、ZrO2等が挙げられる。これらのうち、薄膜の柔軟性という観点からSiO2が好ましい。
Thin films include inorganic thin films and organic thin films.
The inorganic thin film used in the present invention is made of an inorganic substance. Examples of the inorganic substance constituting the thin film include metals; metal compounds such as metal oxides and metal nitrides; nonmetals; nonmetal compounds such as nonmetal oxides. Specifically, aluminum, silicon, magnesium , Palladium, platinum, zinc, tin, nickel, silver, copper, gold, antimony, yttrium, indium, stainless steel, chromium, titanium, tantalum, zirconium, niobium, lanthanum, cerium, or the like; or these Oxides and nitrides; or mixtures thereof. When the film obtained by the production method of the present invention is used as an optical element, it is preferable to select an inorganic substance that transmits visible light, and specific examples thereof include ITO, In 2 O 3 , SnO 2 , SiO 2 , CuI, TiO 2 , ZrO 2 and the like. Of these, SiO 2 is preferable from the viewpoint of the flexibility of the thin film.

無機薄膜の平均厚さは、1nm〜500nmであることが好ましい。1nmより薄すぎると凹凸形状が形成しづらくなり、500nmより厚すぎると収縮時に無機薄膜層にクラックが発生しやすくなる。無機薄膜を用いると、凸部頂点間の平均距離が50nm〜1000nmの微細な凹凸形状が容易に得られる。   The average thickness of the inorganic thin film is preferably 1 nm to 500 nm. If the thickness is less than 1 nm, it is difficult to form an uneven shape. If the thickness is more than 500 nm, cracks are likely to occur in the inorganic thin film layer during shrinkage. When an inorganic thin film is used, a fine concavo-convex shape having an average distance between the convex vertices of 50 nm to 1000 nm can be easily obtained.

無機薄膜を形成する方法は、特に制限されず、真空蒸着、イオンプレーティング、スパッタリング、CVD(化学蒸着)等の蒸着法;スピンコート法、ディッピング法、ロールコート法、スプレー法、ベーパー法、グラビアコータやブレードコータなどのコータ法、スクリーン印刷法、インクジェット法等の塗布法;無電解めっき法、電解めっき法などが挙げられる。   The method for forming the inorganic thin film is not particularly limited, and vapor deposition methods such as vacuum deposition, ion plating, sputtering, CVD (chemical vapor deposition); spin coating method, dipping method, roll coating method, spray method, vapor method, gravure Examples thereof include coating methods such as a coater and a blade coater, coating methods such as a screen printing method and an ink jet method; an electroless plating method and an electrolytic plating method.

本発明に用いる有機薄膜は、収縮によって薄膜が褶曲構造をとるものであれば特に制限されない。
有機薄膜は、フィルム基材を収縮させる温度条件下での収縮率が、フィルム基材の収縮率より小さいものであることが好ましい。
有機薄膜の平均厚さは、100nm〜50μmであることが好ましい。100nmより薄すぎると凹凸形状が形成しづらくなり、50μmより厚すぎるとアスペクト比の制御が難しくなる。有機薄膜を用いると、凸部頂点間の平均距離が500nm〜50μmの微細な凹凸形状が容易に得られる。
The organic thin film used in the present invention is not particularly limited as long as the thin film has a curved structure due to shrinkage.
The organic thin film preferably has a shrinkage rate under a temperature condition for shrinking the film base material that is smaller than the shrinkage rate of the film base material.
The average thickness of the organic thin film is preferably 100 nm to 50 μm. If the thickness is less than 100 nm, it is difficult to form the uneven shape, and if it is more than 50 μm, it is difficult to control the aspect ratio. When an organic thin film is used, a fine concavo-convex shape having an average distance between vertices of convex portions of 500 nm to 50 μm can be easily obtained.

有機薄膜としては熱可塑性樹脂からなるものと、硬化性樹脂からなるものとが挙げられる。   Examples of the organic thin film include those made of a thermoplastic resin and those made of a curable resin.

熱可塑性樹脂としては、前記フィルム基材に用いることができるものとして例示したものと同様のものを挙げることができる。また、薄膜には、前記フィルム基材に用いる樹脂同様に配合剤を含んでいてもよい。   As a thermoplastic resin, the thing similar to what was illustrated as what can be used for the said film base material can be mentioned. Further, the thin film may contain a compounding agent as in the case of the resin used for the film base.

熱可塑性樹脂からなる有機薄膜の形成方法としては、(1)フィルム基材を構成する樹脂と、薄膜を構成する樹脂とを共押出する方法;(2)熱可塑性樹脂を薄膜に成形し、これをフィルム基材に貼り合わせる方法;(3)フィルム基材の表面に熱可塑性樹脂を含有する溶液を塗布し乾燥する方法等が挙げられる。   As a method for forming an organic thin film made of a thermoplastic resin, (1) a method of co-extrusion of a resin constituting a film base and a resin constituting a thin film; (2) forming a thermoplastic resin into a thin film; (3) A method in which a solution containing a thermoplastic resin is applied to the surface of the film substrate and dried.

本発明においては、前記フィルム基材が熱可塑性樹脂1からなるものであり、前記有機薄膜が熱可塑性樹脂2からなるものであり、熱可塑性樹脂2のガラス転移温度が、熱可塑性樹脂1のガラス転移温度よりも20℃以上高いことが好ましい。なお、ガラス転移温度は示差走査熱量分析(DSC)により測定することができる。   In this invention, the said film base material consists of the thermoplastic resin 1, the said organic thin film consists of the thermoplastic resin 2, and the glass transition temperature of the thermoplastic resin 2 is glass of the thermoplastic resin 1. It is preferably 20 ° C. or more higher than the transition temperature. The glass transition temperature can be measured by differential scanning calorimetry (DSC).

硬化性樹脂としては、熱硬化性のものと、エネルギー線硬化性のものとがある。なお、エネルギー線とは、可視光線、紫外線、電子線、などのことをいう。
The curable resin includes a thermosetting resin and an energy beam curable resin. In addition, an energy ray means visible light, an ultraviolet-ray, an electron beam, etc.

熱硬化性樹脂の具体例としては、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン−尿素共縮合樹脂、珪素樹脂、ポリシロキサン樹脂等が挙げられる。   Specific examples of the thermosetting resin include phenol resin, urea resin, diallyl phthalate resin, melamine resin, guanamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, melamine-urea cocondensation resin, silicon resin. And polysiloxane resin.

エネルギー線硬化型樹脂としては特に限定されないが、例えば、ラジカル重合性不飽和基(例えば、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、スチリル基、ビニル基等)及び/又はカチオン重合性基(エポキシ基、チオエポキシ基、ビニルオキシ基、オキセタニル基等)の官能基を有する樹脂で、具体的には、比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、メタクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹 脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等が挙げられる。   The energy ray curable resin is not particularly limited. For example, the radical polymerizable unsaturated group (for example, acryloyloxy group, methacryloyloxy group, vinyloxy group, styryl group, vinyl group, etc.) and / or cationic polymerizable group (epoxy) Group, thioepoxy group, vinyloxy group, oxetanyl group, etc.), specifically, relatively low molecular weight polyester resin, polyether resin, acrylic resin, methacrylic resin, epoxy resin, urethane resin, alkyd Resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins and the like can be mentioned.

エネルギー線として紫外線や可視光線を用いる場合には、硬化性樹脂の中に光重合開始剤、光増感剤などを含ませる。光重合開始剤としては、アセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α−アミロキシムエステル、テトラメチルチウラムモノサルファイド、チオキサントン類等が挙げられる。光増感剤としてn−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等を挙げられる。   When ultraviolet rays or visible rays are used as energy rays, a photopolymerization initiator, a photosensitizer, or the like is included in the curable resin. Examples of the photopolymerization initiator include acetophenones, benzophenones, Michler benzoylbenzoate, α-amyloxime ester, tetramethylthiuram monosulfide, thioxanthones, and the like. Examples of the photosensitizer include n-butylamine, triethylamine, and tri-n-butylphosphine.

硬化性樹脂からなる薄膜には、架橋剤、重合開始剤等の硬化剤、重合促進剤、溶剤、粘度調整剤等の配合剤が含まれていてもよい。   The thin film made of a curable resin may contain compounding agents such as a curing agent such as a crosslinking agent and a polymerization initiator, a polymerization accelerator, a solvent, and a viscosity modifier.

硬化性樹脂からなる有機薄膜の形成方法は、特に限定されない。硬化性樹脂からなる有機薄膜は、例えば、フィルム基材面に硬化性樹脂の組成物を塗布し、硬化することによって得られる。硬化性樹脂薄膜を形成する際、フィルム基材のガラス転移温度T1より5℃以上低い温度で熱処理することが望ましい。薄膜形成の際に高い温度がかかると、フィルム基材がアニールされ、設計どおりに収縮しなくなるおそれがある。
有機薄膜としては、微細な凹凸形状のアスペクト比の制御が容易な場合があるため、硬化性樹脂薄膜を用いることが好ましい。
The formation method of the organic thin film which consists of curable resin is not specifically limited. The organic thin film which consists of curable resin is obtained by apply | coating the composition of curable resin to the film base-material surface, and hardening, for example. When forming the curable resin thin film, it is desirable to perform heat treatment at a temperature lower by 5 ° C. or more than the glass transition temperature T1 of the film substrate. If a high temperature is applied during thin film formation, the film substrate may be annealed and may not shrink as designed.
As the organic thin film, a curable resin thin film is preferably used because the aspect ratio of a fine uneven shape may be easily controlled.

(褶曲誘起構造)
本発明の製造方法においては、フィルム基材表面に薄膜を形成する前に、薄膜の褶曲を引き起こさせるための構造(褶曲誘起構造)をフィルム基材の表面に形成すること、又はフィルム基材表面に薄膜を形成した後で且つ該基材を収縮させる前に、該薄膜の褶曲を引き起こさせるための構造(褶曲誘起構造)を薄膜に形成することを含むことが、凹凸形状の凸部の頂点間の距離の均一性を向上させたい場合には、好ましい。
該構造は、基材が収縮したときに薄膜の褶曲を引き起こさせる構造であれば特に限定されず、例えば、ラビング処理やその他の方法で表面に付けた傷、インクジェットプリンターや印刷機等で載せたインク印、エンボス加工やインプリントなどで付与した凹凸などが挙げられる。
褶曲誘起構造は一定間隔の位置に形成されることが好ましい。褶曲誘起構造の間隔は、所望する凹凸形状の凸部頂点間の距離とは直接に関係無いので、所望の凹凸形状の凸部頂点間の距離よりも狭くても、広くても良いが、凹凸形状の凸部頂点間の所望距離の0.05倍〜100倍の褶曲誘起構造の間隔にすることが好ましい。
(Folding induction structure)
In the production method of the present invention, before forming a thin film on the surface of the film base, a structure (curvature inducing structure) for causing the thin film to bend is formed on the surface of the film base, or the surface of the film base Forming a structure (curvature inducing structure) for causing bending of the thin film on the thin film after forming the thin film on the substrate and before shrinking the substrate. It is preferable when it is desired to improve the uniformity of the distance between them.
The structure is not particularly limited as long as it causes a bending of the thin film when the base material contracts. For example, the structure is scratched on the surface by rubbing or other methods, and is mounted by an inkjet printer or a printing machine. Examples include irregularities provided by ink stamping, embossing, imprinting, and the like.
It is preferable that the bending induction structure is formed at a constant interval. The interval between the fold-inducing structures is not directly related to the distance between the desired convex and concave convex vertices, and may be narrower or wider than the desired convex and concave convex distance. It is preferable that the distance between the bending induction structures is 0.05 to 100 times the desired distance between the convex vertices of the shape.

本発明の製造方法においては、次に前記薄膜を表面に形成したフィルム基材を収縮させ、薄膜を褶曲させる。フィルム基材を収縮させる方法は、フィルム基材の種類に応じて適宜選択すればよい。   In the production method of the present invention, the film base material on which the thin film is formed is then contracted to bend the thin film. What is necessary is just to select the method of shrinking a film base material suitably according to the kind of film base material.

フィルム基材の収縮率は、フィルム基材の収縮によって薄膜が褶曲したときに薄膜等に亀裂などが生じないようにするために、主たる収縮方向の収縮率ΔL、および主たる収縮方向に直交する方向の収縮率ΔMが、式〔3〕および式〔4〕を満たすことが好ましい。なお、ΔL及びΔMは式〔1〕及び式〔2〕でそれぞれ定義される。   The shrinkage rate of the film base material is such that the shrinkage rate ΔL in the main shrinkage direction and the direction orthogonal to the main shrinkage direction so that the thin film does not crack when the thin film is bent by the shrinkage of the film base material. It is preferable that the shrinkage ratio ΔM of the above satisfies the formula [3] and the formula [4]. ΔL and ΔM are defined by Equation [1] and Equation [2], respectively.

式〔1):ΔL=(L0−L1)/L0×100 (L0:主たる収縮方向の収縮前の長さ、L1:主たる収縮方向の収縮後の長さ)
式〔2):ΔM=(M0−M1)/M0×100 (M0:主たる収縮方向に直交する方向の収縮前の長さ、M1:主たる収縮方向に直交する方向の収縮後の長さ)
式〔3〕:ΔL>0
式〔4〕:−(ΔL×0.3)≦ΔM≦ΔL
Formula [1]: ΔL = (L0−L1) / L0 × 100 (L0: length before contraction in the main contraction direction, L1: length after contraction in the main contraction direction)
Formula [2]: ΔM = (M0−M1) / M0 × 100 (M0: length before contraction in the direction orthogonal to the main contraction direction, M1: length after contraction in the direction orthogonal to the main contraction direction)
Formula [3]: ΔL> 0
Formula [4]: − (ΔL × 0.3) ≦ ΔM ≦ ΔL

微細凹凸形状の異方性を強くしたい場合、すなわち、凹凸形状を面内でストライプ状に細長く伸びた構造にしたい場合には、式〔3〕及び式〔5〕を満たすことが好ましい。
式〔5〕:−(ΔL×0.2)≦ΔM≦(ΔL×0.2)
When it is desired to increase the anisotropy of the fine concavo-convex shape, that is, when it is desired to make the concavo-convex shape elongated in stripes in the plane, it is preferable to satisfy the equations [3] and [5].
Formula [5]: − (ΔL × 0.2) ≦ ΔM ≦ (ΔL × 0.2)

本発明の製造方法は、このように収縮条件を変更するだけで、凸部頂点間距離、アスペクト比等を任意に調整できるので各種光学フィルムの製造に好適である。またグリッド偏光子等で要求される面内でストライプ状に細長く伸びた構造も本発明の製造方法によって容易に製造できる。   The production method of the present invention is suitable for producing various optical films because the distance between the convex vertices, the aspect ratio, and the like can be arbitrarily adjusted simply by changing the shrinkage conditions. Further, a structure elongated in a stripe shape within a plane required for a grid polarizer or the like can be easily manufactured by the manufacturing method of the present invention.

微細な凹凸形状は、ランダムに配置されていてもよいし、規則的に配置されていてもよいが、凸部の頂点間の距離の変動係数が40%以下であることが、回折機能や集光機能や偏光機能を付与した光学素子として用いるのに好適である。なお、変動係数は、凸部の頂点間の距離の平均値に対する標準偏差の割合(=標準偏差/平均値×100)である。   The fine uneven shape may be randomly arranged or regularly arranged, but the variation coefficient of the distance between the vertices of the convex portions is 40% or less, so It is suitable for use as an optical element having an optical function or a polarizing function. The variation coefficient is the ratio of the standard deviation to the average value of the distance between the vertices of the convex portions (= standard deviation / average value × 100).

なお、主たる収縮方向は、収縮する度合い(収縮率)が最も大きい方向である。例えば、熱可塑性樹脂からなるフィルムを延伸して得られたフィルム基材は加熱によって収縮する。フィルムの延伸を一軸方向にだけ行った場合には、通常、該延伸方向が主たる収縮方向になる。また二軸方向に延伸を行った場合には、通常、延伸した二つの方向のうち延伸倍率の大きい方向が主たる収縮方向になる。   The main shrinkage direction is the direction in which the degree of shrinkage (shrinkage rate) is the largest. For example, a film substrate obtained by stretching a film made of a thermoplastic resin shrinks by heating. When the film is stretched only in a uniaxial direction, the stretching direction is usually the main shrinking direction. Moreover, when extending | stretching to a biaxial direction, a direction with a large extending | stretching ratio becomes a main shrinking direction among two extended directions normally.

熱可塑性樹脂からなるフィルムを一軸延伸すると、延伸時に延伸方向に直交する方向にフィルムが収縮する。この延伸時の収縮を利用したフィルム基材では、延伸方向に直交する方向が主たる収縮方向である。なお、主たる収縮方向に直交する方向の収縮率ΔMの値がマイナスのときは、収縮処理においてフィルムが伸びたことを表す。主たる収縮方向にフィルムが収縮したときに、主たる収縮方向に直交する方向の伸びが大きくなりすぎると薄膜に亀裂が生じやすくなる。   When a film made of a thermoplastic resin is uniaxially stretched, the film shrinks in a direction perpendicular to the stretching direction during stretching. In the film base material using the shrinkage at the time of stretching, the direction perpendicular to the stretching direction is the main shrinking direction. In addition, when the value of the shrinkage rate ΔM in the direction orthogonal to the main shrinkage direction is negative, it indicates that the film has been stretched in the shrinkage treatment. When the film shrinks in the main shrinking direction, if the elongation in the direction perpendicular to the main shrinking direction becomes too large, the thin film tends to crack.

主たる収縮方向に直交する方向の収縮率は、1%〜90%であることが好ましく、1%〜50%であることがより好ましい。
本発明の製造方法によって、下記のような微細な凹凸形状を有するフィルムが容易に得られる。
The shrinkage rate in the direction orthogonal to the main shrinkage direction is preferably 1% to 90%, and more preferably 1% to 50%.
By the production method of the present invention, a film having the following fine uneven shape can be easily obtained.

〔微細凹凸形状を有するフィルム〕
本発明のフィルムは、表面に微細凹凸形状Bを有する第一層と、前記凹凸形状Bの上に積層され且つ前記凹凸形状Bの形状に対応するように褶曲している第二層とを含んでなる、凸部の頂点間の平均距離が50nm〜50μmである微細な凹凸形状Aを有するフィルムである。
[Film with fine irregularities]
The film of the present invention includes a first layer having a fine concavo-convex shape B on the surface, and a second layer laminated on the concavo-convex shape B and bent so as to correspond to the shape of the concavo-convex shape B. It is the film which has the fine uneven | corrugated shape A whose average distance between the vertexes of a convex part is 50 nm-50 micrometers.

第一層は、樹脂や、ゴム若しくはエラストマーで形成されている。第一層を構成する樹脂や、ゴム若しくはエラストマーとしては、前記のフィルム基材を構成する材料として列挙したものと同様のものを挙げることができる。第一層の平均厚さは、通常5μm〜1mm、好ましくは20〜200μmである。   The first layer is made of resin, rubber or elastomer. Examples of the resin, rubber, or elastomer constituting the first layer include the same materials as listed as materials constituting the film substrate. The average thickness of the first layer is usually 5 μm to 1 mm, preferably 20 to 200 μm.

第一層の表面に在る微細凹凸形状Bは、凸部の頂点間の平均距離が50nm〜50μmであることが好ましい。微細凹凸形状B中の凸部は、その形状によって特に制限されず、畝状、台状、点状などの形状のものが挙げられる。微細凹凸形状B中の凸部は、第一層の表面にランダムに配置されていてもよいし、規則的に配置されていてもよいが、凸部の頂点間の距離の変動係数が80%以下となっていることが光学素子として用いるのに好適である。なお、この変動係数は、凸部の頂点間の距離の平均値に対する標準偏差の割合(=標準偏差/平均値×100)である。微細な凹凸形状Bが畝状凸部がストライプ状に配列されたものである場合には、凸部の頂点間の距離の変動係数は40%以下が好ましく、30%以下がさらに好ましい。ストライプ状に配列されたものである場合、凸部の頂点間の距離の変動係数が小さいことは、ストライプの周期性が高いことを意味する。   It is preferable that the fine uneven | corrugated shape B which exists in the surface of a 1st layer is 50 nm-50 micrometers in the average distance between the vertexes of a convex part. The convex part in the fine concavo-convex shape B is not particularly limited by its shape, and examples thereof include a bowl shape, a trapezoidal shape, and a dot shape. The convex portions in the fine concavo-convex shape B may be randomly arranged on the surface of the first layer or may be regularly arranged, but the variation coefficient of the distance between the vertices of the convex portions is 80%. The following is suitable for use as an optical element. This variation coefficient is the ratio of the standard deviation to the average value of the distance between the vertices of the convex portions (= standard deviation / average value × 100). When the fine concavo-convex shape B is a ridge-shaped convex portion arranged in a stripe shape, the variation coefficient of the distance between the vertices of the convex portion is preferably 40% or less, and more preferably 30% or less. In the case of being arranged in a stripe shape, a small variation coefficient of the distance between the apexes of the convex portions means that the periodicity of the stripe is high.

第二層は有機物質または無機物質で形成されている。第二層を構成する有機物質または無機物質としては、前記の薄膜を構成する材料として列挙したものと同様のものを挙げることができる。第二層の平均厚さは、1nm〜50μmであることが好ましい。また、第二層の平均厚さは、微細凹凸形状Aの凸部の平均高さの10%〜100%であることが好ましい。第二層の平均厚さが、微細凹凸形状Aの凸部の平均高さの10%より薄い場合には、耐擦傷性が損なわれる可能性があり、逆に100%より厚い場合には、過酷な条件で使用した場合、そりが出る可能性がある。   The second layer is formed of an organic material or an inorganic material. Examples of the organic substance or inorganic substance constituting the second layer can include the same substances listed as the materials constituting the thin film. The average thickness of the second layer is preferably 1 nm to 50 μm. The average thickness of the second layer is preferably 10% to 100% of the average height of the convex portions of the fine concavo-convex shape A. When the average thickness of the second layer is thinner than 10% of the average height of the convex portions of the fine concavo-convex shape A, scratch resistance may be impaired, and conversely, when it is thicker than 100%, If it is used under severe conditions, warping may occur.

第二層の厚さの変動係数は20%以下であることが好ましい。第二層の厚さの変動係数が20%より大きい場合には、第二層の厚さ分布が大きくなり、そりの原因となる場合がある。なお、第二層の厚さは、以下のようにして計測できる。フィルムを周期性が強い方向で垂直に切断し超薄切片を得、透過電子顕微鏡にて超薄切片を写真撮影する。撮影した画像から第二層の厚さを、凸部頂点および凹部底点のそれぞれ少なくとも15点以上で計測し、それら計測値から、平均値、標準偏差、変動係数を算出する。フィルムの周期性が強い方向は、フィルム表面の走査型電子顕微鏡写真像を2次元フーリエ変換して得られる空間周波数のパワースペクトル分布から空間周波数の強度が強い2点を抽出し、この2点で結ばれる直線の方向である。この方向は、凹凸形状が面内でストライプ状である場合、ストライプの長手方向に直交する方向であることを意味する。   The variation coefficient of the thickness of the second layer is preferably 20% or less. When the variation coefficient of the thickness of the second layer is larger than 20%, the thickness distribution of the second layer becomes large, which may cause warpage. The thickness of the second layer can be measured as follows. The film is cut vertically in the direction of strong periodicity to obtain an ultrathin section, and the ultrathin section is photographed with a transmission electron microscope. From the photographed image, the thickness of the second layer is measured at at least 15 points each of the top of the convex portion and the bottom of the concave portion, and the average value, standard deviation, and variation coefficient are calculated from these measured values. In the direction where the periodicity of the film is strong, two points with strong spatial frequency intensity are extracted from the spatial frequency power spectrum distribution obtained by two-dimensional Fourier transform of the scanning electron micrograph image on the film surface. The direction of the straight line to be connected. This direction means a direction perpendicular to the longitudinal direction of the stripe when the concavo-convex shape is a stripe shape in the plane.

第二層は、前記凹凸形状Bの上に積層され且つ前記凹凸形状Bの形状に対応するように褶曲している。図4及び図5は、本発明のフィルムの垂直断面を示す模式図である。第一層の表面の凹凸形状Bに対応して、第二層が褶曲し、フィルムの第二層側の表面に凹凸形状Aが形成されている。
なお、図6は、樹脂フィルム表面をエンボス加工して得られる凹凸形状を示すものである。また図7は、紫外線硬化性樹脂などを用いて型を押し付けて得られる凹凸形状を示すものである。
The second layer is laminated on the concavo-convex shape B and is bent so as to correspond to the shape of the concavo-convex shape B. 4 and 5 are schematic views showing a vertical section of the film of the present invention. Corresponding to the uneven shape B on the surface of the first layer, the second layer is bent, and the uneven shape A is formed on the surface on the second layer side of the film.
In addition, FIG. 6 shows the uneven | corrugated shape obtained by embossing the resin film surface. FIG. 7 shows an uneven shape obtained by pressing a mold using an ultraviolet curable resin or the like.

微細な凹凸形状Aは、凸部の頂点間の平均距離が50nm〜50μmである。また、微細凹凸形状A中の凸部は、その形状によって特に制限されず、畝状、台状、点状などの形状のものが挙げられる。微細凹凸形状A中の凸部は、面内にランダムに配置されていてもよいし、規則的に配置されていてもよいが、凸部の頂点間の距離の変動係数が80%以下であることが好ましい。なお、変動係数は、凸部の頂点間の距離の平均値に対する標準偏差の割合(=標準偏差/平均値×100)である。微細な凹凸形状が畝状凸部がストライプ状に配列されたものである場合には、凸部の頂点間の距離の変動係数は40%以下が好ましく、30%以下がさらに好ましい。   The fine concavo-convex shape A has an average distance between the vertices of the convex portions of 50 nm to 50 μm. Moreover, the convex part in the fine uneven | corrugated shape A is not restrict | limited especially by the shape, The thing of shapes, such as a bowl shape, a trapezoid shape, and a dot shape, is mentioned. The convex portions in the fine concavo-convex shape A may be randomly arranged in the plane or may be regularly arranged, but the variation coefficient of the distance between the vertices of the convex portions is 80% or less. It is preferable. The variation coefficient is the ratio of the standard deviation to the average value of the distance between the vertices of the convex portions (= standard deviation / average value × 100). When the fine uneven shape is a ridge-like convex portion arranged in a stripe shape, the variation coefficient of the distance between the apexes of the convex portion is preferably 40% or less, and more preferably 30% or less.

凸部の頂点間の平均距離及び凸部の頂点間の距離の変動係数は、表面に微細凹凸構造を有するフィルムの周期性が最も強い方向の垂直断面を走査型電子顕微鏡で観察し、該観察像から隣接する凸部と凸部との間の距離を複数計測し、それら計測値の平均値、標準偏差を求め、そして変動係数(%)=標準偏差σ/平均値×100を算出する。なお、フィルムの幅方向に10cm以上離れた場所から最低2箇所選択し、さらにフィルムの流れ方向に10cm以上離れた場所から最低2箇所選択し、選択した箇所の凹凸構造断面からそれぞれ30点以上の距離を計測する。   The variation coefficient of the average distance between the vertices of the convex portions and the coefficient of variation between the vertices of the convex portions is observed by observing a vertical section of the film having the fine concavo-convex structure on the surface in the direction with the strongest periodicity with a scanning electron microscope. A plurality of distances between adjacent convex portions from the image are measured, an average value and standard deviation of the measured values are obtained, and a coefficient of variation (%) = standard deviation σ / average value × 100 is calculated. In addition, select at least two locations from a location 10 cm or more away in the width direction of the film, further select at least two locations from a location 10 cm or more away in the film flow direction, and each of 30 or more points from the concavo-convex structure cross section of the selected location Measure distance.

微細な凹凸形状Aの凸部の高さは、目的に応じて5nm〜50μmの範囲で選択され、本発明のフィルムを光学素子として使用する場合には、好ましくは50nm〜10μmの範囲である。凸部の幅(高さの半分の場所の幅)は、好ましくは5nm〜50μmであり、本発明のフィルムを光学素子として使用する場合には好ましくは50nm〜10μmである。またアスペクト比は、通常0.1〜10である。アスペクト比は凸部の高さ/凸部の幅で定義される。アスペクト比は薄膜の膜質、薄膜の膜厚、フィルム基材の収縮率等を制御することで調整することができる。   The height of the convex part of the fine concavo-convex shape A is selected in the range of 5 nm to 50 μm depending on the purpose. When the film of the present invention is used as an optical element, it is preferably in the range of 50 nm to 10 μm. The width of the convex portion (width at half the height) is preferably 5 nm to 50 μm, and preferably 50 nm to 10 μm when the film of the present invention is used as an optical element. The aspect ratio is usually 0.1 to 10. The aspect ratio is defined by the height of the convex portion / the width of the convex portion. The aspect ratio can be adjusted by controlling the film quality of the thin film, the film thickness of the thin film, the shrinkage rate of the film substrate, and the like.

微細な凹凸形状Aは、フィルム表面の走査型電子顕微鏡写真像を2次元フーリエ変換して得られる空間周波数のパワースペクトルが一つの方向に分布していることが好ましい。前記パワースペクトルが一つの方向に分布していると、所望する光学素子に、拡散機能や回折機能や集光などの光学特性に異方性を持たせたい場合に、好適に使用できる。図1は、本発明フィルム表面の走査顕微鏡写真を示す図である。図2は、図1の画像を2次元フーリエ変換した像を示す図である。図2は縦方向に空間周波数の強度の強い部分が分布しており、この方向にフィルムの周期性が強くなっていることを示している。   In the fine concavo-convex shape A, it is preferable that the power spectrum of the spatial frequency obtained by two-dimensional Fourier transform of the scanning electron micrograph image on the film surface is distributed in one direction. When the power spectrum is distributed in one direction, it can be suitably used when it is desired that the desired optical element has anisotropy in optical characteristics such as a diffusion function, a diffraction function, and light collection. FIG. 1 is a view showing a scanning micrograph of the film surface of the present invention. FIG. 2 is a diagram showing an image obtained by two-dimensional Fourier transform of the image of FIG. FIG. 2 shows that portions with strong spatial frequency intensity are distributed in the vertical direction, and the periodicity of the film is increased in this direction.

また、微細凹凸形状Aが、図1のように、面内でストライプ状に細長く伸びた構造であることが好ましい。面内でストライプ状に細長く伸びた構造である場合には、後述するように回折格子や、グリッド偏光子等に利用できる。   Moreover, it is preferable that the fine concavo-convex shape A has a structure elongated in a stripe shape in the plane as shown in FIG. When the structure is elongated in a stripe shape in the plane, it can be used for a diffraction grating, a grid polarizer or the like as described later.

本発明のフィルムは、光学素子、特に光拡散素子に適用するために、ヘイズが50%以上であることが好ましい。なお、ヘイズは、JIS K7361に基づき、濁度計(日本電色製 NDH2000型)を用いて測定する。   The film of the present invention preferably has a haze of 50% or more in order to be applied to an optical element, particularly a light diffusing element. In addition, haze is measured using a turbidimeter (Nippon Denshoku NDH2000 type) based on JIS K7361.

本発明の微細な凹凸形状Aを有するフィルムは、その表面の微細凹凸形状Aを利用して様々な光学素子等に適用できる。凸部頂点間の距離、アスペクト比、およびその分布を変更することによって、光拡散機能、集光機能、光回折機能、偏光機能を有するフィルムを容易自在に大面積で製造できる。   The film having the fine concavo-convex shape A of the present invention can be applied to various optical elements using the fine concavo-convex shape A on the surface. A film having a light diffusing function, a condensing function, a light diffracting function, and a polarizing function can be easily manufactured in a large area by changing the distance between the convex vertices, the aspect ratio, and the distribution thereof.

微細凹凸形状Aに光拡散機能を付与した場合には、反射防止フィルム、光拡散フィルム、照明カバー、反射型スクリーン、透過型スクリーンなどに用いることができ、微細凹凸形状Aに光集光機能を付与した場合には集光シートなどに用いることができる。   When the fine concavo-convex shape A is provided with a light diffusing function, it can be used for an antireflection film, a light diffusing film, a lighting cover, a reflective screen, a transmissive screen, and the like. When applied, it can be used for a light collecting sheet.

微細凹凸形状が面内でストライプ状に細長く伸びた構造であり、該微細凹凸形状の凸部頂点間の距離が光の波長と同程度かやや大きい場合には、光を回折したり、集光させたり、散乱させたりする機能を有するフィルムが得られる。このようなフィルムは、回折格子として用いることができる。   When the fine irregularities are elongated in stripes in the plane, and the distance between the convex vertices of the fine irregularities is the same or slightly larger than the wavelength of the light, the light is diffracted or condensed. A film having a function of allowing or scattering is obtained. Such a film can be used as a diffraction grating.

微細凹凸形状が面内でストライプ状に細長く伸びた構造であり、該微細凹凸形状の凸部頂点間の距離が光や電磁波の波長よりも小さい場合には、該微細凹凸形状の凸部上にアルミニウムなどの吸光性材料を成膜することによって、グリッド偏光フィルム、電磁波遮蔽フィルム、電磁波吸収フィルムなどの素子に応用することが可能となる。   When the fine irregularities are elongated in stripes in the plane and the distance between the convex vertices of the fine irregularities is smaller than the wavelength of light or electromagnetic waves, By forming a light-absorbing material such as aluminum, it can be applied to elements such as a grid polarizing film, an electromagnetic wave shielding film, and an electromagnetic wave absorbing film.

以下に実施例、比較例を挙げて、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

(製造例1)フィルム基材の製造
脂環式オレフィン樹脂(日本ゼオン社製、ZEONOR1420、ガラス転移温度136℃)のペレットを、窒素を流通させた熱風乾燥機を用いて、100℃で4時間乾燥した。次いでこのペレットを、50mmφのスクリューを備えたTダイ式フィルム溶融押出成形機を使用して、溶融樹脂温度260℃で押出し成形することにより、幅650mm、厚さ188μmのフィルムを製造し、両端25mmずつをトリミングして幅600mmの脂環式オレフィン樹脂からなる原反フィルムを得た。
(Production Example 1) Production of film substrate Pellets of alicyclic olefin resin (manufactured by Nippon Zeon Co., Ltd., ZEONOR1420, glass transition temperature 136 ° C) were heated at 100 ° C for 4 hours using a hot air dryer in which nitrogen was circulated. Dried. Next, this pellet was extruded at a molten resin temperature of 260 ° C. using a T-die film melt extrusion molding machine equipped with a 50 mmφ screw to produce a film having a width of 650 mm and a thickness of 188 μm. Each was trimmed to obtain a raw film made of an alicyclic olefin resin having a width of 600 mm.

(フィルム基材1A)
幅600mmの原反フィルムの両端をクリップに把持させて、テンター延伸機内に導入し、温度150℃でフィルム幅方向に1.5倍、フィルム流れ方向に1倍の延伸倍率になるように横一軸延伸し、延伸機から出た延伸フィルムをクリップから外し、両端を連続的にトリミングして幅800mmのフィルム基材1Aを得た。
フィルム基材1Aから40mm角の試験片を切り出し、切り出した試験片の中央部において、複屈折計測装置(王子計測機器(株)、KOBRA−21ADH)を用いてフィルム基材の位相差を測定することにより配向角を計測した。フィルム基材1Aは、幅方向に分子配向していることが確認された。
(Film substrate 1A)
The both ends of a 600 mm wide raw film are held by clips and introduced into a tenter stretching machine. At a temperature of 150 ° C., the film is uniaxial so that the stretching ratio is 1.5 times in the film width direction and 1 time in the film flow direction. Stretched, the stretched film exiting from the stretching machine was removed from the clip, and both ends were continuously trimmed to obtain a film substrate 1A having a width of 800 mm.
A 40 mm square test piece is cut out from the film base 1A, and the phase difference of the film base is measured using a birefringence measuring device (Oji Scientific Instruments, KOBRA-21ADH) at the center of the cut out test piece. Thus, the orientation angle was measured. It was confirmed that the film substrate 1A was molecularly oriented in the width direction.

(フィルム基材1B)
上記の幅600mmの原反フィルムを、縦一軸延伸装置を用いて温度145℃で縦方向に1.3倍に延伸した。延伸されたフィルムをテンター延伸(横一軸延伸)装置に送り温度150℃で横方向に1.6倍延伸し、フィルム基材1Bを得た。フィルム基材1Bから40mm角の試験片を切り出し、切り出した試験片の中央部において、複屈折計測装置[王子計測機器(株)、KOBRA−21ADH]を用いて配向角を計測した。フィルム基材1Bは、幅方向に分子配向していることが確認された。
(Film substrate 1B)
The raw film having a width of 600 mm was stretched 1.3 times in the longitudinal direction at a temperature of 145 ° C. using a longitudinal uniaxial stretching apparatus. The stretched film was sent to a tenter stretching (lateral uniaxial stretching) apparatus and stretched 1.6 times in the transverse direction at a temperature of 150 ° C. to obtain a film substrate 1B. A 40 mm square test piece was cut out from the film substrate 1B, and the orientation angle was measured using a birefringence measuring device [Oji Scientific Instruments, KOBRA-21ADH] at the center of the cut out test piece. It was confirmed that the film substrate 1B was molecularly oriented in the width direction.

(フィルム基材1C)
上記の幅600mmの原反フィルムを、縦一軸延伸装置を用い、温度145℃で縦方向に1.5倍に延伸し、フィルム基材1Cを得た。フィルム基材1Cから40mm角の試験片を切り出し、切り出した試験片の中央部において、複屈折計測装置[王子計測機器(株)、KOBRA−21ADH]を用いて配向角を計測した。フィルム基材1Cは、流れ方向に分子配向していることが確認された。
(Film substrate 1C)
The raw film having a width of 600 mm was stretched 1.5 times in the longitudinal direction at a temperature of 145 ° C. using a longitudinal uniaxial stretching apparatus to obtain a film substrate 1C. A 40 mm square test piece was cut out from the film base 1C, and the orientation angle was measured using a birefringence measuring device [Oji Scientific Instruments, KOBRA-21ADH] at the center of the cut out test piece. It was confirmed that the film substrate 1C was molecularly oriented in the flow direction.

(製造例2)熱可塑性樹脂薄膜用溶液の製造
脂環式オレフィン樹脂(日本ゼオン社製、ZEONOR1600、ガラス転移温度163℃)のペレットをシクロヘキサンに溶解し、濃度2重量%の脂環式オレフィン樹脂溶液を得た。
この樹脂溶液を支持フィルムにバーコーターで塗布し、100℃で30分間乾燥して薄膜を得た。該薄膜を支持フィルムから剥がし、10cm角に裁断し、140℃で1時間放置した。放置後、辺の長さを計測した。該薄膜の収縮率は0.8%(=[裁断後の長さ(10cm)−140℃放置後の長さ]/10cm×100)であった。
(Production Example 2) Manufacture of a solution for a thermoplastic resin thin film A pellet of an alicyclic olefin resin (manufactured by Nippon Zeon Co., Ltd., ZEONOR 1600, glass transition temperature 163 ° C.) is dissolved in cyclohexane, and an alicyclic olefin resin having a concentration of 2% by weight. A solution was obtained.
This resin solution was applied to a support film with a bar coater and dried at 100 ° C. for 30 minutes to obtain a thin film. The thin film was peeled off from the support film, cut into 10 cm square, and left at 140 ° C. for 1 hour. After standing, the side length was measured. The shrinkage of the thin film was 0.8% (= [length after cutting (10 cm) −length after standing at 140 ° C.) / 10 cm × 100).

(製造例3)硬化性樹脂薄膜用溶液の製造
6官能ウレタンアクリレートオリゴマー(商品名:NKオリゴ U−6HA、新中村化学社製) 30重量部、ブチルアクリレート 40重量部、イソボルニルメタクリレート(商品名:NKエステル1B、新中村化学社製) 30重量部、および2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン 10重量部をホモジナイザーで混合し、次いでトルエンで濃度20重量%に希釈して、紫外線硬化性樹脂溶液を調製した。
この紫外線硬化性樹脂溶液を支持フィルムにバーコーターで塗布し、80℃で5分間乾燥させ、次いで紫外線を照射(積算光量300mJ/cm2)し、樹脂を硬化させ薄膜を得た。製造例2と同様に薄膜の収縮率を計測したところ、収縮率は1.4%であった。
(Production Example 3) Production of solution for curable resin thin film Hexafunctional urethane acrylate oligomer (trade name: NK Oligo U-6HA, manufactured by Shin-Nakamura Chemical Co., Ltd.) 30 parts by weight, butyl acrylate 40 parts by weight, isobornyl methacrylate (product) Name: NK Ester 1B, manufactured by Shin-Nakamura Chemical Co., Ltd.) 30 parts by weight and 2,2-dimethoxy-1,2-diphenylethane-1-one 10 parts by weight were mixed with a homogenizer, and then concentrated to 20% by weight with toluene. It diluted and the ultraviolet curable resin solution was prepared.
This ultraviolet curable resin solution was applied to a support film with a bar coater, dried at 80 ° C. for 5 minutes, and then irradiated with ultraviolet rays (integrated light amount 300 mJ / cm 2 ) to cure the resin and obtain a thin film. When the shrinkage rate of the thin film was measured in the same manner as in Production Example 2, the shrinkage rate was 1.4%.

(実施例1)
フィルム基材1A上に、成膜カソードを備えたフィルム巻き取り式真空成膜装置を用いて、スパッタリング法によって厚さ10nmのSiO2層を成膜し積層フィルムを得た。次いでSiO2層表面をフィルム流れ方向にラビング処理した。走査型電子顕微鏡で観察したところ、SiO2層表面にフィルム流れ方向に沿った線状の傷が一様に付いていた。
Example 1
A 10 nm thick SiO 2 layer was formed on the film substrate 1A by a sputtering method using a film winding type vacuum film forming apparatus equipped with a film forming cathode to obtain a laminated film. Next, the surface of the SiO 2 layer was rubbed in the film flow direction. When observed with a scanning electron microscope, linear scratches along the film flow direction were uniformly attached to the surface of the SiO 2 layer.

次に該積層フィルムを温度140℃の温風を循環させた温風乾燥機を通過させて、主たる収縮方向の収縮率ΔL=33%、主たる収縮方向に直交する方向の収縮率ΔM=0.1%で収縮させた。   Next, the laminated film is passed through a hot air dryer in which hot air having a temperature of 140 ° C. is circulated, and the shrinkage rate ΔL = 33% in the main shrinkage direction, and the shrinkage rate ΔM = 0.0.0 in the direction perpendicular to the main shrinkage direction. Shrink at 1%.

前記収縮フィルムを、日立製作所製電界放出型走査電子顕微鏡S−4700にて観察したところ、図1に示すような、ストライブ状に細長く伸びた微細な凹凸形状が表面に均一に形成されていた。
走査電子顕微鏡像を画像解析ソフト(SoftImagingSystem製、AnlySIS)を用いて、2次元高速フーリエ変換し、空間周波数のパワースペクトル分布を求め、周期性を強く示す方向を読み取った。この方向にウルトラミクロトームを用いて切断し、その断面を走査型電子顕微鏡(日立製作所製、S−4700)で写真撮影した。この写真撮影をフィルム幅方向および流れ方向に少なくとも10cm以上離れた3箇所の点で行った。走査型電子顕微鏡写真像から、凸部頂点間距離を30点計測した。凸部頂点間の平均距離は124nm、凸部頂点間の距離の変動係数は3.6%であった。また、アスペクト比は2.1であった。
When the shrink film was observed with a field emission scanning electron microscope S-4700 manufactured by Hitachi, as shown in FIG. 1, a fine uneven shape elongated in a stripe shape was uniformly formed on the surface. .
The scanning electron microscope image was subjected to two-dimensional fast Fourier transform using image analysis software (Soft Imaging System, AnySIS) to determine the spatial frequency power spectrum distribution, and the direction showing strong periodicity was read. The film was cut in this direction using an ultramicrotome, and the cross section was photographed with a scanning electron microscope (manufactured by Hitachi, Ltd., S-4700). This photography was performed at three points at least 10 cm apart in the film width direction and the flow direction. From the scanning electron micrograph image, the distance between the vertices of the convex portions was measured at 30 points. The average distance between the convex vertices was 124 nm, and the variation coefficient of the distance between the convex vertices was 3.6%. The aspect ratio was 2.1.

また、収縮フィルムから、集束イオンビーム加工観察装置(日立製作所製、FB−2100)のマイクロサンプリング装置を使用して透過型電子顕微鏡観察用断面片を作製した。透過電子顕微鏡(日立製作所製、H−7500)にてその断面を観察した。観察画像からSiO2層が図4に示すように褶曲していることが確認された。SiO2層の厚さを凸部頂点及び凹部底点でそれぞれ15点ずつ計測した。SiO2層(第二層)の厚さは、平均が10.4nm、変動係数が4.2%であった。第二層の平均厚さは凹凸形状の平均高さの10.4%であった。Moreover, the cross-sectional piece for transmission electron microscope observation was produced from the shrink film using the micro sampling apparatus of the focused ion beam processing observation apparatus (Hitachi Ltd., FB-2100). The cross section was observed with a transmission electron microscope (H-7500, manufactured by Hitachi, Ltd.). From the observed image, it was confirmed that the SiO 2 layer was bent as shown in FIG. The thickness of the SiO 2 layer was measured at 15 points each at the top of the convex portion and the bottom point of the concave portion. The average thickness of the SiO 2 layer (second layer) was 10.4 nm and the coefficient of variation was 4.2%. The average thickness of the second layer was 10.4% of the average height of the concavo-convex shape.

収縮フィルムの凹凸形状面に、厚さ100nmのアルミニウム層を真空蒸着によって形成した。次いでリン酸を主成分とするエッチング液に浸漬してグリッド偏光フィルムを得た。
分光光度計(日本分光製、紫外可視近赤外分光光度計V−570)を用い偏光分離性能を調べた。波長550nmにおけるp偏光透過率が83%、s偏光透過率が0.3%と良好な偏光分離性能を示した。
An aluminum layer having a thickness of 100 nm was formed on the uneven surface of the shrink film by vacuum deposition. Subsequently, it was immersed in the etching liquid which has phosphoric acid as a main component, and the grid polarizing film was obtained.
Polarization separation performance was examined using a spectrophotometer (manufactured by JASCO Corporation, UV-visible near-infrared spectrophotometer V-570). The p-polarized light transmittance at a wavelength of 550 nm was 83%, and the s-polarized light transmittance was 0.3%.

(実施例2)
フィルム基材1A上に、製造例2で得られた樹脂薄膜用溶液をダイコーターを用いて塗布し、100℃の温風乾燥炉中で30分間乾燥させて、薄膜を形成し積層フィルムを得た。薄膜の平均厚さは13.4μmであった。
次に積層フィルムを温度140℃の温風を循環させた温風乾燥機を通過させて、主たる収縮方向の収縮率ΔL=32%、主たる収縮方向に直交する方向の収縮率ΔM=0.2%で収縮させた。
収縮フィルムを、実施例1と同様の方法で表面観察したところ、ストライブ状に細長く伸びた微細な凹凸形状が形成されており、凸部頂点間の距離は、平均が12.7μm、変動係数が19.2%であった。アスペクト比は0.59であった。凹凸形状下の薄膜(第二層)の厚さは、平均が12.4μm、変動係数が5.4%であった。第二層の平均厚さは凹凸形状の平均高さの75.2%であった。
濁度計(日本電色製 NDH2000型)にてへイズを計測したところ、85%であった。
得られた収縮フィルムに、スポット径2mmのコリメート光をフィルム法線方向から入射させ、透過してきた光の出射角度と輝度との関係を測定した。該収縮フィルムが散乱特性と回折特性を有することを確認できた。
該収縮フィルムを、10cm角に切断し、60℃、85%RHの環境下に500時間放置したが、そりは生じなかった。
(Example 2)
On the film substrate 1A, the resin thin film solution obtained in Production Example 2 is applied using a die coater and dried in a hot air drying oven at 100 ° C. for 30 minutes to form a thin film to obtain a laminated film. It was. The average thickness of the thin film was 13.4 μm.
Next, the laminated film is passed through a hot air dryer in which hot air having a temperature of 140 ° C. is circulated, and the shrinkage rate ΔL = 32% in the main shrinkage direction, and the shrinkage rate ΔM = 0.2 in the direction perpendicular to the main shrinkage direction. %.
When the surface of the shrink film was observed in the same manner as in Example 1, a fine concavo-convex shape elongated in a stripe shape was formed, and the average distance between convex vertices was 12.7 μm, and the coefficient of variation. Was 19.2%. The aspect ratio was 0.59. The average thickness of the thin film (second layer) under the uneven shape was 12.4 μm, and the coefficient of variation was 5.4%. The average thickness of the second layer was 75.2% of the average height of the concavo-convex shape.
It was 85% when the haze was measured with a turbidimeter (Nippon Denshoku NDH2000 type).
Collimated light having a spot diameter of 2 mm was incident on the obtained shrink film from the normal direction of the film, and the relationship between the emission angle of transmitted light and the luminance was measured. It was confirmed that the shrink film had scattering characteristics and diffraction characteristics.
The shrink film was cut into 10 cm square and left in an environment of 60 ° C. and 85% RH for 500 hours, but no warpage occurred.

(実施例3)
フィルム基材1A上に、製造例3で得られた溶液を、ダイコーターを用いて連続的に塗布した。次いで、80℃で5分間乾燥させ、紫外線を照射(積算光量300mJ/cm2)し、樹脂を硬化させ、薄膜を形成し積層フィルムを得た。この積層フィルムを、ロール状に巻き取った。硬化後の薄膜の平均厚さは903nmであった。
次に該積層フィルムを温度140℃の温風を循環させた温風乾燥機を通過させて、主たる収縮方向の収縮率ΔL=31%、主たる収縮方向に直交する方向の収縮率ΔM=0.1%で収縮させた。
(Example 3)
On the film base 1A, the solution obtained in Production Example 3 was continuously applied using a die coater. Next, the film was dried at 80 ° C. for 5 minutes, irradiated with ultraviolet rays (accumulated light amount: 300 mJ / cm 2 ), the resin was cured, a thin film was formed, and a laminated film was obtained. This laminated film was wound up in a roll shape. The average thickness of the thin film after curing was 903 nm.
Next, the laminated film is passed through a hot air dryer in which hot air having a temperature of 140 ° C. is circulated, and the shrinkage rate ΔL = 31% in the main shrinkage direction, and the shrinkage rate ΔM = 0.0 in the direction perpendicular to the main shrinkage direction. Shrink at 1%.

収縮フィルムを、実施例1と同様の方法で表面観察したところ、ストライブ状に細長く伸びた微細な凹凸形状が形成されており、凸部頂点間の距離は、平均が1.9μm、変動係数が12.8%であった。アスペクト比は0.38であった。凹凸形状下の薄膜(第二層)の厚さは、平均が938nm、変動係数が8.3%であった。第二層の平均厚さは凹凸形状の平均高さの36.0%であった。
濁度計(日本電色製 NDH2000型)にてへイズを計測したところ、69%であった。
得られた収縮フィルムに、スポット径2mmのコリメート光を法線方向から入射し、透過してきた光の出射角度と輝度との関係を測定した。該収縮フィルムが強い回折特性を示すことが確認できた。
When the surface of the shrink film was observed in the same manner as in Example 1, a fine uneven shape elongated in a stripe shape was formed, and the average distance between the convex vertices was 1.9 μm, and the coefficient of variation Was 12.8%. The aspect ratio was 0.38. The average thickness of the thin film (second layer) under the uneven shape was 938 nm, and the coefficient of variation was 8.3%. The average thickness of the second layer was 36.0% of the average height of the concavo-convex shape.
It was 69% when the haze was measured with a turbidimeter (Nippon Denshoku NDH2000 type).
Collimated light having a spot diameter of 2 mm was incident on the obtained shrink film from the normal direction, and the relationship between the emission angle of the transmitted light and the luminance was measured. It was confirmed that the shrink film showed strong diffraction characteristics.

(実施例4)
フィルム基材1B上に、製造例3で得られた溶液を塗布し、80℃で5分間乾燥し、次いで紫外線を照射して樹脂を硬化させ薄膜を形成し積層フィルムを得た。硬化後の薄膜の平均厚さは2.4μmであった。第二層の平均厚さは凹凸形状の平均高さの50.1%であった。
次に積層フィルムを温度140℃の温風を循環させた温風乾燥機を通過させて、主たる収縮方向の収縮率ΔL=36%、主たる収縮方向に直交する方向の収縮率ΔM=20%で収縮させた。
Example 4
On the film substrate 1B, the solution obtained in Production Example 3 was applied, dried at 80 ° C. for 5 minutes, and then irradiated with ultraviolet rays to cure the resin to form a thin film to obtain a laminated film. The average thickness of the thin film after curing was 2.4 μm. The average thickness of the second layer was 50.1% of the average height of the concavo-convex shape.
Next, the laminated film is passed through a hot air dryer in which hot air at a temperature of 140 ° C. is circulated, and the shrinkage ratio ΔL = 36% in the main shrinkage direction and the shrinkage ratio ΔM = 20% in the direction perpendicular to the main shrinkage direction. Shrink.

収縮フィルムを実施例1と同様の方法で表面確認したところ、図3に示すような、ストライプが折れ曲がったようなランダムに分布した凹凸形状が形成されていた。凸部頂点間の距離は、平均が4.5μm、変動係数が63%であった。アスペクト比は0.9であった。凹凸形状下の薄膜の厚さは、平均が2.5μm、変動係数が6.9%であった。
濁度計(日本電色製 NDH2000型)にてへイズを計測したところ、82%であった。
When the surface of the shrink film was confirmed by the same method as in Example 1, irregularly distributed shapes such as stripes were bent as shown in FIG. 3 were formed. The average distance between the convex vertices was 4.5 μm, and the variation coefficient was 63%. The aspect ratio was 0.9. The average thickness of the thin film under the irregular shape was 2.5 μm and the coefficient of variation was 6.9%.
It was 82% when the haze was measured with a turbidimeter (Nippon Denshoku NDH2000 type).

得られた収縮フィルムに、スポット径2mmのコリメート光を法線方向から入射し、透過してきた光の出射角度と輝度との関係を測定した。該収縮フィルムが散乱特性を有することが確認できた。
凹凸形状が形成された面にスチールウール♯0000をあて、荷重0.05MPaで10回往復させた。その後、表面状態を目視で観察したが、傷は認められず、往復前と同じであった。
Collimated light having a spot diameter of 2 mm was incident on the obtained shrink film from the normal direction, and the relationship between the emission angle of the transmitted light and the luminance was measured. It was confirmed that the shrink film had scattering characteristics.
Steel wool # 0000 was applied to the surface on which the uneven shape was formed, and was reciprocated 10 times with a load of 0.05 MPa. Thereafter, the surface state was visually observed, but no scratches were observed, and it was the same as before the reciprocation.

(実施例5)
フィルム基材1C上に、製造例3で得られた溶液を塗布し、80℃で5分間乾燥し、さらに紫外線を照射して樹脂を硬化させて薄膜を形成し積層フィルムを得た。硬化後の薄膜の平均厚さは584nmであった。
次に該積層フィルムを温度140℃の温風を循環させた温風乾燥機を通過させて、主たる収縮方向の収縮率ΔL=30%、主たる収縮方向に直交する方向の収縮率ΔM=−9.2%で収縮させた。
(Example 5)
On the film substrate 1C, the solution obtained in Production Example 3 was applied, dried at 80 ° C. for 5 minutes, and further irradiated with ultraviolet rays to cure the resin to form a thin film to obtain a laminated film. The average thickness of the thin film after curing was 584 nm.
Next, the laminated film is passed through a hot air dryer in which hot air having a temperature of 140 ° C. is circulated, and the shrinkage rate ΔL = 30% in the main shrinkage direction, and the shrinkage rate ΔM = −9 in the direction orthogonal to the main shrinkage direction. Shrink at 2%.

収縮フィルムを実施例1と同様の方法で表面確認したところ、ストライプ状の凹凸形状が観察された。凹凸に亀裂は見られなかった。凸部頂点間の距離は、平均が1.0μm、変動係数が13.4%であった。アスペクト比は0.8であった。凹凸形状下の薄膜の厚さは、平均が590nm、変動係数が3.8%であった。第二層の平均厚さは凹凸形状の平均高さの98.3%であった。
濁度計(日本電色製 NDH2000型)にてへイズを計測したところ、54%であった。
When the surface of the shrink film was confirmed by the same method as in Example 1, a striped uneven shape was observed. There were no cracks in the irregularities. The average distance between the convex vertices was 1.0 μm, and the coefficient of variation was 13.4%. The aspect ratio was 0.8. The average thickness of the thin film under the irregular shape was 590 nm, and the variation coefficient was 3.8%. The average thickness of the second layer was 98.3% of the average height of the concavo-convex shape.
It was 54% when the haze was measured with a turbidimeter (Nippon Denshoku NDH2000 type).

得られた収縮フィルムに、スポット径2mmのコリメート光を法線方向から入射し、透過してきた光の出射角度と輝度との関係を測定した。該収縮フィルムが回折特性を示すことを確認できた。   Collimated light having a spot diameter of 2 mm was incident on the obtained shrink film from the normal direction, and the relationship between the emission angle of the transmitted light and the luminance was measured. It was confirmed that the shrink film exhibited diffraction characteristics.

(実施例6)
SiO2層成膜後に行ったラビング処理をSiO2層成膜前に行った他は、実施例1と同様にして凹凸形状を有するフィルムを作製した。形成された凹凸形状は、実施例1と同様であることが確認された。
(Example 6)
A film having a concavo-convex shape was produced in the same manner as in Example 1 except that the rubbing treatment performed after forming the SiO 2 layer was performed before forming the SiO 2 layer. It was confirmed that the formed uneven shape was the same as in Example 1.

(比較例1)
原反フィルムをA4サイズに裁断した。このフィルムに、凸部頂点間の距離が10.0μm、凸部の高さが10μm、凸部断面形状が三角形をした、ストライプ状に細長く伸びた構造を有する金型を用いて、金型温度200℃で、5分間ホールドして熱インプリントした。図6に示すような断面形状が三角で、面内にストライプ状に細長く伸びた微細な凹凸形状を持ち、凸部頂点間距離のの変動係数が0.1%のフィルムを得た。
濁度計(日本電色製 NDH2000型)にてへイズを計測したところ、32%であった。
凹凸形状が形成された面にスチールウール♯0000をあて、荷重0.05MPaで10回往復させた。その後、表面状態を目視で観察したところ、はっきりと確認できる傷が多数見られた。
(Comparative Example 1)
The original film was cut into A4 size. Using this film, the mold temperature is 10.0 μm, the height of the protrusion is 10 μm, the protrusion cross-sectional shape is a triangle, and has a structure elongated in a stripe shape. Holding at 200 ° C. for 5 minutes, thermal imprinting was performed. A film having a triangular cross-sectional shape as shown in FIG. 6, a fine concavo-convex shape elongated in a stripe in the plane, and a coefficient of variation in the distance between the convex vertexes of 0.1% was obtained.
It was 32% when the haze was measured with a turbidimeter (Nippon Denshoku NDH2000 type).
Steel wool # 0000 was applied to the surface on which the uneven shape was formed, and was reciprocated 10 times with a load of 0.05 MPa. Then, when the surface state was visually observed, many scratches that could be clearly confirmed were found.

(比較例2)
原反フィルムをA4サイズに裁断した。このフィルムに、東洋合成工業社製のPAK−01をバーコーターで乾燥膜厚5μmになるように塗布し、80℃で5分間乾燥させた。
比較例1で用いた金型を塗布面に押し当て、フィルム側から紫外線を照射(積算光量300mJ/cm2)し、樹脂を硬化させた。金型を外し、図7に示すような断面構造の微細凹凸構造を有するフィルムを得た。
濁度計(日本電色製 NDH2000型)にてへイズを計測したところ、32%であった。
得られたフィルムを、10cm角に切断し、60℃、85%RHの環境下に500時間放置したところ、周辺部にそりが生じた。
(Comparative Example 2)
The original film was cut into A4 size. To this film, PAK-01 manufactured by Toyo Gosei Kogyo Co., Ltd. was applied with a bar coater to a dry film thickness of 5 μm, and dried at 80 ° C. for 5 minutes.
The mold used in Comparative Example 1 was pressed against the coated surface and irradiated with ultraviolet rays from the film side (integrated light amount 300 mJ / cm 2 ) to cure the resin. The mold was removed to obtain a film having a fine concavo-convex structure having a cross-sectional structure as shown in FIG.
It was 32% when the haze was measured with a turbidimeter (Nippon Denshoku NDH2000 type).
When the obtained film was cut into 10 cm square and left in an environment of 60 ° C. and 85% RH for 500 hours, warpage occurred in the peripheral portion.

(比較例3)
特開2003−266570号公報に記載の方法に従い、メチルエチルケトンにポリエステル樹脂(東洋紡バイロン500) 100重量部、メラミン樹脂(会社名大日本インキ製) 20重量部、およびパラトルエンスルホン酸 0.25重量部を溶解して塗布液を調製した。
この塗布液をポリエチレンテレフタレートフィルム(厚さ100μm)の上にバーコーターで乾燥厚さ5μmになるように塗布し、100℃で5分間乾燥し薄膜を形成させた。このフィルムを直径が0.3mの円筒に巻きつけ、180℃のオーブン中に1分間放置した。
得られたフィルムを走査型電子顕微鏡観察したところ、わずかにうねったような凸形状が見られた。実施例1と同様にして表面形状を計測すると、凸部頂点間の距離は平均が16.7μm、変動係数が82.1%であった。アスペクト比は0.1であった。
該フィルムは、ポリエチレンテレフタレートフィルム層表面は元の平らな形状を維持しており、硬化性樹脂層のみが変形している構造を有していた。
濁度計(日本電色製 NDH2000型)にてへイズを計測したところ、25%であった。
得られたフィルムを、10cm角に裁断し、60℃、85%RHの環境下に500時間放置したところ、周辺部にそりが生じた。
(Comparative Example 3)
According to the method described in JP-A No. 2003-266570, 100 parts by weight of polyester resin (Toyobo Byron 500), 20 parts by weight of melamine resin (manufactured by Dainippon Ink, Inc.), and 0.25 parts by weight of paratoluenesulfonic acid are added to methyl ethyl ketone. Was dissolved to prepare a coating solution.
This coating solution was applied onto a polyethylene terephthalate film (thickness: 100 μm) with a bar coater to a dry thickness of 5 μm, and dried at 100 ° C. for 5 minutes to form a thin film. This film was wound around a cylinder having a diameter of 0.3 m and left in an oven at 180 ° C. for 1 minute.
When the obtained film was observed with a scanning electron microscope, a slightly wavy convex shape was observed. When the surface shape was measured in the same manner as in Example 1, the average distance between the convex vertices was 16.7 μm, and the coefficient of variation was 82.1%. The aspect ratio was 0.1.
The film had a structure in which the surface of the polyethylene terephthalate film layer maintained the original flat shape and only the curable resin layer was deformed.
It was 25% when the haze was measured with a turbidimeter (Nippon Denshoku NDH2000 type).
When the obtained film was cut into a 10 cm square and left in an environment of 60 ° C. and 85% RH for 500 hours, warpage occurred in the peripheral portion.

Claims (11)

蒸着法、塗布法、無電解めっき法、電解めっき法、フィルム基材を構成する樹脂と薄膜を構成する樹脂とを共押出する方法、フィルム基材の表面に熱可塑性樹脂を含有する溶液を塗布し乾燥する方法、又はフィルム基材面に硬化性樹脂の組成物を塗布し硬化する方法によって、面内の少なくとも一つの軸方向に収縮させることができるフィルム基材の少なくとも一方の表面に薄膜を形成して積層体を得る工程、および
該積層体を面内の少なくとも一つの軸方向に収縮させて薄膜を褶曲させる工程を含む、
表面に微細な凹凸形状Bを有する第一層と、前記凹凸形状Bの上に積層され且つ前記凹凸形状Bの形状に対応するように褶曲してなる第二層とを含んでなり且つ表面に微細な凹凸形状Aを有するフィルムの製造方法において、
フィルム基材表面に薄膜を形成する前に褶曲誘起構造をフィルム基材の表面に形成する、又はフィルム基材表面に薄膜を形成した後で且つ該基材を収縮させる前に褶曲誘起構造を薄膜に形成する工程を有する製造方法
Vapor deposition method, coating method, electroless plating method, electrolytic plating method, method of co-extrusion of resin constituting film base and resin constituting thin film, coating solution containing thermoplastic resin on the surface of film base Then, a thin film is formed on at least one surface of the film substrate that can be contracted in at least one axial direction in the surface by a method of drying and drying, or a method of applying and curing a curable resin composition on the film substrate surface. Forming a laminate, and bending the thin film by contracting the laminate in at least one axial direction in a plane.
A first layer having a fine concavo-convex shape B on the surface, and a second layer laminated on the concavo-convex shape B and bent to correspond to the shape of the concavo-convex shape B. In the method for producing a film having a fine uneven shape A,
Before forming a thin film on the surface of the film base, the bending induction structure is formed on the surface of the film base, or after forming the thin film on the surface of the film base and before shrinking the base, The manufacturing method which has the process formed in .
主たる収縮方向の収縮率ΔLを式〔1〕、主たる収縮方向に直交する方向の収縮率ΔMを式〔2〕で表した時、ΔLおよびΔMが式〔3〕および式〔4〕を満たす、請求項1に記載のフィルムの製造方法。
式〔1:ΔL=(L0−L1)/L0×100(L0:主たる収縮方向の収縮前の長さ、L1:主たる収縮方向の収縮後の長さ)
式〔2:ΔM=(M0−M1)/M0×100(M0:主たる収縮方向に直交する方向の収縮前の長さ、M1:主たる収縮方向に直交する方向の収縮後の長さ)
式〔3〕:ΔL>0
式〔4〕:−(ΔL×0.3)≦ΔM≦ΔL
When the contraction rate ΔL in the main contraction direction is expressed by equation [1] and the contraction rate ΔM in the direction orthogonal to the main contraction direction is expressed by equation [2], ΔL and ΔM satisfy the equations [3] and [4]. The manufacturing method of the film of Claim 1.
Formula [1 ] : ΔL = (L0−L1) / L0 × 100 (L0: length before contraction in the main contraction direction, L1: length after contraction in the main contraction direction)
Formula [2 ] : ΔM = (M0−M1) / M0 × 100 (M0: length before shrinkage in the direction perpendicular to the main shrinkage direction, M1: length after shrinkage in the direction perpendicular to the main shrinkage direction)
Formula [3]: ΔL> 0
Formula [4]: − (ΔL × 0.3) ≦ ΔM ≦ ΔL
ΔLおよびΔMが式〔5〕を満たす、請求項2に記載のフィルムの製造方法。
式〔5〕:−(ΔL×0.2)≦ΔM≦(ΔL×0.2)
The manufacturing method of the film of Claim 2 with which (DELTA) L and (DELTA) M satisfy | fill Formula [5].
Formula [5]: − (ΔL × 0.2) ≦ ΔM ≦ (ΔL × 0.2)
微細な凹凸形状が、面内でストライプ状に細長く伸びた構造である、請求項3に記載のフィルムの製造方法。  The manufacturing method of the film of Claim 3 which is a structure where the fine uneven | corrugated shape was elongated in stripes in the surface. 微細な凹凸形状は、凸部の頂点間の距離の変動係数が40%以下である、請求項1〜4のいずれかに記載のフィルムの製造方法。  The fine uneven | corrugated shape is a manufacturing method of the film in any one of Claims 1-4 whose variation coefficient of the distance between the vertexes of a convex part is 40% or less. 前記薄膜の厚さが1nm〜50μmである、請求項1〜5のいずれかに記載のフィルムの製造方法。  The manufacturing method of the film in any one of Claims 1-5 whose thickness of the said thin film is 1 nm-50 micrometers. 前記薄膜が無機物質からなるものであり、かつ前記薄膜の厚さが1nm〜500nmである、請求項1〜5のいずれかに記載のフィルムの製造方法。  The method for producing a film according to claim 1, wherein the thin film is made of an inorganic substance, and the thickness of the thin film is 1 nm to 500 nm. 前記薄膜が有機物質からなるものであり、かつ前記薄膜の厚さが100nm〜50μmである、請求項1〜5のいずれかに記載のフィルムの製造方法。  The method for producing a film according to claim 1, wherein the thin film is made of an organic substance, and the thickness of the thin film is 100 nm to 50 μm. 前記有機物質が硬化性樹脂であり、硬化性樹脂からなる薄膜を形成する時の熱処理温度をフィルム基材のガラス転移温度より5℃以上低くする、請求項8に記載のフィルムの製造方法。  The method for producing a film according to claim 8, wherein the organic substance is a curable resin, and a heat treatment temperature when forming a thin film made of the curable resin is lower by 5 ° C. or more than a glass transition temperature of the film substrate. 微細な凹凸形状の凸部の頂点間の平均距離が50nm〜50μmである、請求項1〜9のいずれかに記載のフィルムの製造方法。  The manufacturing method of the film in any one of Claims 1-9 whose average distance between the vertexes of the convex part of a fine uneven | corrugated shape is 50 nm-50 micrometers. フィルム基材が、面内の少なくとも一つの方向に分子配向しているフィルムである、請求項1〜10のいずれかに記載のフィルムの製造方法。  The manufacturing method of the film in any one of Claims 1-10 whose film base material is a film which is molecularly oriented in the at least 1 direction in a plane.
JP2008501781A 2006-02-27 2007-02-27 Film having fine irregularities and method for producing the same Active JP5176950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008501781A JP5176950B2 (en) 2006-02-27 2007-02-27 Film having fine irregularities and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006050644 2006-02-27
JP2006050644 2006-02-27
JP2008501781A JP5176950B2 (en) 2006-02-27 2007-02-27 Film having fine irregularities and method for producing the same
PCT/JP2007/053589 WO2007097454A1 (en) 2006-02-27 2007-02-27 Film having fine uneven shape and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2007097454A1 JPWO2007097454A1 (en) 2009-07-16
JP5176950B2 true JP5176950B2 (en) 2013-04-03

Family

ID=38437489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008501781A Active JP5176950B2 (en) 2006-02-27 2007-02-27 Film having fine irregularities and method for producing the same

Country Status (2)

Country Link
JP (1) JP5176950B2 (en)
WO (1) WO2007097454A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020096122A1 (en) * 2018-11-07 2020-05-14 한국과학기술원 Method for preparing hierarchical wrinkle structure by using sacrificial layer, and hierarchical wrinkle structure prepared thereby

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098450B2 (en) * 2007-06-07 2012-12-12 王子ホールディングス株式会社 Method for producing uneven pattern forming sheet and uneven pattern forming sheet
JP5007976B2 (en) * 2007-10-17 2012-08-22 独立行政法人産業技術総合研究所 Periodic fine relief structure material
KR100841447B1 (en) 2007-11-06 2008-06-26 주식회사 엘지에스 Optical film and lighting device having the same
JP5245366B2 (en) * 2007-11-14 2013-07-24 王子ホールディングス株式会社 Polarizing plate and manufacturing method thereof
EP2434840A1 (en) * 2008-04-22 2012-03-28 Zeon Corporation Organic electroluminescent light source
JP5182871B2 (en) * 2008-05-22 2013-04-17 独立行政法人産業技術総合研究所 Miniature switch array
JP2009288655A (en) * 2008-05-30 2009-12-10 Nitto Denko Corp Antiglare hard coat film, polarizing plate and image display apparatus using the same, method for evaluating the same and method for producing the same
JP2010085990A (en) * 2008-09-03 2010-04-15 Asahi Kasei E-Materials Corp Wire grid polarizing plate
CN101846755B (en) * 2009-03-25 2014-04-16 住友化学株式会社 Methods of manufacturing anti-dazzle film and die for making anti-dazzle film
JP2010266479A (en) * 2009-05-12 2010-11-25 Oji Paper Co Ltd Method for producing fine rugged sheet
JP5359541B2 (en) * 2009-05-12 2013-12-04 王子ホールディングス株式会社 Manufacturing method of metal fine wire sheet having uneven shape, and metal thin wire sheet having uneven shape
JP2011096367A (en) * 2009-10-27 2011-05-12 Furukawa Electric Co Ltd:The Glass substrate, solar cell, organic el element, and manufacturing method of glass substrate
JP5135555B2 (en) * 2009-12-22 2013-02-06 王子ホールディングス株式会社 Convex / concave pattern forming sheet, optical sheet, brightness adjusting sheet, and manufacturing method thereof
CN102155711A (en) * 2010-02-12 2011-08-17 中强光电股份有限公司 Optical sheet
US20110242658A1 (en) * 2010-04-05 2011-10-06 Honeywell International Inc. Film structure having inorganic surface structures and related fabrication methods
JP5322182B2 (en) * 2010-05-14 2013-10-23 Jx日鉱日石エネルギー株式会社 MICRO LENS FOR ORGANIC EL ELEMENT, ORGANIC EL ELEMENT USING THE SAME, AND METHOD FOR PRODUCING THEM
JP5330314B2 (en) * 2010-05-24 2013-10-30 旭化成イーマテリアルズ株式会社 Manufacturing method of wire grid polarizing plate
JP5636907B2 (en) * 2010-11-22 2014-12-10 王子ホールディングス株式会社 Convex / concave pattern forming sheet and method for producing the same, concave / convex pattern forming sheet duplicating process sheet master, optical element, secondary process molding, duplicating sheet
EP2458412A1 (en) * 2010-11-24 2012-05-30 Université de Liège Method for manufacturing an improved optical layer of a light emitting device, and light emitting device with surface nano-micro texturation based on radiation speckle lithography.
KR20120077330A (en) 2010-12-30 2012-07-10 삼성코닝정밀소재 주식회사 Apparatus for measuring the degree of transmission of a patterned glass substrate
JP5996163B2 (en) * 2011-02-04 2016-09-21 コニカミノルタ株式会社 Optical film manufacturing method, polarizing plate and image display device
JP5822192B2 (en) * 2011-08-08 2015-11-24 学校法人東京理科大学 Fabrication method of geometric fine relief structure
CN102436021B (en) * 2011-12-21 2014-10-22 北京康得新复合材料股份有限公司 Prism-structure bright enhancement film with raised structures in non-uniform distribution
JP5470433B2 (en) * 2012-10-04 2014-04-16 日東電工株式会社 Anti-glare hard coat film, polarizing plate and image display device using the same
JP2013101359A (en) * 2012-12-14 2013-05-23 Oji Holdings Corp Thin metallic wire sheet having rugged shape
JP6032675B2 (en) * 2013-02-08 2016-11-30 国立研究開発法人産業技術総合研究所 Light diffusion variable device capable of reversibly changing light diffusion state
JP5673706B2 (en) * 2013-02-27 2015-02-18 王子ホールディングス株式会社 Manufacturing method of fine uneven sheet
JP2015052808A (en) * 2013-03-18 2015-03-19 王子ホールディングス株式会社 Body having fine protrusion and recession on surface and method for manufacturing body having fine protrusion and recession on surface
JP5605456B2 (en) * 2013-04-23 2014-10-15 王子ホールディングス株式会社 Metal fine wire sheet with uneven shape
JP6234753B2 (en) * 2013-09-17 2017-11-22 富士フイルム株式会社 Method for producing transparent fine concavo-convex structure
CN105531606B (en) * 2013-09-25 2019-03-22 木本股份有限公司 The display element of hard coat film and subordinate list surface member
JP5839017B2 (en) * 2013-10-25 2016-01-06 王子ホールディングス株式会社 Surface fine irregularities and manufacturing method thereof
JP2014139017A (en) * 2014-03-05 2014-07-31 Oji Holdings Corp Method for manufacturing fine rugged sheet
CN107914384B (en) 2014-04-22 2020-03-06 夏普株式会社 Synthetic polymer film, method for reactivating surface thereof, laminate, and method for sterilizing
WO2015166725A1 (en) 2014-04-28 2015-11-05 シャープ株式会社 Filter having sterilizing activity, and container
US10317578B2 (en) 2014-07-01 2019-06-11 Honeywell International Inc. Self-cleaning smudge-resistant structure and related fabrication methods
CN106133033B (en) * 2014-11-20 2019-10-25 夏普株式会社 Synthetic polymeric membrane with the surface for having bactericidal effect
US20180134859A1 (en) * 2015-04-30 2018-05-17 Sharp Kabushiki Kaisha Synthetic high polymer film having surface provided with antiseptic property
WO2016208540A1 (en) * 2015-06-23 2016-12-29 シャープ株式会社 Synthetic polymer film provided with surface having sterilizing activity
WO2017014086A1 (en) * 2015-07-17 2017-01-26 シャープ株式会社 Synthetic polymer film having surface that is provided with bactericidal action, and film comprising same
KR102137548B1 (en) * 2017-09-07 2020-07-24 삼성에스디아이 주식회사 Polarizing plate and optical display apparatus comprising the same
EP3459353B1 (en) 2017-09-26 2022-04-20 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, photocurable resin composition, manufacturing method of synthetic polymer film, and sterilization method with use of surface of synthetic polymer film
JP6751731B2 (en) 2018-02-21 2020-09-09 シャープ株式会社 Synthetic polymer membrane and method for manufacturing synthetic polymer membrane
JP6761437B2 (en) 2018-03-15 2020-09-23 シャープ株式会社 Synthetic polymer membranes with a bactericidal surface, plastic products with synthetic polymer membranes, sterilization methods using the surface of synthetic polymer membranes, photocurable resin compositions, and methods for producing synthetic polymer membranes.
WO2023218849A1 (en) * 2022-05-11 2023-11-16 凸版印刷株式会社 Electromagnetic wave absorption body, production method for same, and communication stabilization space

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113874A (en) * 1977-03-16 1978-10-04 Mitsubishi Plastics Ind Ltd Heat-shrinkable laminated film
JPH0247057A (en) * 1988-08-08 1990-02-16 Toray Ind Inc Surface roughened film composite sheet and manufacture thereof
JPH03142401A (en) * 1989-10-30 1991-06-18 Asahi Chem Ind Co Ltd Synthetic resin layer, light transmission and diffusion plate and production thereof
JPH03295648A (en) * 1990-04-14 1991-12-26 Shintousero Shoji Kk Embossed sheet
JPH04258901A (en) * 1991-02-14 1992-09-14 Nippon Shokubai Co Ltd Reflection base material which uniformly diffuses light
JP2003050308A (en) * 2002-07-04 2003-02-21 Teijin Chem Ltd Diffusion sheet for display made of polycarbonate resin having rib pattern added to surface

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2592608B2 (en) * 1987-06-02 1997-03-19 株式会社フジシール Manufacturing method of vapor deposition label
JP2000206317A (en) * 1999-01-14 2000-07-28 Dainippon Printing Co Ltd Glare shielding film, polarizing plate, display device and manufacture of glare shielding film
JP4793263B2 (en) * 2004-06-18 2011-10-12 東レ株式会社 Direct type backlight

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113874A (en) * 1977-03-16 1978-10-04 Mitsubishi Plastics Ind Ltd Heat-shrinkable laminated film
JPH0247057A (en) * 1988-08-08 1990-02-16 Toray Ind Inc Surface roughened film composite sheet and manufacture thereof
JPH03142401A (en) * 1989-10-30 1991-06-18 Asahi Chem Ind Co Ltd Synthetic resin layer, light transmission and diffusion plate and production thereof
JPH03295648A (en) * 1990-04-14 1991-12-26 Shintousero Shoji Kk Embossed sheet
JPH04258901A (en) * 1991-02-14 1992-09-14 Nippon Shokubai Co Ltd Reflection base material which uniformly diffuses light
JP2003050308A (en) * 2002-07-04 2003-02-21 Teijin Chem Ltd Diffusion sheet for display made of polycarbonate resin having rib pattern added to surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020096122A1 (en) * 2018-11-07 2020-05-14 한국과학기술원 Method for preparing hierarchical wrinkle structure by using sacrificial layer, and hierarchical wrinkle structure prepared thereby
KR20200053057A (en) * 2018-11-07 2020-05-18 한국과학기술원 Method of Preparing Hierarchical Wrinkle Structure by Using Sacrificial Layer and Hierarchical Wrinkle Structure Prepared Thereby
KR102176525B1 (en) * 2018-11-07 2020-11-10 한국과학기술원 Method of Preparing Hierarchical Wrinkle Structure by Using Sacrificial Layer and Hierarchical Wrinkle Structure Prepared Thereby

Also Published As

Publication number Publication date
JPWO2007097454A1 (en) 2009-07-16
WO2007097454A1 (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP5176950B2 (en) Film having fine irregularities and method for producing the same
US7736551B2 (en) Corrugated pattern forming sheet and method for manufacturing the same, and method for manufacturing antireflector, retardation plate, original process sheet plate, and optical element
JP5109483B2 (en) Light diffusion film
US10928563B2 (en) Microstructured diffuser comprising first microstructured layer and coating, optical stacks, and method
US20130342794A1 (en) Fine structure form and liquid crystal display device comprising the fine structure form
JP5245366B2 (en) Polarizing plate and manufacturing method thereof
TW201042293A (en) Antiglare film, polarizer, and transimissive liquid-crystal display
TWI653136B (en) Laminated polyester film and polarizing plate using the same
JP4985161B2 (en) Optical element and manufacturing method thereof
TW201331039A (en) Hard coat film, transparent conductive laminate and touch panel
JP5098450B2 (en) Method for producing uneven pattern forming sheet and uneven pattern forming sheet
KR20190003510A (en) Film sensor member and its manufacturing method, circular polarizer, manufacturing method thereof, and image display device
TW200804919A (en) Liquid crystal display and glare-proof polarizing film laminate used therein
JP6781111B2 (en) Method for manufacturing retardation film, circular polarizing plate, and retardation film
JP5833301B2 (en) Wire grid polarizer and method of manufacturing wire grid polarizer
JP2011221412A (en) Wire grid polarization plate
JP5839017B2 (en) Surface fine irregularities and manufacturing method thereof
JP7114664B2 (en) Polarizing plate with retardation layer and image display device using the same
JP4747531B2 (en) Aromatic polyamide film and optical member and display using the same
JP7273769B2 (en) Polarizing plate, polarizing plate with retardation layer, and image display device using these
JP5434755B2 (en) Method for producing fine surface irregularities and method for producing transfer body
JP2009282279A (en) Reflecting sheet and backlight unit
JP2007057877A (en) Method of manufacturing grid polarizing film, grid polarizing film and liquid crystal display device
JP7385380B2 (en) Manufacturing method of polarizing plate with retardation layer and hard coat layer
JP5636907B2 (en) Convex / concave pattern forming sheet and method for producing the same, concave / convex pattern forming sheet duplicating process sheet master, optical element, secondary process molding, duplicating sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R150 Certificate of patent or registration of utility model

Ref document number: 5176950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250