JP5176275B2 - Cathode material for flash discharge tube and flash discharge tube provided with the cathode material - Google Patents

Cathode material for flash discharge tube and flash discharge tube provided with the cathode material Download PDF

Info

Publication number
JP5176275B2
JP5176275B2 JP2006009651A JP2006009651A JP5176275B2 JP 5176275 B2 JP5176275 B2 JP 5176275B2 JP 2006009651 A JP2006009651 A JP 2006009651A JP 2006009651 A JP2006009651 A JP 2006009651A JP 5176275 B2 JP5176275 B2 JP 5176275B2
Authority
JP
Japan
Prior art keywords
discharge tube
flash discharge
cathode material
sintered
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006009651A
Other languages
Japanese (ja)
Other versions
JP2007194020A (en
Inventor
博志 済木
泰史 舩渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006009651A priority Critical patent/JP5176275B2/en
Publication of JP2007194020A publication Critical patent/JP2007194020A/en
Application granted granted Critical
Publication of JP5176275B2 publication Critical patent/JP5176275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharge Lamp (AREA)

Description

本発明は、例えば、写真撮影用の人口光源として用いられる閃光放電管の陰極材(閃光放電管用陰極材)及びその陰極材を備えた閃光放電管に関する。   The present invention relates to a cathode material of a flash discharge tube (cathode material for a flash discharge tube) used as, for example, an artificial light source for photography, and a flash discharge tube including the cathode material.

閃光放電管は、両端にアノード電極とカソード電極が封止されたガラスバルブの内部に希ガスが封入される一方、ガラスバルブの外周面には透明なトリガー電極が被覆され、前記カソード電極には閃光を発生させるための陰極材(焼結電極構体)が取付けられたものが知られている。   In the flash discharge tube, a rare gas is sealed inside a glass bulb in which an anode electrode and a cathode electrode are sealed at both ends, and a transparent trigger electrode is coated on the outer peripheral surface of the glass bulb. It is known that a cathode material (sintered electrode assembly) for generating flash light is attached.

その陰極材として、タンタル、ニオブ、ジルコニウム、ニッケル等の高融点金属からなる焼結材用金属粉末を1種又は2種以上混合し焼結して生成される焼結体に電子放射性材料を保持させたものが提案されている(例えば、特許文献1〜3参照)。   As the cathode material, an electron-emitting material is held in a sintered body produced by mixing and sintering one or more kinds of metal powders for sintered materials made of refractory metals such as tantalum, niobium, zirconium and nickel. What has been made is proposed (for example, refer patent documents 1-3).

また、電子放射性材料には、炭酸セシウム、硫酸セシウム、酸化セシウム等のセシウム化合物が用いられ、これらを水やアルコールに溶かした溶液中に焼結体を浸漬させることにより焼結体の空孔にセシウム化合物を含浸させて陰極材を得ていた。
特開平6−196087号公報 特開平6−231727号公報 特開2003−173758号公報
In addition, cesium compounds such as cesium carbonate, cesium sulfate, and cesium oxide are used as the electron-emitting material. By immersing the sintered body in a solution in which these are dissolved in water or alcohol, the sintered body has pores. A cathode material was obtained by impregnating with a cesium compound.
JP-A-6-196087 JP-A-6-231727 JP 2003-173758 A

上述の焼結体に形成される空孔の径は大小様々に分布する。空孔径が小さい場合にはセシウム化合物の含有量が不足して最低発光電圧が高くなり発光不良になりやすい。一方、空孔径が大きい場合には含有量過多になりスパッタリングが発生しやすくなり(スパッタリング率が高くなり)、電極が溶融し発光寿命が低下する。   The diameters of the holes formed in the above-mentioned sintered body vary widely. When the pore diameter is small, the content of the cesium compound is insufficient, and the minimum light emission voltage is increased, which tends to cause light emission failure. On the other hand, when the pore diameter is large, the content is excessive and sputtering is likely to occur (sputtering rate is increased), the electrode is melted and the light emission life is shortened.

本発明は、このような実情に鑑みてなされ、セシウム化合物を適量含浸させることができる空孔径を有する閃光放電管用陰極材及びその陰極材を備えた閃光放電管を提供することを目的とする。   An object of the present invention is to provide a cathode material for a flash discharge tube having a hole diameter capable of being impregnated with an appropriate amount of a cesium compound and a flash discharge tube including the cathode material.

ところで、焼結体に形成される空孔径の大きさは焼結材用金属粉末の粒径により左右される。特に、2種以上の焼結材用金属粉末を用いる場合、融点、不純ガス吸着性、仕事関数等の特性の異なる組成の粉末を混合すると、焼結体表面の凹凸や空孔径にばらつきが発生しやすい。このようなばらつきがあると、セシウム化合物の含有量にもばらつきが生じ、上述のように発光不良や発光寿命の低下等々の不具合が発生する。   By the way, the size of the pore diameter formed in the sintered body depends on the particle diameter of the metal powder for sintered material. In particular, when using two or more kinds of metal powders for sintered materials, mixing powders with different characteristics such as melting point, impure gas adsorbability, work function, etc. causes variations in the irregularities and pore diameters of the sintered body surface. It's easy to do. If there is such a variation, the content of the cesium compound also varies, and problems such as a light emission failure and a decrease in the light emission lifetime occur as described above.

そこで、本発明は、焼結体の空孔径の均一化を図ることも目的とする。   Therefore, an object of the present invention is to make the pore diameter of the sintered body uniform.

(1)本発明の閃光放電管用陰極材は、タンタルまたはニオブの高融点金属からなる焼結材用金属粉末を用いて生成される焼結体の空孔にセシウム化合物を含浸させてなる閃光放電管用陰極材であって、前記焼結体の空孔率が28〜36体積%であり、水銀圧入法で測定した空孔径の分布状態のピークが1.5〜1.8μmの範囲内に存在するとともに前記焼結材用金属粉末の平均粒径が6〜10μmことを特徴とする。 (1) The cathode material for a flash discharge tube of the present invention is a flash discharge obtained by impregnating a pore of a sintered body produced by using a metal powder for a sintered material made of a refractory metal of tantalum or niobium with a cesium compound. A cathode material for a tube, the porosity of the sintered body is 28 to 36% by volume, and the peak of the distribution of pore diameters measured by mercury porosimetry is in the range of 1.5 to 1.8 μm. In addition, the average particle size of the metal powder for sintered material is 6 to 10 μm.

空孔率が28〜36体積%であり、水銀圧入法で測定した空孔径の分布状態のピークが1.5〜1.8μmの範囲内に存在するとともに、前記焼結材用金属粉末の平均粒径が6〜10μmである焼結体は、セシウム化合物を適量含浸させることができる空孔径が形成されているため、発光動作時のスパッタリング率の低減が可能となり、最低発光電圧の上昇、光量低下、焼結電極溶融が抑制され、性能品質の安定化と長寿命化を図ることができる。
(2)前記焼結体の空孔径が0.75〜2.70μmの範囲内に分布するのが好ましい。
The porosity is 28 to 36% by volume, the peak of the pore size distribution measured by the mercury intrusion method is in the range of 1.5 to 1.8 μm, and the average of the metal powder for sintered material Since the sintered body having a particle size of 6 to 10 μm has a hole diameter that can be impregnated with an appropriate amount of a cesium compound, it becomes possible to reduce the sputtering rate during the light emitting operation, and to increase the minimum light emitting voltage and light quantity. Reduction and sintering electrode melting are suppressed, and performance quality can be stabilized and the life can be extended.
(2) It is preferable that the pore diameter of the sintered body is distributed within a range of 0.75 to 2.70 μm.

焼結材用金属粉末を空孔率28〜36体積%で焼結させることにより、前述したように、セシウム化合物を適量含浸させることができる空孔径を有する空孔を形成できるが、さらに、空孔径を0.75〜2.70μmの範囲内に分布させる場合には、表面状態、空孔のばらつきが少なくなる。これにより、焼結体へのセシウム化合物の含有量をより一層適切に均一化できるため、スパッタリングの発生がより一層少なくなり、最低発光電圧、光量も安定化し焼結電極溶融をより効果的に抑制することができる。
(3)前記焼結体は、平均粒径が単一の前記高融点金属からなる焼結材用金属粉末を用いて、あるいは、平均粒径が異なる前記焼結材用金属粉末を混合して、生成されてもよい。例えば、焼結材用金属粉末としてタンタル又はニオブのような高融点金属であって、スパッタリング率が低く仕事関数が比較的に低い組成のものを選択することによって最適な表面状態、空孔(径)を有し、組成自体の特徴を併せ持つ焼結体を生成することができる。
(4)前記焼結体は、同一組成でかつ平均粒径が異なる前記焼結材用金属粉末を混合して生成され、その粒径差が2〜4μmであってもよい。焼結体に形成される空孔径は、焼結材用金属粉末の粒径により左右され、特に、2種以上の焼結材用金属粉末を用いる場合、融点、不純ガス吸着性、仕事関数等の特性の異なる組成の粉末を混合すると、焼結体表面の凹凸や空孔径にばらつきが発生しやすいが、同一組成(1種)で平均粒径の異なる焼結材用金属粉末であっても、一次粒子の平均粒径差が2〜4μmであれば(例えば、平均粒径6μmと10μm)、焼結体に形成される空孔径のばらつきを少なくすることができる。また、粒径(平均)の異なる粉末をバインドすることによって機械的強度を向上させることができる。
(5)前記セシウム化合物が、ニオブ酸セシウムであってもよい。ニオブ酸セシウムを含浸させることにより、仕事関数を低減させ、発光動作時のスパッタリング率を低減し、ノイズの発生を抑制することもできる。
(6)本発明の閃光放電管は、(1)乃至(5)項の何れかに記載の閃光放電管用陰極材をカソード電極に備えたことを特徴とする。
By sintering the metal powder for a sintered material at a porosity of 28 to 36% by volume, as described above, it is possible to form pores having a pore diameter that can be impregnated with an appropriate amount of a cesium compound. When the pore diameter is distributed within the range of 0.75 to 2.70 μm, the variation in the surface state and the pores is reduced. As a result, the content of the cesium compound in the sintered body can be made even more appropriate, so that the generation of sputtering is further reduced, the minimum emission voltage and light quantity are stabilized, and the sintered electrode melting is more effectively suppressed. can do.
(3) The sintered body uses a metal powder for a sintered material made of the refractory metal having a single average particle diameter, or a mixture of the metal powder for a sintered material having a different average particle diameter. , May be generated. For example, by selecting a high melting point metal such as tantalum or niobium as the metal powder for the sintered material and having a composition with a low sputtering rate and a relatively low work function, the optimum surface state, pores (diameter And a sintered body having characteristics of the composition itself.
(4) The sintered body may be produced by mixing the sintered metal powders having the same composition and different average particle diameter, and the particle diameter difference may be 2 to 4 μm. The diameter of the pores formed in the sintered body depends on the particle size of the metal powder for sintered material, and particularly when two or more kinds of metal powder for sintered material are used, the melting point, impure gas adsorbability, work function, etc. When powders with different compositions are mixed, irregularities on the surface of the sintered body and pore diameters are likely to vary, but even if the metal powder for sintered materials has the same composition (one type) and different average particle diameters, If the difference in the average particle diameter of the primary particles is 2 to 4 μm (for example, the average particle diameter is 6 μm and 10 μm), the variation in the pore diameter formed in the sintered body can be reduced. Further, the mechanical strength can be improved by binding powders having different particle diameters (average).
(5) The cesium compound may be cesium niobate. By impregnating with cesium niobate, the work function can be reduced, the sputtering rate during the light emitting operation can be reduced, and the generation of noise can also be suppressed.
(6) A flash discharge tube of the present invention is characterized in that the cathode material is provided with the cathode material for a flash discharge tube according to any one of (1) to (5).

本発明の閃光放電管用陰極材は、空孔率が28〜36体積%、水銀圧入法で測定した空孔径分布が1.〜1.8μmの範囲内に存在するとともに、前記焼結材用金属粉末の平均粒径が6〜10μmである焼結体を用いるので、セシウム化合物を適量含浸させることができるため、スパッタリング率の低減化が可能となり、最低発光電圧の上昇、光量低下、焼結電極溶融が抑制され、性能品質の安定化と長寿命化を図ることができる。また、焼結体の空孔径を0.75〜2.70μmの範囲内に分布させれば、焼結体に含浸させるセシウム化合物の量をばらつきなく適切に均一化できるため、スパッタリングの発生がより一層少なくなり、最低発光電圧、光量も安定化し焼結電極溶融をより効果的に抑制することができる。 The cathode material for a flash discharge tube of the present invention has a porosity of 28 to 36% by volume and a pore size distribution measured by a mercury intrusion method of 1. Since a sintered body having an average particle size of 6 to 10 μm is present in the range of 5 to 1.8 μm and the average particle diameter of the metal powder for sintered material can be impregnated with an appropriate amount, the sputtering rate The increase in the minimum light emission voltage, the decrease in the light amount, and the melting of the sintered electrode are suppressed, and the performance quality can be stabilized and the life can be extended. Further, if the pore diameter of the sintered body is distributed within the range of 0.75 to 2.70 μm, the amount of the cesium compound impregnated in the sintered body can be appropriately uniformed without variation, so that the occurrence of sputtering is further increased. This further reduces the stability of the minimum emission voltage and light quantity, and can more effectively suppress the melting of the sintered electrode.

本発明の閃光放電管は、スパッタリング率が低く、最低発光電圧の上昇、光量低下、焼結電極溶融が抑制され、安定した性能品質を備え長い発光寿命を有する。   The flash discharge tube of the present invention has a low sputtering rate, an increase in minimum light emission voltage, a decrease in light amount, and suppression of melting of the sintered electrode, and has a stable performance quality and a long light emission life.

以下に、本発明の実施の形態に係る閃光放電管用陰極材及びその陰極材を備えた閃光放電管について詳細に説明する。   Hereinafter, a cathode material for a flash discharge tube according to an embodiment of the present invention and a flash discharge tube including the cathode material will be described in detail.

図1(a)(b)は閃光放電管を示す。この閃光放電管1は、ガラスバルブ2の両端に封止部材を介してアノード電極3とカソード電極4が封入され、そのガラスバルブ2の外周面に、トリガー電極として機能する導電性被膜5、例えばスズまたはインジウムの金属被膜を形成している。そして、そのカソード電極4には、例えば、円筒状の閃光放電管用陰極材(焼結電極構体)7がかしめ等により取り付けられている。   1 (a) and 1 (b) show a flash discharge tube. In this flash discharge tube 1, an anode electrode 3 and a cathode electrode 4 are sealed at both ends of a glass bulb 2 via a sealing member, and a conductive coating 5 functioning as a trigger electrode on the outer peripheral surface of the glass bulb 2, for example, A metal film of tin or indium is formed. For example, a cylindrical cathode material for a flash discharge tube (sintered electrode assembly) 7 is attached to the cathode electrode 4 by caulking or the like.

この閃光放電管用陰極材7は、タンタル、ニオブ等の高融点金属からなる焼結材用金属粉末を用いて生成される焼結体の空孔に電子放射性材料としてのセシウム化合物を含浸させてなり、その焼結体の空孔率は28〜36体積%で、水銀圧入法で測定した空孔径の分布状態のピークが1.4〜1.8μmの範囲内に存在し、その焼結体の空孔径が0.75〜2.70μmの範囲内に分布する。このような焼結体を用いることにより、セシウム化合物の含有量を適切なものとしてその均一化(一定化)を図ることができるので、発光動作時のスパッタリング率の低減化、最低発光電圧の安定化を図ることができる。また、焼結体の溶融を防止し長寿命化を図ることができる。   This cathode material 7 for a flash discharge tube is obtained by impregnating a cesium compound as an electron-emitting material into the pores of a sintered body formed using a metal powder for a sintered material made of a refractory metal such as tantalum or niobium. The porosity of the sintered body is 28 to 36% by volume, and the peak of the distribution of pore diameters measured by mercury porosimetry is in the range of 1.4 to 1.8 μm. The pore diameter is distributed within a range of 0.75 to 2.70 μm. By using such a sintered body, the content of the cesium compound can be made appropriate and uniform (constant), so the sputtering rate during light emission operation can be reduced and the minimum emission voltage can be stabilized. Can be achieved. In addition, the sintered body can be prevented from melting and the life can be extended.

このような閃光放電管用陰極材7の製造プロセスは、例えば、図5に示される。まず、原料粉末として、1)タンタル粉末は、例えば、メーカー:スタルク社、粒子形状:不定形(粉砕粉)、平均粒径:6μm,10μmのもの、2)ニオブ粉末は、例えば、メーカー:スタルク社、粒子形状:不定形(粉砕粉)、平均粒径:6μm,10μmのものを用意する。造粒工程では、原料粉末にバインダー(樹脂)と溶剤を添加し、混錬、乾燥、粉砕、分級(例えば、−300メッシュ)を行う。成型工程では、円筒型、円柱型等の成形型に合わせて成形処理する。焼結工程では、成形体を略1000〜1800℃の高温で焼結し、この焼結体をセシウム化合物の溶液に浸漬させて含浸させた後乾燥させる。なお、セシウム化合物は真空含浸によって焼結体の空孔に被着させてもよい。次いで、検査工程では、目視による外観検査と、寸法、重量等の検査を行う。   The manufacturing process of such a cathode material 7 for a flash discharge tube is shown in FIG. 5, for example. First, as raw material powder, 1) tantalum powder, for example, manufacturer: Starck, particle shape: indefinite shape (pulverized powder), average particle size: 6 μm, 10 μm, 2) niobium powder, for example, manufacturer: Starck Company, particle shape: amorphous (ground powder), average particle size: 6 μm, 10 μm are prepared. In the granulation step, a binder (resin) and a solvent are added to the raw material powder, and kneading, drying, pulverization, and classification (for example, −300 mesh) are performed. In the molding step, a molding process is performed in accordance with a molding die such as a cylindrical die or a columnar die. In the sintering step, the molded body is sintered at a high temperature of about 1000 to 1800 ° C., and the sintered body is immersed in a cesium compound solution and then dried. The cesium compound may be deposited on the pores of the sintered body by vacuum impregnation. Next, in the inspection process, visual appearance inspection and inspections such as size and weight are performed.

ここで、空孔率について説明すると前記閃光放電管用陰極材7の寸法より体積が計算できる。この体積に前記原料粉末の比重をかけると空孔が全くない空孔率0%の閃光放電管用陰極材の重量Aがみちびかれる。次に実際に作成した閃光放電管用陰極材の重量Bを測定する。前記重量Bは閃光放電管用陰極材内に空孔ができた体積分だけ軽くなっている。この前記重量Aと前記重量Bの差Cの前記重量Aに対する比率を%表示したものが空孔率または気孔率である。   Here, when the porosity is described, the volume can be calculated from the dimensions of the cathode material 7 for the flash discharge tube. When the specific gravity of the raw material powder is applied to this volume, the weight A of the cathode material for a flash discharge tube having no porosity and no porosity is found. Next, the weight B of the actually produced cathode material for a flash discharge tube is measured. The weight B is reduced by the volume of the voids formed in the cathode material for the flash discharge tube. The percentage or the ratio of the difference C between the weight A and the weight B to the weight A is the porosity or porosity.

このような製造プロセスによって得られた閃光放電管用陰極材7の特性の評価結果は、図2及び図3に示される。即ち、焼結体を生成するための粉末(焼結材用金属粉末)の粒径と、焼結体に形成された空孔径と空孔率に対応する閃光放電管用陰極材7(TPNo.1〜TPNo.6)の特性を調査し評価した結果が特性評価(A)と特性評価(B)に示される。なお、特性評価(B)の最下欄に、(比較例)として、粒径の異なるタンタル(Ta)とニオブ(Nb)からなる焼結体の例を示す。また、特性評価(A)と特性評価(B)の下に(備考)として判定基準を添記している。   The evaluation results of the characteristics of the cathode material 7 for a flash discharge tube obtained by such a manufacturing process are shown in FIGS. That is, the cathode material 7 (TPNo. 1) for the flash discharge tube corresponding to the particle diameter of the powder (metal powder for sintered material) for producing the sintered body, the pore diameter and the porosity formed in the sintered body. To TP No. 6) are examined and evaluated, and the results of the characteristic evaluation (A) and the characteristic evaluation (B) are shown. An example of a sintered body made of tantalum (Ta) and niobium (Nb) having different particle diameters is shown as (Comparative Example) in the bottom column of the characteristic evaluation (B). In addition, a criterion is added as (remarks) below the characteristic evaluation (A) and the characteristic evaluation (B).

特性評価(A)に示すTPNo.1及びTPNo.3は、フィッシャー法で測定した同一組成のタンタル粉末の一次粒子の平均粒径が6μmの粉末と、10μmの粉末を7対3の割合で混合して焼結体を構成したものであり(一次粒子の平均粒径差が4μm)、レーザー回折法で測定した粒度分布が粒子径2μm以下が全体の2%以下、20μm以上が全体の2%以下であり、残りは2〜20μmに含まれる粉末と粒子径2μm以下のものが全体の8%以下、20μm以上が全体の4%以下であり、残りは2〜20μmに含まれる粉末とを混合して作成した焼結体である。   TP No. shown in characteristic evaluation (A). 1 and TPNo. No. 3 is a sintered body composed of a mixture of a tantalum powder having the same composition measured by the Fischer method with an average primary particle size of 6 μm and a 10 μm powder in a ratio of 7 to 3 (primary The average particle size difference of the particles is 4 μm), and the particle size distribution measured by laser diffraction method is 2% or less of the total particle size of 2 μm or less, 2% or less of the total of 20 μm or more, and the rest is 2-20 μm And a particle size of 2 μm or less is 8% or less of the whole, 20 μm or more is 4% or less of the whole, and the rest is a sintered body prepared by mixing powder contained in 2 to 20 μm.

TPNo.1では炭酸セシウムと硫酸セシウムを含浸させ、TPNo.3ではニオブ酸セシウムを含浸させているが、双方とも、最低発光電圧の上昇も少なく、発光回数の増加に伴う光量の低下も少ない。また、TPNo.3では発光回数5000回で焼結電極の溶融は微小程度であったが、TPNo.1では発光回数5000回でも溶融は認められず、何れも良好な特性を示している。   TPNo. 1 was impregnated with cesium carbonate and cesium sulfate, and TPNo. No. 3 is impregnated with cesium niobate. In both cases, the increase in the minimum light emission voltage is small, and the decrease in the amount of light accompanying the increase in the number of times of light emission is small. In addition, TPNo. 3, the number of times of light emission was 5000, and the sintered electrode melted only slightly. In No. 1, no melting was observed even when the number of light emission was 5000, and all showed good characteristics.

TPNo.2は、フィッシャー法で測定した同一組成のタンタル粉末の一次粒子の平均粒径が6μmの粉末と10μmの粉末を6対4の割合で混合して焼結体を構成したものであり(一次粒子の平均粒径差が4μm)、TPNo.4は、6μmの粉末と10μmの粉末を8対2の割合で混合して焼結体を構成したものであるが、何れも良好な特性を示している。なお、好ましい一次粒子の平均粒径差は2〜4μmの範囲内にあることを確認している。   TPNo. No. 2 is a sintered body composed of a mixture of a tantalum powder having the same composition measured by the Fischer method with a primary particle size of 6 μm and a powder of 10 μm in a ratio of 6 to 4 (primary particles). Average particle size difference of 4 μm), TPNo. No. 4 is a sintered body formed by mixing 6 μm powder and 10 μm powder in a ratio of 8 to 2, all of which show good characteristics. In addition, it has confirmed that the average particle diameter difference of a preferable primary particle exists in the range of 2-4 micrometers.

次いで、特性評価(B)のTPNo.5では、空孔径は0.6〜2.2μmに分布し、そのピークは1.3μmに現れ、フィッシャー法で測定したタンタル粉末の一次粒子の平均粒径が6μmであり、レーザー回折法で測定した粒度分布が粒子径2μm以下が全体の2%以下、20μm以上が全体の2%以下であり、残りは2〜20μmに含まれる粉末により構成された焼結体である。     Subsequently, TPNo. In No. 5, the pore diameter is distributed from 0.6 to 2.2 μm, the peak appears at 1.3 μm, the average particle size of the primary particles of tantalum powder measured by the Fisher method is 6 μm, and measured by the laser diffraction method. When the particle size distribution is 2 μm or less, the particle size distribution is 2% or less of the whole, 20 μm or more is 2% or less of the whole, and the rest is a sintered body composed of powder contained in 2 to 20 μm.

この例では、初期の最低発光電圧が高く、寿命試験後も同様に高くなっている。これは空孔が小さく、含有されたセシウム化合物の量が少ないためであり、初期電圧が(比較例)に比べて高くなっている。しかしながら、空孔が小さいため、含有されたセシウム化合物が焼結体から出にくく、スパッタリングしにくいため、発光回数5000回においても最低発光電圧の上昇が少なく、光量低下も少ない。また、焼結体の溶融がほとんどなく、初期特性の維持特性が優れていることが判る。   In this example, the initial minimum emission voltage is high and is also high after the life test. This is because the pores are small and the amount of the cesium compound contained is small, and the initial voltage is higher than that of (Comparative Example). However, since the vacancies are small, the contained cesium compound is unlikely to come out of the sintered body and is not easily sputtered. Further, it can be seen that the sintered body is hardly melted and the initial characteristic maintaining characteristic is excellent.

TPNo.6では、空孔径は0.9〜4.8μmに分布し,そのピークは2.5μmに現れ、フィッシャー法で測定したタンタル粉末の一次粒子の平均粒径が10μmであり、レーザー回折法で測定した粒度分布が粒子径2μm以下が全体の8%以下、20μm以上が全体の4%以下であり、残りは2〜20μmに含まれる粉末により構成された焼結体である。この例では、TPNo.5に比して、初期の最低発光電圧が低く、発光回数が増すにつれて、最低発光電圧の上昇、光量の低下、焼結電極の溶融が生じやすくなっていることが判る。   TPNo. In No. 6, the pore diameter is distributed from 0.9 to 4.8 μm, the peak appears at 2.5 μm, the average particle size of the primary particles of tantalum powder measured by the Fisher method is 10 μm, and measured by the laser diffraction method. When the particle size distribution is 2 μm or less, the particle size distribution is 8% or less of the whole, 20 μm or more is 4% or less of the whole, and the rest is a sintered body composed of powder contained in 2 to 20 μm. In this example, TPNo. It can be seen that the initial minimum light emission voltage is lower than 5, and the minimum light emission voltage is increased, the light amount is decreased, and the sintered electrode is easily melted as the number of times of light emission is increased.

次に、特性評価(B)の(比較例)では、焼結体の空孔径は1.4〜4.6μmの範囲で分布し、そのピークは2.8μmに現れ、初期の最低発光電圧は140Vであるが、発光回数3000回後では155Vと高くなり、4000回、5000回発光後では更に電圧が上昇していることが判る。この焼結体は、2種の異なる組成、平均粒径が違う焼結材用金属粉末から構成されるため、焼結体表面および断面の空孔(の径)、表面凹凸形状がばらついているので、セシウム化合物の含有量がばらついており、かつ、空孔が大きいためセシウム化合物の含有量が過多になり、スパッタリングしやすく発光回数が増すにつれ電子放出性物質であるセシウムの枯渇化が生じ、最低発光電圧の上昇、光量低下、焼結電極溶融が発生している。   Next, in (Comparative Example) of the characteristic evaluation (B), the pore diameter of the sintered body is distributed in the range of 1.4 to 4.6 μm, the peak appears at 2.8 μm, and the initial minimum emission voltage is Although it is 140 V, it is as high as 155 V after 3000 times of light emission, and it can be seen that the voltage further increases after 4000 times and 5000 times of light emission. Since this sintered body is composed of two different compositions and metal powders for sintered materials having different average particle diameters, the surface of the sintered body, the pores of its cross section (its diameter), and the uneven surface shape vary. Therefore, the content of the cesium compound varies, and since the vacancies are large, the content of the cesium compound is excessive, and as the number of times of light emission increases with ease of sputtering, depletion of cesium, which is an electron-emitting substance, occurs. The minimum emission voltage is increased, the light intensity is decreased, and the sintered electrode is melted.

以上から、焼結体の空孔率(気孔率)については、空孔率が大きくなるほど空孔が大きくなるため、最低発光電圧の上昇、光量の低下、焼結電極の溶融が生じやすいことが判る。空孔径は、ポロシメータ(水銀圧入法)で計測したものを記載しており、1.4〜1.8μmで空孔分布のピークを有する閃光放電管用陰極材7が上記所望の特性を満足しており、とりわけ、空孔率が32体積%で、空孔径が0.75〜2.2μmに分布し、1.7μmにピークが現れるTPNo.1及びTPNo.3の特性が優れていることが判る。また、特性評価(A)に示すTPNo.1〜4のように、粒径(平均)の異なる2種以上のものからなる焼結体では、機械的強度が向上するという利点があり、例えば、カソード電極4にかしめ等による装着された固定状態が安定化し耐久性も向上する。   From the above, regarding the porosity (porosity) of the sintered body, the larger the porosity, the larger the pores, so that the minimum emission voltage is increased, the amount of light is decreased, and the sintered electrode is likely to melt. I understand. The pore diameter is the one measured by a porosimeter (mercury intrusion method), and the cathode material 7 for a flash discharge tube having a pore distribution peak at 1.4 to 1.8 μm satisfies the above desired characteristics. In particular, TPNo. In which the porosity is 32% by volume, the pore diameter is distributed from 0.75 to 2.2 μm, and a peak appears at 1.7 μm. 1 and TPNo. It can be seen that the characteristics of No. 3 are excellent. In addition, TPNo. The sintered bodies made of two or more kinds having different particle diameters (average) like 1 to 4 have the advantage of improving the mechanical strength. For example, the fixing attached to the cathode electrode 4 by caulking or the like. The state is stabilized and the durability is improved.

図4は、水銀圧入法により測定したTaペレット(焼結ペレット)の空孔分布を示し、(a)は空孔径対応のLog差分圧入量(微分)を示し、(b)は空孔径対応の積算細空孔容積量(積分)を示す。なお、水銀圧入法は、公知のように、水銀の表面張力が大きいことを利用して焼結体の空孔(細孔)に水銀を侵入させるために圧力を加え、圧力と圧入された水銀量から空孔(細孔)分布や比表面積を求める方法であり測定機器はポロシメータが使用される。   FIG. 4 shows the pore distribution of Ta pellets (sintered pellets) measured by the mercury intrusion method, (a) shows the Log differential indentation amount (differentiation) corresponding to the pore diameter, and (b) shows the pore size correspondence. Indicates the accumulated fine pore volume (integration). As is well known, the mercury intrusion method applies pressure to intrude mercury into the pores (pores) of the sintered body by utilizing the high surface tension of mercury, and the pressure and intruded mercury This is a method for obtaining the pore (pore) distribution and specific surface area from the quantity, and a porosimeter is used as the measuring instrument.

高融点金属粉末の一次粒子の平均粒径を測定するためのフィッシャー法の測定手順(タンタル粉末の場合)は以下のように行われる。(1)試料の8.30gを秤量する。(2)試料筒内に試料を入れトルクレンチでプレスする。(3)試料の厚さを測定する。(4)試料筒をFsss測定装置(図示省略)にセットし、下部流出口コックを開き、測管の標線が0に達したらストップウォッチをスタートさせる。液面が下がり目盛が20になるとストップウォッチを止め、かつ、下部流出口コックを閉じる。(5)下部流出口コック開から閉までの時間を100分の1秒単位で記録する。出荷製品は2回、中間製品は1回測定する。(6)所定の計算式より平均粒径をμm単位で小数点以下2桁まで算出する。   The Fischer method measurement procedure (in the case of tantalum powder) for measuring the average particle size of the primary particles of the refractory metal powder is performed as follows. (1) Weigh 8.30 g of the sample. (2) Place the sample in the sample tube and press it with a torque wrench. (3) Measure the thickness of the sample. (4) Set the sample tube in the Fsss measuring device (not shown), open the lower outlet cock and start the stopwatch when the gauge line of the tube reaches 0. When the liquid level falls and the scale reaches 20, the stopwatch is stopped and the lower outlet cock is closed. (5) Record the time from opening and closing the lower outlet cock in units of 1 / 100th of a second. Shipment product is measured twice and intermediate product is measured once. (6) The average particle diameter is calculated in μm to 2 digits after the decimal point by a predetermined calculation formula.

また、レーザー回折法による粒度分布の測定は、例えば、堀場製作所製の粒子径分布測定装置LA−300によって行うことができる。この装置による測定原理は、液体中の粒子にレーザ光を照射し、粒子により散乱されたレーザ光強度の角度分布(散乱パターン)から粒子径分布を求めるものであり、いわゆるレーザ回折/散乱式の測定原理に基づくものである。   Moreover, the measurement of the particle size distribution by the laser diffraction method can be performed by, for example, a particle size distribution measuring apparatus LA-300 manufactured by Horiba. The measurement principle of this device is to irradiate particles in a liquid with laser light and obtain the particle size distribution from the angular distribution (scattering pattern) of the intensity of the laser light scattered by the particles. It is based on the measurement principle.

以上説明したように、本発明の閃光放電管用陰極材は、セシウム化合物を適量含有させることができるように空孔率と水銀圧入法で測定される空孔分布のピークを所定の範囲に規制した焼結体を用いるので、スパッタリング率の低減化が可能となり、最低発光電圧の上昇、光量低下、焼結電極溶融が抑制され、性能品質の安定化と長寿命化を図ることができ、このような閃光放電管用陰極材を備えた閃光放電管は、安定した高い性能品質と長い発光寿命を有するものとなる。また、その焼結体の空孔径の分布範囲を所定の範囲に特定すれば、焼結体に含浸させるセシウム化合物の量をばらつきなく均一化できるため、スパッタリングの発生がより一層少なくなり、最低発光電圧、光量も安定化し焼結電極溶融をより効果的に抑制することができる。さらに、同一組成でかつ平均粒径が異なる焼結材用金属粉末を混合して生成される焼結体では、同一粒径の場合よりも機械的強度を向上させることができ、かつ、その粒径差を所定の範囲に特定すれば、孔径のばらつきを少なくすることができる。   As described above, the cathode material for a flash discharge tube of the present invention regulates the porosity and the peak of the pore distribution measured by the mercury intrusion method to a predetermined range so that an appropriate amount of the cesium compound can be contained. Since the sintered body is used, the sputtering rate can be reduced, the minimum emission voltage is increased, the light intensity is reduced, and the sintered electrode is prevented from melting, so that the performance quality can be stabilized and the life can be extended. A flash discharge tube provided with a suitable cathode material for a flash discharge tube has a stable and high performance quality and a long emission life. In addition, if the pore diameter distribution range of the sintered body is specified within a predetermined range, the amount of the cesium compound impregnated in the sintered body can be made uniform without variation, so that the generation of sputtering is further reduced and the lowest light emission is achieved. The voltage and light quantity are also stabilized, and the melting of the sintered electrode can be more effectively suppressed. Furthermore, in a sintered body produced by mixing metal powders for sintered materials having the same composition and different average particle sizes, the mechanical strength can be improved as compared with the case of the same particle size, and the particles If the diameter difference is specified within a predetermined range, variation in the hole diameter can be reduced.

本発明の閃光放電管用陰極材によれば、スパッタリング率の低減化が可能となり、最低発光電圧の上昇、光量低下、焼結電極溶融が抑制され、発光性能の安定・向上と長寿命化が達成されているので、高い性能品質と長寿命化が要求される閃光放電管の分野に好適となる。   According to the cathode material for a flash discharge tube of the present invention, it is possible to reduce the sputtering rate, and the increase in the minimum light emission voltage, the decrease in the light amount, and the melting of the sintered electrode are suppressed, and the light emission performance is stabilized / improved and the life is extended. Therefore, it is suitable for the field of flash discharge tubes that require high performance quality and long life.

本発明の閃光放電管は、高い性能品質と長寿命化が達成されているので、鮮明な画像と耐久性が要求される撮像装置の分野で利用される。   Since the flash discharge tube of the present invention achieves high performance quality and long life, it is used in the field of imaging devices that require clear images and durability.

(a)本発明の実施の形態に係る閃光放電管の一例を示す縦断面図、(b)横断面図(A) A longitudinal sectional view showing an example of a flash discharge tube according to an embodiment of the present invention, (b) a transverse sectional view 同閃光放電管用陰極材の特性評価の一覧図List of characteristics evaluation of cathode material for the flash discharge tube 同別の閃光放電管用陰極材の特性評価の一覧図List of characteristics of cathode materials for flash discharge tubes (a)同空孔分布(微分)の説明図、(b)同空孔分布(微分)の説明図(A) Explanatory diagram of the pore distribution (differentiation), (b) Explanatory diagram of the pore distribution (differentiation) 同閃光放電管用陰極材の製造プロセスの説明図Explanatory drawing of the manufacturing process of the cathode material for the flash discharge tube

符号の説明Explanation of symbols

1…閃光放電管、7…閃光放電管用陰極材




1 ... Flash discharge tube, 7 ... Cathode material for flash discharge tube




Claims (5)

タンタルまたはニオブの高融点金属からなる焼結材用金属粉末を用いて生成される焼結体の空孔にセシウム化合物を含浸させてなる閃光放電管用陰極材であって、
前記焼結体の空孔率が28〜36体積%であり、水銀圧入法で測定した空孔径の分布状態のピークが1.5〜1.8μmの範囲内に存在するとともに前記焼結材用金属粉末の平均粒径が6〜10μmであることを特徴とする閃光放電管用陰極材。
A cathode material for a flash discharge tube obtained by impregnating a cesium compound into pores of a sintered body produced using a metal powder for a sintered material made of a refractory metal of tantalum or niobium ,
The sintered body has a porosity of 28 to 36% by volume, and a peak of a distribution state of pore diameters measured by a mercury intrusion method is within a range of 1.5 to 1.8 μm and for the sintered material. A cathode material for a flash discharge tube, wherein the average particle size of the metal powder is 6 to 10 μm.
前記焼結体の空孔径が0.75〜2.70μmの範囲内に分布することを特徴とする請求項1に記載の閃光放電管用陰極材。   The cathode material for a flash discharge tube according to claim 1, wherein the pore diameter of the sintered body is distributed within a range of 0.75 to 2.70 µm. 前記焼結体は、平均粒径が単一の前記高融点金属からなる焼結材用金属粉末を用いて、あるいは、平均粒径が異なる前記焼結材用金属粉末を混合して、生成されることを特徴とする請求項1に記載の閃光放電管用陰極材。   The sintered body is produced by using a metal powder for a sintered material made of the refractory metal having a single average particle diameter, or by mixing the metal powder for a sintered material having a different average particle diameter. The cathode material for a flash discharge tube according to claim 1. 前記焼結体は、同一組成でかつ平均粒径が異なる前記焼結材用金属粉末を混合して生成され、その平均粒径差が2〜4μmであることを特徴とする請求項1乃至3の何れかに記載の閃光放電管用陰極材。 The sintered body, and the same composition the average particle size is produced by mixing a metal powder for different said sintered material, according to claim 1, wherein the average particle diameter difference is 2~4μm The cathode material for a flash discharge tube according to any one of the above. 請求項1乃至4の何れかに記載の閃光放電管用陰極材をカソード電極に備えたことを特徴とする閃光放電管。
5. A flash discharge tube comprising the cathode material for a flash discharge tube according to claim 1 as a cathode electrode.
JP2006009651A 2006-01-18 2006-01-18 Cathode material for flash discharge tube and flash discharge tube provided with the cathode material Active JP5176275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006009651A JP5176275B2 (en) 2006-01-18 2006-01-18 Cathode material for flash discharge tube and flash discharge tube provided with the cathode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006009651A JP5176275B2 (en) 2006-01-18 2006-01-18 Cathode material for flash discharge tube and flash discharge tube provided with the cathode material

Publications (2)

Publication Number Publication Date
JP2007194020A JP2007194020A (en) 2007-08-02
JP5176275B2 true JP5176275B2 (en) 2013-04-03

Family

ID=38449563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006009651A Active JP5176275B2 (en) 2006-01-18 2006-01-18 Cathode material for flash discharge tube and flash discharge tube provided with the cathode material

Country Status (1)

Country Link
JP (1) JP5176275B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5082978B2 (en) * 2008-03-27 2012-11-28 パナソニック株式会社 Method of manufacturing cathode material for flash discharge tube, cathode material for flash discharge tube, and electrode for flash discharge tube using the same
JP2014127326A (en) * 2012-12-26 2014-07-07 Shinto Holdings Co Ltd Sintered body for flash discharge tube, flash discharge tube, and method of manufacturing sintered body for flash discharge tube

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4275330A (en) * 1979-03-08 1981-06-23 General Electric Company Electric discharge lamp having a cathode with cesium metal oxide
JPS60151949A (en) * 1984-01-20 1985-08-10 Hamamatsu Photonics Kk Electrode of flash discharge lamp
JP2910426B2 (en) * 1992-06-24 1999-06-23 日本電気株式会社 Manufacturing method of tungsten powder sintered body for impregnated cathode
JPH06231727A (en) * 1993-02-03 1994-08-19 Fuji Photo Film Co Ltd Cathode material for flash discharge tube and its manufacture
JPH11339714A (en) * 1998-05-28 1999-12-10 Hamamatsu Photonics Kk Electrode for discharge tube
JP2000348671A (en) * 1999-06-02 2000-12-15 Matsushita Electronics Industry Corp Cold cathod fluorescent lamp
JP2001084955A (en) * 1999-09-13 2001-03-30 Ushio Inc Flashing discharge lamp
JP4181385B2 (en) * 2002-11-15 2008-11-12 松下電器産業株式会社 Method for manufacturing mercury-emitting structure

Also Published As

Publication number Publication date
JP2007194020A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
JP6707603B2 (en) Acetylene black dispersion slurry and lithium ion secondary battery
JP6141318B2 (en) Method for producing Ta powder and method for producing Ta granulated powder
JP5197369B2 (en) A method of agglomerating and agglomerating metal particles
JP5176275B2 (en) Cathode material for flash discharge tube and flash discharge tube provided with the cathode material
DE2807033A1 (en) ALKALINE CELL
US6024914A (en) Process for production of anode for solid electrolytic capacitor
EP3192595B1 (en) Ta-nb alloy powder and anode element for solid electrolytic capacitor
JP5091409B2 (en) Battery negative electrode can and manganese dry battery using the same
JP4993297B2 (en) SiO sintered vapor deposition material
WO2015008628A1 (en) Silver-coated copper alloy powder and process for producing same
JP2000164220A (en) Electrode material for silver oxide battery
Rezlescu et al. A model of humidity sensor with a Mg-based ferrite
JP6827239B2 (en) Manufacturing method of silver-silver chloride electrode
CN105493212A (en) Tungsten powder and positive electrode body of capacitor
JPH11181505A (en) Production of anode body for solid electrolytic capacitor
JP2005063721A (en) Discharge type surge absorption element
KR20000017442A (en) Discharge lamp and electrode therefor
JP2014182891A (en) Conductive paste, laminated chip inductor, and ceramic electronic component
JP7211123B2 (en) Evaluation method of aggregation state of powder sample
US11826725B2 (en) Ceramic article and methods of making the same
JP2004195464A (en) Sintered titanium filter
WO2023037665A1 (en) Alkaline battery
JP5203113B2 (en) Magnesium oxide sintered body with special structure and vapor deposition material for PDP protective film
JP2014170652A (en) Zinc alloy powder for alkaline battery and alkaline battery using the same
US20150352637A1 (en) Chemical conversion body for niobium capacitor positive electrode, and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090107

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R151 Written notification of patent or utility model registration

Ref document number: 5176275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3