JP5176152B2 - Balanced DC constant current input / DC constant current distribution output device and heat dissipation structure thereof - Google Patents

Balanced DC constant current input / DC constant current distribution output device and heat dissipation structure thereof Download PDF

Info

Publication number
JP5176152B2
JP5176152B2 JP2009293942A JP2009293942A JP5176152B2 JP 5176152 B2 JP5176152 B2 JP 5176152B2 JP 2009293942 A JP2009293942 A JP 2009293942A JP 2009293942 A JP2009293942 A JP 2009293942A JP 5176152 B2 JP5176152 B2 JP 5176152B2
Authority
JP
Japan
Prior art keywords
constant current
circuit
voltage
heat dissipation
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009293942A
Other languages
Japanese (ja)
Other versions
JP2011135715A (en
Inventor
勝彦 鹿野
政之 星野
直久 飯田
一弘 中窪
英樹 吉田
芳一 小榑
勝義 川口
英一郎 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Japan Agency for Marine Earth Science and Technology
NEC Network and System Integration Corp
Takasago Ltd
Original Assignee
NEC Corp
Japan Agency for Marine Earth Science and Technology
NEC Network and System Integration Corp
Takasago Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Japan Agency for Marine Earth Science and Technology, NEC Network and System Integration Corp, Takasago Ltd filed Critical NEC Corp
Priority to JP2009293942A priority Critical patent/JP5176152B2/en
Publication of JP2011135715A publication Critical patent/JP2011135715A/en
Application granted granted Critical
Publication of JP5176152B2 publication Critical patent/JP5176152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cable Accessories (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、定電流給電方式に関し、特に、平衡型直流定電流入力/直流定電流分配出力装置およびその放熱構造に関する。   The present invention relates to a constant current power supply system, and more particularly to a balanced DC constant current input / DC constant current distribution output device and a heat dissipation structure thereof.

海底ケーブルシステムは、陸上から遠く離れたところに安定した電力を供給するために、一般的には定電流給電方式を採用している。一次側に定電流を受電する電源回路は、二次側につながる外部負荷の変動が即一次側すなわち外部定電流受電側の電圧変動となる。特に、外部負荷が開放状態や短絡状態になると、定電流を受電したままでは、一次側電圧が極端に低下し、一次側にあるスイッチング回路等に動作電圧を供給できない場合も発生する。また、システム運転上、必然的に生ずる二次側につながる外部負荷変動に対し、定電流供給側の電圧すなわち一次側電圧が変動することは、システムの管理、運営上不都合になるケースが多かった。   In general, a submarine cable system employs a constant current power supply system in order to supply stable power far away from land. In a power supply circuit that receives a constant current on the primary side, fluctuations in the external load connected to the secondary side immediately become voltage fluctuations on the primary side, that is, the external constant current receiving side. In particular, when the external load is in an open state or a short-circuit state, the primary side voltage is extremely lowered while receiving a constant current, and the operation voltage may not be supplied to the switching circuit or the like on the primary side. In addition, the fluctuation of the voltage on the constant current supply side, that is, the primary side voltage against the external load fluctuation that inevitably occurs on the secondary side during system operation often causes inconvenience in system management and operation. .

また、海中設置用電気機器は、耐水圧、密封を目的として通常、密封型円筒耐圧容器に収容される。一般に、熱の伝播は、対流、輻射、伝導の合成で成り立つ。海中設置用電気機器では、熱源が密封型円筒耐圧容器の中にあるので、通常、対流、輻射は起こりにくく、伝導による伝播が主体になる。しかしながら、密封型円筒耐圧容器への熱の伝導構造は、曲面熱伝播、電気的絶縁性、防食等の設計条件と背反する場合も多い。その結果、海中設置用電気機器では、放熱構造が作りにくく、一般に放熱性能は悪く、電力制限や使用時間制限の要因となっていた。これにより、発生熱量の大きい電子回路すなわち規模の大きい電子回路は、密封型円筒耐圧容器に実装すること自体が熱的には不向きであり、何らかの独創的工夫が必要とされる。   In addition, underwater electrical equipment is usually housed in a sealed cylindrical pressure vessel for the purpose of water pressure resistance and sealing. In general, heat propagation is a combination of convection, radiation, and conduction. In an electric device for subsea installation, since the heat source is in a sealed cylindrical pressure vessel, convection and radiation are usually difficult to occur, and propagation by conduction is mainly used. However, the heat conduction structure to the sealed cylindrical pressure vessel often contradicts design conditions such as curved surface heat propagation, electrical insulation, and anticorrosion. As a result, in the electrical equipment for installation in the sea, it is difficult to make a heat dissipation structure, and in general, the heat dissipation performance is poor, which causes power limitation and usage time limitation. As a result, an electronic circuit with a large amount of generated heat, that is, a large-scale electronic circuit, is not thermally suitable for mounting in a sealed cylindrical pressure-resistant container, and some original device is required.

図7を参照して、本発明に関連する平衡型直流定電流入力/直流定電流分配出力装置100’について説明する。   With reference to FIG. 7, a balanced DC constant current input / DC constant current distribution output device 100 'relating to the present invention will be described.

平衡型直流定電流入力/直流定電流分配出力装置100’は、第一の回路10と、第二の回路20と、外部定電流電源42と、外部負荷44とを有する。   The balanced DC constant current input / DC constant current distribution output device 100 ′ includes a first circuit 10, a second circuit 20, an external constant current power source 42, and an external load 44.

第一の回路10は、一次入力ポート11と、スイッチング回路12と、絶縁型電圧変換トランス13と、電圧検出器14と、制御回路15と、二次(中間)ポート16とを備える。   The first circuit 10 includes a primary input port 11, a switching circuit 12, an insulated voltage conversion transformer 13, a voltage detector 14, a control circuit 15, and a secondary (intermediate) port 16.

一次入力ポート11は外部定電流電源42に接続されている。一次入力ポート11は絶縁型電圧変換トランス13の一次側に、スイッチング回路12を介して接続されている。絶縁型電圧変換トランス13の二次側に二次(中間)ポート16が接続されている。また、絶縁型電圧変換トランス13の二次側に並列に電圧検出回路14が接続されている。制御回路15は、電圧検出回路14で検出された二次電圧(電圧検出値)に基いて、スイッチング回路12のオン/オフを制御する。   The primary input port 11 is connected to an external constant current power source 42. The primary input port 11 is connected to the primary side of the insulated voltage conversion transformer 13 via the switching circuit 12. A secondary (intermediate) port 16 is connected to the secondary side of the insulated voltage conversion transformer 13. A voltage detection circuit 14 is connected in parallel to the secondary side of the insulation type voltage conversion transformer 13. The control circuit 15 controls on / off of the switching circuit 12 based on the secondary voltage (voltage detection value) detected by the voltage detection circuit 14.

第二の回路20は、定電流化回路21と、三次ポート22とを備える。定電流化回路21は、二次(中間)ポート16と三次ポート22との間に接続されている。三次ポート22に外部負荷44が接続されている。   The second circuit 20 includes a constant current circuit 21 and a tertiary port 22. The constant current circuit 21 is connected between the secondary (intermediate) port 16 and the tertiary port 22. An external load 44 is connected to the tertiary port 22.

外部定電流電源42から送出する定電流I0は、第一の回路10の一次入力電流I1となる。一次側電圧をV1、二次出力電流をI3、二次側電圧をV2とする。この場合、平衡型直流定電流入力/直流定電流分配出力装置100’の電力変換の原理から、第一の回路10に関し、下記式が成り立つ。   The constant current I0 sent from the external constant current power supply 42 becomes the primary input current I1 of the first circuit 10. The primary side voltage is V1, the secondary output current is I3, and the secondary side voltage is V2. In this case, the following equation holds for the first circuit 10 from the principle of power conversion of the balanced DC constant current input / DC constant current distribution output device 100 ′.

V1×I1(=I0)=k1×(V2×I3)≒W1 ・・・・・・(1)
ここで、I0は定電流固定値を表し、W1は二次側負荷電力を表し、k1は第一の回路10の電力変換効率の定数を表す。
V1 × I1 (= I0) = k1 × (V2 × I3) ≈W1 (1)
Here, I0 represents a constant current fixed value, W1 represents secondary load power, and k1 represents a constant of power conversion efficiency of the first circuit 10.

二次側電圧V2は、第一の回路10内の電圧検出器14、制御回路15、スイッチング回路12による制御動作により、一定値に保持されている。したがって、外部負荷44の変動は電流I3の変動になり、同時に一次側電圧V1の変動になる。すなわち、本発明に関連する平衡型直流定電流入力/直流定電流分配出力装置100’では、出力側三次ポート22に接続した外部負荷44の変動が、即一次側すなわち外部定電流受電側の電圧変動に至る。特に、外部負荷44が開放状態(出力電流0A)や短絡状態(出力電圧0V)になると、定電流I0を受電したままでは、一次側電圧V1が極端に低下し、一次側にあるスイッチング回路12等に動作電圧を供給できない場合も発生する。   The secondary side voltage V <b> 2 is held at a constant value by the control operation by the voltage detector 14, the control circuit 15, and the switching circuit 12 in the first circuit 10. Therefore, the fluctuation of the external load 44 becomes the fluctuation of the current I3, and at the same time, the fluctuation of the primary side voltage V1. That is, in the balanced DC constant current input / DC constant current distribution output device 100 ′ related to the present invention, the fluctuation of the external load 44 connected to the output side tertiary port 22 is immediately changed to the voltage on the primary side, that is, the external constant current receiving side. Lead to fluctuations. In particular, when the external load 44 is in an open state (output current 0 A) or a short circuit state (output voltage 0 V), the primary side voltage V1 is extremely lowered while receiving the constant current I0, and the switching circuit 12 on the primary side. This also occurs when the operating voltage cannot be supplied.

また、システム運転上、必然的に生ずる二次側負荷電力W1の負荷変動に対し、定電流供給側の電圧すなわち一次側電圧V1が変動することは、システムの管理、運営上不都合になるケースも多い。   In addition, when the voltage on the constant current supply side, that is, the primary side voltage V1 fluctuates with respect to the load fluctuation of the secondary side load power W1 that inevitably occurs in system operation, it may be inconvenient in system management and operation. Many.

次に、本発明に関連する平衡型直流定電流入力/直流定電流分配出力装置100’の放熱構造について説明する。   Next, the heat dissipation structure of the balanced DC constant current input / DC constant current distribution output device 100 'related to the present invention will be described.

海中設置用電気機器は、耐水圧、密封を目的として通常、密封型円筒耐圧容器に収容される。一般に熱の伝播は、対流、輻射、伝導の合成で成り立つが、熱源が密封型円筒耐圧容器の中にあるので通常対流、輻射は起こりにくく、伝導による伝播が主体になる。しかしながら、密封型円筒耐圧容器への熱の伝導構造は、曲面熱伝播、電気的絶縁性、防食等の設計条件と背反する場合も多い。その結果、海中設置用電気機器は、放熱構造が作りにくく、一般に放熱性能が悪く、電力制限や使用時間制限の要因となっていた。   Underwater electrical equipment is usually housed in a sealed cylindrical pressure vessel for the purpose of water pressure resistance and sealing. In general, heat propagation is composed of convection, radiation, and conduction. However, since the heat source is in a sealed cylindrical pressure vessel, convection and radiation are usually difficult to occur, and propagation by conduction is mainly used. However, the heat conduction structure to the sealed cylindrical pressure vessel often contradicts design conditions such as curved surface heat propagation, electrical insulation, and anticorrosion. As a result, the electrical equipment for installation in the sea is difficult to make a heat radiating structure, generally has poor heat radiating performance, and is a factor of power limitation and usage time limitation.

図8を参照して、本発明に関連する平衡型直流定電流入力/直流定電流分配出力装置100’の放熱構造200’について説明する。   With reference to FIG. 8, a heat radiation structure 200 'of a balanced DC constant current input / DC constant current distribution output device 100' related to the present invention will be described.

平衡型直流定電流入力/直流定電流分配出力装置100’の放熱構造200’は、この平衡型直流定電流入力/直流定電流分配出力装置100’である電子回路を内部に収容する密封型円筒耐圧容器50と、この電子回路100’を搭載しているシャーシ兼放熱構造体54’と、一対の円盤型端面板56’とを備える。電子回路100’が、内部発熱部品に相当する。   The heat dissipation structure 200 ′ of the balanced DC constant current input / DC constant current distribution output device 100 ′ is a sealed cylinder that accommodates an electronic circuit that is the balanced DC constant current input / DC constant current distribution output device 100 ′. A pressure vessel 50, a chassis / heat dissipating structure 54 'on which the electronic circuit 100' is mounted, and a pair of disk-shaped end plates 56 'are provided. The electronic circuit 100 'corresponds to an internal heat generating component.

シャーシ兼放熱構造体54’は、直方体の形状をしている。シャーシ兼放熱構造体54’の両端部は、一対の円盤型端面板56’に、複数本のネジ58で固定される。各円盤型端面板56’の直径は、密封型円筒容器50の内径に実質的に等しい。各円盤型端面板56’の外周端面は、密封型円筒容器50の内壁に接触している。   The chassis and heat dissipation structure 54 'has a rectangular parallelepiped shape. Both ends of the chassis / heat dissipating structure 54 ′ are fixed to a pair of disk-shaped end plates 56 ′ with a plurality of screws 58. The diameter of each disk-type end face plate 56 ′ is substantially equal to the inner diameter of the sealed cylindrical container 50. The outer peripheral end face of each disk-type end face plate 56 ′ is in contact with the inner wall of the sealed cylindrical container 50.

密封型円筒容器50に実装された電子回路100’から発生した熱は、図8の破線矢印で示すように、電子回路100’を搭載しているシャーシ兼放熱構造体54’を伝導、さらに円盤型端面板56’の外周方向に伝導する。最終的に、円盤型端面板56’の盤断面部を伝導路とし、上記密封型円筒耐圧容器50に達し、外部に放熱する。このような構成の放熱構造では、当然の事象として、次に述べるような問題がある。   Heat generated from the electronic circuit 100 ′ mounted on the sealed cylindrical container 50 is conducted through the chassis / heat dissipating structure 54 ′ on which the electronic circuit 100 ′ is mounted as shown by the broken line arrow in FIG. Conduction is conducted in the outer peripheral direction of the die end face plate 56 '. Finally, the disk cross-section of the disk-shaped end face plate 56 'is used as a conduction path, reaches the sealed cylindrical pressure vessel 50, and radiates heat to the outside. In the heat dissipation structure having such a configuration, there is a problem as described below as a natural phenomenon.

(1)熱源となる電子回路100’から最終放熱部位である密封型円筒耐圧容器50までの熱伝導距離が長くなりがちとなる。   (1) The heat conduction distance from the electronic circuit 100 'serving as a heat source to the sealed cylindrical pressure resistant container 50 serving as the final heat radiating portion tends to be long.

(2)機器製造中や保守、修理等では、図中、電子回路100’、シャーシ兼放熱構造体54’、および一対の円盤型端面板56’の全内部構造体の密封型円筒耐圧容器50への挿入、引き出しは頻繁に行わざるを得ない。このことを配慮すると、円盤型端面板56’の端面部と密封型円筒耐圧容器50との間の物理的接触をあまりに堅固に構築することは出来ず、結局複数の点接触程になり、熱伝導路としては不十分となる。結果的に、密封型円筒耐圧容器50内の温度上昇を大きくさせてしまう。換言すれば、発生熱量の大きい電子回路すなわち規模の大きい電子回路100’は、密封型円筒耐圧容器50に実装すること自体が熱的には不向きで、何らかの独創的工夫が必要とされる。   (2) During equipment manufacture, maintenance, repair, etc., the sealed cylindrical pressure vessel 50 of the entire internal structure of the electronic circuit 100 ′, the chassis / heat dissipating structure 54 ′, and the pair of disk-shaped end plates 56 ′ in the drawing. Inserting into and pulling out must be done frequently. In consideration of this, the physical contact between the end surface portion of the disk-type end plate 56 ′ and the sealed cylindrical pressure vessel 50 cannot be constructed so firmly and eventually becomes a plurality of point contacts, It becomes insufficient as a conduction path. As a result, the temperature rise in the sealed cylindrical pressure vessel 50 is increased. In other words, an electronic circuit having a large amount of generated heat, that is, a large-scale electronic circuit 100 ′, is not thermally suitable for being mounted on the sealed cylindrical pressure vessel 50, and requires some ingenuity.

本発明に関連する先行技術文献も知れられている。例えば、特許文献1は、海底中継器に給電を行う給電線を含む海底ケーブルをメッシュ状に敷設することを可能にする海底給電分岐装置を開示している。この特許文献1に開示された海底給電分岐装置は、入力端子と第1の出力端子との間の電位差を検出し、所定値以上の場合にスイッチ回路をオン状態にする電圧検出回路と、基幹海底ケーブルと副基幹海底ケーブルとの間を絶縁した状態で、一次側の電力を二次側に供給摺るトランスとを備える。   Prior art documents relating to the present invention are also known. For example, Patent Document 1 discloses a submarine power supply branching device that enables a submarine cable including a power supply line that supplies power to a submarine repeater to be laid in a mesh shape. The submarine power supply branching device disclosed in Patent Document 1 detects a potential difference between an input terminal and a first output terminal, and a voltage detection circuit that turns on a switch circuit when a predetermined value or more is detected. A transformer that supplies and slides power on the primary side to the secondary side in a state in which the submarine cable and the sub trunk cable are insulated.

特開2004−140981号公報JP 2004-140981 A

上述したように、図7に示した本発明に関連する平衡型直流定電流入力/直流定電流分配出力装置100’の電気回路構成では、出力の負荷変動に対して入力側の受電電力が変化するという問題がある。   As described above, in the electric circuit configuration of the balanced DC constant current input / DC constant current distribution output device 100 ′ related to the present invention shown in FIG. 7, the received power on the input side varies with the output load fluctuation. There is a problem of doing.

また、図8に示した本発明に関連する平衡型直流定電流入力/直流定電流分配出力装置100’の放熱構造200’では、電子回路(内部発熱部品)からの発熱を効率よく外部に放熱できないという問題がある。   Further, in the heat dissipation structure 200 ′ of the balanced DC constant current input / DC constant current distribution output device 100 ′ related to the present invention shown in FIG. 8, the heat generated from the electronic circuit (internal heating component) is efficiently radiated to the outside. There is a problem that you can not.

一方、特許文献1は、一次側の電力を二次側に供給するトランスを備えた海底給電分岐装置を開示しているに過ぎない。   On the other hand, Patent Document 1 merely discloses a submarine power supply branching device including a transformer that supplies primary-side power to the secondary side.

したがって、本発明の目的は、出力の負荷変動に対して入力側の受電電力が変化しない、平衡型直流定電流入力/直流定電流分配出力装置を提案することにある。   Accordingly, an object of the present invention is to propose a balanced DC constant current input / DC constant current distribution output device in which the received power on the input side does not change with respect to output load fluctuations.

本発明の他の目的は、内部発熱部品からの発熱を密封型円筒耐圧容器に効率的に伝達し、良熱伝導を可能にする、平衡型直流定電流入力/直流定電流分配出力装置の放熱構造を提案することにある。   Another object of the present invention is to efficiently dissipate heat generated from internal heat generating components to a sealed cylindrical pressure vessel and to enable good heat conduction, and to dissipate heat in a balanced DC constant current input / DC constant current distribution output device. To propose a structure.

本発明による平衡型直流定電流入力/直流定電流分配出力装置は、一次入力ポートに直流定電流を受電し、出力となる二次(中段)ポートの電圧を検出し、この第1の電圧検出値が一定値になるよう一次側にある第1のスイッチング回路を制御することで、上記二次(中段)ポートに直流定電圧を出力する第一の回路と、上記第一の回路の上記二次(中段)ポートの直流定電圧出力を受電して、定電流化回路により定電流化し、終段出力としての三次ポートに接続した外部負荷に定電流を供給する第二の回路と、上記第一の回路の一次側に生ずる電圧を一次側入力電圧として受電し、この1次側電圧を検出し、この第2の電圧検出値が一定値になるよう1次側にある第2のスイッチング回路を制御することで、二次側に接続した定抵抗負荷に電力を供給する第三の回路とを有する。   The balanced DC constant current input / DC constant current distribution output device according to the present invention receives a DC constant current at the primary input port, detects the voltage of the secondary (middle stage) port as an output, and detects this first voltage. By controlling the first switching circuit on the primary side so that the value becomes a constant value, the first circuit that outputs a DC constant voltage to the secondary (middle stage) port, and the second circuit of the first circuit A second circuit for receiving a DC constant voltage output of the next (middle stage) port, making the current constant by a constant current circuit, and supplying a constant current to an external load connected to a tertiary port as a final stage output; The second switching circuit on the primary side receives the voltage generated on the primary side of one circuit as the primary side input voltage, detects the primary side voltage, and makes the second voltage detection value constant. To control the constant resistance load connected to the secondary side. And a third circuit for supplying power.

また、本発明による平衡型直流定電流入力/直流定電流分配出力装置は、放熱構造として、内部発熱部品を収容する密封型円筒耐圧容器と、該密封型円筒耐圧容器の内壁面に面で内接することができ、上記内部発熱部品を取り付けることが可能な複数の放熱ブロックと、該複数の放熱ブロックの両端に備えられた一対の円盤型端面板であって、これらの放熱ブロックを円筒の軸方向に固定しかつ円筒の半径方向に可動しうるようなスリット状の構造を持つ、上記一対の円盤型端面板と、上記複数の放熱ブロックを上記一対の円盤型端面板のスリット構造に沿って可動させ、上記複数の放熱ブロックを上記密封型円筒耐圧容器の内壁面に均一に密着および離脱させることが可能な可動機構とを有する。   In addition, the balanced DC constant current input / DC constant current distribution output device according to the present invention includes a sealed cylindrical pressure vessel containing internal heat generating components as a heat dissipation structure and an inner wall surface of the sealed cylindrical pressure vessel. A plurality of heat dissipating blocks to which the internal heat generating components can be attached, and a pair of disk-type end plates provided at both ends of the heat dissipating blocks, the heat dissipating blocks being connected to a cylindrical shaft The pair of disk-type end face plates having a slit-like structure that is fixed in the direction and movable in the radial direction of the cylinder, and the plurality of heat dissipation blocks are arranged along the slit structure of the pair of disk-type end face plates. And a movable mechanism capable of moving and allowing the plurality of heat radiation blocks to be brought into close contact with and detached from the inner wall surface of the sealed cylindrical pressure vessel.

本発明によれば、出力の負荷変動に対して入力側の受電電力が変化しない平衡型直流定電流入力/直流定電流分配出力装置を提供できる。   According to the present invention, it is possible to provide a balanced DC constant current input / DC constant current distribution output device in which received power on the input side does not change with respect to output load fluctuations.

また、本発明によれば、内部発熱部品からの発熱を密封型円筒耐圧容器に効率的に伝達し良熱伝導を可能とする放熱構造を提供できる。   Further, according to the present invention, it is possible to provide a heat dissipation structure that efficiently transmits heat generated from the internal heat generating component to the sealed cylindrical pressure resistant container and enables good heat conduction.

本発明の一実施の形態に係る平衡型直流定電流入力/直流定電流分配出力装置の電気回路構成を示すブロック図である。1 is a block diagram showing an electric circuit configuration of a balanced DC constant current input / DC constant current distribution output device according to an embodiment of the present invention. FIG. 本発明の一実施の形態に係る放熱構造を示す透視斜視図である。It is a see-through | perspective perspective view which shows the thermal radiation structure which concerns on one embodiment of this invention. 図2示した放熱構造に使用される円盤型端面板に穿設されたスリット状穴(スリット構造)の拡大正面図である。FIG. 3 is an enlarged front view of a slit-like hole (slit structure) drilled in a disk-type end face plate used in the heat dissipation structure shown in FIG. 2. 図2に示した放熱構造に使用される楔状構造体の拡大透視斜視図である。It is an expansion see-through | perspective perspective view of the wedge-shaped structure used for the thermal radiation structure shown in FIG. 図1に示した平衡型直流定電流入力/直流定電流分配出力装置の入力側を多数従属接続した、拡張型の大型システムの構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of an extended large system in which a large number of input sides of the balanced DC constant current input / DC constant current distribution output device shown in FIG. 1 are cascade-connected. 図2に示した放熱構造の変形例を締めず部分拡大斜視図である。FIG. 3 is a partially enlarged perspective view without tightening a modified example of the heat dissipation structure shown in FIG. 2. 本発明に関連する平衡型直流定電流入力/直流定電流分配出力装置の電気回路構成を示すブロック図である。It is a block diagram which shows the electric circuit structure of the balanced type DC constant current input / DC constant current distribution output apparatus relevant to this invention. 本発明に関連する放熱構造を示す透視斜視図である。It is a see-through | perspective perspective view which shows the thermal radiation structure relevant to this invention.

次に、本発明の実施の形態の構成について図面を参照して説明する。   Next, the configuration of the embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施の形態に係る平衡型直流定電流入力/直流定電流分配出力装置100の電気回路構成を示すブロック図である。   FIG. 1 is a block diagram showing an electric circuit configuration of a balanced DC constant current input / DC constant current distribution output device 100 according to an embodiment of the present invention.

図示の平衡型直流定電流入力/直流定電流分配出力装置100は、第三の回路30を更に備えている点を除いて、図7に示した平衡型直流定電流入力/直流定電流分配出力装置100’と同様の構成を有し、動作をする。したがって、図7に示したものと同様の構成要素には同一の参照符号を付し、以下では、説明の簡略化の為に、相違点についてのみ説明する。   The balanced DC constant current input / DC constant current distribution output device 100 shown in FIG. 7 is provided with a third circuit 30 except that the balanced DC constant current input / DC constant current distribution output shown in FIG. It has the same configuration as the device 100 ′ and operates. Therefore, the same components as those shown in FIG. 7 are denoted by the same reference numerals, and only differences will be described below for the sake of simplicity.

ここでは、第三の回路30の構成要素と区別するために、第一の回路10を構成する、スイッチング回路12、絶縁型電圧変換トランス13、電圧検出器14、および制御回路15を、それぞれ、第1のスイッチング回路、第1の絶縁型電圧変換トランス、第1の電圧検出器、および第2の制御回路と呼ぶことにする。   Here, in order to distinguish from the components of the third circuit 30, the switching circuit 12, the insulated voltage conversion transformer 13, the voltage detector 14, and the control circuit 15 constituting the first circuit 10 are respectively It will be referred to as a first switching circuit, a first insulation type voltage conversion transformer, a first voltage detector, and a second control circuit.

第三の回路30は、第2のスイッチング回路32と、第2の絶縁型電圧変換トランス33と、第2の電圧検出器34と、第2の制御回路35と、定抵抗回路37とを有する。   The third circuit 30 includes a second switching circuit 32, a second insulation type voltage conversion transformer 33, a second voltage detector 34, a second control circuit 35, and a constant resistance circuit 37. .

第2の絶縁型電圧変換トランス33の一次側は、第2のスイッチング回路32を介して一次入力ポート11に接続されている。第2の絶縁型電圧変換トランス33の一次側は、定抵抗回路37に接続されている。第2の絶縁型電圧変換トランス33の一次側(一次入力ポート11)に並列に、第2の電圧検出器34が接続されている。第2の制御回路35は、第2の電圧検出回路34で検出された一次電圧(電圧検出値)に基いて、第2のスイッチング回路32のオン/オフを制御する。   The primary side of the second insulation type voltage conversion transformer 33 is connected to the primary input port 11 via the second switching circuit 32. The primary side of the second insulation type voltage conversion transformer 33 is connected to the constant resistance circuit 37. A second voltage detector 34 is connected in parallel to the primary side (primary input port 11) of the second insulated voltage conversion transformer 33. The second control circuit 35 controls on / off of the second switching circuit 32 based on the primary voltage (voltage detection value) detected by the second voltage detection circuit 34.

次に、図1に示した平衡型直流定電流入力/直流定電流分配出力装置100の動作について説明する。   Next, the operation of the balanced DC constant current input / DC constant current distribution output device 100 shown in FIG. 1 will be described.

外部定電流電源42から送出する定電流I0は、第一の回路10の一次入力電流I1と第三の回路30の一次入力電流I2とに分割される。平衡型直流定電流入力/直流定電流分配出力装置100の電力変換の原理から、第一の回路10に関し、下記式(2)が成り立つ。   The constant current I0 sent from the external constant current power source 42 is divided into a primary input current I1 of the first circuit 10 and a primary input current I2 of the third circuit 30. From the principle of power conversion of the balanced DC constant current input / DC constant current distribution output device 100, the following equation (2) is established for the first circuit 10.

V1×I1=k1×(V2×I3)≒W1 ・・・ (2)
ここで、k1は第一の回路10の電力変換効率の定数を表し、W1は外部負荷44の消費電力(W)を示す。
V1 × I1 = k1 × (V2 × I3) ≈W1 (2)
Here, k1 represents a constant of power conversion efficiency of the first circuit 10, and W1 represents power consumption (W) of the external load 44.

第2の絶縁型電圧変換トランス33の二次側に流れる電流をI4、電圧をV3とする。このとき、第三の回路30に関し、上記と同様に下記式(3)が成り立つ。   The current flowing on the secondary side of the second insulated voltage conversion transformer 33 is I4 and the voltage is V3. At this time, with respect to the third circuit 30, the following expression (3) is established as described above.

V1×I2=k2×(V3×I4)=W2 ・・・ (3)
ここで、k2は第三の回路30の電力変換効率の定数を表し、W2は定抵抗負荷37の消費電力を表す。
V1 × I2 = k2 × (V3 × I4) = W2 (3)
Here, k2 represents a constant of power conversion efficiency of the third circuit 30, and W2 represents power consumption of the constant resistance load 37.

また、外部定電流電源42から送出する全電力は、定電流I0×V1から下記式(4)が成り立つ。   Further, the total electric power sent from the external constant current power source 42 satisfies the following expression (4) from the constant current I0 × V1.

I0×V1=(1)式の値 + (2)式の値
=k1×(V2×I3) + k2×(V3×I4) ・・・ (4)
ここで、I0は定電流固定値を表す。
I0 × V1 = value of equation (1) + value of equation (2)
= K1 * (V2 * I3) + k2 * (V3 * I4) (4)
Here, I0 represents a constant current fixed value.

一次側電圧V1は、第三の回路30内の第2の電圧検出器34、第2の制御回路35、第2のスイッチング回路32による制御動作により一定値に保持されている。また、第一の回路10の二次側電圧V2も、上記同様、第一の回路10の第1の電圧検出器14、第1の制御回路15、第1のスイッチング回路12により一定値に保持されている。その結果、外部負荷44の変動(増/減)は、第一の回路10の二次側電流I3の変動(増/減)になり、第三の回路30の定抵抗回路37の消費電力(V3×I4)の変動(減/増)に等しい。すなわち外部負荷44に変動が生じても、第三の回路30の定抵抗回路37の消費電力変動で補償し、一次入力ポート11から見た消費電力に変化は生じない。結果として、外部負荷44の値のいかんに関係なく一次側電圧V1は、受電している定電流I0に変動が無ければ、一定値を保持する。   The primary side voltage V <b> 1 is held at a constant value by the control operation by the second voltage detector 34, the second control circuit 35, and the second switching circuit 32 in the third circuit 30. Further, the secondary voltage V2 of the first circuit 10 is also held at a constant value by the first voltage detector 14, the first control circuit 15, and the first switching circuit 12 of the first circuit 10, as described above. Has been. As a result, the fluctuation (increase / decrease) in the external load 44 becomes the fluctuation (increase / decrease) in the secondary current I3 of the first circuit 10, and the power consumption of the constant resistance circuit 37 of the third circuit 30 ( It is equal to the fluctuation (decrease / increase) of V3 × I4). That is, even if the external load 44 fluctuates, it is compensated by the power consumption fluctuation of the constant resistance circuit 37 of the third circuit 30, and the power consumption viewed from the primary input port 11 does not change. As a result, regardless of the value of the external load 44, the primary side voltage V1 maintains a constant value if there is no fluctuation in the constant current I0 being received.

上述の説明から理解出来るように、外部負荷44の変動すなわち結果として第一の回路10の二次側電流I3の変動(増/減)は、第三の回路30の二次側電圧V3または二次側電流I4の変動(減/増)に置換されることになる。外部負荷44が短絡または開放となり電力消費が極度に減少(電力消費0と等価)すれば、V3またはI4が(定電圧出力ならV3が、定電流出力ならI4が)物理能力の最大限まで増加する。すなわち、W2を構成する定抵抗回路37の電力消費が急増し、抵抗体が高温になり十分な放熱構造が必要となる。   As can be understood from the above description, the fluctuation of the external load 44, that is, the fluctuation (increase / decrease) of the secondary current I 3 of the first circuit 10 is caused by the secondary voltage V 3 or the second voltage of the third circuit 30. It is replaced by the fluctuation (decrease / increase) of the secondary current I4. If the external load 44 is short-circuited or opened and the power consumption is drastically reduced (equivalent to zero power consumption), V3 or I4 (V3 for constant voltage output, I4 for constant current output) increases to the maximum physical capacity To do. That is, the power consumption of the constant resistance circuit 37 constituting W2 increases rapidly, the resistor becomes high temperature, and a sufficient heat dissipation structure is required.

図2を参照して、平衡型直流定電流入力/直流定電流分配出力装置100の放熱構造200について説明する。   With reference to FIG. 2, the heat radiation structure 200 of the balanced DC constant current input / DC constant current distribution output device 100 will be described.

平衡型直流定電流入力/直流定電流分配出力装置100の放熱構造200は、平衡型直流定電流入力/直流定電流分配出力装置100である電子回路(内部発熱部品)を内部に収容する密封型円筒耐圧容器50と、複数の放熱ブロック54と、一対の円盤型端面板56と、可動機構60とを有する。   The heat dissipation structure 200 of the balanced DC constant current input / DC constant current distribution output device 100 is a sealed type that accommodates an electronic circuit (internal heating component) that is the balanced DC constant current input / DC constant current distribution output device 100 therein. It has a cylindrical pressure vessel 50, a plurality of heat dissipation blocks 54, a pair of disk-shaped end plates 56, and a movable mechanism 60.

複数の放熱ブロック54は、密封型円筒耐圧容器50の内壁面に面で内接することができ、内部発熱部品100を取り付けることが可能である。   The plurality of heat dissipating blocks 54 can be inscribed on the inner wall surface of the sealed cylindrical pressure vessel 50 by a surface, and the internal heat generating component 100 can be attached thereto.

一対の円盤型端面板56は、複数の放熱ブロック54の両端に備えられている。一対の円盤型端面板56は、複数の放熱ブロック54を円筒の軸方向に固定し、かつ円筒の半径方向に可動しうるようなスリット状の構造56aを持つ。   A pair of disk-shaped end plates 56 are provided at both ends of the plurality of heat dissipation blocks 54. The pair of disk-shaped end plates 56 have a slit-like structure 56a that fixes the plurality of heat dissipation blocks 54 in the axial direction of the cylinder and is movable in the radial direction of the cylinder.

可動機構60は、複数の放熱ブロック54を一対の円盤型端面板56のスリット構造56aに沿って可動させ、複数の放熱ブロック54を密封型円筒耐圧容器50の内壁面に均一に密着および離脱させることが可能である。   The movable mechanism 60 moves the plurality of heat radiating blocks 54 along the slit structure 56a of the pair of disk-shaped end plates 56 so that the plurality of heat radiating blocks 54 are in close contact with and detached from the inner wall surface of the sealed cylindrical pressure vessel 50. It is possible.

図示の例では、各放熱ブロック54は、断面視で見て、L字形状をしている。各放熱ブロック54のL字端部54aの2箇所を、密封型円筒容器50の内半径にほぼ等しい曲率半径の円弧状としている。また、図示の例では、放熱ブロック54は2個ある。一対の円盤型端面板56は、2個の放熱ブロック54の「要」部分を突き合わせ、断面視で見て互いに直角となるような配置を確保する。   In the illustrated example, each heat dissipation block 54 has an L shape when viewed in cross section. Two portions of the L-shaped end portion 54 a of each heat radiation block 54 are formed in an arc shape having a radius of curvature substantially equal to the inner radius of the sealed cylindrical container 50. In the illustrated example, there are two heat dissipation blocks 54. The pair of disk-type end face plates 56 abuts “essential” portions of the two heat dissipating blocks 54 and secures an arrangement such that they are perpendicular to each other when viewed in cross-section.

また、図3に示されるように、図示の各円盤型端面板56は、上記スリット状の構造56aとしてのスリット状穴を有する。このスリット状穴56aを利用し、複数本のネジ58で仮固定して、上記配置を実現している。尚、放熱ブロック54は、その両端面に、上記複数本のネジ58が螺合されるネジ穴54b(図6参照)を持つ。   Further, as shown in FIG. 3, each of the illustrated disk-type end face plates 56 has a slit-like hole as the slit-like structure 56a. The above arrangement is realized by temporarily fixing with a plurality of screws 58 using the slit-shaped holes 56a. The heat dissipating block 54 has screw holes 54b (see FIG. 6) in which the plurality of screws 58 are screwed on both end faces.

このように、2個の放熱ブロック54を一対の円盤型端面板56のスリット状穴56aを利用しネジ58で固定すると、半固定状態になり、スリット穴56aの方向と長さに従い、放熱ブロック54は可動可能になる。   In this way, when the two heat dissipating blocks 54 are fixed with the screws 58 using the slit-shaped holes 56a of the pair of disk-shaped end plates 56, they are in a semi-fixed state, and according to the direction and length of the slit holes 56a, the heat dissipating blocks 54 becomes movable.

可動機構60は、密封型円筒耐圧容器50の中心軸に沿って延在する1本の支持棒62と、一対の楔状構造体64と、一対のナット66とから構成される。支持棒62の両端部には、雄ネジ(図示せず)が切られている。一対の楔状構造体64は、後述するように、支持棒62の両端部に挿入される。一対のナット66は、2個の放熱ブロック54に対して一対の楔状構造体64を互いに近接する方向に押し付けた状態で、支持棒62の両端部に螺嵌される。   The movable mechanism 60 includes a single support rod 62 that extends along the central axis of the sealed cylindrical pressure vessel 50, a pair of wedge-shaped structures 64, and a pair of nuts 66. Male screws (not shown) are cut at both ends of the support bar 62. The pair of wedge-shaped structures 64 are inserted into both end portions of the support rod 62 as will be described later. The pair of nuts 66 are screwed to both ends of the support bar 62 in a state where the pair of wedge-shaped structures 64 are pressed against the two heat dissipating blocks 54 in the direction of approaching each other.

図4は楔状構造体64の拡大図である。各楔状構造体64は、支持棒62の端部が挿通される貫通孔64aを持つ。   FIG. 4 is an enlarged view of the wedge-shaped structure 64. Each wedge-shaped structure 64 has a through hole 64a through which the end of the support rod 62 is inserted.

一対の円盤型端面板56の円中心部分すなわち2個の放熱ブロック54の「要」の突合せ間隙部分に、一対の楔状構造体64を円盤面に対し垂直に挿入すると、図2のブロック矢印の示すように、2個の放熱ブロック54を互いに円盤の半径方向すなわち密封型円筒容器50内壁面方向に可動させることが出来る。   When a pair of wedge-shaped structures 64 are inserted perpendicularly to the disk surface into the center of the pair of disk-type end plates 56, that is, the “required” butt gap between the two heat dissipating blocks 54, the block arrows in FIG. As shown, the two heat dissipating blocks 54 can be moved relative to each other in the radial direction of the disk, that is, toward the inner wall surface of the sealed cylindrical container 50.

また、2個の放熱ブロック54の2つのL字端部54aは、断面視で見て、密封型円筒耐圧容器50の内半径にほぼ等しい半径の円弧面をもっている。したがって、楔構造体64を支持棒62に挿入すれば、上記L字端部54aは密封型円筒耐圧容器50の内壁面50aに隙間なく、かつ強く密着させることが出来る。結果として、放熱ブロック54に搭載した電子回路100の熱は、密封型円筒耐圧容器50の内壁面50aに向かい、概ね図2の破線矢印に示す4方向に短距離で伝播する。また、上述したように、2個の放熱ブロック54を密封型円筒耐圧容器50の内壁面50aに、隙間なくかつ強い密着すなわち面接触が出来るので、良熱伝導率の放熱構造体200となっている。   Further, the two L-shaped end portions 54 a of the two heat dissipating blocks 54 have a circular arc surface having a radius substantially equal to the inner radius of the sealed cylindrical pressure-resistant container 50 when viewed in cross section. Therefore, when the wedge structure 64 is inserted into the support rod 62, the L-shaped end 54a can be tightly adhered to the inner wall surface 50a of the sealed cylindrical pressure vessel 50 without any gap. As a result, the heat of the electronic circuit 100 mounted on the heat dissipation block 54 travels toward the inner wall surface 50a of the sealed cylindrical pressure resistant container 50 and propagates in a short distance in four directions indicated by broken line arrows in FIG. Further, as described above, the two heat dissipating blocks 54 can be brought into strong contact, that is, in surface contact with the inner wall surface 50a of the sealed cylindrical pressure vessel 50 without gaps, so that the heat dissipating structure 200 having good heat conductivity is obtained. Yes.

上記のような構成を有する平衡型直流定電流入力/直流定電流分配出力装置100は、次のような効果を有する。   The balanced DC constant current input / DC constant current distribution output device 100 having the above configuration has the following effects.

最初に、電気的機能から生ずる拡張性の効果について説明する。   First, the expansibility effect resulting from the electrical function will be described.

平衡型直流定電流入力/直流定電流分配出力装置100は、短絡障害の際、過大電流の発生を抑制できることから、水中で短絡障害になり易い水中機器や海中機器に電力供給する有効な手段である。本実施の形態により、平衡型直流定電流入力/直流定電流分配出力装置100の二次側に接続する機器の負荷変動(開放、短絡を含むシステム操作上必然的に生ずる変動)に対し、入力電力を一定に保持すなわち一次入力側電圧を一定に保持し、システム操作上必然的に生ずる負荷変動と、一次側に接続する海底ケーブルや中継器の障害との区分を可能にすることができる。その結果、本実施の形態の平衡型直流定電流入力/直流定電流分配出力装置100の入力側を多数従属接続し、二次出力側に多数の機器を接続展開するような拡張型の大型システムの構築もできる様になった。   The balanced DC constant current input / DC constant current distribution output device 100 is an effective means for supplying power to an underwater device or an underwater device that is likely to cause a short-circuit failure in water because it can suppress the occurrence of excessive current in the event of a short-circuit failure. is there. According to the present embodiment, the input to the load fluctuation of the equipment connected to the secondary side of the balanced DC constant current input / DC constant current distribution output device 100 (variation that inevitably occurs in system operation including opening and shorting) is input. The power can be kept constant, that is, the primary input side voltage can be kept constant, so that it is possible to distinguish between a load fluctuation that inevitably occurs in system operation and a failure of a submarine cable or a repeater connected to the primary side. As a result, an extended large-scale system in which a large number of input sides of the balanced DC constant current input / DC constant current distribution output device 100 of the present embodiment are connected in cascade and a large number of devices are connected and deployed on the secondary output side. Can now be built.

図5を用いて、上記大型システムの構成を下記に説明する。陸上遠隔地に設置した外部定電流電源42から、海底ケーブル46を介して、n台の直流定電流入力/直流定電流分配出力装置100−1〜100−nの一次側に電流I0を供給し、各直流定電流入力/直流定電流分配出力装置100−1〜100−nの二次側に接続した各水中機器44−1〜44−nの各機器に、必要とする値の定電流を供給している。   The configuration of the large system will be described below with reference to FIG. A current I0 is supplied to the primary side of n DC constant current input / DC constant current distribution output devices 100-1 to 100-n through an undersea cable 46 from an external constant current power source 42 installed at a remote land site. The constant current of the required value is supplied to each of the underwater devices 44-1 to 44-n connected to the secondary side of each DC constant current input / DC constant current distribution output device 100-1 to 100-n. Supply.

この場合でも各直流定電流入力/直流定電流分配出力装置100−1〜100−nの一次側電圧V1〜Vnは水中機器44−1〜44−nの地絡、開放、電気的負荷変動に対し影響せず、結果として外部定電流電源42の出力電圧V0=V1+V2+・・・・+Vnが海底ケーブル46の障害が発生しない限り一定となり、全システム中の機器に対し安定な電力供給、システムの運転保守の便宜性を提供している。   Even in this case, the primary side voltages V1 to Vn of the DC constant current input / DC constant current distribution output devices 100-1 to 100-n are caused by ground fault, open circuit, and electric load fluctuation of the underwater devices 44-1 to 44-n. As a result, the output voltage V0 = V1 + V2 +... + Vn of the external constant current power source 42 is constant as long as no trouble occurs in the submarine cable 46, stable power supply to the devices in the entire system, Provides convenience of operation and maintenance.

次に、直流定電流入力/直流定電流分配出力装置100の放熱構造200の効果について説明する。   Next, the effect of the heat dissipation structure 200 of the DC constant current input / DC constant current distribution output device 100 will be described.

一般に、水中環境での電気・電子機器の使用は、機器を密封型円筒耐圧容器内に実装する。しかしながら、密封型円筒耐圧容器内部では、熱の自然対流が弱く、放熱は熱の伝導が主体となる。その結果、放熱構造には特別の工夫、すなわち内部発熱部品の密封型円筒耐圧容器曲面への密着を実現する工夫が必要となる。本実施の形態では、密封型円筒耐圧容器50に対し機器の出し入れが容易で、かつ良熱伝導を可能にする構造を提供している。本実施の形態の放熱構造200は、内部回路や部品形状に影響されず、一般的な利用を可能にしている。   Generally, in order to use an electric / electronic device in an underwater environment, the device is mounted in a sealed cylindrical pressure vessel. However, the natural convection of heat is weak inside the sealed cylindrical pressure vessel, and heat conduction is mainly conducted for heat. As a result, a special contrivance is required for the heat dissipation structure, that is, a contrivance for realizing the close contact of the internal heat generating component to the curved surface of the sealed cylindrical pressure vessel. In the present embodiment, a structure is provided in which equipment can be easily taken in and out of the sealed cylindrical pressure vessel 50 and good heat conduction is possible. The heat dissipating structure 200 of the present embodiment is not affected by internal circuits and component shapes, and can be generally used.

本実施の形態により、特に高電力を有する水中機器の長時間使用や、結果として得られる機器信頼性の向上に伴いシステム長時間運転が期待出来るようになる。   According to the present embodiment, it is possible to expect a long-time operation of the system with a long-time use of an underwater device having particularly high power and an improvement in the device reliability obtained as a result.

図6は本実施の形態の放熱構造にさらなる工夫を加えた放熱構造200Aの一例を示す要部斜視図である。放熱ブロック54の円弧端面54aに多数のL字型のフック状平板バネ材68を円弧端面54aに引っ掛けるような形状で取り付けている。放熱ブロック54の円弧端面54aとL字型のフック状平板バネ材68との間には、放熱用密着剤70が介挿されている。これにより、フック状平板バネ材68のバネ力による継続的密着力の確保と、熱伝導の大幅な向上を実現させている。   FIG. 6 is a perspective view of a main part showing an example of a heat dissipation structure 200A obtained by further improving the heat dissipation structure of the present embodiment. A large number of L-shaped hook-shaped flat spring materials 68 are attached to the arc end surface 54a of the heat dissipation block 54 so as to be hooked on the arc end surface 54a. A heat radiation adhesive 70 is interposed between the arc end surface 54 a of the heat radiation block 54 and the L-shaped hook-shaped flat spring material 68. As a result, it is possible to secure a continuous adhesion force by the spring force of the hook-shaped flat spring material 68 and to greatly improve heat conduction.

以下に、本発明の態様について説明する。   Below, the aspect of this invention is demonstrated.

本発明の第1の態様による平衡型直流定電流入力/直流定電流分配出力装置は、一次入力ポートに直流定電流を受電し、出力となる二次(中段)ポートの電圧を検出し、この第1の電圧検出値が一定値になるよう一次側にある第1のスイッチング回路を制御することで、上記二次(中段)ポートに直流定電圧を出力する第一の回路と、上記第一の回路の上記二次(中段)ポートの直流定電圧出力を受電して、定電流化回路により定電流化し、終段出力としての三次ポートに接続した外部負荷に定電流を供給する第二の回路と、上記第一の回路の一次側に生ずる電圧を一次側入力電圧として受電し、この一次側電圧を検出し、この第2の電圧検出値が一定値になるよう1次側にある第2のスイッチング回路を制御することで、二次側に接続した定抵抗負荷に電力を供給する第三の回路と、を備える。   The balanced DC constant current input / DC constant current distribution output device according to the first aspect of the present invention receives a DC constant current at the primary input port, detects the voltage of the secondary (middle stage) port to be output, A first circuit that outputs a DC constant voltage to the secondary (middle stage) port by controlling the first switching circuit on the primary side so that the first voltage detection value becomes a constant value; The second constant voltage output of the secondary (middle stage) port of the above circuit is received, converted to a constant current by the constant current circuit, and supplied to the external load connected to the tertiary port as the final stage output. The circuit and the voltage generated on the primary side of the first circuit are received as the primary side input voltage, the primary side voltage is detected, and the second voltage detection value is on the primary side so as to be a constant value. 2 connected to the secondary side by controlling the switching circuit And a third circuit for supplying power to the resistive load.

上記本発明の第1の態様による平衡型直流定電流入力/直流定電流分配出力装置において、上記平衡型直流定電流入力/直流定電流分配出力装置は、海中設置を目的としたものであってよい。上記第一の回路は、上記一次入力ポートに接続された一次側と、上記二次(中段)ポートに接続された二次側とを持つ第1の電圧変換トランスと、該第1の電圧変換トランスの一次側にある上記第1のスイッチング回路と、上記二次(中段)ポートの電圧を検出して、上記第1の電圧検出値を出力する第1の電圧検出器と、上記第1の電圧検出値が一定値になるよう上記第1のスイッチング回路を制御する第1の制御回路と、を備えるものであってよい。上記第1の電圧変換トランスは絶縁型であることが好ましい。上記第三の回路は、上記一次入力ポートに接続された一次側と、上記定抵抗負荷に接続された二次側とを持つ第2の電圧変換トランスと、該第2の電圧変換トランスの一次側にある上記第2のスイッチング回路と、上記一次側電圧を検出して、前記第2の電圧検出値を出力する第2の電圧検出器と、上記第2の電圧検出値が一定値になるように上記第2のスイッチング回路を制御する第2の制御回路と、を備えるものであってよい。上記第2の電圧変換トランスは絶縁型であることが好ましい。 In the balanced DC constant current input / DC constant current distribution output device according to the first aspect of the present invention, the balanced DC constant current input / DC constant current distribution output device is intended for installation in the sea. Good. The first circuit includes a first voltage conversion transformer having a primary side connected to the primary input port and a secondary side connected to the secondary (middle stage) port; and the first voltage conversion The first switching circuit on the primary side of the transformer, the first voltage detector for detecting the voltage of the secondary (middle stage) port and outputting the first voltage detection value; And a first control circuit that controls the first switching circuit so that the voltage detection value becomes a constant value. The first voltage conversion transformer is preferably an insulating type. The third circuit includes a second voltage conversion transformer having a primary side connected to the primary input port and a secondary side connected to the constant resistance load, and a primary voltage of the second voltage conversion transformer. The second switching circuit on the side, the second voltage detector that detects the primary voltage and outputs the second voltage detection value, and the second voltage detection value becomes a constant value And a second control circuit that controls the second switching circuit. The second voltage conversion transformer is preferably an insulating type.

本発明の第2の態様による放熱構造は、上記平衡型直流定電流入力/直流定電流分配出力装置からなる内部発熱部品からの発熱を放熱する放熱構造であって、上記内部発熱部品を収容する密封型円筒耐圧容器と、上記密封型円筒耐圧容器の内壁面に面で内接することができ、上記内部発熱部品を取り付けることが可能な複数の放熱ブロックと、上記複数の放熱ブロックの両端に備えられた一対の円盤型端面板であって、上記複数の放熱ブロックを円筒の軸方向に固定し、かつ円筒の半径方向に可動しうるようなスリット状の構造を持つ、上記一対の円盤型端面板と、上記複数の放熱ブロックを上記一対の円筒型端面板のスリット構造に沿って可動させ、上記複数の放熱ブロックを上記密封型円筒耐圧容器の内壁面に均一に密着および離脱させることが可能な可動機構と、を有する。 A heat dissipating structure according to a second aspect of the present invention is a heat dissipating structure for dissipating heat from an internal heat generating component comprising the balanced DC constant current input / DC constant current distribution output device , and houses the internal heat generating component. A sealed cylindrical pressure vessel, a plurality of heat radiation blocks that can be inscribed on the inner wall surface of the sealed cylindrical pressure vessel, and to which the internal heat generating components can be attached, and provided at both ends of the plurality of heat radiation blocks A pair of disc shaped end plates, wherein the plurality of heat dissipating blocks are fixed in the axial direction of the cylinder and have a slit-like structure that is movable in the radial direction of the cylinder. The face plate and the plurality of heat dissipating blocks are moved along the slit structure of the pair of cylindrical end face plates, and the plurality of heat dissipating blocks are uniformly adhered to and detached from the inner wall surface of the sealed cylindrical pressure vessel. It has a movable mechanism capable.

上記本発明の第2の態様による放熱構造において、上記複数の放熱ブロックは、断面視で見て、L字形状の2個の放熱ブロックから構成されてよい。この場合、各放熱ブロックのL字端部は、上記密封型円筒耐圧容器の内半径に実質的に等しい曲率半径の円弧端面を持っていることが好ましい。上記一対の円盤型端面板は、上記2個の放熱ブロックの要部分を突き合わせて、断面視で見て、互いに直角となるような配置を確保するものであってよい。上記可動機構は、たとえば、上記密封型円筒耐圧容器の中心軸に沿って延在し、両端部に雄ネジが切られた1本の支持棒と、該支持棒の両端部に挿入される一対の楔状構造体と、上記複数の放熱ブロックに対して上記一対の楔状構造体を互いに近接する方向に押し付けた状態で、上記支持棒の両端部に螺嵌される一対のナットと、から構成されてよい。上記放熱構造は、上記放熱ブロックの上記円弧端面に、放熱用密着剤を介して取り付けられた複数の平板バネ材をさらに備えることが望ましい。上記複数の平板バネ材の各々は、上記放熱ブロックの上記円弧端面に引っ掛けるような形状のL字型のフック状平板バネ材からなってよい。
In the heat dissipation structure according to a second aspect of the present invention, the upper Symbol plurality of heat dissipating blocks, viewed in cross section, it may be comprised of two heat sink block in L-shape. In this case, it is preferable that the L-shaped end portion of each heat dissipating block has an arc end surface having a radius of curvature substantially equal to the inner radius of the sealed cylindrical pressure vessel. The pair of disk-shaped end plates may be arranged such that the main portions of the two heat dissipating blocks are brought into contact with each other so as to be arranged at right angles when viewed in cross section. The movable mechanism includes, for example, one support bar extending along the central axis of the sealed cylindrical pressure vessel and having a male screw cut at both ends, and a pair inserted at both ends of the support bar. And a pair of nuts that are screwed to both ends of the support rod in a state where the pair of wedge-shaped structures are pressed against the plurality of heat dissipation blocks in a direction approaching each other. It's okay. It is desirable that the heat dissipation structure further includes a plurality of flat spring materials attached to the arc end surface of the heat dissipation block via a heat dissipation adhesive. Each of the plurality of flat spring materials may be formed of an L-shaped hook-shaped flat spring material that is hooked on the arc end surface of the heat dissipation block.

以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。例えば、上記実施形態では、複数の放熱ブロックはL字形状の2個の放熱ブロックから構成されているが、これに限定されないのは勿論である。また、上記実施形態では、可動機構は、1本の支持棒と一対の楔状構造体と一対のナットとから構成されているが、これに限定されないのは勿論である。   The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. For example, in the above-described embodiment, the plurality of heat dissipation blocks are configured by two L-shaped heat dissipation blocks, but the present invention is not limited to this. Moreover, in the said embodiment, although the movable mechanism is comprised from one support rod, a pair of wedge-shaped structure, and a pair of nut, of course, it is not limited to this.

本発明は、海底ケーブルを用いた観測システムに利用され得る。   The present invention can be used in an observation system using a submarine cable.

10 ・・・ 第一の回路
11 ・・・ 一次入力ポート
12 ・・・ 第1のスイッチング回路
13 ・・・ 第1の絶縁型電圧変換トランス
14 ・・・ 第1の電圧検出器
15 ・・・ 第1の制御回路
16 ・・・ 二次(中間)ポート
20 ・・・ 第二の回路
21 ・・・ 定電流化回路
22 ・・・ 三次ポート
30 ・・・ 第三の回路
32 ・・・ 第2のスイッチング回路
33 ・・・ 第2の絶縁型電圧変換トランス
34 ・・・ 第2の電圧検出器
35 ・・・ 第2の制御回路
37 ・・・ 定抵抗回路
42 ・・・ 外部定電流回路
44 ・・・ 外部負荷
44−1〜44−n ・・・ 水中機器
46 ・・・ 海底ケーブル
50 ・・・ 密封型円筒耐圧容器
54 ・・・ 放熱ブロック
54a ・・・ L字端部(円弧端面)
54b ・・・ ネジ穴
56 ・・・ 円盤型端面板
56a ・・・ スリット構造(スリット状穴)
60 ・・・ 可動機構
62 ・・・ 支持棒
64 ・・・ 楔状構造体
66 ・・・ ナット
68 ・・・ 平板バネ材
70 ・・・ 放熱用密着剤
100 ・・・ 平衡型直流定電流入力/直流定電流分配出力装置(電子回路、内部発熱部品)
100−1〜100−n ・・・ 平衡型直流定電流入力/直流定電流分配出力装置
200、200A ・・・ 放熱構造
DESCRIPTION OF SYMBOLS 10 ... 1st circuit 11 ... Primary input port 12 ... 1st switching circuit 13 ... 1st insulation type voltage conversion transformer 14 ... 1st voltage detector 15 ... First control circuit 16 ... secondary (intermediate) port 20 ... second circuit 21 ... constant current circuit 22 ... tertiary port 30 ... third circuit 32 ... second 2 switching circuit 33 ... second insulation type voltage conversion transformer 34 ... second voltage detector 35 ... second control circuit 37 ... constant resistance circuit 42 ... external constant current circuit 44 ・ ・ ・ External load 44-1 to 44-n ・ ・ ・ Underwater equipment 46 ・ ・ ・ Submarine cable 50 ・ ・ ・ Sealed cylindrical pressure vessel 54 ・ ・ ・ Heat radiation block 54a ・ ・ ・ L-shaped end (arc end face )
54b ... Screw hole 56 ... Disk type end face plate 56a ... Slit structure (slit-like hole)
DESCRIPTION OF SYMBOLS 60 ... Movable mechanism 62 ... Support rod 64 ... Wedge-like structure 66 ... Nut 68 ... Flat spring material 70 ... Heat radiation adhesion agent 100 ... Balance type DC constant current input / DC constant current distribution output device (electronic circuit, internal heating component)
100-1 to 100-n ... Balanced DC constant current input / DC constant current distribution output device 200, 200A ... Heat dissipation structure

Claims (12)

一次入力ポートに直流定電流を受電し、出力となる二次ポートの電圧を検出し、この第1の電圧検出値が一定値になるよう一次側にある第1のスイッチング回路を制御することで、上記二次ポートに直流定電圧を出力する第一の回路と、
上記第一の回路の上記二次ポートの直流定電圧出力を受電して、定電流化回路により定電流化し、終段出力としての三次ポートに接続した外部負荷に定電流を供給する第二の回路と、
上記第一の回路の一次側に生ずる電圧を一次側入力電圧として受電し、この一次側電圧を検出し、この第2の電圧検出値が一定値になるよう一次側にある第2のスイッチング回路を制御することで、二次側に接続した定抵抗負荷に電力を供給する第三の回路と、
を有する平衡型直流定電流入力/直流定電流分配出力装置。
By receiving a DC constant current at the primary input port, detecting the voltage of the secondary port as an output, and controlling the first switching circuit on the primary side so that this first voltage detection value becomes a constant value. A first circuit for outputting a constant DC voltage to the secondary port;
A second constant current output is received from the secondary port of the first circuit, is made constant by a constant current circuit, and a constant current is supplied to an external load connected to a tertiary port as a final stage output. Circuit,
The second switching circuit on the primary side receives the voltage generated on the primary side of the first circuit as a primary side input voltage, detects the primary side voltage, and makes the second voltage detection value constant. A third circuit for supplying power to a constant resistance load connected to the secondary side by controlling
A balanced DC constant current input / DC constant current distribution output device having
上記平衡型直流定電流入力/直流定電流分配出力装置は、海中設置を目的としたものである、請求項1に記載の平衡型直流定電流入力/直流定電流分配出力装置。   2. The balanced DC constant current input / DC constant current distribution output device according to claim 1, wherein the balanced DC constant current input / DC constant current distribution output device is intended for installation in the sea. 上記第一の回路は、
上記一次入力ポートに接続された一次側と、上記二次ポートに接続された二次側とを持つ第1の電圧変換トランスと、
該第1の電圧変換トランスの一次側にある上記第1のスイッチング回路と、
上記二次ポートの電圧を検出して、上記第1の電圧検出値を出力する第1の電圧検出器と、
上記第1の電圧検出値が一定値になるよう上記第1のスイッチング回路を制御する第1の制御回路と、
を備える、請求項1又は請求項2に記載の平衡型直流定電流入力/直流定電流分配出力装置。
The first circuit is
A first voltage conversion transformer having a primary side connected to the primary input port and a secondary side connected to the secondary port;
The first switching circuit on the primary side of the first voltage conversion transformer;
A first voltage detector that detects the voltage of the secondary port and outputs the first voltage detection value;
A first control circuit for controlling the first switching circuit so that the first voltage detection value becomes a constant value;
The balanced DC constant current input / DC constant current distribution output device according to claim 1, comprising:
上記第1の電圧変換トランスは絶縁型である、請求項3に記載の平衡型直流定電流入力/直流定電流分配出力装置。   4. The balanced DC constant current input / DC constant current distribution output device according to claim 3, wherein the first voltage conversion transformer is an insulating type. 上記第三の回路は、
上記一次入力ポートに接続された一次側と、上記定抵抗負荷に接続された二次側とを持つ第2の電圧変換トランスと、
該第2の電圧変換トランスの一次側にある上記第2のスイッチング回路と、
上記一次側電圧を検出して、前記第2の電圧検出値を出力する第2の電圧検出器と、
上記第2の電圧検出値が一定値になるように上記第2のスイッチング回路を制御する第2の制御回路と、
を備える、請求項3又は請求項4に記載の平衡型直流定電流入力/直流定電流分配出力装置。
The third circuit is
A second voltage conversion transformer having a primary side connected to the primary input port and a secondary side connected to the constant resistance load;
The second switching circuit on the primary side of the second voltage conversion transformer;
A second voltage detector that detects the primary side voltage and outputs the second voltage detection value;
A second control circuit for controlling the second switching circuit so that the second voltage detection value becomes a constant value;
The balanced DC constant current input / DC constant current distribution output device according to claim 3, comprising:
上記第2の電圧変換トランスは絶縁型である、請求項5に記載の平衡型直流定電流入力/直流定電流分配出力装置。 6. The balanced DC constant current input / DC constant current distribution output device according to claim 5, wherein the second voltage conversion transformer is an insulating type. 請求項1乃至6のいずれか1つに記載の平衡型直流定電流入力/直流定電流分配出力装置からなる内部発熱部品からの発熱を放熱する放熱構造であって、
上記内部発熱部品を収容する密封型円筒耐圧容器と、
上記密封型円筒耐圧容器の内壁面に面で内接することができ、上記内部発熱部品を取り付けることが可能な複数の放熱ブロックと、
上記複数の放熱ブロックの両端に備えられた一対の円盤型端面板であって、上記複数の放熱ブロックを円筒の軸方向に固定し、かつ円筒の半径方向に可動しうるようなスリット状の構造を持つ、上記一対の円盤型端面板と、
上記複数の放熱ブロックを上記一対の円筒型端面板のスリット構造に沿って可動させ、上記複数の放熱ブロックを上記密封型円筒耐圧容器の内壁面に均一に密着および離脱させることが可能な可動機構と、
を有する放熱構造。
A heat dissipation structure for dissipating heat from an internal heat generating component comprising the balanced DC constant current input / DC constant current distribution output device according to any one of claims 1 to 6 ,
A sealed cylindrical pressure vessel containing the internal heat generating component;
A plurality of heat dissipating blocks that can be inscribed on the inner wall surface of the sealed cylindrical pressure vessel, and to which the internal heat generating components can be attached;
A pair of disk-type end face plates provided at both ends of the plurality of heat dissipation blocks, wherein the plurality of heat dissipation blocks are fixed in the axial direction of the cylinder and can be moved in the radial direction of the cylinder. A pair of disk-shaped end face plates, and
A movable mechanism capable of moving the plurality of heat radiating blocks along the slit structure of the pair of cylindrical end face plates and uniformly bringing the plurality of heat radiating blocks into close contact with and separating from the inner wall surface of the sealed cylindrical pressure vessel. When,
A heat dissipation structure.
上記複数の放熱ブロックは、断面視で見て、L字形状の2個の放熱ブロックから構成され、
各放熱ブロックのL字端部は、上記密封型円筒耐圧容器の内半径に実質的に等しい曲率半径の円弧端面を持っている、請求項7に記載の放熱構造。
The plurality of heat dissipating blocks are composed of two L-shaped heat dissipating blocks as viewed in cross section,
The heat radiation structure according to claim 7 , wherein an L-shaped end portion of each heat radiation block has an arc end surface having a radius of curvature substantially equal to an inner radius of the sealed cylindrical pressure vessel.
上記一対の円盤型端面板は、上記2個の放熱ブロックの要部分を突き合わせて、断面視で見て、互いに直角となるような配置を確保する、請求項8に記載の放熱構造。 The heat dissipation structure according to claim 8 , wherein the pair of disk-shaped end face plates abuts the main portions of the two heat dissipation blocks and secures an arrangement that is perpendicular to each other when viewed in cross-section. 上記可動機構は、
上記密封型円筒耐圧容器の中心軸に沿って延在し、両端部に雄ネジが切られた1本の支持棒と、
該支持棒の両端部に挿入される一対の楔状構造体と、
上記複数の放熱ブロックに対して上記一対の楔状構造体を互いに近接する方向に押し付けた状態で、上記支持棒の両端部に螺嵌される一対のナットと、
から構成される、請求項7乃至9のいずれか1項に記載の放熱構造。
The movable mechanism is
A single support rod extending along the central axis of the sealed cylindrical pressure vessel and having male threads cut at both ends;
A pair of wedge-shaped structures inserted into both ends of the support rod;
A pair of nuts screwed to both ends of the support rod in a state in which the pair of wedge-shaped structures are pressed toward each other with respect to the plurality of heat dissipation blocks;
The heat dissipation structure according to any one of claims 7 to 9 , comprising:
上記放熱ブロックの上記円弧端面に、放熱用密着剤を介して取り付けられた複数の平板バネ材をさらに備える、請求項8又は9に記載の放熱構造。 The heat dissipation structure according to claim 8 or 9 , further comprising a plurality of flat spring materials attached to the arc end surface of the heat dissipation block via a heat dissipation adhesive. 上記複数の平板バネ材の各々は、上記放熱ブロックの上記円弧端面に引っ掛けるような形状のL字型のフック状バネ材からなる、請求項11に記載の放熱構造。 12. The heat dissipation structure according to claim 11 , wherein each of the plurality of flat plate spring materials is made of an L-shaped hook-shaped spring material shaped to be hooked on the arc end surface of the heat dissipation block.
JP2009293942A 2009-12-25 2009-12-25 Balanced DC constant current input / DC constant current distribution output device and heat dissipation structure thereof Active JP5176152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009293942A JP5176152B2 (en) 2009-12-25 2009-12-25 Balanced DC constant current input / DC constant current distribution output device and heat dissipation structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009293942A JP5176152B2 (en) 2009-12-25 2009-12-25 Balanced DC constant current input / DC constant current distribution output device and heat dissipation structure thereof

Publications (2)

Publication Number Publication Date
JP2011135715A JP2011135715A (en) 2011-07-07
JP5176152B2 true JP5176152B2 (en) 2013-04-03

Family

ID=44347852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293942A Active JP5176152B2 (en) 2009-12-25 2009-12-25 Balanced DC constant current input / DC constant current distribution output device and heat dissipation structure thereof

Country Status (1)

Country Link
JP (1) JP5176152B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103929928B (en) * 2014-02-24 2016-08-17 山东省科学院海洋仪器仪表研究所 Seabed tubular high voltage inverting power source modularized radiating device
CN106647908B (en) * 2016-12-07 2018-06-29 海华电子企业(中国)有限公司 A kind of monopole power supply constant current constant voltage conversion electric power and method
CN107482610A (en) * 2017-07-28 2017-12-15 浙江大学 A kind of submarine observation network constant-current supply system based on adjustable duty cycle power balancer
CN107370144A (en) * 2017-07-28 2017-11-21 浙江大学 A kind of loaded self-adaptive submarine observation network constant-current supply system
CN111404142B (en) * 2020-03-25 2020-11-06 中国科学院声学研究所 Voltage-stabilized constant-current underwater power supply with self-matched power and power supply method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204824A (en) * 1987-02-20 1988-08-24 Nippon Telegr & Teleph Corp <Ntt> Sea bottom feeding system
JPH11150492A (en) * 1997-11-17 1999-06-02 Nec Corp Power supply circuit for submarine cable system
JP4344791B2 (en) * 2002-10-21 2009-10-14 日本電気株式会社 Submarine cable system and submarine power supply branching device

Also Published As

Publication number Publication date
JP2011135715A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5176152B2 (en) Balanced DC constant current input / DC constant current distribution output device and heat dissipation structure thereof
JP2012084486A (en) Power storage system
TW201829984A (en) Power over fiber enabled sensor system
US9906002B2 (en) Resistive element, RC module, and RC voltage divider for a high-voltage electrical substation insulated by a dielectric fluid
CN104025229A (en) Circuit Breaker, Circuit Breaker Terminal Lug Cover, And Method Of Protecting A Terminal Lug
KR100823990B1 (en) A photo ionizer
US9847196B2 (en) Master recombiner box with wireless monitoring capability
US11843226B2 (en) Laminated busbars and direct connection of air circuit breakers in bus coupler sections
WO2017110049A1 (en) Battery management system
JP2009288035A (en) Partial discharge detector
KR101543768B1 (en) 3-input photovoltaic inverter apparatus
KR20200052688A (en) System and method for measuring insulation resistance
JP2016163363A (en) Distribution panel
FR2866991A1 (en) ELECTRIC FEED RETURN DEVICE FOR AVIONIC EQUIPMENT
JP2013008613A (en) Plug-in connection device of switch
US20150200529A1 (en) Underground high-voltage electrical line
JP5646242B2 (en) Circuit board equipment
JP2010027286A (en) Discharge device and temperature monitoring device
KR101987324B1 (en) Inverter for solar power generation with heat dissipation and grounding function, distribution board, panel board, motor control panel, solar connection panel, ESS with heat dissipation and grounding function
JP2011083045A (en) Power distribution device and power distribution system using the same
WO2014185177A1 (en) Cooling structure for combiner
WO2020059734A1 (en) Electric device
JP2010205666A (en) Safety device
JP6768244B2 (en) Arc discharge prevention device
ITTO20080511A1 (en) BATTERY ASSEMBLY, IN PARTICULAR FOR THE PARALLEL CONNECTION OF A LITHIUM BATTERY PLURALITY

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5176152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250