JP5175003B2 - Manufacturing method of integrated circuit device having three-dimensional laminated structure - Google Patents

Manufacturing method of integrated circuit device having three-dimensional laminated structure Download PDF

Info

Publication number
JP5175003B2
JP5175003B2 JP2005259824A JP2005259824A JP5175003B2 JP 5175003 B2 JP5175003 B2 JP 5175003B2 JP 2005259824 A JP2005259824 A JP 2005259824A JP 2005259824 A JP2005259824 A JP 2005259824A JP 5175003 B2 JP5175003 B2 JP 5175003B2
Authority
JP
Japan
Prior art keywords
semiconductor circuit
circuit layer
electrode
adhesive film
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005259824A
Other languages
Japanese (ja)
Other versions
JP2007073775A (en
Inventor
光正 小柳
Original Assignee
光正 小柳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光正 小柳 filed Critical 光正 小柳
Priority to JP2005259824A priority Critical patent/JP5175003B2/en
Priority to TW095133066A priority patent/TWI433244B/en
Priority to PCT/JP2006/317716 priority patent/WO2007037106A1/en
Publication of JP2007073775A publication Critical patent/JP2007073775A/en
Application granted granted Critical
Publication of JP5175003B2 publication Critical patent/JP5175003B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/90Methods for connecting semiconductor or solid state bodies using means for bonding not being attached to, or not being formed on, the body surface to be connected, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/0557Disposition the external layer being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05684Tungsten [W] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13025Disposition the bump connector being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83194Lateral distribution of the layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06524Electrical connections formed on device or on substrate, e.g. a deposited or grown layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/183Connection portion, e.g. seal
    • H01L2924/18301Connection portion, e.g. seal being an anchoring portion, i.e. mechanical interlocking between the encapsulation resin and another package part
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor

Abstract

A method for manufacturing a three-dimensional multilayer integrated circuit device in which an electrically insulating adhesive can be placed in the spacing between semiconductor circuit layers and the portion of the eclectically insulating adhesive sticking out of the spacing does not need to be removed. Buried interconnection members (conductive plugs) (15) are formed in a first semiconductor circuit layer (1a), and the ends thereof are exposed from the back surface of the first semiconductor layer (1a). Bump electrodes (43a) are formed in positions corresponding to the plugs (15) on the front surface of a second semiconductor layer (2). An electrically insulating adhesive film (44a) patterned into a shape not overlapping with the bump electrodes (43a) is formed on the front surface of the second semiconductor circuit layer (2). The first and second semiconductor circuit layers (1a, 2) are made to approach each other, with the back surface of the first semiconductor circuit layer (1a) opposed to the front surface of the second one (2). Thus, the adhesive film (44a) is deformed and at least part of the bump electrodes (43a) are crushed. As a result, the buried interconnection members (15) and the bump electrodes (43a) are mechanically interconnected, and both circuit layers (1a, 2) are bonded with the adhesive film (44a).

Description

本発明は、種々の機能を持つ複数の半導体回路層を積層してなる三次元積層構造を持つ集積回路装置(三次元積層集積回路装置)の製造方法に関し、さらに言えば、積層された前記半導体回路層間の縦方向(積層方向)の機械的・電気的接続を行うための接着剤の配置工程と埋込配線の機械的接続工程とを含む、三次元積層集積回路装置の製造方法に関する。ここに「埋込配線(buried interconnections)」とは、前記半導体回路層の各々の内部に埋設される積層方向の電気的接続用の配線(導体)を言う。   The present invention relates to a method for manufacturing an integrated circuit device (three-dimensional stacked integrated circuit device) having a three-dimensional stacked structure formed by stacking a plurality of semiconductor circuit layers having various functions, and more specifically, the stacked semiconductors. The present invention relates to a method for manufacturing a three-dimensional stacked integrated circuit device, which includes an adhesive placement step for mechanical / electrical connection between circuit layers in the vertical direction (stacking direction) and a mechanical connection step for embedded wiring. Here, “buried interconnections” refer to wirings (conductors) for electrical connection in the stacking direction embedded in each of the semiconductor circuit layers.

近年、複数の半導体チップを積層して三次元構造とした半導体装置が提案されている。例えば、栗野らは1999年に発行された「1999アイ・イー・ディー・エム テクニカル・ダイジェスト」において、「三次元構造を持つインテリジェント・イメージセンサ・チップ」を提案している(非特許文献1参照)。   In recent years, semiconductor devices having a three-dimensional structure formed by stacking a plurality of semiconductor chips have been proposed. For example, Kurino et al. Proposed an “intelligent image sensor chip having a three-dimensional structure” in “1999 IDM Technical Digest” published in 1999 (see Non-Patent Document 1). ).

このイメージセンサ・チップは、4層構造を持っており、第1半導体回路層にプロセッサ・アレイと出力回路を配置し、第2半導体回路層にデータラッチとマスキング回路を配置し、第3半導体回路層に増幅器とアナログ・デジタル変換器を配置し、第4半導体回路層にイメージセンサ・アレイを配置している。イメージセンサ・アレイの最上面は、マイクロレンズ・アレイを含む石英ガラス層で覆われており、マイクロレンズ・アレイはその石英ガラス層の表面に形成されている。イメージセンサ・アレイ中の各イメージセンサには、半導体受光素子としてフォトダイオードが形成されている。4層構造を構成する各半導体回路層の間は、接着剤を用いて機械的に接続されていると共に、導電性プラグを用いた埋込配線とそれら埋込配線に接触せしめられたマイクロバンプ電極とを用いて電気的に接続されている。   This image sensor chip has a four-layer structure, a processor array and an output circuit are arranged in a first semiconductor circuit layer, a data latch and a masking circuit are arranged in a second semiconductor circuit layer, and a third semiconductor circuit An amplifier and an analog / digital converter are arranged in the layer, and an image sensor array is arranged in the fourth semiconductor circuit layer. The uppermost surface of the image sensor array is covered with a quartz glass layer including the microlens array, and the microlens array is formed on the surface of the quartz glass layer. Each image sensor in the image sensor array is formed with a photodiode as a semiconductor light receiving element. The semiconductor circuit layers constituting the four-layer structure are mechanically connected using an adhesive, and embedded wirings using conductive plugs and microbump electrodes brought into contact with the embedded wirings And are electrically connected.

このイメージセンサ・チップは、各半導体回路層の間の電気的接続にボンディング・ワイヤは使用されていない。したがって、支持基板上に複数の半導体チップを積層・一体化すると共にそれら半導体チップの周囲にボンディング・ワイヤを配置し、それボンディング・ワイヤによって前記半導体チップ間の電気的接続を実現した三次元構造の半導体装置(これは特許文献1に開示されているように従来より公知である)とは異なっている。   This image sensor chip does not use bonding wires for electrical connection between the semiconductor circuit layers. Accordingly, a three-dimensional structure in which a plurality of semiconductor chips are stacked and integrated on a support substrate and bonding wires are arranged around the semiconductor chips, and electrical connection between the semiconductor chips is realized by the bonding wires. It is different from a semiconductor device (this is conventionally known as disclosed in Patent Document 1).

また、李らは、2000年4月に発行された「日本応用物理学会誌」において、「高度並列画像処理チップ用の三次元集積技術の開発」とのタイトルで、栗野らの提案した上記固体イメージセンサと同様のイメージセンサを含む画像処理チップを提案している(非特許文献2)。   Also, Lee et al. In the “Journal of the Japan Society of Applied Physics” published in April 2000 titled “Development of three-dimensional integration technology for highly parallel image processing chips” proposed by Kurino et al. An image processing chip including an image sensor similar to the image sensor has been proposed (Non-Patent Document 2).

李らの画像処理チップは、栗野らが上記論文で提案した固体イメージセンサとほぼ同じ構造を持っている。   Lee's image processing chip has almost the same structure as the solid-state image sensor proposed by Kurino et al.

上述した三次元積層構造を持つ従来のイメージセンサ・チップと画像処理チップは、いずれも、所望の半導体回路を内蔵した複数の半導体ウェハー(以下、単にウェハーともいう)を積層して互いに固着させた後、得られたウェハー積層体を切断(ダイシング)して複数のチップ群に分割することにより製造される。すなわち、内部に半導体回路を形成した半導体ウェハーをウェハーレベルで積層・一体化することにより三次元積層構造を形成し、それを分割してイメージセンサ・チップまたは画像処理チップを得ているのである。   Both the conventional image sensor chip and the image processing chip having the above-described three-dimensional stacked structure are formed by laminating a plurality of semiconductor wafers (hereinafter also simply referred to as wafers) containing desired semiconductor circuits and fixing them together. Thereafter, the obtained wafer laminate is cut (diced) and divided into a plurality of chip groups. That is, a semiconductor wafer having a semiconductor circuit formed therein is laminated and integrated at a wafer level to form a three-dimensional laminated structure, which is divided to obtain an image sensor chip or an image processing chip.

なお、これら従来のイメージセンサ・チップと画像処理チップでは、当該チップの内部の積層された複数の半導体回路のそれぞれが「半導体回路層」を構成する。
栗野ら、「三次元構造を持つインテリジェント・イメージセンサ・チップ」、1999年アイ・イー・ディー・エム テクニカル・ダイジェストp.36.4.1〜36.4.4(H. Kurino et al.,” Intelligent Image Sensor Chip with Three Dimensional Structure”, 1999 IEDM Technical Digest, pp. 36.4.1 - 36.4.4, 1999) 李ら、「高度並列画像処理チップ用の三次元集積技術の開発」、「日本応用物理学会誌」第39巻、p.2473〜2477、第1部4B、2000年4月、(K. Lee et al.,” Development of Three-Dimensional Integration Technology for Highly Parallel Image-Processing Chip”, Jpn. J. Appl. Phys. Vol. 39, pp. 2474 - 2477, April 2000) 特開2002−110902号公報(図1、図4)
In these conventional image sensor chips and image processing chips, each of a plurality of stacked semiconductor circuits in the chip constitutes a “semiconductor circuit layer”.
Kurino et al., “Intelligent Image Sensor Chip with Three-Dimensional Structure”, 1999 IDM Technical Digest p. 36.4.1-36.4.4 (H. Kurino et al., “Intelligent Image Sensor Chip with Three Dimensional Structure”, 1999 IEDM Technical Digest, pp. 36.4.1-36.4.4, 1999) Li et al., “Development of three-dimensional integration technology for highly parallel image processing chips”, “The Journal of Japan Society of Applied Physics”, Volume 39, p. 2473-2477, Part 1B, April 2000, (K. Lee et al., “Development of Three-Dimensional Integration Technology for Highly Parallel Image-Processing Chip”, Jpn. J. Appl. Phys. Vol. 39 , pp. 2474-2477, April 2000) Japanese Patent Laid-Open No. 2002-110902 (FIGS. 1 and 4)

上述した従来の三次元積層構造を持つイメージセンサ・チップと画像処理チップの製造工程では、ウェハー積層体(これは複数の半導体ウェハーを積層・一体化して構成される)の内部における半導体回路層(ここでは半導体ウェハー)間の縦方向(積層方向)の電気的接続は、各半導体回路層を積層方向に貫通して形成された微細な埋込配線(あるいは導電性プラグ)と、それら埋込配線の端に固着されたマイクロバンプ電極とを使用して行われている。しかし、埋込配線とマイクロバンプ電極の具体的な形成方法は明示されていない。埋込配線もマイクロバンプ電極も数μm程度の大きさであって極めて微細であるだけでなく、多数が近接して配置されるので、これらを実現するのは容易ではない。このため、そのような埋込配線とマイクロバンプ電極を使用した信頼性の高い積層方向の電気的接続を実現する方法が要望されている。   In the manufacturing process of the image sensor chip and the image processing chip having the conventional three-dimensional stacked structure described above, the semiconductor circuit layer (which is configured by stacking and integrating a plurality of semiconductor wafers) inside the wafer stack ( Here, the electrical connection in the vertical direction (stacking direction) between the semiconductor wafers is made by fine embedded wirings (or conductive plugs) formed through the semiconductor circuit layers in the stacking direction, and these embedded wirings. This is done using a micro-bump electrode fixed to the end. However, a specific method for forming the embedded wiring and the microbump electrode is not specified. The embedded wiring and the micro bump electrode are not only very fine and have a size of about several μm, but a large number of them are arranged close to each other, so that it is not easy to realize them. Therefore, there is a demand for a method for realizing a highly reliable electrical connection in the stacking direction using such embedded wiring and microbump electrodes.

また、ウェハー積層体の内部において、当該ウェハー積層体を構成する半導体回路層同士(ここでは半導体ウェハー同士)を、高い信頼性をもって機械的に接続する方法も要望されている。これは、マイクロバンプ電極を用いる上述した電気的接続によっても実現は可能であるが、機械的接続の強度と信頼性を増すためには、隣接する半導体回路層間の隙間に電気的絶縁性の接着剤を配置してその接着剤によりそれら半導体回路層同士を接着することが好ましい。この場合、液状または流動状にした接着剤を前記隙間に注入する方法が考えられるが、その際には前記隙間を完全に充填するためにその隙間の容積よりも多めに接着剤を注入する必要がある。その結果、注入後に前記隙間よりはみ出た余分の接着剤を除去するという後処理が必要となる、という難点が生じる。この後処理では、余分の接着剤の除去処理のために薬剤を使用するため、その薬剤が各半導体回路層に与える影響を防止する処置が必要になる等、面倒な作業が増加するからである。よって、このような難点をなくすと共に製造工程数を減らすことのできる方法が望まれるところである。   There is also a demand for a method of mechanically connecting semiconductor circuit layers (here, semiconductor wafers) constituting the wafer laminate with high reliability inside the wafer laminate. This can also be realized by the above-described electrical connection using microbump electrodes. However, in order to increase the strength and reliability of the mechanical connection, an electrically insulating adhesive is provided in the gap between adjacent semiconductor circuit layers. It is preferable to dispose an agent and bond the semiconductor circuit layers to each other with the adhesive. In this case, a method of injecting liquid or fluidized adhesive into the gap can be considered, but in that case, in order to completely fill the gap, it is necessary to inject the adhesive more than the volume of the gap. There is. As a result, there arises a problem that post-treatment is required to remove excess adhesive protruding from the gap after injection. In this post-processing, since a chemical is used to remove excess adhesive, troublesome work such as the need to prevent the influence of the chemical on each semiconductor circuit layer is increased. . Therefore, there is a demand for a method that can eliminate such difficulties and reduce the number of manufacturing steps.

これら二つの要望は、上述した従来の三次元積層構造を持つイメージセンサ・チップと画像処理チップの製造工程において、「ウェハー積層体」に代えて、複数の半導体チップを積層・一体化してなる「チップ積層体」を使用する場合にも言えることである。   These two requests are made by stacking and integrating a plurality of semiconductor chips in place of the “wafer stack” in the manufacturing process of the image sensor chip and the image processing chip having the conventional three-dimensional stacked structure described above. This is also true when using a “chip stack”.

本発明は、これらの点を考慮してなされたものであって、その目的とするところは、積層された半導体回路層間の積層方向の機械的接続及び電気的接続を、埋込配線を使用して容易にかつ高い信頼性をもって実現することができる、三次元積層構造を持つ集積回路装置の製造方法を提供することにある。   The present invention has been made in consideration of these points, and the object of the present invention is to use embedded wiring for mechanical connection and electrical connection in the stacking direction between stacked semiconductor circuit layers. Another object of the present invention is to provide a method for manufacturing an integrated circuit device having a three-dimensional stacked structure, which can be realized easily and with high reliability.

本発明の他の目的は、積層された半導体回路層間の隙間に電気的絶縁性の接着剤を確実に配置することができると共に、前記隙間よりはみ出た余分の接着剤を除去するという後処理を省略することもできる、三次元積層構造を持つ集積回路装置の製造方法を提供することにある。   Another object of the present invention is to perform post-processing of ensuring that an electrically insulating adhesive can be disposed in the gap between the stacked semiconductor circuit layers and removing excess adhesive protruding from the gap. An object of the present invention is to provide a method of manufacturing an integrated circuit device having a three-dimensional stacked structure, which can be omitted.

ここに明記しない本発明の他の目的は、以下の説明及び添付図面から明らかになるであろう。   Other objects of the present invention which are not specified here will become apparent from the following description and the accompanying drawings.

(1) 本発明の集積回路装置の製造方法は、
複数の半導体回路層を支持基板上に積層してなる三次元積層構造を持つ集積回路装置の製造方法であって、
前記三次元積層構造を構成する一つの半導体回路層の内部に、一端が当該半導体回路層の裏面から露出せしめられた複数の埋込配線を形成する工程と、
前記半導体回路層の裏面、あるいは前記三次元積層構造を構成する他の半導体回路層の表面、またはそれらの双方に、複数のバンプ電極を形成する工程と、
前記半導体回路層の裏面、あるいは前記他の半導体回路層の表面、またはそれらの双方に、前記埋込配線の露出端または前記バンプ電極とは重ならない形状を持つ電気的絶縁性の接着剤膜を形成する工程と、
前記接着剤膜を間に介在させながら、前記半導体回路層の裏面と前記他の半導体回路層の表面とを相互に対向させる工程と、
相互に対向せしめられた前記半導体回路層の裏面と前記他の半導体回路層の表面の間隔を狭めることにより、前記接着剤膜を前記半導体回路層の裏面と前記他の半導体回路層の表面との間に残存する隙間内で変形させながら、前記埋込配線の前記露出端及び前記バンプ電極の少なくとも一方を変形させて直接、または他の導電性部材を介して相互に機械的接続する工程とを備え、
前記接着剤膜は、前記埋込配線の前記露出端と前記バンプ電極との機械的接続工程の終了時に、前記隙間全体に充填せしめられることを特徴とするものである。
(1) A method of manufacturing an integrated circuit device according to the present invention includes:
A method of manufacturing an integrated circuit device having a three-dimensional stacked structure in which a plurality of semiconductor circuit layers are stacked on a support substrate,
Forming a plurality of embedded wirings, one end of which is exposed from the back surface of the semiconductor circuit layer, inside one semiconductor circuit layer constituting the three-dimensional stacked structure;
Forming a plurality of bump electrodes on the back surface of the semiconductor circuit layer, or on the surface of another semiconductor circuit layer constituting the three-dimensional stacked structure, or both of them;
An electrically insulating adhesive film having a shape that does not overlap the exposed end of the embedded wiring or the bump electrode on the back surface of the semiconductor circuit layer, the surface of the other semiconductor circuit layer, or both of them. Forming, and
Making the back surface of the semiconductor circuit layer and the surface of the other semiconductor circuit layer face each other while interposing the adhesive film therebetween,
By narrowing the distance between the back surface of the semiconductor circuit layer and the surface of the other semiconductor circuit layer opposed to each other, the adhesive film is placed between the back surface of the semiconductor circuit layer and the surface of the other semiconductor circuit layer. A step of deforming at least one of the exposed end of the embedded wiring and the bump electrode while being deformed in a gap remaining therebetween, and mechanically connecting to each other directly or via another conductive member; Prepared,
The adhesive film is filled in the entire gap at the end of the mechanical connection step between the exposed end of the embedded wiring and the bump electrode.

(2) 本発明の集積回路装置の製造方法では、上述したように、三次元積層構造を構成する一つの半導体回路層の内部に一端が当該半導体回路層の裏面から露出せしめられた複数の埋込配線を形成する一方、前記半導体回路層の裏面、あるいは前記三次元積層構造を構成する他の半導体回路層の表面、またはそれらの双方に、複数のバンプ電極を形成する。その後、前記半導体回路層の裏面、あるいは前記他の半導体回路層の表面、またはそれらの双方に、前記埋込配線の露出端または前記バンプ電極とは重ならない形状を持つ電気的絶縁性の接着剤膜を形成する。さらに、前記接着剤膜を間に介在させながら前記半導体回路層の裏面と前記他の半導体回路層の表面とを相互に対向させた後、前記半導体回路層の裏面と前記他の半導体回路層の表面の間隔を狭め、もって前記埋込配線の前記露出端及び前記バンプ電極の少なくとも一方を変形させて直接、または他の導電性部材を介して相互に機械的接続する。この時、前記接着剤膜は、前記半導体回路層の裏面と前記他の半導体回路層の表面との間に残存する隙間内で変形せしめられると共に、前記埋込配線の前記露出端と前記バンプ電極との機械的接続工程の終了時に前記隙間全体に充填せしめられる。   (2) In the method of manufacturing an integrated circuit device according to the present invention, as described above, a plurality of buried portions in which one end is exposed from the back surface of the semiconductor circuit layer inside one semiconductor circuit layer constituting the three-dimensional stacked structure. While forming the embedded wiring, a plurality of bump electrodes are formed on the back surface of the semiconductor circuit layer, the surface of the other semiconductor circuit layer constituting the three-dimensional stacked structure, or both of them. Thereafter, an electrically insulating adhesive having a shape that does not overlap the exposed end of the embedded wiring or the bump electrode on the back surface of the semiconductor circuit layer, the surface of the other semiconductor circuit layer, or both of them. A film is formed. Further, after the back surface of the semiconductor circuit layer and the surface of the other semiconductor circuit layer are opposed to each other with the adhesive film interposed therebetween, the back surface of the semiconductor circuit layer and the other semiconductor circuit layer The distance between the surfaces is narrowed, so that at least one of the exposed end and the bump electrode of the embedded wiring is deformed and mechanically connected to each other directly or via another conductive member. At this time, the adhesive film is deformed in a gap remaining between the back surface of the semiconductor circuit layer and the surface of the other semiconductor circuit layer, and the exposed end of the embedded wiring and the bump electrode The entire gap is filled at the end of the mechanical connection process.

このため、前記埋込配線の前記露出端と前記バンプ電極との機械的接続工程の終了時に前記接着剤膜の全体積が前記半導体回路層と前記他の半導体回路層の間の隙間に残存する前記隙間の体積にほぼ等しくなるように、前記接着剤膜の全体積を調整することにより、前記隙間に必要量の接着剤を配置することが可能となり、しかもその接着剤が前記隙間よりはみ出ないようにすることができる。よって、三次元積層構造を構成する積層された半導体回路層間の隙間に電気的絶縁性の接着剤を確実に配置することができると共に、前記隙間よりはみ出た余分の接着剤を除去するという後処理を省略することができる、という効果が得られる。   Therefore, the entire volume of the adhesive film remains in the gap between the semiconductor circuit layer and the other semiconductor circuit layer at the end of the mechanical connection process between the exposed end of the embedded wiring and the bump electrode. By adjusting the total volume of the adhesive film so as to be substantially equal to the volume of the gap, it becomes possible to arrange a necessary amount of adhesive in the gap, and the adhesive does not protrude from the gap. Can be. Therefore, it is possible to reliably dispose the electrically insulating adhesive in the gap between the laminated semiconductor circuit layers constituting the three-dimensional laminated structure, and to remove the excess adhesive protruding from the gap The effect that can be omitted is obtained.

また、前記埋込配線の前記露出端と前記バンプ電極との機械的接続は、前記埋込配線の前記露出端及び前記バンプ電極の少なくとも一方を変形させて直接、または他の導電性部材を介して間接的に実行されるので、前記埋込配線の前記露出端と前記バンプ電極との機械的接続が強固になる。しかも、前記接着剤膜は、変形によって前記隙間に充填されるので、前記半導体回路層と前記他の半導体回路層の接着も確実になる。このように、上記したような容易な工程の組み合わせによって、前記半導体回路層と前記他の半導体回路層の機械的接続及び電気的接続に高い信頼性が得られる。換言すれば、三次元積層構造を構成する積層された半導体回路層間の積層方向の機械的接続及び電気的接続を、埋込配線を使用して容易かつ高い信頼性をもって実現することができる、という効果が得られる。   Further, the mechanical connection between the exposed end of the embedded wiring and the bump electrode may be performed directly or through another conductive member by deforming at least one of the exposed end of the embedded wiring and the bump electrode. Therefore, the mechanical connection between the exposed end of the embedded wiring and the bump electrode is strengthened. In addition, since the adhesive film fills the gaps by deformation, the bonding between the semiconductor circuit layer and the other semiconductor circuit layer is ensured. As described above, high reliability can be obtained in mechanical connection and electrical connection between the semiconductor circuit layer and the other semiconductor circuit layer by a combination of the easy processes as described above. In other words, the mechanical connection and electrical connection in the stacking direction between the stacked semiconductor circuit layers constituting the three-dimensional stacked structure can be realized easily and with high reliability using the embedded wiring. An effect is obtained.

(3) 本発明の集積回路装置の製造方法において、「支持基板」は、複数の半導体回路層を支持するに足る剛性を持つものであればよく、その材質は任意である。半導体であってもよいし、ガラスであってもよいし、その他の材質であってもよい。内部に回路が形成された半導体基板、すなわち、いわゆるLSIウェハーでもよい。   (3) In the method for manufacturing an integrated circuit device of the present invention, the “support substrate” may be any material as long as it has sufficient rigidity to support a plurality of semiconductor circuit layers, and the material thereof is arbitrary. It may be a semiconductor, glass, or other material. A semiconductor substrate having a circuit formed therein, that is, a so-called LSI wafer may be used.

「半導体回路層」と「他の半導体回路層」は、いずれも、半導体回路の層、換言すれば、層状に形成された半導体回路を意味する。したがって、「半導体回路層」は、「半導体基板」と、その半導体基板の内部または表面に形成された「素子」または「回路」とを有していればよく、他の構成は任意である。   The “semiconductor circuit layer” and the “other semiconductor circuit layer” mean a semiconductor circuit layer, in other words, a semiconductor circuit formed in a layer shape. Therefore, the “semiconductor circuit layer” may include a “semiconductor substrate” and “elements” or “circuits” formed inside or on the surface of the semiconductor substrate, and other configurations are arbitrary.

前記「半導体基板」の内部または表面には、何らかの「回路」(例えば、増幅回路、信号処理回路など、あるいは所定の機能を提供する集積回路)が形成されるのが通常であるが、何らかの「素子」(例えば、受光素子)のみが形成されていてもよい。例えば、アレイ状に配置された多数の「受光素子」だけが、「半導体基板」の内部または表面に形成されていてもよい。「素子」としては、トランジスタ等の能動素子と、抵抗器等の受動素子とがあるが、いずれであってもよい。「能動素子」としては、典型的には、占有面積の小ささ等を考慮してMOS電界効果トランジスタ(Metal-Oxide-Semiconductor Field-Effect Transistor、MOSFET、以下「MOSトランジスタ」という)が使用されるが、MOSトランジスタ以外のトランジスタでもよいし、ダイオード等でもよい。「受動素子」としては、例えば抵抗器、容量素子等が使用される。   Usually, some “circuit” (for example, an amplifier circuit, a signal processing circuit, or an integrated circuit providing a predetermined function) is formed inside or on the surface of the “semiconductor substrate”. Only an “element” (for example, a light receiving element) may be formed. For example, only a large number of “light receiving elements” arranged in an array may be formed inside or on the surface of the “semiconductor substrate”. “Elements” include active elements such as transistors and passive elements such as resistors. As the “active element”, a MOS field effect transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET, hereinafter referred to as “MOS transistor”) is typically used in consideration of a small occupied area and the like. However, a transistor other than a MOS transistor, a diode, or the like may be used. As the “passive element”, for example, a resistor, a capacitive element or the like is used.

前記「半導体基板」は、単一の半導体部材(例えば半導体ウェハーまたは半導体チップ)により形成されていてもよいし、複数の半導体部材(例えば半導体ウェハーまたは半導体チップ)により形成されていてもよい。また、前記「半導体基板」の物理寸法には制限はなく、半導体ウェハーのサイズ(ウェハーサイズ)でもよいし、半導体ウェハーを分割して得られるチップのサイズ(チップサイズ)でもよいし、ウェハーサイズとチップサイズの中間のサイズであってもよいし、ウェハーサイズより大きいサイズであってもよい。また、前記「半導体基板」の材質は任意であり、所望の半導体素子や回路を形成できるものであれば、シリコンでもよいし、化合物半導体でもよいし、その他の半導体でもよい。「半導体基板」の構造も任意であり、半導体製の単なる板でもよいし、いわゆるSOI(Silicon On Insulator)基板でもよい。   The “semiconductor substrate” may be formed of a single semiconductor member (for example, a semiconductor wafer or a semiconductor chip), or may be formed of a plurality of semiconductor members (for example, a semiconductor wafer or a semiconductor chip). The physical dimensions of the “semiconductor substrate” are not limited, and may be the size of a semiconductor wafer (wafer size), the size of a chip obtained by dividing a semiconductor wafer (chip size), or the wafer size. It may be an intermediate size of the chip size or a size larger than the wafer size. The material of the “semiconductor substrate” is arbitrary, and may be silicon, a compound semiconductor, or other semiconductors as long as a desired semiconductor element or circuit can be formed. The structure of the “semiconductor substrate” is also arbitrary, and may be a simple plate made of a semiconductor or a so-called SOI (Silicon On Insulator) substrate.

「埋込配線」とは、半導体回路層の各々の内部に埋設される積層方向の電気的接続用の配線または導体を言う。「埋込配線」は、通常、半導体基板に形成された「トレンチ」の内壁面全体を覆う「絶縁膜」と、その絶縁膜の内側の空間に充填された(埋め込まれた)「導電性材料」(「導電性プラグ」と呼ばれることが多い)とから構成される。しかし、この構成に限定されるわけではない。   “Built-in wiring” refers to a wiring or conductor for electrical connection in the stacking direction embedded in each semiconductor circuit layer. The “embedded wiring” is usually an “insulating film” that covers the entire inner wall surface of the “trench” formed in the semiconductor substrate, and a “conductive material” that is filled (embedded) in the space inside the insulating film. "(Often referred to as" conductive plug "). However, it is not necessarily limited to this configuration.

ここで、「トレンチ」とは、所望の深さを持ち、埋込配線となる導電性材料を収容するものであればよく、構成は任意である。「トレンチ」の深さ、開口形状、開口寸法、断面形状等は、必要に応じて任意に設定できる。「トレンチ」の形成方法は、半導体基板をその表面側から選択的に除去して形成できるものであれば、任意の方法が使用できる。例えば、マスクを用いた異方性エッチング法が好適に使用できる。   Here, the “trench” may have any desired depth as long as it has a desired depth and accommodates a conductive material that becomes an embedded wiring. The depth, opening shape, opening size, cross-sectional shape, etc. of the “trench” can be arbitrarily set as required. As a method for forming the “trench”, any method can be used as long as it can be formed by selectively removing the semiconductor substrate from the surface side. For example, an anisotropic etching method using a mask can be suitably used.

「トレンチ」の内壁面を覆う「絶縁膜」は、半導体基板と「トレンチ」の内部に充填される「導電性材料」とを電気的に絶縁できるものであれば、任意の絶縁膜が使用できる。例えば、二酸化シリコン(SiO2)、窒化シリコン(SiNx)等が好適に使用できる。「絶縁膜」の形成方法は、任意である。 As the “insulating film” covering the inner wall surface of the “trench”, any insulating film can be used as long as it can electrically insulate the semiconductor substrate and the “conductive material” filled in the “trench”. . For example, silicon dioxide (SiO 2 ), silicon nitride (SiN x ), etc. can be suitably used. A method of forming the “insulating film” is arbitrary.

「トレンチ」の内部に充填される「導電性材料」は、半導体回路層間の電気的接続に使用できるものであればよく、任意の材料が使用できる。例えば、ポリシリコン等の半導体、タングステン(W)、銅(Cu)、アルミニウム(Al)等の金属が好適に使用できる。「導電性材料」の充填方法は、半導体基板の片面から「導電性材料」を「トレンチ」の内部に充填できるものであれば、任意の方法が使用できる。   The “conductive material” filled in the “trench” may be any material that can be used for electrical connection between the semiconductor circuit layers, and any material can be used. For example, a semiconductor such as polysilicon or a metal such as tungsten (W), copper (Cu), or aluminum (Al) can be preferably used. As the filling method of the “conductive material”, any method can be used as long as the “conductive material” can be filled into the “trench” from one side of the semiconductor substrate.

「バンプ電極」とは、半導体回路層間の積層方向の電気的接続に使用可能なバンプ(bump、こぶ)状の電極であれば、任意の構成のものを使用できる。「バンプ電極」の材料としては、半導体回路層間の積層方向の電気的接続に使用可能な導電性を有していれば、任意のものを使用できる。   The “bump electrode” may have any configuration as long as it is a bump-like electrode that can be used for electrical connection in the stacking direction between semiconductor circuit layers. As the material of the “bump electrode”, any material can be used as long as it has conductivity that can be used for electrical connection in the stacking direction between the semiconductor circuit layers.

「埋込配線」の露出端及び「バンプ電極」の少なくとも一方は、前記接着剤膜を間に介在させながら二つの半導体回路層を相互に対向させてから両者の間隔を狭めることにより、前記埋込配線の前記露出端及び前記バンプ電極の少なくとも一方が変形し、直接または他のバンプ電極を介して相互に機械的接続されるものである必要がある。「バンプ電極」は、こうして変形することによって相手部材(埋込配線や他のバンプ電極など)との接触面積が広がり、その結果として両者の機械的・電気的接続の信頼性が向上する。前記埋込配線の前記露出端及び前記バンプ電極の少なくとも一方の「変形」は、塑性変形でもよいし、少なくとも一部が軟化または流動化することによる変形でもよい。   At least one of the exposed end of the “embedded wiring” and the “bump electrode” is formed by allowing the two semiconductor circuit layers to face each other while interposing the adhesive film therebetween, and then reducing the distance between the two. It is necessary that at least one of the exposed end of the embedded wiring and the bump electrode is deformed and mechanically connected to each other directly or via another bump electrode. By deforming the “bump electrode” in this way, the contact area with the mating member (embedded wiring, other bump electrode, etc.) is expanded, and as a result, the reliability of the mechanical and electrical connection between the two is improved. “Deformation” of at least one of the exposed end of the embedded wiring and the bump electrode may be plastic deformation, or may be deformation due to softening or fluidization of at least a part thereof.

「バンプ電極」の材質が、「バンプ電極」と埋込配線とを加熱・加圧しながら接触させた時に両者が互いに接合するもの(例えば、インジウム(In)と金(Au)の積層体、すなわちIn/Au)であれば、両者を直接接触させて機械的に接続すればよい。しかし、バンプ電極の材質が、当該バンプ電極と埋込配線とを加熱・加圧しながら接触させても両者が互いに接合しない場合(例えば、タングステン(W))は、適当な接合用金属を挟んで両者の機械的接続を行う必要がある。接合用金属としては、例えば、In−Au合金、錫(Sn)−金(Ag)合金、In単体、Sn単体等を使用することができる。この場合、その接合用金属が「他の導電性部材」となる。   The material of the “bump electrode” is a material in which the “bump electrode” and the embedded wiring are brought into contact with each other while being heated and pressed (for example, a laminate of indium (In) and gold (Au), In / Au), the two may be brought into direct contact and mechanically connected. However, if the material of the bump electrode is not bonded to each other even if the bump electrode and the embedded wiring are brought into contact with each other while being heated and pressed (for example, tungsten (W)), an appropriate bonding metal is sandwiched between them. It is necessary to make a mechanical connection between them. As the bonding metal, for example, an In—Au alloy, a tin (Sn) -gold (Ag) alloy, an In simple substance, an Sn simple substance, or the like can be used. In this case, the joining metal becomes “another conductive member”.

「バンプ電極」の構成と形成方法は任意であるから、別個に形成されたバンプ状の導電性材料片を、前記半導体回路層の裏面あるいは前記他の半導体回路層の表面、またはそれらの双方の所定位置に固着させて形成してもよいし、前記半導体回路層の裏面あるいは前記他の半導体回路層の表面、またはそれらの双方の所定位置に導電性材料をメッキ法等によって直接堆積させて形成してもよい。また、前記半導体回路層の裏面あるいは前記他の半導体回路層の表面に形成された配線を利用して形成してもよい。   Since the configuration and formation method of the “bump electrode” are arbitrary, a separately formed bump-shaped conductive material piece is attached to the back surface of the semiconductor circuit layer, the surface of the other semiconductor circuit layer, or both of them. It may be formed by being fixed at a predetermined position, or formed by directly depositing a conductive material on the back surface of the semiconductor circuit layer, the surface of the other semiconductor circuit layer, or a predetermined position on both of them by a plating method or the like. May be. Moreover, you may form using the wiring formed in the back surface of the said semiconductor circuit layer, or the surface of the said other semiconductor circuit layer.

「他の導電性部材」は、半導体回路層間の電気的接続に使用できるものであれば任意の部材が使用できる。典型的には、上述した「バンプ電極」と同様のバンプ電極が使用されるが、これに限定されるわけではない。上述した「接合用金属」も「他の導電性部材」として使用可能である。   As the “other conductive member”, any member can be used as long as it can be used for electrical connection between the semiconductor circuit layers. Typically, a bump electrode similar to the “bump electrode” described above is used, but is not limited thereto. The “joining metal” described above can also be used as “other conductive member”.

「電気的絶縁性の接着剤膜」は、前記半導体回路層と前記他の半導体回路層とを接着して一体化することができる電気的絶縁性の接着剤の膜であって、前記埋込配線の露出端または前記バンプ電極とは重ならない形状にパターン化した後も粘性を有しており且つ所定条件下で少なくとも一部が軟化または流動化するものである。例えば、ポリイミド樹脂、SOG(Spin On Glass)材料等が使用できる。これらの接着剤の中では、ポリイミド樹脂が特に好ましい。ポリイミド樹脂は、取り扱いが容易であり、しかも化学的安定性が高いからである。   The “electrically insulating adhesive film” is an electrically insulating adhesive film capable of bonding and integrating the semiconductor circuit layer and the other semiconductor circuit layer. It remains viscous even after patterning into a shape that does not overlap the exposed end of the wiring or the bump electrode, and at least part of the wiring is softened or fluidized under a predetermined condition. For example, polyimide resin, SOG (Spin On Glass) material, etc. can be used. Among these adhesives, polyimide resin is particularly preferable. This is because the polyimide resin is easy to handle and has high chemical stability.

「相互に対向せしめられた前記半導体回路層の裏面と前記他の半導体回路層の表面の間隔を狭めることにより、前記接着剤膜を前記半導体回路層の裏面と前記他の半導体回路層の表面との間に残存する隙間内で変形させながら、前記埋込配線の前記露出端及び前記バンプ電極の少なくとも一方を変形させて直接、または他の導電性部材を介して相互に機械的接続する工程」を実施する方法は、特に限定されない。典型的には、「溶着」または「圧接」によって、前記埋込配線の露出端部と対応する前記バンプ電極とを直接、または他の導電性部材を介して機械的接続するが、これ以外の方法でもよい。直接的に「溶着」または「圧接」ができない場合は、適当な接合用金属を間に挟んで機械的接続を行ってもよい。   “By narrowing the distance between the back surface of the semiconductor circuit layer and the surface of the other semiconductor circuit layer opposed to each other, the adhesive film is formed between the back surface of the semiconductor circuit layer and the surface of the other semiconductor circuit layer. A process of deforming at least one of the exposed end of the embedded wiring and the bump electrode while being deformed in a gap remaining between the two, and mechanically connecting to each other directly or via another conductive member. The method of implementing is not particularly limited. Typically, the exposed end portion of the embedded wiring and the corresponding bump electrode are mechanically connected directly or through another conductive member by “welding” or “pressure welding”. It may be a method. In the case where “welding” or “pressure welding” cannot be performed directly, mechanical connection may be performed with an appropriate bonding metal interposed therebetween.

この工程は、例えば、公知の半導体ウェハー積層装置(例えば、特開平5−160340号公報(特許第2984441号)に記載の「三次元LSI積層装置」を参照)を用いて実施することができる。同様の装置は、下記の論文にも開示されている。   This step can be performed using, for example, a known semiconductor wafer laminating apparatus (for example, see “three-dimensional LSI laminating apparatus” described in Japanese Patent Laid-Open No. 5-160340 (Japanese Patent No. 2984441)). Similar devices are also disclosed in the following articles:

松本ら、「接着剤注入法を用いた新三次元ウェハー接合技術」、1998年、応用物理学会誌、1(3B)、p.1217−1221(Takuji Matsumoto, Masakazu Satoh, Katsuyuki Sakuma, Hiroyuki Kurino, Nobuaki Miyakawa, Hikotaro Itani and Mitsumasa Koyanagi, “New three-dimensional wafer bonding technology using the adhesive injection method,” Jpn. J. Appl. Phys., 1 (3B), pp.1217-1221, 1998)
「前記接着剤膜を前記半導体回路層の裏面と前記他の半導体回路層の表面との間に残存する隙間内で変形させながら、前記埋込配線の前記露出端及び前記バンプ電極の少なくとも一方を変形させて直接、または他の導電性部材を介して相互に機械的接続する」ために、前記埋込配線及び前記バンプ電極を所定温度まで加熱するのが好ましい。その理由は、加熱により、前記埋込配線の前記露出端及び前記バンプ電極の少なくとも一方が部分的に溶融状態になって変形し、あるいは、前記埋込配線の前記露出端及び前記バンプ電極の少なくとも一方が軟化して加圧変形可能となるため、容易に所望の機械的接続を実現できるからである。同様に、加熱によって、前記接着剤膜の少なくとも一部が軟化あるいは流動化するため、前記半導体回路層の裏面と前記他の半導体回路層の表面の間隔を狭めることによって前記接着剤膜も変形可能となり、前記隙間全体への充填が実現できるからである。
Matsumoto et al., “New 3D Wafer Bonding Technology Using Adhesive Injection Method”, 1998, Journal of Applied Physics, 1 (3B), p. 1217-1221 (Takuji Matsumoto, Masakazu Satoh, Katsuyuki Sakuma, Hiroyuki Kurino, Nobuaki Miyakawa, Hikotaro Itani and Mitsumasa Koyanagi, “New three-dimensional wafer bonding technology using the adhesive injection method,” Jpn. J. Appl. Phys., 1 (3B), pp.1217-1221, 1998)
“At least one of the exposed end of the embedded wiring and the bump electrode is deformed while the adhesive film is deformed in a gap remaining between the back surface of the semiconductor circuit layer and the surface of the other semiconductor circuit layer. It is preferable to heat the embedded wiring and the bump electrode to a predetermined temperature in order to be deformed and mechanically connected to each other directly or via another conductive member. The reason is that at least one of the exposed end of the embedded wiring and the bump electrode is partially melted and deformed by heating, or at least the exposed end of the embedded wiring and the bump electrode This is because one side is softened and can be deformed under pressure, so that a desired mechanical connection can be easily realized. Similarly, since at least a part of the adhesive film is softened or fluidized by heating, the adhesive film can be deformed by reducing the distance between the back surface of the semiconductor circuit layer and the surface of the other semiconductor circuit layer. This is because the entire gap can be filled.

「前記埋込配線の前記露出端と前記バンプ電極との機械的接続工程の終了時に、前記隙間全体に充填せしめられる前記接着剤膜」は、当該機械的接続工程の中で、あるいはその後に実施される硬化工程において、適当な方法で硬化せしめられる。前記接着剤膜の硬化方法としては、実施の容易性から考えて、所定温度への加熱(とその後の放熱冷却)が好適であるが、これに限定されるわけではない。例えば、紫外線の透過が可能であれば紫外線照射等によっても硬化させることができるし、適当な薬剤の添加によっても硬化可能である。   “The adhesive film filled in the entire gap at the end of the mechanical connection step between the exposed end of the embedded wiring and the bump electrode” is performed during or after the mechanical connection step. In the curing step to be performed, curing is performed by an appropriate method. As a method for curing the adhesive film, in view of ease of implementation, heating to a predetermined temperature (and subsequent heat radiation cooling) is preferable, but is not limited thereto. For example, if ultraviolet rays can be transmitted, they can be cured by ultraviolet irradiation or the like, or can be cured by adding an appropriate drug.

(4) 本発明の集積回路装置の製造方法の好ましい例では、前記接着剤膜が、複数の島状の接着剤要素に分割された構成を持つ。この場合、前記半導体回路層の裏面と前記他の半導体回路層の表面との間に残存する気体を、前記半導体回路層の裏面と前記他の半導体回路層の表面との間の前記隙間が狭められた後であっても、島状の接着剤要素の間を通って外部に逃がしやすいという利点がある。   (4) In a preferred example of the method for manufacturing an integrated circuit device according to the present invention, the adhesive film has a configuration in which the adhesive film is divided into a plurality of island-shaped adhesive elements. In this case, the gap between the back surface of the semiconductor circuit layer and the surface of the other semiconductor circuit layer is narrowed by the gas remaining between the back surface of the semiconductor circuit layer and the surface of the other semiconductor circuit layer. Even after being applied, there is an advantage that it is easy to escape outside through the island-like adhesive elements.

本発明の集積回路装置の製造方法の他の好ましい例では、前記埋込配線の前記露出端または前記バンプ電極と重なる領域と、前記埋込配線の前記露出端と前記バンプ電極との機械的接続工程の終了時に前記埋込配線の前記露出端、前記バンプ電極及び前記他の導電性部材の少なくとも一つが変形することによって生じる変形分を吸収するための領域とを除いて、前記接着剤膜が、複数の接着剤要素に分割されずに連続的に形成された構成を持つ。この場合、複数の島状の接着剤要素に分割される場合よりも、前記接着剤膜のパターン化が容易であるという利点がある。   In another preferred example of the method for manufacturing an integrated circuit device of the present invention, the exposed end of the embedded wiring or a region overlapping the bump electrode, and mechanical connection between the exposed end of the embedded wiring and the bump electrode Except for the region for absorbing deformation caused by deformation of at least one of the exposed end of the embedded wiring, the bump electrode, and the other conductive member at the end of the process, the adhesive film , Having a structure formed continuously without being divided into a plurality of adhesive elements. In this case, there is an advantage that patterning of the adhesive film is easier than the case where the adhesive film is divided into a plurality of island-shaped adhesive elements.

この例では、前記接着剤膜が、相互に対向せしめられた前記半導体回路層の裏面と前記他の半導体回路層の表面の間隔を狭める際に、前記半導体回路層の裏面と前記他の半導体回路層の表面との間の隙間内に存在する気体を外部に逃がす空隙(スリット等)を有しているのが好ましい。前記空隙を介して前記気体の排除がより効率的に行われるからである。   In this example, when the gap between the back surface of the semiconductor circuit layer and the surface of the other semiconductor circuit layer that are opposed to each other is reduced, the adhesive film forms the back surface of the semiconductor circuit layer and the other semiconductor circuit. It is preferable to have a gap (such as a slit) that allows gas existing in the gap between the layers to escape to the outside. This is because the gas is more efficiently eliminated through the gap.

本発明の集積回路装置の製造方法のさらに他の好ましい例では、前記埋込配線または前記バンプ電極とは重ならない形状にパターン化された電気的絶縁性の他の接着剤膜を、前記他の半導体回路層の表面に形成する工程を含んでおり、前記埋込配線の前記露出端と前記バンプ電極とが機械的に接続される際に、前記接着剤膜と前記他の接着剤膜とが相互に接着される。この例では、2枚の接着剤膜を使用するので、前記半導体回路層の裏面と前記他の半導体回路層の表面との間の隙間が比較的大きい場合でも、その隙間全体に確実に接着剤を充填することができるという利点がある。   In still another preferable example of the method for manufacturing an integrated circuit device of the present invention, another electrically insulating adhesive film patterned in a shape that does not overlap with the embedded wiring or the bump electrode is formed on the other circuit. A step of forming on the surface of the semiconductor circuit layer, and when the exposed end of the embedded wiring and the bump electrode are mechanically connected, the adhesive film and the other adhesive film are Bonded to each other. In this example, since two adhesive films are used, even when the gap between the back surface of the semiconductor circuit layer and the surface of the other semiconductor circuit layer is relatively large, the adhesive is surely applied to the entire gap. There is an advantage that can be filled.

この例では、種々の組み合わせが可能である。例えば、(a)前記半導体回路層の裏面に形成される前記接着剤膜と、前記他の半導体回路層の表面に形成される前記他の接着剤膜との双方が、複数の島状の接着剤要素に分割された構成を持つ。あるいは、(b)前記埋込配線の前記露出端または前記バンプ電極と重なる領域と、前記埋込配線の前記露出端と前記バンプ電極との機械的接続工程の終了時に前記埋込配線の前記露出端、前記バンプ電極及び前記他の導電性部材の少なくとも一つが変形することによって生じる変形分を吸収するための領域とを除いて、前記半導体回路層の裏面に形成される前記接着剤膜と、前記他の半導体回路層の表面に形成される前記他の接着剤膜との双方が、複数の接着剤要素に分割されずに連続的に形成された構成を持つ。あるいは、(c)前記半導体回路層の裏面に形成される前記接着剤膜と、前記他の半導体回路層の表面に形成された前記他の接着剤膜とのいずれか一方が、複数の島状の接着剤要素に分割された構成を持ち、他方が、前記埋込配線の前記露出端または前記バンプ電極と重なる領域と、前記埋込配線の前記露出端と前記バンプ電極との機械的接続工程の終了時に前記埋込配線の前記露出端、前記バンプ電極及び前記他の導電性部材の少なくとも一つが変形することによって生じる変形分を吸収するための領域とを除いて、複数の接着剤要素に分割されずに連続的に形成された構成を持つ。   In this example, various combinations are possible. For example, (a) both the adhesive film formed on the back surface of the semiconductor circuit layer and the other adhesive film formed on the surface of the other semiconductor circuit layer have a plurality of island-shaped bonds. It has a structure divided into agent elements. Alternatively, (b) the exposure of the embedded wiring at the end of the mechanical connection step between the exposed end of the embedded wiring or the bump electrode and the exposed end of the embedded wiring and the bump electrode. The adhesive film formed on the back surface of the semiconductor circuit layer, except for an end, a region for absorbing deformation caused by deformation of at least one of the bump electrode and the other conductive member, Both the other adhesive film formed on the surface of the other semiconductor circuit layer have a configuration formed continuously without being divided into a plurality of adhesive elements. Or (c) any one of the adhesive film formed on the back surface of the semiconductor circuit layer and the other adhesive film formed on the surface of the other semiconductor circuit layer has a plurality of island shapes A mechanical connection step between the exposed end of the embedded wiring or the bump electrode and the exposed end of the embedded wiring and the bump electrode. At the end of the plurality of adhesive elements, except for an area for absorbing deformation caused by deformation of at least one of the exposed end of the embedded wiring, the bump electrode, and the other conductive member. It has a structure formed continuously without being divided.

本発明の集積回路装置の製造方法のさらに他の好ましい例では、複数の前記埋込配線の前記露出端の各々に直接、前記バンプ電極が接合せしめられる。この場合、前記埋込配線の側にバンプ電極等の導電性部材を形成する工程が不要となるから、工程数が減少するという利点がある。   In still another preferred example of the method of manufacturing an integrated circuit device according to the present invention, the bump electrode is bonded directly to each of the exposed ends of the plurality of embedded wirings. In this case, there is an advantage that the number of steps is reduced because a step of forming a conductive member such as a bump electrode on the side of the embedded wiring becomes unnecessary.

この例では、好ましくは、前記埋込配線の前記露出端が、前記半導体回路層の裏面から突出して形成される。この場合、前記埋込配線の側にバンプ電極等の導電性部材を形成する工程が不要となるだけでなく、前記埋込配線と前記バンプ電極との機械的接続がいっそう容易であるという利点がある。   In this example, it is preferable that the exposed end of the embedded wiring protrudes from the back surface of the semiconductor circuit layer. In this case, not only is a step of forming a conductive member such as a bump electrode on the side of the embedded wiring unnecessary, but there is an advantage that mechanical connection between the embedded wiring and the bump electrode is easier. is there.

本発明の集積回路装置の製造方法のさらに他の好ましい例では、複数の前記埋込配線の前記露出端の各々に、前記他の導電性部材として他のバンプ電極を形成する工程を含んでおり、前記他のバンプ電極を介して前記埋込配線の前記露出端と前記バンプ電極とが相互に機械的接続される。この場合、前記他のバンプ電極を形成する工程が必要になるが、前記他のバンプ電極の分だけ前記バンプ電極の高さ(厚さ)を減少することができ、その結果、前記バンプ電極の形成が容易になるという利点がある。   According to still another preferred example of the method for manufacturing an integrated circuit device of the present invention, the method includes a step of forming another bump electrode as the other conductive member at each of the exposed ends of the plurality of embedded wirings. The exposed end of the embedded wiring and the bump electrode are mechanically connected to each other through the other bump electrode. In this case, although the step of forming the other bump electrode is required, the height (thickness) of the bump electrode can be reduced by the amount of the other bump electrode. There is an advantage that formation becomes easy.

本発明の集積回路装置の製造方法のさらに他の好ましい例では、前記埋込配線の前記露出端と前記バンプ電極との機械的接続工程が、加熱下で実行され、その際に前記接着剤膜の少なくとも一部が軟化または流動化するように加熱温度が設定される。この例では、当該機械的接続工程が容易に実行できるという利点がある。   In still another preferred example of the method for manufacturing an integrated circuit device according to the present invention, a mechanical connection step between the exposed end of the embedded wiring and the bump electrode is performed under heating, and the adhesive film is formed at that time. The heating temperature is set so that at least a part of the material is softened or fluidized. In this example, there exists an advantage that the said mechanical connection process can be performed easily.

本発明の集積回路装置の製造方法のさらに他の好ましい例では、前記埋込配線の前記露出端と前記バンプ電極との機械的接続工程が、加熱下で実行され、その際に前記埋込配線の前記露出端及び前記バンプ電極の少なくとも一方が塑性変形して、直接または前記他の導電性部材を介して相互に機械的接続されるように加熱温度が設定される。この例では、当該機械的接続工程が容易に実行できるという利点がある。   In still another preferred example of the method of manufacturing an integrated circuit device according to the present invention, a mechanical connection step between the exposed end of the embedded wiring and the bump electrode is performed under heating, and at that time, the embedded wiring The heating temperature is set so that at least one of the exposed end and the bump electrode is plastically deformed and mechanically connected to each other directly or via the other conductive member. In this example, there exists an advantage that the said mechanical connection process can be performed easily.

本発明の集積回路装置の製造方法のさらに他の好ましい例では、前記埋込配線の前記露出端と前記バンプ電極との機械的接続工程が、加熱下で実行され、その際に前記埋込配線の前記露出端及び前記バンプ電極の少なくとも一部が軟化または流動化することによって変形して、直接または前記他の導電性部材を介して相互に機械的接続されるように加熱温度が設定される。この例では、当該機械的接続工程が容易に実行できるという利点がある。   In still another preferred example of the method of manufacturing an integrated circuit device according to the present invention, a mechanical connection step between the exposed end of the embedded wiring and the bump electrode is performed under heating, and at that time, the embedded wiring A heating temperature is set such that at least a part of the exposed end of the bump and the bump electrode are deformed by being softened or fluidized and mechanically connected to each other directly or via the other conductive member. . In this example, there exists an advantage that the said mechanical connection process can be performed easily.

本発明の集積回路装置の製造方法のさらに他の好ましい例では、前記埋込配線の前記露出端と前記バンプ電極との機械的接続工程において前記半導体回路層の裏面と前記他の半導体回路層の表面との間隔を狭めた時に、前記埋込配線の前記露出端と前記バンプ電極とが直接、または前記他の導電性部材を介して接触する前に、前記接着剤膜がその対向する面(すなわち、前記半導体回路層の裏面、前記他の半導体回路層の表面、または他の接着剤膜の面)に接触するように、前記埋込配線の突出高さと前記バンプ電極の高さと前記接着剤膜の厚さとが設定される。この場合、前記埋込配線の前記露出端と前記バンプ電極とが直接的または間接的に接触する前に前記接着剤膜がその対向する面に接触するので、前記接着剤膜の変形量が大きくなる。したがって、この例は、前記埋込配線及び前記バンプ電極のレイアウトの関係から、前記接着剤膜の変形量を大きくせざるを得ない場合(例えば、バンプ電極の材料として変形しにくい材料を使っているような場合)に好適に使用できる。   In still another preferred example of the method of manufacturing an integrated circuit device according to the present invention, the back surface of the semiconductor circuit layer and the other semiconductor circuit layer are mechanically connected in the mechanical connection step between the exposed end of the embedded wiring and the bump electrode. When the gap between the surface and the surface of the adhesive film is reduced, before the exposed end of the embedded wiring and the bump electrode come into contact directly or via the other conductive member, That is, the protruding height of the embedded wiring, the height of the bump electrode, and the adhesive so as to contact the back surface of the semiconductor circuit layer, the surface of the other semiconductor circuit layer, or the surface of another adhesive film) The thickness of the film is set. In this case, since the adhesive film contacts the opposite surface before the exposed end of the embedded wiring and the bump electrode are directly or indirectly contacted, the deformation amount of the adhesive film is large. Become. Therefore, in this example, the amount of deformation of the adhesive film must be increased due to the layout of the embedded wiring and the bump electrode (for example, using a material that is difficult to deform as the material of the bump electrode). In such a case).

本発明の集積回路装置の製造方法のさらに他の好ましい例では、前記埋込配線の前記露出端と前記バンプ電極との機械的接続工程において前記半導体回路層の裏面と前記他の半導体回路層の表面との間隔を狭めた時に、前記接着剤膜がその対向する面(すなわち、前記半導体回路層の裏面、前記他の半導体回路層の表面、または他の接着剤膜の面)に接触する前に、前記埋込配線の前記露出端と前記バンプ電極とが直接、または前記他の導電性部材を介して接触するように、前記埋込配線の突出高さと前記バンプ電極の高さと前記接着剤膜の厚さとが設定される。この場合、前記接着剤膜がその対向する面に接触する前に前記埋込配線の前記露出端と前記バンプ電極とが直接的または間接的に接触するので、前記埋込配線の前記露出端及び前記バンプ電極の少なくとも一方の変形量が大きくなる。したがって、この例は、前記埋込配線及び前記バンプ電極のレイアウトの関係から、前記接着剤膜の変形量を大きくできない場合(例えば、接着剤膜の変形量を大きくすると接着剤膜が対向する二つのバンプ電極間の間隙に入り込んでしまうような場合や、接着剤膜の材料として変形しにくい材料を使っているような場合)に好適に使用できる。   In still another preferred example of the method of manufacturing an integrated circuit device according to the present invention, the back surface of the semiconductor circuit layer and the other semiconductor circuit layer are mechanically connected in the mechanical connection step between the exposed end of the embedded wiring and the bump electrode. Before the adhesive film comes into contact with the opposing surface (that is, the back surface of the semiconductor circuit layer, the surface of the other semiconductor circuit layer, or the surface of another adhesive film) when the distance from the front surface is narrowed Further, the protruding height of the embedded wiring, the height of the bump electrode, and the adhesive so that the exposed end of the embedded wiring and the bump electrode are in direct contact with each other or through the other conductive member. The thickness of the film is set. In this case, since the exposed end of the embedded wiring and the bump electrode come into direct or indirect contact before the adhesive film contacts the opposite surface, the exposed end of the embedded wiring and The deformation amount of at least one of the bump electrodes is increased. Therefore, in this example, when the deformation amount of the adhesive film cannot be increased due to the layout of the embedded wiring and the bump electrode (for example, when the deformation amount of the adhesive film is increased, the adhesive film faces the opposite direction). In the case of entering the gap between the two bump electrodes or the case where a material that is difficult to deform is used as the material of the adhesive film).

本発明の集積回路装置の製造方法のさらに他の好ましい例では、前記埋込配線の前記露出端と前記バンプ電極との機械的接続工程において前記半導体回路層の裏面と前記他の半導体回路層の表面との間隔を狭めた時に、前記埋込配線の前記露出端と前記バンプ電極とが直接、または前記他の導電性部材を介して接触するのとほぼ同時に、前記接着剤膜がその対向する面(すなわち、前記半導体回路層の裏面、前記他の半導体回路層の表面または他の接着剤膜の面)に接触するように、前記埋込配線の突出高さと前記バンプ電極の高さと前記接着剤膜の厚さとが設定される。この場合、前記埋込配線の前記露出端と前記バンプ電極とが直接的または間接的に接触するのと前記接着剤膜がその対向する面に接触するのとがほぼ同時に起こるので、この例は、前記埋込配線及び前記バンプ電極のレイアウトの関係から、前記接着剤膜の変形量を大きくできないと共に、前記埋込配線の前記露出端及び前記バンプ電極の少なくとも一方の変形量も大きくできない場合(例えば、バンプ電極と接着剤膜の双方に変形しにくい材料を使っているような場合)に好適に使用できる。   In still another preferred example of the method of manufacturing an integrated circuit device according to the present invention, the back surface of the semiconductor circuit layer and the other semiconductor circuit layer are mechanically connected in the mechanical connection step between the exposed end of the embedded wiring and the bump electrode. When the distance from the surface is narrowed, the adhesive film faces the exposed end of the embedded wiring and the bump electrode directly or almost simultaneously with the other conductive member. The protruding height of the embedded wiring, the height of the bump electrode, and the adhesion so as to come into contact with the surface (that is, the back surface of the semiconductor circuit layer, the surface of the other semiconductor circuit layer, or the surface of another adhesive film) The thickness of the agent film is set. In this case, since the exposed end of the embedded wiring and the bump electrode are in direct or indirect contact with each other and the adhesive film is in contact with the opposing surface, this example is The amount of deformation of the adhesive film cannot be increased due to the layout of the embedded wiring and the bump electrode, and the amount of deformation of at least one of the exposed end of the embedded wiring and the bump electrode cannot be increased ( For example, it can be suitably used for a case where a material that hardly deforms is used for both the bump electrode and the adhesive film.

(5) 上述した本発明の集積回路装置の製造方法は、三次元積層構造を持つ任意の集積回路装置に適用可能であり、そのサイズは問わない。三次元積層集積回路装置がウェハーサイズ(この場合、三次元積層構造を構成する半導体回路層の各々がウェハーサイズとなる)であってもよいし、チップサイズ(この場合、前記半導体回路層の各々がチップサイズとなる)であってもよいし、ウェハーサイズとチップサイズの中間のサイズ(この場合、三次元積層構造を構成する半導体回路層の各々がウェハーサイズとチップサイズの中間のサイズとなる)であってもよいし、ウェハーサイズより大きいサイズ(この場合、三次元積層構造を構成する半導体回路層の各々がウェハーサイズより大きいサイズとなる)であってもよい。ここに「ウェハーサイズ」とは、半導体ウェハーとほぼ同じサイズ(例えば直径8インチ)を意味する。本発明において半導体回路層の積層数は任意であるから、三次元積層集積回路装置の高さも任意である。   (5) The method for manufacturing an integrated circuit device of the present invention described above can be applied to any integrated circuit device having a three-dimensional stacked structure, and the size thereof is not limited. The three-dimensional stacked integrated circuit device may be a wafer size (in this case, each of the semiconductor circuit layers constituting the three-dimensional stacked structure is a wafer size) or a chip size (in this case, each of the semiconductor circuit layers). May be an intermediate size between the wafer size and the chip size (in this case, each of the semiconductor circuit layers constituting the three-dimensional stacked structure is an intermediate size between the wafer size and the chip size). Or a size larger than the wafer size (in this case, each of the semiconductor circuit layers constituting the three-dimensional stacked structure is larger than the wafer size). Here, “wafer size” means substantially the same size as a semiconductor wafer (for example, 8 inches in diameter). In the present invention, since the number of stacked semiconductor circuit layers is arbitrary, the height of the three-dimensional stacked integrated circuit device is also arbitrary.

前記半導体回路層の各々は、一つの半導体ウェハーまたは二次元に配置された複数の半導体ウェハーから形成されていてもよいし、一つの半導体チップ(あるいは半導体部材)または二次元に配置された複数の半導体チップ(あるいは半導体部材)から形成されていてもよい。   Each of the semiconductor circuit layers may be formed of one semiconductor wafer or a plurality of semiconductor wafers arranged two-dimensionally, or one semiconductor chip (or a semiconductor member) or a plurality of two-dimensionally arranged semiconductor wafers. You may form from the semiconductor chip (or semiconductor member).

本発明の集積回路装置の製造方法では、(i)積層された半導体回路層間の隙間に電気的絶縁性の接着剤を確実に配置することができると共に、前記隙間よりはみ出た余分の接着剤を除去するという後処理を省略することもできる、(ii)積層された半導体回路層間の積層方向の機械的接続及び電気的接続を、埋込配線を使用して容易にかつ高い信頼性をもって実現することができる、という効果が得られる。   In the method of manufacturing an integrated circuit device according to the present invention, (i) an electrically insulating adhesive can be reliably disposed in a gap between stacked semiconductor circuit layers, and an excess adhesive protruding from the gap is removed. The post-processing of removing can be omitted. (Ii) The mechanical connection and the electrical connection in the stacking direction between the stacked semiconductor circuit layers are easily and highly reliable using the embedded wiring. The effect that it can be obtained.

以下、本発明の好適な実施の形態について、添付図面を参照して詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings.

(第1実施形態)
図1(a)〜図8(m)は、本発明の第1実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図である。また、図9(a)、(b)は、図5の工程の詳細を示す部分拡大断面図、図10(c)、(d)は、図6と図7の工程の詳細をそれぞれ示す部分拡大断面図である。この第1実施形態は、半導体ウェハーを積み重ねて三次元積層構造を持つ集積回路装置を製造する例である。
(First embodiment)
FIG. 1A to FIG. 8M are partial cross-sectional views showing, for each step, a method for manufacturing an integrated circuit device having a three-dimensional stacked structure according to the first embodiment of the present invention. FIGS. 9A and 9B are partial enlarged sectional views showing details of the process of FIG. 5, and FIGS. 10C and 10D are parts showing details of the processes of FIGS. It is an expanded sectional view. The first embodiment is an example of manufacturing an integrated circuit device having a three-dimensional stacked structure by stacking semiconductor wafers.

まず最初に、図1(a)に示すように、半導体基板として単結晶シリコン(Si)よりなるウェハー(Siウェハー)11を用意する。次に、そのウェハー(半導体基板)11の表面(第1主面)に二酸化シリコン(SiO2)膜12(厚さ10nm程度)を形成し、当該表面の全体をSiO2膜12で覆う。続いて、SiO2膜12の上に、窒化シリコン(Si34)膜12a(厚さ50nm程度)を形成し、SiO2膜12の表面全体をSi34膜12aで覆う。さらに、Si34膜12aの上に、所望のトレンチ13が得られるようにパターン化されたフォトレジスト膜17を形成する。 First, as shown in FIG. 1A, a wafer (Si wafer) 11 made of single crystal silicon (Si) is prepared as a semiconductor substrate. Next, a silicon dioxide (SiO 2 ) film 12 (thickness of about 10 nm) is formed on the surface (first main surface) of the wafer (semiconductor substrate) 11, and the entire surface is covered with the SiO 2 film 12. Subsequently, on the SiO 2 film 12, a silicon nitride (Si 3 N 4) film 12a (a thickness of about 50 nm), it covers the entire surface of the SiO 2 film 12 with the Si 3 N 4 film 12a. Further, a photoresist film 17 patterned so as to obtain a desired trench 13 is formed on the Si 3 N 4 film 12a.

その後、フォトレジスト膜17をマスクとして、その下のSi34膜12aを選択的に除去し、トレンチ13を形成すべき箇所に開口を形成する。続いて、こうして開口が形成されたSi34膜12aをマスクとして、その下のSiO2膜12とSi基板(ウェハー)11を順に選択的に除去する。ここでは、公知の異方性エッチング法(ドライエッチング法)を用いる。こうして、基板(ウェハー)11の内部の所定位置にその表面側から、所望深さのトレンチ13を複数個形成する。トレンチ13は、Si基板(ウェハー)11の積層方向の電気的接続を行うための埋込配線(ここでは導電体プラグ)を形成すべき箇所にそれぞれ配置される。この時の状態は図1(a)に示す通りである。 Thereafter, using the photoresist film 17 as a mask, the underlying Si 3 N 4 film 12a is selectively removed, and an opening is formed at a location where the trench 13 is to be formed. Subsequently, using the Si 3 N 4 film 12a thus formed with the opening as a mask, the underlying SiO 2 film 12 and the Si substrate (wafer) 11 are selectively removed in order. Here, a known anisotropic etching method (dry etching method) is used. In this way, a plurality of trenches 13 having a desired depth are formed from a surface side at a predetermined position inside the substrate (wafer) 11. The trenches 13 are respectively arranged at positions where embedded wiring (here, conductor plugs) for electrical connection in the stacking direction of the Si substrate (wafer) 11 is to be formed. The state at this time is as shown in FIG.

エッチング終了後、マスクとして使用されたフォトレジスト膜17を除去する。なお、マスクとして使用されたフォトレジスト膜17は、Si34膜12aのエッチングの終了後、SiO2膜12をエッチングする前に除去してもよい。 After the etching is completed, the photoresist film 17 used as a mask is removed. The photoresist film 17 used as a mask may be removed after the etching of the Si 3 N 4 film 12a and before the etching of the SiO 2 film 12.

その後、Si基板(ウェハー)11の表面にSi34膜12aを残したままで、熱酸化法により、これらトレンチ13の露出面(内壁面)にSiO2膜14(厚さ500nm程度)を選択的に形成する。SiO2膜14は、トレンチ13の内壁面全体を覆うと共に、基板11の表面を覆うSiO2膜12とつながって一体になる。この時の状態は図1(b)に示す通りである。熱酸化終了後、公知の方法でSi34膜12aを除去する。 Thereafter, with the Si 3 N 4 film 12a left on the surface of the Si substrate (wafer) 11, the SiO 2 film 14 (thickness of about 500 nm) is selected on the exposed surface (inner wall surface) of these trenches 13 by thermal oxidation. Form. The SiO 2 film 14 covers the entire inner wall surface of the trench 13 and is connected to and integrated with the SiO 2 film 12 covering the surface of the substrate 11. The state at this time is as shown in FIG. After the thermal oxidation, the Si 3 N 4 film 12a is removed by a known method.

次に、露出面がSiO2膜14で覆われた各トレンチ13の内部に、公知の方法で、基板11の表面側から適当な導電性材料を選択的に埋め込み、導電性プラグ15を形成する。例えば、CVD(Chemical Vapor Deposition)法によりSi基板(ウェハー)11の全面にわたって導電性材料の膜を堆積させた後、エッチバック法またはCMP(Chemical Mechanical Polishing)(化学機械研磨)法によりその導電性材料膜のSiO2膜12上にある部分を選択的に除去すると共に、トレンチ13の内部にある部分を残すことにより、各トレンチ13の内部に導電性プラグ15が得られる。ここで使用する導電性材料としては、例えばポリシリコン等の半導体や、タングステン(W)、銅(Cu)、アルミニウム(Al)等の金属があるが、これらに限定されるわけではない。 Next, an appropriate conductive material is selectively embedded from the surface side of the substrate 11 into each trench 13 whose exposed surface is covered with the SiO 2 film 14 by a known method to form the conductive plug 15. . For example, after a conductive material film is deposited over the entire surface of the Si substrate (wafer) 11 by a CVD (Chemical Vapor Deposition) method, the conductivity is obtained by an etch back method or a CMP (Chemical Mechanical Polishing) method. By selectively removing the portion of the material film on the SiO 2 film 12 and leaving the portion inside the trench 13, the conductive plug 15 is obtained inside each trench 13. Examples of the conductive material used here include semiconductors such as polysilicon and metals such as tungsten (W), copper (Cu), and aluminum (Al), but are not limited thereto.

そして、基板11の表面のトレンチ13が形成されていない箇所に、換言すれば、基板11の表面のトレンチ13と重ならない位置に、公知の方法で、必要個数のMOSトランジスタを形成し、必要に応じてMOSトランジスタ以外の素子(図示省略))も形成して、所望の回路とする。各MOSトランジスタは、基板11の内部に間隔をあけて形成された一対のソース・ドレイン領域16と、それらソース・ドレイン領域16の間に形成されたゲート絶縁膜12bと、ゲート絶縁膜12bの上に形成されたゲート電極18とから構成される。ゲート絶縁膜12bは、SiO2膜12とは別工程で形成されたSiO2膜から形成されている。すなわち、ゲート絶縁膜12bを形成すべき箇所でSiO2膜12を選択的に除去し、その後に改めて同じ箇所にSiO2膜を形成することにより、形成されている。この時の状態は図1(c)に示すようになる。 Then, a necessary number of MOS transistors are formed by a known method at a position where the trench 13 on the surface of the substrate 11 is not formed, in other words, at a position not overlapping with the trench 13 on the surface of the substrate 11. Accordingly, elements other than MOS transistors (not shown) are also formed to obtain a desired circuit. Each MOS transistor includes a pair of source / drain regions 16 formed in the substrate 11 at intervals, a gate insulating film 12b formed between the source / drain regions 16, and a gate insulating film 12b. And the gate electrode 18 formed on the substrate. The gate insulating film 12 b is formed from a SiO 2 film formed in a separate process from the SiO 2 film 12. That is, it is formed by selectively removing the SiO 2 film 12 at a position where the gate insulating film 12b is to be formed, and then forming a SiO 2 film again at the same position. The state at this time is as shown in FIG.

次に、図2(d)に示すように、絶縁膜12上にSi基板(ウェハー)11の全面にわたって層間絶縁膜19を形成し、この層間絶縁膜19によってMOSトランジスタとそれらより露出した面の全体を覆う。層間絶縁膜19としては、公知の有機あるいは無機の絶縁膜が任意に使用される。そして、層間絶縁膜19を選択的にエッチングして、所望のソース・ドレイン領域16及び各トレンチ13の内部の導電性プラグ15まで達する貫通孔をそれぞれ形成する。次に、公知の方法により、絶縁膜19のソース・ドレイン領域16に対応する貫通孔の内部に導電性材料21を充填する。その後、絶縁膜19の上に導電性金属膜(図示せず)を形成してから当該金属膜を選択的にエッチングし、金属配線膜20を得る。この金属配線膜20は、層間絶縁膜19の対応する貫通孔を通して各導電性プラグ15に接触しており、それによって金属配線膜20と導電性プラグ15とが電気的に接続されている。この金属配線膜20はまた、層間絶縁膜19の対応する貫通孔の内部に充填された導電性材料21を介してソース・ドレイン領域16に電気的に接続されている。   Next, as shown in FIG. 2D, an interlayer insulating film 19 is formed on the entire surface of the Si substrate (wafer) 11 on the insulating film 12, and the interlayer insulating film 19 forms the MOS transistor and the surface exposed from them. Cover the whole. As the interlayer insulating film 19, a known organic or inorganic insulating film is arbitrarily used. Then, the interlayer insulating film 19 is selectively etched to form through holes reaching the desired source / drain regions 16 and the conductive plugs 15 in the respective trenches 13. Next, the conductive material 21 is filled into the through holes corresponding to the source / drain regions 16 of the insulating film 19 by a known method. Thereafter, a conductive metal film (not shown) is formed on the insulating film 19 and then the metal film is selectively etched to obtain the metal wiring film 20. The metal wiring film 20 is in contact with each conductive plug 15 through a corresponding through-hole in the interlayer insulating film 19, whereby the metal wiring film 20 and the conductive plug 15 are electrically connected. The metal wiring film 20 is also electrically connected to the source / drain region 16 via a conductive material 21 filled in the corresponding through hole of the interlayer insulating film 19.

続いて、金属配線膜20の上に、公知の方法によって多層配線構造30を形成する。この多層配線構造30は、絶縁材料31と、絶縁材料31の内部に埋め込まれた三つの配線層32、33、34と、主としてそれら配線層32、33、34の層間接続に用いられる導電体35、36とを有する。多層配線構造30の構成・使用材料や形成方法は、公知であるから、それらの詳細な説明は省略する。なお、本発明において、配線構造はこのような多層配線構造30に限定されるわけではなく、一つの配線層のみを有する単層配線構造であってもよいことは言うまでもない。   Subsequently, a multilayer wiring structure 30 is formed on the metal wiring film 20 by a known method. The multilayer wiring structure 30 includes an insulating material 31, three wiring layers 32, 33, and 34 embedded in the insulating material 31, and a conductor 35 that is mainly used for interlayer connection between the wiring layers 32, 33, and 34. , 36. Since the configuration / materials used and the formation method of the multilayer wiring structure 30 are known, a detailed description thereof will be omitted. In the present invention, it is needless to say that the wiring structure is not limited to such a multilayer wiring structure 30 and may be a single-layer wiring structure having only one wiring layer.

そして、多層配線構造30(すなわち絶縁材料31)の表面(平坦化されている)に、公知の方法によって複数のマイクロバンプ電極(小型のバンプ電極)37を形成する。この時の状態は図2(d)に示す通りである。これらマイクロバンプ電極37は、それぞれ、多層配線構造30内の配線層32、33または34と導電体35または36とを介して、トレンチ13の内部の対応する導電性プラグ15に対して電気的に接続される。こうして、多層配線構造30の表面にあるマイクロバンプ電極37と、多層配線構造30の下方にある導電性プラグ15とが、電気的に相互接続され、これを通じてSi基板11の縦方向(積層方向)の電気的相互接続が可能となる。他方、Si基板11に形成されたMOSトランジスタ(すなわち回路)は、必要に応じて、多層配線構造30や導電性プラグ15に金属配線膜20を介して電気的に接続されているので、マイクロバンプ電極37や導電性プラグ15を介してMOSトランジスタ(回路)に対する電気信号の入力・出力も可能となる。   Then, a plurality of micro bump electrodes (small bump electrodes) 37 are formed on the surface (flattened) of the multilayer wiring structure 30 (that is, the insulating material 31) by a known method. The state at this time is as shown in FIG. These micro bump electrodes 37 are electrically connected to the corresponding conductive plugs 15 in the trench 13 via the wiring layers 32, 33 or 34 and the conductors 35 or 36 in the multilayer wiring structure 30, respectively. Connected. In this way, the micro bump electrodes 37 on the surface of the multilayer wiring structure 30 and the conductive plugs 15 below the multilayer wiring structure 30 are electrically interconnected, and through this, the vertical direction (stacking direction) of the Si substrate 11 Can be electrically interconnected. On the other hand, the MOS transistor (that is, the circuit) formed on the Si substrate 11 is electrically connected to the multilayer wiring structure 30 and the conductive plug 15 via the metal wiring film 20 as necessary. It is also possible to input and output electric signals to the MOS transistor (circuit) via the electrode 37 and the conductive plug 15.

マイクロバンプ電極37は、任意の公知の方法で形成する。別個に形成された導電性材料片を多層配線構造30の表面に固着させて形成してもよいし、多層配線構造30の表面に導電性材料をメッキ法等によって直接堆積させて形成してもよい。また、多層配線構造30の導電体36等を利用してマイクロバンプ電極37を形成してもよい。   The micro bump electrode 37 is formed by any known method. A piece of conductive material formed separately may be fixed to the surface of the multilayer wiring structure 30 or may be formed by directly depositing a conductive material on the surface of the multilayer wiring structure 30 by a plating method or the like. Good. Further, the micro bump electrode 37 may be formed using the conductor 36 of the multilayer wiring structure 30 or the like.

MOSトランジスタ(回路)を有するSi基板(Siウェハー)11と、基板11上に形成された多層配線構造30とは、第1半導体回路層1を構成する。   The Si substrate (Si wafer) 11 having the MOS transistor (circuit) and the multilayer wiring structure 30 formed on the substrate 11 constitute the first semiconductor circuit layer 1.

続いて、多層配線構造30の表面に形成されたマイクロバンプ電極37を利用して、第1半導体回路層1を適当な支持基板40に固着させる。換言すれば、マイクロバンプ電極37を利用して、第1半導体回路層1と支持基板40との機械的接続を行う。支持基板40としては、例えばガラス、単結晶Si製のウェハー等が好適に使用できるが、ここではSiウェハー(半導体回路を内蔵したLSIウェハー)を用いている。マイクロバンプ電極37により、第1半導体回路層1は、Siウェハーよりなる支持基板40内に形成された半導体回路(図示省略)に対して機械的・電気的に接続される。Siウェハーとしては、半導体回路を内蔵していない単なるウェハーでもよい。   Subsequently, the first semiconductor circuit layer 1 is fixed to an appropriate support substrate 40 using the micro bump electrodes 37 formed on the surface of the multilayer wiring structure 30. In other words, the first semiconductor circuit layer 1 and the support substrate 40 are mechanically connected using the micro bump electrode 37. As the support substrate 40, for example, a glass, a single crystal Si wafer or the like can be suitably used, but here, a Si wafer (LSI wafer incorporating a semiconductor circuit) is used. The first semiconductor circuit layer 1 is mechanically and electrically connected to the semiconductor circuit (not shown) formed in the support substrate 40 made of Si wafer by the microbump electrode 37. The Si wafer may be a simple wafer that does not contain a semiconductor circuit.

この状態では、多層配線構造30と支持基板40との間にマイクロバンプ電極37の厚さに相当する隙間があいている。そこで、その隙間に電気的絶縁性の接着剤39を充填して硬化させる。接着剤39としては、ポリイミド樹脂やエポキシ樹脂等が好適に使用できる。こうして、接着剤39とマイクロバンプ電極37により、第1半導体回路層1は支持基板40に対して電気的・機械的に接続される。   In this state, there is a gap corresponding to the thickness of the microbump electrode 37 between the multilayer wiring structure 30 and the support substrate 40. Therefore, the gap 39 is filled with an electrically insulating adhesive 39 and cured. As the adhesive 39, polyimide resin, epoxy resin, or the like can be suitably used. Thus, the first semiconductor circuit layer 1 is electrically and mechanically connected to the support substrate 40 by the adhesive 39 and the microbump electrode 37.

なお、支持基板40がガラスにより形成される場合や、半導体回路を内蔵していない半導体ウェハーにより形成される場合は、マイクロバンプ電極37は、第1半導体回路層1と支持基板40との間の機械的接続のためだけに使用されることになる。しかし、この場合は、マイクロバンプ電極37を省略して、接着剤で第1半導体回路層1を支持基板40に直接接着してもよく、その方がより効率的である。さらに、接着剤39は、多層配線構造30の表面または支持基板40の対向面に、後述するパターン化された接着剤膜44aと同様に、パターン化した膜として形成しておき、その後、マイクロバンプ電極37を用いて多層配線構造30と支持基板40を電気的・機械的に相互接続するようにしてもよい。   When the support substrate 40 is formed of glass or formed of a semiconductor wafer that does not incorporate a semiconductor circuit, the microbump electrode 37 is located between the first semiconductor circuit layer 1 and the support substrate 40. It will be used only for mechanical connection. However, in this case, the micro bump electrode 37 may be omitted, and the first semiconductor circuit layer 1 may be directly bonded to the support substrate 40 with an adhesive, which is more efficient. Further, the adhesive 39 is formed as a patterned film on the surface of the multilayer wiring structure 30 or the opposite surface of the support substrate 40 in the same manner as a patterned adhesive film 44a described later. The multilayer wiring structure 30 and the support substrate 40 may be electrically and mechanically interconnected using the electrode 37.

その後、支持基板40を用いて第1半導体回路層1を保持しながら、機械研磨法とCMP法により、Si基板11の裏面(第1半導体回路層1の第2主面)側を内部の各トレンチ13の下端からの距離が例えば1μm程度になるまで研磨し、基板11全体の厚さを小さくする。こうして研磨されて薄くなった第1半導体回路層1を、以後は1aで示す。この時の状態は図2(e)に示す通りである。   Thereafter, while holding the first semiconductor circuit layer 1 using the support substrate 40, the back surface (second main surface of the first semiconductor circuit layer 1) side of the Si substrate 11 is placed inside each of the inside by mechanical polishing and CMP. Polishing is performed until the distance from the lower end of the trench 13 is about 1 μm, for example, to reduce the thickness of the entire substrate 11. The first semiconductor circuit layer 1 thus polished and thinned is denoted by 1a hereinafter. The state at this time is as shown in FIG.

次に、薄くなった第1半導体回路層1a(すなわちSi基板11)の裏面側を、ウェット・エッチングまたはプラズマ・エッチング等の等方性エッチングにより選択的に除去し、図3(f)に示すように、トレンチ13の内壁面を覆うSiO2膜14を第1半導体回路層1aの裏面側に露出させる。この時のエッチング量は、エッチング終了時に導電性プラグ15の下端が基板11の裏面から所定距離だけ突出するように調整する。 Next, the back surface side of the thinned first semiconductor circuit layer 1a (that is, the Si substrate 11) is selectively removed by isotropic etching such as wet etching or plasma etching, as shown in FIG. Thus, the SiO 2 film 14 covering the inner wall surface of the trench 13 is exposed on the back surface side of the first semiconductor circuit layer 1a. The etching amount at this time is adjusted so that the lower end of the conductive plug 15 protrudes from the back surface of the substrate 11 by a predetermined distance at the end of etching.

続いて、図3(g)に示すように、基板11の裏面と露出したSiO2膜14の上に、SiO2膜41をCVD法等の公知の方法で形成する。SiO2膜41の厚さは、例えば0.2μm程度とする。こうして形成したSiO2膜41をCMP法で研磨することにより、このSiO2膜41と共にSiO2膜14並びに導電性プラグ15の裏面側の端部を選択的に除去し、図4(h)に示すように、トレンチ13の内部の導電性プラグ15の下端を露出させる。残存したSiO2膜41は、半導体基板11の裏面の導電性プラグ15以外の部分を覆っており、基板11の裏面全体は平坦になっている、換言すれば、第1半導体回路層1aの裏面全体が平坦になっている。 Subsequently, as shown in FIG. 3G, a SiO 2 film 41 is formed on the back surface of the substrate 11 and the exposed SiO 2 film 14 by a known method such as a CVD method. The thickness of the SiO 2 film 41 is, for example, about 0.2 μm. The SiO 2 film 41 by polishing by CMP thus formed, together with the SiO 2 film 41 an end portion of the rear surface side of the SiO 2 film 14 and conductive plug 15 is selectively removed, in FIG. 4 (h) As shown, the lower end of the conductive plug 15 inside the trench 13 is exposed. The remaining SiO 2 film 41 covers a portion other than the conductive plug 15 on the back surface of the semiconductor substrate 11, and the entire back surface of the substrate 11 is flat, in other words, the back surface of the first semiconductor circuit layer 1a. The whole is flat.

その後、公知の方法により、図4(i)に示すように、露出した各導電性プラグ15の下端にそれぞれマイクロバンプ電極42を形成する。これらの電極42は、例えば、図4(h)に示す状態にある基板11(第1半導体回路層1a)の裏面全体に導電膜(図示せず)を形成した後、その導電膜をリソグラフィー及びエッチングによって選択的に除去して形成することもできるし、リフトオフ法やメッキ法を使用して形成することもできる。リフトオフ法を使用する場合は、まず図4(h)に示す状態にある基板1aの裏面全体に、マイクロバンプ電極42を形成すべき箇所に透孔を有するレジスト膜(図示せず)を形成し、次にそのレジスト膜の上に導電層(図示せず)を形成してからそのレジスト膜を引き剥がす。すると、レジスト膜の透孔を介して半導体回路層1aの裏面に接触している前記導電膜の部分のみが選択的に残存し、電極42となる。各電極42は、図4(i)に示すように、対応する導電性プラグ15の下端に固着する。メッキ法の場合も、リフトオフ法の場合と同様にして形成できる。   Thereafter, as shown in FIG. 4I, a micro bump electrode 42 is formed on each exposed lower end of each conductive plug 15 by a known method. These electrodes 42 are formed, for example, by forming a conductive film (not shown) on the entire back surface of the substrate 11 (first semiconductor circuit layer 1a) in the state shown in FIG. It can be formed by selective removal by etching, or can be formed using a lift-off method or a plating method. When using the lift-off method, first, a resist film (not shown) having through holes is formed on the entire back surface of the substrate 1a in the state shown in FIG. Then, after forming a conductive layer (not shown) on the resist film, the resist film is peeled off. Then, only the portion of the conductive film that is in contact with the back surface of the semiconductor circuit layer 1a through the through hole of the resist film selectively remains and becomes the electrode 42. Each electrode 42 is fixed to the lower end of the corresponding conductive plug 15 as shown in FIG. The plating method can be formed in the same manner as the lift-off method.

基板11の裏面を基準としたマイクロバンプ電極42の高さは、図9(a)に示すように、Hcである。電極42の高さHcは、例えば1μmとされる。   The height of the micro bump electrode 42 with respect to the back surface of the substrate 11 is Hc as shown in FIG. The height Hc of the electrode 42 is, for example, 1 μm.

次に、第1半導体回路層1aの裏面に、以下のようにして、第2半導体回路層2を固着させる。ここでは、説明を簡単にするため、第2半導体回路層2は、第1半導体回路層1とほぼ同一の構成を有しており、また第1半導体回路層1と同一の方法で製造されると仮定し、対応する要素には第1半導体回路層1の場合と同一符号を付してその説明を省略する。なお、必要に応じて、第2半導体回路層2を第1半導体回路層1とは異なる構成としてもよいことは言うまでもない。   Next, the second semiconductor circuit layer 2 is fixed to the back surface of the first semiconductor circuit layer 1a as follows. Here, for simplicity of explanation, the second semiconductor circuit layer 2 has substantially the same configuration as the first semiconductor circuit layer 1 and is manufactured by the same method as the first semiconductor circuit layer 1. It is assumed that the corresponding elements are denoted by the same reference numerals as those of the first semiconductor circuit layer 1 and description thereof is omitted. Needless to say, the second semiconductor circuit layer 2 may be configured differently from the first semiconductor circuit layer 1 as necessary.

第2半導体回路層2の多層配線構造30(すなわち絶縁材料31)の平坦化された表面(第2半導体回路層2の第1主面)には、図5(j)及び図9(a)に示すように、複数のマイクロバンプ電極43aが形成される。これらの電極43aは、第1半導体回路層1aのマイクロバンプ電極42と同一の方法で形成される。ここでは、第1半導体回路層1a(Siウェハー11)の裏面に設けられた電極42の各々について、4個の電極43aが対応している。換言すれば、1個の電極42に対して4個の電極43a(各々が矩形の各頂点に位置している)が接合せしめられるようになっている。詳細は図32を参照して後述する。   On the planarized surface (the first main surface of the second semiconductor circuit layer 2) of the multilayer wiring structure 30 (that is, the insulating material 31) of the second semiconductor circuit layer 2, FIG. 5 (j) and FIG. 9 (a). As shown in FIG. 4, a plurality of micro bump electrodes 43a are formed. These electrodes 43a are formed by the same method as the micro bump electrodes 42 of the first semiconductor circuit layer 1a. Here, four electrodes 43a correspond to each of the electrodes 42 provided on the back surface of the first semiconductor circuit layer 1a (Si wafer 11). In other words, four electrodes 43a (each positioned at each vertex of a rectangle) are joined to one electrode 42. Details will be described later with reference to FIG.

図9(a)に示すように、多層配線構造30の表面を基準とした電極43aの高さは、Hbであり、例えば、2μmに設定される。   As shown in FIG. 9A, the height of the electrode 43a with respect to the surface of the multilayer wiring structure 30 is Hb, and is set to 2 μm, for example.

また、電極42と43aを互いに加圧接触させた時に、電極43aのみが選択的に潰れる(塑性変形)ようにするため、電極43aは電極42よりも硬度が十分低い導電性材料から形成されている。例えば、電極42をタングステン(W)により形成した場合、電極43aはインジウム(In)と金(Au)の積層体(In/Au)により形成するのが好ましい。また、電極42を銅(Cu)により形成した場合は、電極43aは錫(Sn)と銀(Ag)の積層体(Sn/Ag)により形成するのが好ましい。   Further, when the electrodes 42 and 43a are brought into pressure contact with each other, only the electrode 43a is selectively crushed (plastic deformation), so that the electrode 43a is made of a conductive material whose hardness is sufficiently lower than that of the electrode 42. Yes. For example, when the electrode 42 is formed of tungsten (W), the electrode 43a is preferably formed of a laminate (In / Au) of indium (In) and gold (Au). Moreover, when the electrode 42 is formed of copper (Cu), the electrode 43a is preferably formed of a laminate (Sn / Ag) of tin (Sn) and silver (Ag).

次に、第2半導体回路層2の多層配線構造30(すなわち絶縁材料31)の表面に、図5(j)及び図9(a)に示すように、パターン化された電気的絶縁性の接着剤膜44aが形成される。この接着剤膜44aは、ポリイミド樹脂やSOG(Spin On Glass)材料等の電気絶縁性の接着剤を室温でパターン化することにより形成されたものであって、所定形状にパターン化(硬化)せしめられた後も粘性(接着性)を有しており、また、所定温度に加熱することによりその表面(露出面)を軟化または流動化させることが可能である(換言すれば、加熱軟化性または加熱流動性を有している)。   Next, as shown in FIGS. 5 (j) and 9 (a), a patterned electrically insulating adhesive is adhered to the surface of the multilayer wiring structure 30 (that is, the insulating material 31) of the second semiconductor circuit layer 2. An agent film 44a is formed. The adhesive film 44a is formed by patterning an electrically insulating adhesive such as polyimide resin or SOG (Spin On Glass) material at room temperature, and is patterned (cured) into a predetermined shape. The surface (exposed surface) can be softened or fluidized by heating to a predetermined temperature (in other words, heat softening property or It has heat fluidity).

接着剤膜44aは、バンプ状(島状)に形成された多数の部分(以下、この島状部分を「接着剤要素」ともいう)44aaから構成されており、それらの部分(接着剤要素)44aaは多層配線構造30の表面に規則的に分布せしめられている。接着剤膜44aは、電極43aのいずれとも重ならない形状を持ち、電極43aが形成された箇所とその近傍を除いて配置されている。したがって、接着剤膜44a(すなわち、すべての接着剤要素44aa)は、第1半導体回路層1aの電極42(導電性プラグ15)とも重ならない。   The adhesive film 44a includes a plurality of portions (hereinafter referred to as “adhesive elements”) 44aa formed in a bump shape (island shape), and these portions (adhesive elements). 44aa is regularly distributed on the surface of the multilayer wiring structure 30. The adhesive film 44a has a shape that does not overlap any of the electrodes 43a, and is disposed except for the portion where the electrode 43a is formed and the vicinity thereof. Therefore, the adhesive film 44a (that is, all the adhesive elements 44aa) does not overlap with the electrode 42 (conductive plug 15) of the first semiconductor circuit layer 1a.

図9(a)に示すように、多層配線構造30の表面を基準とした接着剤要素44aaの高さHaは、例えば、4μmである。   As shown in FIG. 9A, the height Ha of the adhesive element 44aa on the basis of the surface of the multilayer wiring structure 30 is, for example, 4 μm.

接着剤膜44aの全体積(より正確にいえば硬化後の全体積)は、電極42と43aを用いて第2半導体回路層2と第1半導体回路層1aとを機械的・電気的に接続した際に、それら二つの回路層1aと2の間に生じる隙間全体が接着剤膜44aによって充填され、且つその隙間から余分の接着剤膜44aがはみ出ないような値に設定される。これは、回路層1aと2の接続後に、当該隙間からはみ出た余分な接着剤膜44aを除去する作業を避けることができるようにするためである。   The total volume of the adhesive film 44a (more precisely, the total volume after curing) is a mechanical and electrical connection between the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a using the electrodes 42 and 43a. In this case, the entire gap formed between the two circuit layers 1a and 2 is filled with the adhesive film 44a, and the value is set so that the excess adhesive film 44a does not protrude from the gap. This is to avoid the operation of removing the excess adhesive film 44a protruding from the gap after the circuit layers 1a and 2 are connected.

接着剤膜44aは、電極42と43aがある箇所とその近傍には存在しないため、また、島状の接着剤要素44aaの間に隙間があいているため、図9(a)に示すように、各接着剤要素44aaの高さHa(これは接着剤膜44aの厚さに等しい)は、電極43aの高さHbよりも大きく設定されており(Ha>Hb)、且つ、各接着剤要素44aaの高さHaが、電極42の高さHcと電極43aの高さHbの和よりも大きく設定されている(Ha>(Hb+Hc))。これは、第2半導体回路層2と第1半導体回路層1aとを接続した際に、加圧によって各接着剤要素44aaが押し潰されて電極42と電極43aの周囲にまで広がり、回路層1aと2の間に残存する隙間全体に充填されるようにするためである。   Since the adhesive film 44a does not exist in the vicinity of the electrode 42 and 43a and there is a gap between the island-shaped adhesive elements 44aa, as shown in FIG. The height Ha of each adhesive element 44aa (which is equal to the thickness of the adhesive film 44a) is set larger than the height Hb of the electrode 43a (Ha> Hb), and each adhesive element The height Ha of 44aa is set to be larger than the sum of the height Hc of the electrode 42 and the height Hb of the electrode 43a (Ha> (Hb + Hc)). This is because, when the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a are connected, each adhesive element 44aa is crushed by pressurization and spreads around the electrodes 42 and 43a, so that the circuit layer 1a This is to fill the entire gap remaining between 2 and 2.

後述するが、第2半導体回路層2と第1半導体回路層1aとを接続した際に、各電極43aも押し潰されて塑性変形しその周囲に広げられる。その結果、各電極42に対応する4個の電極43aは相互に接続されて一体化される。   As will be described later, when the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a are connected, each electrode 43a is also crushed, plastically deformed, and spread around it. As a result, the four electrodes 43a corresponding to each electrode 42 are connected and integrated.

接着剤膜44aが多数の接着剤要素44aaに分割されているのは、第2半導体回路層2と第1半導体回路層1aとを接続する際に、回路層2と1aの間に存在する空気を外部に逃がしやすくするため(つまり脱ガスの容易化のため)である。すなわち、回路層2と1aがほとんど接続された状態でも、両層2、1aの間に残存する気体(空気)が隣接する接着剤要素44aaの間の隙間を通って外部に押し出されるようにするためである。   The adhesive film 44a is divided into a large number of adhesive elements 44aa because the air existing between the circuit layers 2 and 1a when the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a are connected to each other. This is to make it easier to escape to the outside (that is, to facilitate degassing). That is, even when the circuit layers 2 and 1a are almost connected, the gas (air) remaining between the layers 2 and 1a is pushed out through the gap between the adjacent adhesive elements 44aa. Because.

接着剤膜44aは、例えば、次のような方法で形成される。第2半導体回路層2の表面全体に、電気的絶縁性の接着剤膜を塗布法等により形成して硬化させた後、その上にパターン化されたレジスト膜を公知の方法で形成してから、公知のリソグラフィー法で当該接着剤膜を選択的に除去する。こうして厚さHaのパターン化された接着剤膜44aが得られる。他の方法としては、感光性の接着剤を用いて、公知のリソグラフィー法で当該接着剤膜を選択的に除去する、という方法がある。   The adhesive film 44a is formed by the following method, for example. After an electrically insulating adhesive film is formed and cured on the entire surface of the second semiconductor circuit layer 2 by a coating method or the like, a patterned resist film is formed thereon by a known method. Then, the adhesive film is selectively removed by a known lithography method. Thus, a patterned adhesive film 44a having a thickness Ha is obtained. As another method, there is a method of selectively removing the adhesive film by a known lithography method using a photosensitive adhesive.

ここでは、マイクロバンプ電極43aを形成してから接着剤膜44aを形成しているが、接着剤膜44aを形成してからマイクロバンプ電極43aを形成してもよい。   Here, the adhesive film 44a is formed after the microbump electrode 43a is formed, but the microbump electrode 43a may be formed after the adhesive film 44a is formed.

続いて、図5(j)及び図9(a)に示すように、支持基板40を介して固定された第1半導体回路層1aの裏面に、下方から第2半導体回路層2の表面を対向させる。(逆に、第2半導体回路層2を固定しておき、上方から支持基板40に固定された第1半導体回路層1aを対向させてもよい。)その後、回路層2と1aの間に押圧力を加えて回路層2と1aを相互に近接させると、各接着剤要素44aaの高さ(すなわち、接着剤膜44aの厚さ)Haは、電極43aの高さHbよりも大きく(Ha>Hb)、且つ、各接着剤要素44aaの高さHaは、電極42の高さHcと電極43aの高さHbの和よりも大きい(Ha>(Hb+Hc))ので、最初に、図9(b)に示すように、第2半導体回路層2の接着剤膜44a(接着剤要素44aa)の先端(頂部)が第1半導体回路層1aの裏面に接触せしめられる。   Subsequently, as shown in FIGS. 5J and 9A, the surface of the second semiconductor circuit layer 2 is opposed to the back surface of the first semiconductor circuit layer 1a fixed via the support substrate 40 from below. Let (Conversely, the second semiconductor circuit layer 2 may be fixed and the first semiconductor circuit layer 1a fixed to the support substrate 40 may be opposed from above.) Thereafter, the second semiconductor circuit layer 2 is pushed between the circuit layers 2 and 1a. When pressure is applied to bring the circuit layers 2 and 1a close to each other, the height of each adhesive element 44aa (that is, the thickness of the adhesive film 44a) Ha is larger than the height Hb of the electrode 43a (Ha> Hb), and the height Ha of each adhesive element 44aa is larger than the sum of the height Hc of the electrode 42 and the height Hb of the electrode 43a (Ha> (Hb + Hc)). ), The tip (top) of the adhesive film 44a (adhesive element 44aa) of the second semiconductor circuit layer 2 is brought into contact with the back surface of the first semiconductor circuit layer 1a.

その後、回路層2と1aの間に押圧力を加えて両者間の距離を狭めることにより、図6(k)及び図10(c)に示すように、第2半導体回路層2の各電極43aを対応する第1半導体回路層1aの電極42に接触させる。この時の第1半導体回路層1aの裏面と第2半導体回路層2の表面との距離、すなわち層間ギャップをG1とすると、層間ギャップG1は電極42の厚さと電極43aの厚さの和に等しい、すなわちG1=Hc+Hbである。この時、接着剤膜44aは押し潰されて変形し、回路層1と2の間の隙間のほぼ全体に押し広げられるが、接着剤膜44aは島状の接着剤要素44aaに分割されているので、接着剤膜44aは当該隙間中にほぼ均一に広がる。また、変形せしめられた接着剤膜44aと第1半導体回路層1aの裏面との間(と隣接する接着剤要素44aaの間)には、空隙45が形成されやすいことから、当該隙間中に残存する空気が空隙45を通って外部に確実に排出されることができ、最終的に硬化せしめられた接着剤膜44a中に気泡が生じる恐れをなくすことができる。   After that, by applying a pressing force between the circuit layers 2 and 1a to reduce the distance between the two, as shown in FIGS. 6 (k) and 10 (c), each electrode 43a of the second semiconductor circuit layer 2 is obtained. Is brought into contact with the electrode 42 of the corresponding first semiconductor circuit layer 1a. When the distance between the back surface of the first semiconductor circuit layer 1a and the surface of the second semiconductor circuit layer 2 at this time, that is, the interlayer gap is G1, the interlayer gap G1 is equal to the sum of the thickness of the electrode 42 and the thickness of the electrode 43a. That is, G1 = Hc + Hb. At this time, the adhesive film 44a is crushed and deformed, and is spread over almost the entire gap between the circuit layers 1 and 2, but the adhesive film 44a is divided into island-shaped adhesive elements 44aa. Therefore, the adhesive film 44a spreads almost uniformly in the gap. Further, since a gap 45 is easily formed between the deformed adhesive film 44a and the back surface of the first semiconductor circuit layer 1a (and between the adjacent adhesive elements 44aa), it remains in the gap. The air to be discharged can be surely discharged to the outside through the gap 45, and the risk of bubbles being generated in the finally cured adhesive film 44a can be eliminated.

上述した第1半導体回路層1aと第2半導体回路層2とを対向させてから電極42と43aを相互接触させる工程は、室温で行う。第1半導体回路層1aと第2半導体回路層2との距離G1の値は、例えば2μm〜10μmの範囲で適宜決定されるが、典型的には4μmである。しかし、電極42と43aの高さHcとHbをいっそう小さくすることにより、2μm以下とすることも可能である。この場合、距離G1の値は、例えば0.1μm〜2μmの範囲で適宜決定される。   The step of bringing the electrodes 42 and 43a into contact with each other after the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 are opposed to each other is performed at room temperature. The value of the distance G1 between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 is appropriately determined within a range of 2 μm to 10 μm, for example, but is typically 4 μm. However, the heights Hc and Hb of the electrodes 42 and 43a can be further reduced to 2 μm or less. In this case, the value of the distance G1 is appropriately determined within a range of 0.1 μm to 2 μm, for example.

その後、互いに接触せしめられた電極43aと電極42を、以下のようにして相互に接続させる。   Thereafter, the electrodes 43a and 42 brought into contact with each other are connected to each other as follows.

すなわち、図6(k)及び図10(c)の状態にある第2半導体回路層2と第1半導体回路層1aを室温から所定温度まで加熱する。その温度は、加圧変形状態にある接着剤膜44aの表面(露出面)がわずかに軟化するか、その表面がわずかに流動状態になる温度に設定する。その温度は、接着剤膜44aに使用する接着剤の種類によって異なるが、電極42と電極43aとが「圧接」する温度を考慮しながら、例えば100〜400℃の範囲内で任意に設定される。このとき、設定する加熱温度によっては、電極42及び電極43aの少なくとも一方が部分的に溶融状態となり、その表面が湾曲することがある。   That is, the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a in the states of FIGS. 6K and 10C are heated from room temperature to a predetermined temperature. The temperature is set to a temperature at which the surface (exposed surface) of the adhesive film 44a in a pressure-deformed state is slightly softened or the surface is slightly fluidized. The temperature varies depending on the type of adhesive used for the adhesive film 44a, but is arbitrarily set within a range of 100 to 400 ° C., for example, in consideration of the temperature at which the electrode 42 and the electrode 43a are “press-contacted”. . At this time, depending on the heating temperature to be set, at least one of the electrode 42 and the electrode 43a may be partially melted and the surface thereof may be curved.

続いて、押圧力を印加することにより、第1半導体回路層1aに対して下方から第2半導体回路層2をさらに近づけ、あるいは第2半導体回路層2に対して上方から第1半導体回路層1aを下降させることにより、図8(m)及び図10(d)に示すように、回路層1aと2の間の隙間を狭める。換言すれば、回路層1aと2の層間ギャップをG1からそれより小さいG2(G2<G1)とする。この時、第2半導体回路層2の電極43aと第1半導体回路層1aの電極42の間には、圧縮力が作用する。その結果、電極42よりも機械的強度が低い電極43aのみが選択的に押し潰されて、電極42と電極43とが「圧接」によって相互に接合せしめられると共に、接着剤要素44aaがさらに押し広げられて前記隙間内で完全に連結・一体化される。このとき、1個の電極42に対応する4個の電極43aが潰されて一体的になり、その結果、電極42と電極43aとが一対一対応になる。こうして、相互に圧接された電極43aと電極42の箇所を除いて、回路層2と1aの間の隙間全体が接着剤膜44aによって充填され、余分の接着剤膜44aが当該隙間からはみ出ることもない。この時の状態は図8(m)及び図10(d)に示すようになる。   Subsequently, by applying a pressing force, the second semiconductor circuit layer 2 is made closer to the first semiconductor circuit layer 1a from below, or the first semiconductor circuit layer 1a is viewed from above with respect to the second semiconductor circuit layer 2. Is lowered, the gap between the circuit layers 1a and 2 is narrowed as shown in FIG. 8 (m) and FIG. 10 (d). In other words, the interlayer gap between the circuit layers 1a and 2 is set to G2 (G2 <G1) smaller than G1. At this time, a compressive force acts between the electrode 43a of the second semiconductor circuit layer 2 and the electrode 42 of the first semiconductor circuit layer 1a. As a result, only the electrode 43a having a mechanical strength lower than that of the electrode 42 is selectively crushed so that the electrode 42 and the electrode 43 are joined to each other by “pressure contact”, and the adhesive element 44aa is further expanded. And completely connected and integrated within the gap. At this time, the four electrodes 43a corresponding to one electrode 42 are crushed and integrated, and as a result, the electrodes 42 and the electrodes 43a have a one-to-one correspondence. In this way, the entire gap between the circuit layers 2 and 1a is filled with the adhesive film 44a except for the electrode 43a and the electrode 42 which are in pressure contact with each other, and the extra adhesive film 44a may protrude from the gap. Absent. The state at this time is as shown in FIG. 8 (m) and FIG. 10 (d).

加熱時に電極42及び電極43aの少なくとも一方が部分的に溶融状態となった場合は、電極42と電極43aの接合は、溶融した電極42、43aの「再凝固」により行われるか、「圧接」と「再凝固」が混合した形で行われる。   When at least one of the electrode 42 and the electrode 43a is partially melted during heating, the electrode 42 and the electrode 43a are joined by “re-solidification” of the melted electrodes 42 and 43a or “pressure welding”. And “re-solidification” are performed in a mixed form.

この加熱圧接工程では、層間ギャップがG1からG2に減少せしめられる際に、回路層1aと2の間の隙間に存在する空気(大気)が確実に除去されること、そして、回路層1aと回路層2が相互に接着されることが重要である。この第1実施形態では、接着剤膜44aが多数の接着剤要素44aaに分割されているので、当該隙間に存在する空気は、第1半導体回路層1aの裏面と接着剤膜44a(これは加熱によって表面が軟化または流動状態となっている)との間の空隙45と、隣接する接着剤要素44aaの間に残存する微小空間とを通って、外部に確実に排出されることができる。また、接着剤膜44aの表面が軟化または流動化しているので、層間ギャップがG2になった時に回路層1aと2が確実に相互接着されることができる。   In this heating and pressure welding process, when the interlayer gap is reduced from G1 to G2, air (atmosphere) existing in the gap between the circuit layers 1a and 2 is surely removed, and the circuit layer 1a and the circuit It is important that the layers 2 are glued together. In the first embodiment, since the adhesive film 44a is divided into a large number of adhesive elements 44aa, the air present in the gaps is separated from the back surface of the first semiconductor circuit layer 1a and the adhesive film 44a (this is heated). The surface is softened or fluidized) and the minute space remaining between the adjacent adhesive elements 44aa can be reliably discharged to the outside. Further, since the surface of the adhesive film 44a is softened or fluidized, the circuit layers 1a and 2 can be reliably bonded to each other when the interlayer gap becomes G2.

層間ギャップG2の値は、例えば1μm〜9μmの範囲で適宜決定されるが、典型的には3μmである。しかし、電極42と43aの高さHcとHbをいっそう小さくすることにより、1μm以下とすることも可能である。この場合、距離G2の値は、例えば0.05μm〜1μmの範囲で適宜決定される。   The value of the interlayer gap G2 is appropriately determined within a range of 1 μm to 9 μm, for example, but is typically 3 μm. However, the heights Hc and Hb of the electrodes 42 and 43a can be further reduced to 1 μm or less. In this case, the value of the distance G2 is appropriately determined in the range of 0.05 μm to 1 μm, for example.

第2半導体回路層2は、以上のようにして、電極42と電極43aを用いて第1半導体回路層1aの裏面側に固着(つまり機械的に接続)せしめられると共に、両回路層1a及び2の間の電気的接続も同時に行われる。また、それと同時に、両回路層1a及び2は、互いに接続された電極43aと電極42の箇所を除いて回路層1aと2の間の隙間全体に充填された接着剤膜44aによって、相互に接着される。   As described above, the second semiconductor circuit layer 2 is fixed (that is, mechanically connected) to the back surface side of the first semiconductor circuit layer 1a using the electrode 42 and the electrode 43a, and both the circuit layers 1a and 2 are connected. The electrical connection between is also made simultaneously. At the same time, the circuit layers 1a and 2 are bonded to each other by the adhesive film 44a filled in the entire gap between the circuit layers 1a and 2 except for the portions of the electrodes 43a and 42 connected to each other. Is done.

以上のようにして電極42と電極43aの機械的・電気的接続と接着剤膜44aの接着が終わると、相互に接合された回路層1と2aは室温まで自然冷却される。そこで、加熱、紫外線照射、薬剤添加等によって接着剤膜44aを最終的に硬化させる。処理が容易であることから、加熱により硬化させるのが好ましい。加熱温度は、接着剤膜44aとして使用した接着剤の性質に応じて、例えば120〜500℃の範囲内で適宜設定される。こうして、二つの半導体回路層1aと2の間の機械的接続と電気的接続が完了する。   When the mechanical and electrical connection between the electrode 42 and the electrode 43a and the bonding of the adhesive film 44a are completed as described above, the circuit layers 1 and 2a bonded to each other are naturally cooled to room temperature. Therefore, the adhesive film 44a is finally cured by heating, ultraviolet irradiation, chemical addition, or the like. Since treatment is easy, it is preferable to cure by heating. The heating temperature is appropriately set within a range of 120 to 500 ° C., for example, depending on the properties of the adhesive used as the adhesive film 44a. Thus, the mechanical connection and the electrical connection between the two semiconductor circuit layers 1a and 2 are completed.

その後の工程は、第1半導体回路層1aの場合と同じである。すなわち、第1半導体回路層1aに接合せしめられた第2半導体回路層2について、第1半導体回路層1aの場合と同様に、CMP法により、Si基板(ウェハー)11の裏面側を各トレンチ13の下端からの距離が例えば1μm程度となるまで研磨する。こうして厚さが薄くされた第2半導体回路層2を、以後は2aと表示する。   The subsequent steps are the same as those for the first semiconductor circuit layer 1a. That is, with respect to the second semiconductor circuit layer 2 bonded to the first semiconductor circuit layer 1a, the rear surface side of the Si substrate (wafer) 11 is formed on each trench 13 by CMP, as in the case of the first semiconductor circuit layer 1a. Polishing is performed until the distance from the lower end of the metal becomes, for example, about 1 μm. The second semiconductor circuit layer 2 thus reduced in thickness is hereinafter referred to as 2a.

次に、第1半導体回路層1aの場合と同じ方法によって、第2半導体回路層2aの基板(ウェハー)11の下部を選択的に除去してトレンチ13の内部のSiO2膜14を露出させ、基板11の裏面と露出せしめられたSiO2膜14の上にSiO2膜41を形成し、SiO2膜41とSiO2膜14を選択的に除去して導電性プラグ15の下端を露出させ、さらに、露出した導電性プラグ15の下端にそれぞれマイクロバンプ電極42を形成する。こうして、半導体回路層2aの構成は図8(m)に示すようになる。図8(m)の第2半導体回路層2aは、図4(i)に示された第1半導体回路層1aと実質的に同じ状態にある。 Next, the lower part of the substrate (wafer) 11 of the second semiconductor circuit layer 2a is selectively removed by the same method as in the case of the first semiconductor circuit layer 1a to expose the SiO 2 film 14 inside the trench 13, An SiO 2 film 41 is formed on the back surface of the substrate 11 and the exposed SiO 2 film 14, and the SiO 2 film 41 and the SiO 2 film 14 are selectively removed to expose the lower end of the conductive plug 15. Further, the microbump electrodes 42 are respectively formed on the lower ends of the exposed conductive plugs 15. Thus, the configuration of the semiconductor circuit layer 2a is as shown in FIG. The second semiconductor circuit layer 2a in FIG. 8 (m) is substantially in the same state as the first semiconductor circuit layer 1a shown in FIG. 4 (i).

当該集積回路装置が第1及び第2の半導体回路層1aと2aより構成される二層構造の三次元積層集積回路装置である場合は、第2半導体回路層2aの裏面に形成されたマイクロバンプ電極42が、外部回路接続用のマイクロバンプ電極として使用される。当該集積回路装置が第3あるいはそれ以上の半導体回路層を有する場合は、必要に応じて、上記と同様の方法により、第2の半導体回路層2aに重ねて第3、第4、第5・・・・の半導体回路層(図示せず)が積層・固着され、三次元積層構造を持つ集積回路装置が製造される。   In the case where the integrated circuit device is a three-dimensional stacked integrated circuit device having a two-layer structure composed of the first and second semiconductor circuit layers 1a and 2a, micro bumps formed on the back surface of the second semiconductor circuit layer 2a The electrode 42 is used as a micro bump electrode for external circuit connection. When the integrated circuit device has third or more semiconductor circuit layers, the third, fourth, fifth, fifth,... Are stacked on the second semiconductor circuit layer 2a by the same method as described above, if necessary. The semiconductor circuit layers (not shown) are stacked and fixed to produce an integrated circuit device having a three-dimensional stacked structure.

この段階では、図7(l)及び図10(d)より明らかなように、第1半導体回路層1aの内部の回路は、一方では、第1半導体回路層1a内の多層配線構造30中の配線と電極37を介して、上位にある支持基板40内の回路に対して電気的に接続され、他方では、第1半導体回路層1a内の導電性プラグ15と電極42及び43と第2半導体回路層2a内の多層配線構造30中の配線を介して、第2半導体回路層2a内の回路に対して電気的に接続される。同様にして、第2半導体回路層2a内の回路は、第2半導体回路層2a内の導電性プラグ15と電極42(及び43)を介して、下位にある外部回路または第3半導体回路層内の回路に対して電気的に接続される。   At this stage, as is apparent from FIGS. 7 (l) and 10 (d), the circuit inside the first semiconductor circuit layer 1a, on the other hand, is in the multilayer wiring structure 30 in the first semiconductor circuit layer 1a. It is electrically connected to the circuit in the upper support substrate 40 via the wiring and the electrode 37, and on the other hand, the conductive plug 15, the electrodes 42 and 43 in the first semiconductor circuit layer 1a, and the second semiconductor. It is electrically connected to the circuit in the second semiconductor circuit layer 2a via the wiring in the multilayer wiring structure 30 in the circuit layer 2a. Similarly, the circuit in the second semiconductor circuit layer 2a is connected to the lower external circuit or third semiconductor circuit layer via the conductive plug 15 and the electrode 42 (and 43) in the second semiconductor circuit layer 2a. The circuit is electrically connected.

ここで、図32を参照しながら、第1半導体回路層1aの電極42と第2半導体回路層2の電極43aとの間の位置関係、並びに、第2半導体回路層2の表面に形成されたパターン化された接着剤膜44aの構成を詳細に説明する。図32(a)は電極42と43aの間の位置関係を示す拡大平面図であり、図32(b)は接着剤膜44aの構成を示す拡大平面図である。   Here, with reference to FIG. 32, the positional relationship between the electrode 42 of the first semiconductor circuit layer 1a and the electrode 43a of the second semiconductor circuit layer 2 and the surface of the second semiconductor circuit layer 2 were formed. The configuration of the patterned adhesive film 44a will be described in detail. FIG. 32A is an enlarged plan view showing the positional relationship between the electrodes 42 and 43a, and FIG. 32B is an enlarged plan view showing the configuration of the adhesive film 44a.

図32(a)に示すように、第1半導体回路層1aの裏面(導電性プラグ15の端面)に設けられたマイクロバンプ電極42の各々は、二辺の長さをLc1、Lc2(X方向の長さをLc1、Y方向の長さをLc2)とする矩形の平面形状を持つ。電極42の二辺はX方向に平行であり、他の二辺はY方向に平行である。電極42の平面形状と大きさは、対応する導電性プラグ15の端面の平面形状と大きさにそれぞれ等しい。   As shown in FIG. 32A, each of the micro bump electrodes 42 provided on the back surface of the first semiconductor circuit layer 1a (the end surface of the conductive plug 15) has a length of two sides Lc1 and Lc2 (X direction). Has a rectangular planar shape with Lc1 as the length and Lc2) as the length in the Y direction. The two sides of the electrode 42 are parallel to the X direction, and the other two sides are parallel to the Y direction. The planar shape and size of the electrode 42 are equal to the planar shape and size of the end face of the corresponding conductive plug 15, respectively.

第2半導体回路層2の表面に形成されたマイクロバンプ電極43aは、4個が一組になって、一つのマイクロバンプ電極42に対応している。4個の電極43aの各々は、二辺の長さをLb1、Lb2(X方向の長さをLb1、Y方向の長さをLb2)とする矩形の平面形状を持つ。4個の電極43aの平面形状と大きさは、互いに同一である。各電極43aの二辺はX方向に平行であり、他の二辺はY方向に平行である。   Four microbump electrodes 43a formed on the surface of the second semiconductor circuit layer 2 form a set and correspond to one microbump electrode. Each of the four electrodes 43a has a rectangular planar shape in which the lengths of two sides are Lb1 and Lb2 (the length in the X direction is Lb1 and the length in the Y direction is Lb2). The four electrodes 43a have the same planar shape and size. Two sides of each electrode 43a are parallel to the X direction, and the other two sides are parallel to the Y direction.

4個の電極43aは、対応する一つの電極42の四つの角にそれぞれ対応して配置されている。X方向に隣接する2個の電極43aは、隙間P1をあけて並べられている。Y方向に隣接する2個の電極43aは、隙間P2をあけて並べられている。したがって、L1=Lb1+P1+Lb1、L2=Lb2+P2+Lb2が成り立つ。   The four electrodes 43a are arranged corresponding to the four corners of the corresponding one electrode 42, respectively. Two electrodes 43a adjacent in the X direction are arranged with a gap P1 therebetween. The two electrodes 43a adjacent in the Y direction are arranged with a gap P2. Therefore, L1 = Lb1 + P1 + Lb1 and L2 = Lb2 + P2 + Lb2 hold.

図32(a)では、図示を簡単にするために、電極42及び43aはいずれも正方形としてある。典型的な数値を例示すると、L1=L2=5μm、Lb1=Lb2=2μm、P1=P2=1μm、Lc1=Lc2=3μmである。この場合、四つの電極43aは、電極42の各角に、その中心に対して対称的に配置されている。   In FIG. 32A, for simplicity of illustration, the electrodes 42 and 43a are both square. For example, L1 = L2 = 5 μm, Lb1 = Lb2 = 2 μm, P1 = P2 = 1 μm, and Lc1 = Lc2 = 3 μm. In this case, the four electrodes 43a are arranged symmetrically with respect to the center of each electrode 42 at each corner.

図32(b)に示すように、接着剤膜44aは、電極43aとは重ならない形状(パターン)を有していると共に、多数の接着剤要素44aaから構成されている。各接着剤要素44aaの平面形状は、二辺の長さをLa1、La2(X方向の長さをLa1、Y方向の長さをLa2)とするとする矩形である。各接着剤要素44aaの大きさとレイアウトは、それが配置される位置や、その周囲にどの程度の大きさの電極43aがいくつあるか、に応じて適宜調整される。これは、接着剤要素44aaの表面を軟化または流動化させた状態で層間ギャップをG1からG2に減少した時に、電極42と43aの箇所を除いて、第1半導体回路層1aと第2半導体回路層2の間の隙間全体が接着剤膜44aによって充填されるようにするためである。このように、接着剤要素44aaの大きさとレイアウトは、当該隙間の充填の必要性に応じて任意に設定される。   As shown in FIG. 32 (b), the adhesive film 44a has a shape (pattern) that does not overlap with the electrode 43a, and includes a large number of adhesive elements 44aa. The planar shape of each adhesive element 44aa is a rectangle in which the length of two sides is La1 and La2 (the length in the X direction is La1 and the length in the Y direction is La2). The size and layout of each adhesive element 44aa are appropriately adjusted according to the position where the adhesive element 44aa is disposed and how many electrodes 43a there are around. This is because the first semiconductor circuit layer 1a and the second semiconductor circuit except for the positions of the electrodes 42 and 43a when the interlayer gap is decreased from G1 to G2 while the surface of the adhesive element 44aa is softened or fluidized. This is because the entire gap between the layers 2 is filled with the adhesive film 44a. Thus, the size and layout of the adhesive element 44aa are arbitrarily set according to the necessity of filling the gap.

接着剤要素44aaとそれを囲む複数の電極43aとの間には、隙間d1、d2、d3、d4が設けられている。隣接する接着剤要素44aaの間の隙間は、X方向がd11、Y方向がd12である。   Gaps d1, d2, d3, and d4 are provided between the adhesive element 44aa and the plurality of electrodes 43a surrounding it. The gap between adjacent adhesive elements 44aa is d11 in the X direction and d12 in the Y direction.

図32(b)では、図示を簡単にするために、接着剤要素44aaの平面形状は正方形としてある。典型的な数値を例示すると、d1=d2=d3=d4=2μm、d11=d12=1.5μmである。   In FIG. 32 (b), in order to simplify the illustration, the planar shape of the adhesive element 44aa is a square. To illustrate typical numerical values, d1 = d2 = d3 = d4 = 2 μm and d11 = d12 = 1.5 μm.

接着剤要素44aaの平面形状は、ここでは矩形としているが、本発明はこれに限定されるわけではない。矩形以外の任意の形状とすることができる。また、d1、d2、d3、d4、d11及びd12の値は、加圧および軟化または流動化による接着剤要素44aaの広がりの度合いを考慮して決定される。   The planar shape of the adhesive element 44aa is rectangular here, but the present invention is not limited to this. Any shape other than a rectangle can be used. The values of d1, d2, d3, d4, d11, and d12 are determined in consideration of the degree of spread of the adhesive element 44aa due to pressurization and softening or fluidization.

以上説明したように、本発明の第1実施形態に係る集積回路装置の製造方法では、三次元積層構造を構成する第1半導体回路層1aの内部に、一端が当該半導体回路層1aの裏面(基板11の裏面)から露出せしめられた複数の導電性プラグ15(すなわち埋込配線)を形成すると共に、各プラグ15の露出した端面にマイクロバンプ電極42を形成する。他方、三次元積層構造を構成する第2半導体回路層2の表面(多層配線構造30の表面)の所定位置に、複数のマイクロバンプ電極43aを形成する。その後、第2半導体回路層2の表面に、導電性プラグ15及び電極42、43aとは重ならない形状を持つパターン化された電気的絶縁性の接着剤膜44aを形成してから、第1半導体回路層1aの裏面と第2半導体回路層2の表面とを相互に対向させる。そして、両回路層1aと2の距離を狭めることにより、接着剤膜44aを押し広げながら電極42と電極43aとを相互に接触させ、第1半導体回路層1aと第2半導体回路層2の間の層間ギャップをG1とする。そして、さらに加熱下で押圧力を加えることによって、層間ギャップがG2となるまで第1半導体回路層1aと第2半導体回路層2の間の隙間を狭める。その結果、電極43aが変形せしめられて両回路層1aと2が相互に機械的・電気的に接続される。この時、接着剤膜44aは、両回路層1aと2の間に残存する隙間内で変形せしめられる(押し広げられる)と共に、電極42と43aの機械的接続工程の終了時に当該隙間全体に充填せしめられる。そして、その接着剤膜44aによって、両回路層1a及び2は相互に接着される。   As described above, in the method of manufacturing an integrated circuit device according to the first embodiment of the present invention, one end is inside the first semiconductor circuit layer 1a constituting the three-dimensional laminated structure, and the back surface of the semiconductor circuit layer 1a ( A plurality of conductive plugs 15 (that is, embedded wirings) exposed from the back surface of the substrate 11 are formed, and micro bump electrodes 42 are formed on the exposed end surfaces of the plugs 15. On the other hand, a plurality of micro bump electrodes 43a are formed at predetermined positions on the surface of the second semiconductor circuit layer 2 constituting the three-dimensional stacked structure (the surface of the multilayer wiring structure 30). Thereafter, a patterned electrically insulating adhesive film 44a having a shape that does not overlap the conductive plug 15 and the electrodes 42 and 43a is formed on the surface of the second semiconductor circuit layer 2, and then the first semiconductor. The back surface of the circuit layer 1a and the surface of the second semiconductor circuit layer 2 are opposed to each other. Then, by narrowing the distance between the two circuit layers 1a and 2, the electrode 42 and the electrode 43a are brought into contact with each other while spreading the adhesive film 44a, so that the gap between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 is increased. Let G1 be the interlayer gap. Further, by applying a pressing force under heating, the gap between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 is narrowed until the interlayer gap becomes G2. As a result, the electrode 43a is deformed and the circuit layers 1a and 2 are mechanically and electrically connected to each other. At this time, the adhesive film 44a is deformed (spreaded) in the gap remaining between the circuit layers 1a and 2 and filled in the gap at the end of the mechanical connection process of the electrodes 42 and 43a. I'm damned. The circuit layers 1a and 2 are bonded to each other by the adhesive film 44a.

このため、第1半導体回路層1aと第2半導体回路層2の間の層間ギャップが所定値G2にされた時に、両層1aと2の間に残存する空間の総体積にほぼ等しくなるように接着剤膜44aの総量を調整することにより、両層1aと2の間の隙間全体に電気的絶縁性の接着剤を確実に配置することが可能となり、しかも前記隙間よりはみ出た余分の接着剤を除去する必要がなくなる。この点は、第2半導体回路層2aと第3半導体回路層の間や、他の半導体回路層の間の接続について同様である。   For this reason, when the interlayer gap between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 is set to a predetermined value G2, it becomes substantially equal to the total volume of the space remaining between the layers 1a and 2. By adjusting the total amount of the adhesive film 44a, it becomes possible to securely dispose the electrically insulating adhesive in the entire gap between the two layers 1a and 2, and the extra adhesive protruding from the gap. Need not be removed. This is the same for the connection between the second semiconductor circuit layer 2a and the third semiconductor circuit layer or between other semiconductor circuit layers.

よって、三次元積層構造を構成する積層された任意の半導体回路層間の隙間に電気的絶縁性の接着剤を確実に配置することができると共に、前記隙間よりはみ出た余分の接着剤を除去するという後処理を省略することもできる。その結果、三次元積層構造を構成する積層された任意の半導体回路層間の積層方向の機械的接続及び電気的接続を、導電性プラグ15(つまり埋込配線)と電極42、43aを使用して容易にかつ高い信頼性をもって実現することができる。   Therefore, it is possible to reliably arrange an electrically insulating adhesive in a gap between any stacked semiconductor circuit layers constituting a three-dimensional laminated structure, and to remove excess adhesive protruding from the gap. Post-processing can be omitted. As a result, the mechanical connection and electrical connection in the stacking direction between the stacked arbitrary semiconductor circuit layers constituting the three-dimensional stacked structure can be performed using the conductive plug 15 (that is, the embedded wiring) and the electrodes 42 and 43a. It can be realized easily and with high reliability.

なお、上述した第1実施形態では、パターン化された接着剤膜44aを第2半導体回路層2の表面(多層配線構造30の表面)に形成しているが、第1半導体回路層2の裏面(SiO2膜41の表面)に形成してもよい。また、接着剤膜44aは、島状の接着剤要素44aaに分割されていなくてもよく、後述の第3実施形態の接着剤膜44cのように、連続的に形成されていてもよい。この場合でも、表面が軟化または流動化せしめられた接着剤膜44aと、第1半導体回路層1aの裏面との間には、空隙45が確実に形成されるから、回路層1a及び2の間の隙間中に残存する空気は空隙45を通って外部に確実に排出されることができる。したがって、島状の接着剤要素44aaに分割された接着剤膜44aと同様の効果が得られる。 In the first embodiment described above, the patterned adhesive film 44a is formed on the surface of the second semiconductor circuit layer 2 (the surface of the multilayer wiring structure 30), but the back surface of the first semiconductor circuit layer 2 is formed. it may be formed on (the surface of the SiO 2 film 41). Further, the adhesive film 44a may not be divided into island-shaped adhesive elements 44aa, and may be formed continuously like an adhesive film 44c of a third embodiment described later. Even in this case, the gap 45 is surely formed between the adhesive film 44a whose surface is softened or fluidized and the back surface of the first semiconductor circuit layer 1a. The air remaining in the gap can be reliably discharged to the outside through the gap 45. Therefore, an effect similar to that of the adhesive film 44a divided into island-shaped adhesive elements 44aa can be obtained.

また、上述した第1実施形態では、支持基板40の下に第1半導体回路層1aと第2半導体回路層2aを順に積層・固着した場合を示しているが、支持基板40の向きを上下逆にして、支持基板40の上に第1半導体回路層1aと第2半導体回路層2aを順に積層・固着してもよいことは言うまでもない。   In the first embodiment described above, the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2a are sequentially stacked and fixed under the support substrate 40, but the support substrate 40 is turned upside down. Thus, it goes without saying that the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2a may be laminated and fixed in order on the support substrate 40.

さらに、上述した第1実施形態では、図2(d)に示す構造の第1半導体回路層1を形成してから、電極37を用いて直ちに支持基板40に接続し、その次に図5(j)に示す構造の第2半導体回路層2を形成してから、電極42と43を用いて直ちに第1半導体回路層1に接続しているが、本実施形態の製造方法はこれに限定されない。例えば、次のようにしてもよい。すなわち、まず、図2(d)に示す構造の第1半導体回路層1と図5(j)に示す構造の第2半導体回路層2とを先に製造しておく。その後、第1半導体回路層1を支持基板40に固着させてから第1半導体回路層1の裏面を加工し、図4(i)に示す構造を持つ第1半導体回路層1aを形成する。続いて、図5(j)に示す構造の第2半導体回路層2を第1半導体回路層1aに固着させてから第2半導体回路層2の裏面を加工し、図7(l)に示す構造を持つ第2半導体回路層2aを形成するのである。   Furthermore, in the first embodiment described above, after the first semiconductor circuit layer 1 having the structure shown in FIG. 2D is formed, the first substrate 37 is immediately connected to the support substrate 40 using the electrode 37, and then, FIG. The second semiconductor circuit layer 2 having the structure shown in j) is formed and then immediately connected to the first semiconductor circuit layer 1 using the electrodes 42 and 43. However, the manufacturing method of the present embodiment is not limited to this. . For example, it may be as follows. That is, first, the first semiconductor circuit layer 1 having the structure shown in FIG. 2D and the second semiconductor circuit layer 2 having the structure shown in FIG. Thereafter, the first semiconductor circuit layer 1 is fixed to the support substrate 40 and then the back surface of the first semiconductor circuit layer 1 is processed to form the first semiconductor circuit layer 1a having the structure shown in FIG. Subsequently, after the second semiconductor circuit layer 2 having the structure shown in FIG. 5J is fixed to the first semiconductor circuit layer 1a, the back surface of the second semiconductor circuit layer 2 is processed, and the structure shown in FIG. The second semiconductor circuit layer 2a having the above is formed.

上述した第1実施形態は、半導体ウェハーを積み重ねて三次元積層構造を持つ集積回路装置を製造する例であるが、これと同様の工程により、半導体ウェハーに代えて半導体チップを積み重ねて三次元積層構造を持つ集積回路装置を製造することも可能である。   The above-described first embodiment is an example of manufacturing an integrated circuit device having a three-dimensional stacked structure by stacking semiconductor wafers, but in the same process as this, three-dimensional stacking is performed by stacking semiconductor chips instead of the semiconductor wafer. It is also possible to manufacture an integrated circuit device having a structure.

さらに、上述した構成を持つウェハーサイズの三次元積層集積回路装置は、積層された複数のウェハーからなるウェハー積層体を分割せず、ウェハーサイズの三次元積層集積回路装置としてそのまま使用することもできるが、支持基板40に対して直交する方向(積層方向)にダイシングを行うことによって複数の部分に分割し、ウェハーサイズより小さい三次元積層集積回路装置としても使用できることは言うまでもない。   Further, the wafer-size three-dimensional stacked integrated circuit device having the above-described configuration can be used as it is as a wafer-size three-dimensional stacked integrated circuit device without dividing a wafer stack composed of a plurality of stacked wafers. However, it goes without saying that it can be divided into a plurality of parts by dicing in a direction orthogonal to the support substrate 40 (stacking direction) and used as a three-dimensional stacked integrated circuit device smaller than the wafer size.

(第2実施形態)
図11(a)〜図13(c)及び図14(a)〜図15(d)は、本発明の第2実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図である。この第2実施形態も、半導体ウェハーを積み重ねて三次元積層構造を持つ集積回路装置を製造する例である。
(Second Embodiment)
11 (a) to 13 (c) and FIGS. 14 (a) to 15 (d) show a method of manufacturing an integrated circuit device having a three-dimensional stacked structure according to the second embodiment of the present invention for each process. It is a fragmentary sectional view shown. This second embodiment is also an example of manufacturing an integrated circuit device having a three-dimensional stacked structure by stacking semiconductor wafers.

第2実施形態の集積回路装置の製造方法は、三次元積層構造を構成する第1半導体回路層1aの裏面(第2主面)と第2半導体回路層2の表面(第1主面)の双方に電気的絶縁性の接着剤膜44b1及び44b2をそれぞれ形成した点を除き、第1実施形態の集積回路装置の製造方法と同一である。接着剤膜44b1は、導電性プラグ15及びマイクロバンプ電極42とは重ならない形状を持ち、多数の島状の接着剤要素44bb1から構成される。接着剤膜44b2は、マイクロバンプ電極43aとは重ならない形状を持ち、多数の島状の接着剤要素44bb2から構成される。よって、以下では、第1実施形態と同一の工程についてはその概略のみを説明し、相違する工程について詳細に説明する。   The manufacturing method of the integrated circuit device according to the second embodiment includes a back surface (second main surface) of the first semiconductor circuit layer 1a and a front surface (first main surface) of the second semiconductor circuit layer 2 constituting a three-dimensional stacked structure. The method is the same as that of the integrated circuit device according to the first embodiment except that electrically insulating adhesive films 44b1 and 44b2 are formed on both sides. The adhesive film 44b1 has a shape that does not overlap with the conductive plug 15 and the microbump electrode 42, and includes a plurality of island-shaped adhesive elements 44bb1. The adhesive film 44b2 has a shape that does not overlap with the micro-bump electrode 43a, and includes a large number of island-shaped adhesive elements 44bb2. Therefore, below, only the outline is demonstrated about the process same as 1st Embodiment, and a different process is demonstrated in detail.

図11(a)〜図13(c)は、第1実施形態における図5(j)〜図7(l)にそれぞれ対応する。また、図14(a)〜図15(d)は、第1実施形態における図9(a)〜図10(d)にそれぞれ対応する。   FIGS. 11A to 13C correspond to FIGS. 5J to 7L in the first embodiment, respectively. FIGS. 14A to 15D correspond to FIGS. 9A to 10D in the first embodiment, respectively.

まず、第1実施形態と同一の工程により、図4(h)に示す構成の第1半導体回路層1aを形成する。その後、第1実施形態と同一の材料を用い且つ同一の方法で、図4(i)に示すように、露出した各導電性プラグ15の下端にそれぞれマイクロバンプ電極42を形成する。   First, the first semiconductor circuit layer 1a having the configuration shown in FIG. 4H is formed by the same process as in the first embodiment. Thereafter, using the same material as in the first embodiment and by the same method, as shown in FIG. 4I, a microbump electrode 42 is formed at the lower end of each exposed conductive plug 15, respectively.

第1半導体回路層1aの裏面を基準とした電極42の高さHcは、例えば1μmとされる。   The height Hc of the electrode 42 with respect to the back surface of the first semiconductor circuit layer 1a is, for example, 1 μm.

次に、第1実施形態における接着剤膜44aと同様にして、図11(a)及び図14(a)に示すように、第1半導体回路層1aの裏面(第2主面)すなわちSiO2膜41の露出面に、パターン化された電気的絶縁性の接着剤膜44b1を形成する。この接着剤膜44b1は、ポリイミド樹脂やSOG材料等の電気絶縁性の接着剤を室温でパターン化(硬化)することにより形成されたものであって、所定温度に加熱することによりその表面(露出面)を軟化または流動化することが可能である。(換言すれば、加熱軟化性または加熱流動性を有している。)
接着剤膜44b1は、バンプ状(島状)に形成された多数の接着剤要素44bb1から構成されており、それら接着剤要素44bb1は、図32(b)に示すようなレイアウトで、SiO2膜41の露出面に規則的に分布せしめられている。接着剤膜44b1は、電極42のいずれとも重ならない形状を持ち、電極42が形成された箇所とその近傍を除いて配置されている。したがって、接着剤膜44b1(すなわち、すべての接着剤要素44bb1)は導電性プラグ15とも重ならない。
Next, similarly to the adhesive film 44a in the first embodiment, as shown in FIGS. 11A and 14A, the back surface (second main surface) of the first semiconductor circuit layer 1a, that is, SiO 2 is used. On the exposed surface of the film 41, a patterned electrically insulating adhesive film 44b1 is formed. This adhesive film 44b1 is formed by patterning (curing) an electrically insulating adhesive such as polyimide resin or SOG material at room temperature, and its surface (exposed) is heated to a predetermined temperature. Surface) can be softened or fluidized. (In other words, it has heat softening property or heat fluidity.)
The adhesive film 44b1 is composed of a number of adhesive elements 44bb1 formed in a bump shape (island shape), they adhesives element 44bb1 is a layout as shown in FIG. 32 (b), SiO 2 film 41 are regularly distributed on the exposed surface. The adhesive film 44b1 has a shape that does not overlap any of the electrodes 42, and is disposed except for the portion where the electrode 42 is formed and the vicinity thereof. Therefore, the adhesive film 44b1 (that is, all the adhesive elements 44bb1) does not overlap the conductive plug 15.

図14(a)に示すように、第1半導体回路層1aの裏面を基準とした接着剤要素44bb1の高さは、Hdであり、例えば、3μmに設定される。   As shown in FIG. 14A, the height of the adhesive element 44bb1 with respect to the back surface of the first semiconductor circuit layer 1a is Hd, and is set to 3 μm, for example.

他方、第1半導体回路層1と同一の方法により製造された第2半導体回路層2の多層配線構造30(すなわち絶縁材料31)の表面(平坦化されている)に、図11(a)及び図14(a)に示すように、複数のマイクロバンプ電極43a(高さはHb)が形成される。電極43aは、第1半導体回路層1aの電極42と同一の方法で形成される。ここでは、第1実施形態と同様に、第1半導体回路層1a(Siウェハー11)の裏面に設けられた電極42の各々について、4個の電極43aが対応している。換言すれば、1個の電極42に対して4個の電極43aが接合せしめられるようになっている。また、電極42と43aを接触させて加圧した時に、電極43aのみが選択的に潰れる(塑性変形する)ようにするため、第1実施形態と同様に、電極43aは電極42よりも機械的強度が低い導電性材料から形成されている。   On the other hand, on the surface (flattened) of the multilayer wiring structure 30 (that is, the insulating material 31) of the second semiconductor circuit layer 2 manufactured by the same method as the first semiconductor circuit layer 1, FIG. As shown in FIG. 14A, a plurality of micro bump electrodes 43a (height is Hb) are formed. The electrode 43a is formed by the same method as the electrode 42 of the first semiconductor circuit layer 1a. Here, as in the first embodiment, four electrodes 43a correspond to each of the electrodes 42 provided on the back surface of the first semiconductor circuit layer 1a (Si wafer 11). In other words, four electrodes 43 a are bonded to one electrode 42. Further, when the electrodes 42 and 43a are brought into contact with each other and pressed, only the electrode 43a is selectively crushed (plastically deformed), so that the electrode 43a is more mechanical than the electrode 42 as in the first embodiment. It is formed from a conductive material having low strength.

第2半導体回路層2の表面を基準とした電極43aの高さHaは、例えば、2μmに設定される。   The height Ha of the electrode 43a with respect to the surface of the second semiconductor circuit layer 2 is set to 2 μm, for example.

次に、第1実施形態における接着剤膜44aと同様にして、第2半導体回路層2の多層配線構造30(すなわち絶縁材料31)の表面に、図11(a)及び図14(a)に示すように、パターン化された電気的絶縁性の接着剤膜44b2が形成される。この接着剤膜44b2は、接着剤膜44b1と同じ電気絶縁性の接着剤を用いて形成されており、所定形状にパターン化(硬化)せしめられた後も粘性(接着性)を有しており、また、所定温度への加熱によりその表面を軟化または流動化させることが可能である。   Next, in the same manner as the adhesive film 44a in the first embodiment, on the surface of the multilayer wiring structure 30 (that is, the insulating material 31) of the second semiconductor circuit layer 2, FIG. 11 (a) and FIG. 14 (a). As shown, a patterned electrically insulating adhesive film 44b2 is formed. This adhesive film 44b2 is formed using the same electrically insulating adhesive as the adhesive film 44b1, and has a viscosity (adhesiveness) after being patterned (cured) into a predetermined shape. In addition, the surface can be softened or fluidized by heating to a predetermined temperature.

接着剤膜44b2は、バンプ状(島状)に形成された多数の接着剤要素44bb2から構成されており、それらの接着剤要素44bb2は、図32(b)に示すようなレイアウトで、多層配線構造30の表面に規則的に分布せしめられている。接着剤膜44b2は、電極43aと重ならない形状を持ち、電極43aが形成された箇所とその近傍を除いて配置されている。したがって、接着剤膜44b2(すなわち、すべての接着剤要素44bb2)は電極42(導電性プラグ15)とも重ならない。   The adhesive film 44b2 is composed of a large number of adhesive elements 44bb2 formed in a bump shape (island shape). These adhesive elements 44bb2 have a layout as shown in FIG. It is distributed regularly on the surface of the structure 30. The adhesive film 44b2 has a shape that does not overlap with the electrode 43a, and is disposed except for a portion where the electrode 43a is formed and its vicinity. Therefore, the adhesive film 44b2 (that is, all the adhesive elements 44bb2) does not overlap with the electrode 42 (conductive plug 15).

第2半導体回路層2の表面を基準とした接着剤要素44bb2の高さHaは、例えば、3μmに設定される。   The height Ha of the adhesive element 44bb2 with respect to the surface of the second semiconductor circuit layer 2 is set to 3 μm, for example.

接着剤膜44b1と44b2の全体積(硬化後の全体積)の和は、電極42と43aを用いて第2半導体回路層2と第1半導体回路層1aとを機械的・電気的に接続した際に、それら二つの回路層1aと2の間に生じる隙間全体が接着剤膜44b1及び44b2によって充填され、且つその隙間から余分の接着剤膜44b1及び44b2がはみ出ないような値に設定される。これは、回路層1aと2の接続後に、当該隙間からはみ出た余分な接着剤膜44b1及び44b2を除去する作業を避けることができるようにするためである。   The sum of the total volume of the adhesive films 44b1 and 44b2 (total volume after curing) is obtained by mechanically and electrically connecting the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a using the electrodes 42 and 43a. At this time, the entire gap formed between the two circuit layers 1a and 2 is filled with the adhesive films 44b1 and 44b2, and the value is set so that the extra adhesive films 44b1 and 44b2 do not protrude from the gap. . This is to avoid the operation of removing the excess adhesive films 44b1 and 44b2 protruding from the gap after the circuit layers 1a and 2 are connected.

接着剤膜44b1及び44b2は、電極42と43aがある箇所とその近傍には存在しないため、また、島状の接着剤要素44bb1の間と島状の接着剤要素44bb2の間にはそれぞれ隙間が設けてあるため、図14(a)に示すように、各接着剤要素44bb1の高さHd(これは接着剤膜44b1の厚さに等しい)は、電極42の高さHcよりも大きく設定されており(Hd>Hc)、且つ、各接着剤要素44bb2の高さHaは、電極43aの高さHbよりも大きく設定されている(Ha>Hb)。これは、第2半導体回路層2と第1半導体回路層1aとを接続した際に、加圧によって各接着剤要素44bb1と44bb2が押し潰されて電極42と電極43aの周囲や各接着剤要素44bb1、44bb2間の隙間にまでそれぞれ広がって、回路層1aと2の間に残存する隙間全体に充填されるようにするためである。   Since the adhesive films 44b1 and 44b2 do not exist in the vicinity of the place where the electrodes 42 and 43a are present, there is a gap between the island-shaped adhesive element 44bb1 and the island-shaped adhesive element 44bb2, respectively. 14A, the height Hd of each adhesive element 44bb1 (which is equal to the thickness of the adhesive film 44b1) is set larger than the height Hc of the electrode 42. (Hd> Hc), and the height Ha of each adhesive element 44bb2 is set larger than the height Hb of the electrode 43a (Ha> Hb). This is because, when the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a are connected, the adhesive elements 44bb1 and 44bb2 are crushed by pressurization, and around the electrode 42 and the electrode 43a and each adhesive element. This is to fill the entire gap remaining between the circuit layers 1a and 2 by spreading to the gap between 44bb1 and 44bb2, respectively.

後述するが、第2半導体回路層2と第1半導体回路層1aとを接続した際に、各電極43aも押し潰されて塑性変形しその周囲に広げられる。その結果、各電極42に対応する4個の電極43aは相互に接続されて一体化される。   As will be described later, when the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a are connected, each electrode 43a is also crushed, plastically deformed, and spread around it. As a result, the four electrodes 43a corresponding to each electrode 42 are connected and integrated.

接着剤膜44b1と44b2が、それぞれ多数の接着剤要素44bb1、44bb2に分割されているのは、第2半導体回路層2と第1半導体回路層1aとを接続する際に、両回路層2、1aの間に存在する空気を外部に逃がしやすくするため(つまり脱ガスの容易化のため)である。すなわち、回路層2と1aがほとんど接続された状態でも、両層2、1aの間に存在する空気が隣接する接着剤要素44b1と44b2の間の隙間を通って外部に押し出されるようにするためである。なお、接着剤要素44bb1の各々は、接着剤要素44bb2と一対一対応となっている。   The adhesive films 44b1 and 44b2 are divided into a plurality of adhesive elements 44bb1 and 44bb2, respectively, when the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a are connected to each other. This is to facilitate the escape of air existing between 1a to the outside (that is, to facilitate degassing). That is, even when the circuit layers 2 and 1a are almost connected, the air existing between the layers 2 and 1a is pushed out through the gap between the adjacent adhesive elements 44b1 and 44b2. It is. Each of the adhesive elements 44bb1 has a one-to-one correspondence with the adhesive element 44bb2.

ここでは、マイクロバンプ電極42を形成してから接着剤膜44b1を形成し、マイクロバンプ電極43aを形成してから接着剤膜44b2を形成しているが、接着剤膜44b1を形成してからマイクロバンプ電極42を形成してもよいし、接着剤膜44b2を形成してからマイクロバンプ電極43aを形成してもよい。   Here, the adhesive film 44b1 is formed after the microbump electrode 42 is formed, and the adhesive film 44b2 is formed after the microbump electrode 43a is formed. However, after the adhesive film 44b1 is formed, the microbump electrode 42a is formed. The bump electrode 42 may be formed, or the microbump electrode 43a may be formed after the adhesive film 44b2 is formed.

続いて、図11(a)及び図14(a)に示すように、支持基板40を介して固定された第1半導体回路層1aの裏面に、下方から第2半導体回路層2の表面を対向させる。(逆に、第2半導体回路層2を固定しておき、上方から支持基板40に固定された第1半導体回路層1aを対向させてもよい。)その後、回路層2と1aの間に押圧力を加えて回路層2と1aを相互に近接させると、各接着剤要素44bb1の高さ(接着剤膜44aの厚さ)Hdは、電極42の高さHcよりも大きく(Hd>Hc)、且つ、各接着剤要素44bb2の高さ(接着剤膜44b2の厚さ)Haは、電極43aの高さHbよりも大きい(Ha>Hb)ので、最初に、図14(b)に示すように、第2半導体回路層2の接着剤膜44b2(接着剤要素44bb2)の先端(頂部)が第1半導体回路層1aの接着剤膜44b1(接着剤要素44bb1)の先端(頂部)に接触せしめられる。   Subsequently, as shown in FIGS. 11A and 14A, the surface of the second semiconductor circuit layer 2 is opposed to the back surface of the first semiconductor circuit layer 1a fixed via the support substrate 40 from below. Let (Conversely, the second semiconductor circuit layer 2 may be fixed and the first semiconductor circuit layer 1a fixed to the support substrate 40 may be opposed from above.) Thereafter, the second semiconductor circuit layer 2 is pushed between the circuit layers 2 and 1a. When pressure is applied to bring the circuit layers 2 and 1a close to each other, the height of each adhesive element 44bb1 (the thickness of the adhesive film 44a) Hd is larger than the height Hc of the electrode 42 (Hd> Hc). Further, since the height of each adhesive element 44bb2 (the thickness of the adhesive film 44b2) Ha is larger than the height Hb of the electrode 43a (Ha> Hb), first, as shown in FIG. Further, the tip (top) of the adhesive film 44b2 (adhesive element 44bb2) of the second semiconductor circuit layer 2 is brought into contact with the tip (top) of the adhesive film 44b1 (adhesive element 44bb1) of the first semiconductor circuit layer 1a. It is done.

その後、回路層2と1aの間に押圧力を加えて両者間の距離を狭めることにより、図12(b)及び図15(c)に示すように、第2半導体回路層2の各電極43aを対応する第1半導体回路層1aの電極42に接触させる。この時の第1半導体回路層1aの裏面と第2半導体回路層2の表面との距離、すなわち層間ギャップをG1とすると、層間ギャップG1は電極42の厚さと電極43aの厚さの和に等しい、すなわちG1=Hc+Hbである。この時、接着剤膜44b1及び44b2はいずれも押し潰されて変形し、回路層1と2の間の隙間のほぼ全体に押し広げられるが、接着剤膜44b1及び44b2は島状の接着剤要素44bb1及び44bb2にそれぞれ分割されているので、接着剤膜44b1及び44b2aは当該隙間中にほぼ均一に広がる。また、変形せしめられた接着剤膜44b1と接着剤膜44b2との間(と隣接する接着剤要素44bb1及び44bb2の間)には、空隙45が形成されやすいことから、当該隙間中に残存する空気が空隙45を通って外部に確実に排出されることができ、最終的に一体化・硬化せしめられた接着剤膜44b1b2中に気泡が生じる恐れをなくすことができる。   Thereafter, a pressing force is applied between the circuit layers 2 and 1a to reduce the distance between the two, and as shown in FIGS. 12B and 15C, each electrode 43a of the second semiconductor circuit layer 2 is obtained. Is brought into contact with the electrode 42 of the corresponding first semiconductor circuit layer 1a. When the distance between the back surface of the first semiconductor circuit layer 1a and the surface of the second semiconductor circuit layer 2 at this time, that is, the interlayer gap is G1, the interlayer gap G1 is equal to the sum of the thickness of the electrode 42 and the thickness of the electrode 43a. That is, G1 = Hc + Hb. At this time, the adhesive films 44b1 and 44b2 are both crushed and deformed, and are spread over almost the entire gap between the circuit layers 1 and 2, but the adhesive films 44b1 and 44b2 are island-shaped adhesive elements. Since it is divided into 44bb1 and 44bb2, respectively, the adhesive films 44b1 and 44b2a spread almost uniformly in the gap. Further, since a gap 45 is easily formed between the deformed adhesive film 44b1 and the adhesive film 44b2 (and between the adjacent adhesive elements 44bb1 and 44bb2), the air remaining in the gap Can be reliably discharged to the outside through the gap 45, and the possibility of bubbles being generated in the finally integrated and cured adhesive film 44b1b2 can be eliminated.

上述した第1半導体回路層1aと第2半導体回路層2とを対向させてから電極42と43aを相互接触させる工程は、第1実施形態と同様に、室温で行う。第1半導体回路層1aと第2半導体回路層2との距離G1の値は、例えば2μm〜10μmの範囲で適宜決定されるが、典型的には4μmである。しかし、電極42と43aの高さHcとHbをいっそう小さくすることにより、2μm以下とすることも可能である。この場合、距離G1の値は、例えば0.1μm〜2μmの範囲で適宜決定される。この点も第1実施形態と同様である。   The step of bringing the electrodes 42 and 43a into contact with each other after the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 are opposed to each other is performed at room temperature, as in the first embodiment. The value of the distance G1 between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 is appropriately determined within a range of 2 μm to 10 μm, for example, but is typically 4 μm. However, the heights Hc and Hb of the electrodes 42 and 43a can be further reduced to 2 μm or less. In this case, the value of the distance G1 is appropriately determined within a range of 0.1 μm to 2 μm, for example. This is also the same as in the first embodiment.

その後、互いに接触せしめられた電極43aと電極42を、以下のようにして相互に接続させる。   Thereafter, the electrodes 43a and 42 brought into contact with each other are connected to each other as follows.

すなわち、図12(b)及び図15(c)の状態にある第2半導体回路層2と第1半導体回路層1aを室温から所定温度まで加熱する。その温度は、加圧変形状態にある接着剤膜44b1及び44b2の表面(露出面)がわずかに軟化するか、それらの表面がわずかに流動状態になる温度に設定する。その温度は、接着剤膜44b1及び44b2に使用する接着剤の種類によって異なるが、電極42と電極43aとが「圧接」する温度を考慮しながら、例えば100〜400℃の範囲内で任意に設定される。このとき、設定する加熱温度によっては、電極42及び電極43aの少なくとも一方が部分的に溶融状態となり、その表面が湾曲することがある。   That is, the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a in the states of FIGS. 12B and 15C are heated from room temperature to a predetermined temperature. The temperature is set to a temperature at which the surfaces (exposed surfaces) of the adhesive films 44b1 and 44b2 in the pressure-deformed state are slightly softened or the surfaces are slightly fluidized. The temperature varies depending on the type of adhesive used for the adhesive films 44b1 and 44b2, but is arbitrarily set within a range of, for example, 100 to 400 ° C. in consideration of the temperature at which the electrode 42 and the electrode 43a are “press-contacted”. Is done. At this time, depending on the heating temperature to be set, at least one of the electrode 42 and the electrode 43a may be partially melted and the surface thereof may be curved.

続いて、押圧力を印加することにより、第1半導体回路層1aに対して下方から第2半導体回路層2をさらに近づけ、あるいは第2半導体回路層2に対して上方から第1半導体回路層1aを下降させることにより、図13(c)及び図15(d)に示すように、回路層1aと2の間の隙間を狭めることにより、回路層1aと2の間の層間ギャップをG1からそれより小さいG2(G2<G1)とする。この時、第2半導体回路層2の電極43aと第1半導体回路層1aの電極42の間には、圧縮力が作用する。その結果、電極42よりも機械的強度が低い電極43aのみが選択的に押し潰されて、電極42と電極43とが「圧接」によって相互に接合せしめられると共に、接着剤要素44bb1及び44bb2がさらに押し広げられて相互に連結・一体化される。このとき、1個の電極42に対応する4個の電極43aが潰されて一体的になり、その結果、電極42と電極43aとが一対一対応になる。こうして、相互に圧接された電極43aと電極42の箇所を除いて、回路層2と1aの間の隙間の全体が接着剤膜44aによって充填され、余分の接着剤膜44b1または44b2が当該隙間からはみ出ることもない。この時の状態は図13(c)及び図15(d)に示すようになる。   Subsequently, by applying a pressing force, the second semiconductor circuit layer 2 is made closer to the first semiconductor circuit layer 1a from below, or the first semiconductor circuit layer 1a is viewed from above with respect to the second semiconductor circuit layer 2. As shown in FIG. 13 (c) and FIG. 15 (d), the gap between the circuit layers 1a and 2 is reduced from G1 by narrowing the gap between the circuit layers 1a and 2 as shown in FIGS. A smaller G2 (G2 <G1) is assumed. At this time, a compressive force acts between the electrode 43a of the second semiconductor circuit layer 2 and the electrode 42 of the first semiconductor circuit layer 1a. As a result, only the electrode 43a having a mechanical strength lower than that of the electrode 42 is selectively crushed so that the electrode 42 and the electrode 43 are joined to each other by “pressure contact”, and the adhesive elements 44bb1 and 44bb2 are further provided. They are spread and connected and integrated with each other. At this time, the four electrodes 43a corresponding to one electrode 42 are crushed and integrated, and as a result, the electrodes 42 and the electrodes 43a have a one-to-one correspondence. In this way, the entire gap between the circuit layers 2 and 1a is filled with the adhesive film 44a except for the electrode 43a and the electrode 42 that are in pressure contact with each other, and the extra adhesive film 44b1 or 44b2 is removed from the gap. It does not protrude. The state at this time is as shown in FIGS. 13 (c) and 15 (d).

加熱時に電極42及び電極43aの少なくとも一方が部分的に溶融状態となった場合は、電極42と電極43aの接合は、溶融した電極42、43aの「再凝固」により行われるか、「圧接」と「再凝固」が混合した形で行われる。この点は第1実施形態と同様である。   When at least one of the electrode 42 and the electrode 43a is partially melted during heating, the electrode 42 and the electrode 43a are joined by “re-solidification” of the melted electrodes 42 and 43a or “pressure welding”. And “re-solidification” are performed in a mixed form. This is the same as in the first embodiment.

この加熱圧接工程では、層間ギャップがG1からG2に減少せしめられる際に、回路層1aと2の間の隙間に存在する空気(大気)が確実に除去されること、そして、回路層1aと回路層2が相互に接着されることが重要である。この第2実施形態では、接着剤膜44b1及び44b2がそれぞれ多数の接着剤要素44bb1及び44bb2に分割されているので、当該隙間に存在する空気は、接着剤膜44b1及び44b2(これらはいずれも加熱によって表面が軟化または流動化している)との間の空隙45と、隣接する接着剤要素44bb1と44bb2の間に残存する微小空間とを通って、外部に確実に排出されることができる。また、接着剤膜44bb1の表面と接着剤膜44bb2の表面がいずれも軟化または流動化しているので、層間ギャップがG2になった時に、接着剤膜44bb1と接着剤膜44bb2が接着されやすく、その結果、回路層1aと2が確実に相互接着されることができる。   In this heating and pressure welding process, when the interlayer gap is reduced from G1 to G2, air (atmosphere) existing in the gap between the circuit layers 1a and 2 is surely removed, and the circuit layer 1a and the circuit It is important that the layers 2 are glued together. In this second embodiment, the adhesive films 44b1 and 44b2 are divided into a large number of adhesive elements 44bb1 and 44bb2, respectively, so that the air present in the gaps becomes the adhesive films 44b1 and 44b2 (both are heated). The surface is softened or fluidized) and the minute space remaining between the adjacent adhesive elements 44bb1 and 44bb2 can be reliably discharged to the outside. In addition, since the surface of the adhesive film 44bb1 and the surface of the adhesive film 44bb2 are both softened or fluidized, when the interlayer gap becomes G2, the adhesive film 44bb1 and the adhesive film 44bb2 are easily bonded. As a result, the circuit layers 1a and 2 can be securely bonded to each other.

層間ギャップG2の値は、例えば1μm〜9μmの範囲で適宜決定されるが、典型的には3μmである。しかし、電極42と43aの高さHcとHbをいっそう小さくすることにより、1μm以下とすることも可能である。この場合、距離G2の値は、例えば0.05μm〜1μmの範囲で適宜決定される。   The value of the interlayer gap G2 is appropriately determined within a range of 1 μm to 9 μm, for example, but is typically 3 μm. However, the heights Hc and Hb of the electrodes 42 and 43a can be further reduced to 1 μm or less. In this case, the value of the distance G2 is appropriately determined in the range of 0.05 μm to 1 μm, for example.

第2半導体回路層2は、以上のようにして、電極42と電極43aを用いて第1半導体回路層1aの裏面側に固着(つまり機械的に接続)せしめられると共に、両回路層1a及び2の間の電気的接続も同時に行われる。また、それと同時に、両回路層1a及び2は、互いに接続された電極43aと電極42の箇所を除いて回路層1aと2の間の隙間全体に充填された接着剤膜44b1及び44b2によって、相互に接着される。   As described above, the second semiconductor circuit layer 2 is fixed (that is, mechanically connected) to the back surface side of the first semiconductor circuit layer 1a using the electrode 42 and the electrode 43a, and both the circuit layers 1a and 2 are connected. The electrical connection between is also made simultaneously. At the same time, both circuit layers 1a and 2 are mutually connected by adhesive films 44b1 and 44b2 filled in the entire gap between the circuit layers 1a and 2 except for the portions of the electrodes 43a and 42 connected to each other. Glued to.

以上のようにして電極42と電極43aの機械的・電気的接続と接着剤膜44b1及び44b2の接着が終わると、相互に接合された回路層1と2aは室温まで自然冷却される。そこで、加熱、紫外線照射、薬剤添加等によって一体化された接着剤膜44b1及び44b2を最終的に硬化させる。処理が容易であることから、加熱により硬化させるのが好ましい。加熱温度は、接着剤膜44b1及び44b2として使用した接着剤の性質に応じて、例えば120〜500℃℃の範囲内で適宜設定される。こうして、二つの半導体回路層1aと2の間の機械的接続と電気的接続が完了する。   When the mechanical / electrical connection between the electrode 42 and the electrode 43a and the bonding of the adhesive films 44b1 and 44b2 are finished as described above, the circuit layers 1 and 2a bonded to each other are naturally cooled to room temperature. Therefore, the adhesive films 44b1 and 44b2 integrated by heating, ultraviolet irradiation, chemical addition, etc. are finally cured. Since treatment is easy, it is preferable to cure by heating. The heating temperature is appropriately set within a range of 120 to 500 ° C., for example, depending on the properties of the adhesive used as the adhesive films 44b1 and 44b2. Thus, the mechanical connection and the electrical connection between the two semiconductor circuit layers 1a and 2 are completed.

その後の工程は、第1実施形態の場合と同じであるから、その説明は省略する。   Since the subsequent steps are the same as those in the first embodiment, the description thereof is omitted.

以上説明したように、本発明の第2実施形態に係る集積回路装置の製造方法は、第1半導体回路層1aの裏面と第2半導体回路層2の表面の双方に電気的絶縁性の接着剤膜44b1及び44b2をそれぞれ形成した点を除いて、上述した第1実施形態に係る集積回路装置の製造方法と同じであるから、第1実施形態において得られるものと同一の効果が得られることは明らかである。ただ、第2実施形態では、二つの接着剤膜44b1及び44b2を使用しているので、第1実施形態におけるよりも第2半導体回路層2と第1半導体回路層1aの接着力が増すという利点がある。   As described above, the method for manufacturing an integrated circuit device according to the second embodiment of the present invention has an electrically insulating adhesive on both the back surface of the first semiconductor circuit layer 1a and the surface of the second semiconductor circuit layer 2. Since the manufacturing method of the integrated circuit device according to the first embodiment is the same as that of the first embodiment except that the films 44b1 and 44b2 are formed, the same effect as that obtained in the first embodiment can be obtained. it is obvious. However, in the second embodiment, since the two adhesive films 44b1 and 44b2 are used, the adhesive force between the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a is increased as compared with the first embodiment. There is.

(第3実施形態)
図16(a)〜図18(c)及び図19(a)〜図20(d)は、本発明の第3実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図である。この第3実施形態も、半導体ウェハーを積み重ねて三次元積層構造を持つ集積回路装置を製造する例である。
(Third embodiment)
FIGS. 16A to 18C and FIGS. 19A to 20D show a method of manufacturing an integrated circuit device having a three-dimensional stacked structure according to the third embodiment of the present invention for each process. It is a fragmentary sectional view shown. This third embodiment is also an example of manufacturing an integrated circuit device having a three-dimensional stacked structure by stacking semiconductor wafers.

第3実施形態の集積回路装置の製造方法は、三次元積層構造を構成する第1半導体回路層1aの裏面(第2主面)と第2半導体回路層2の表面(第1主面)の双方に電気的絶縁性の接着剤膜44c及び44b2をそれぞれ形成した点を除き、第1実施形態の集積回路装置の製造方法と同一である。接着剤膜44cは、導電性プラグ15及びマイクロバンプ電極42とは重ならない形状を持つが、連続的に形成されており、多数の接着剤要素には分割されていない点で第2実施形態とは異なる。接着剤膜44cと各電極42との間には、接続時に電極43aが押し潰されることによって生じる体積増加を吸収するための領域として、空隙が形成されている。接着剤膜44b2は、第2実施形態と同様に、マイクロバンプ電極43aとは重ならない形状を持ち、多数の接着剤要素44bb2から構成される。よって、以下では、第1実施形態と同一の工程についてはその概略のみを説明し、相違する工程について詳細に説明する。   The method for manufacturing an integrated circuit device according to the third embodiment includes a back surface (second main surface) of the first semiconductor circuit layer 1a and a front surface (first main surface) of the second semiconductor circuit layer 2 constituting a three-dimensional stacked structure. The manufacturing method of the integrated circuit device of the first embodiment is the same as that of the first embodiment, except that electrically insulating adhesive films 44c and 44b2 are formed on both sides. The adhesive film 44c has a shape that does not overlap with the conductive plug 15 and the microbump electrode 42, but is formed continuously and is not divided into a large number of adhesive elements as in the second embodiment. Is different. A gap is formed between the adhesive film 44c and each electrode 42 as a region for absorbing a volume increase caused by the electrode 43a being crushed during connection. Similar to the second embodiment, the adhesive film 44b2 has a shape that does not overlap with the microbump electrode 43a, and includes a large number of adhesive elements 44bb2. Therefore, below, only the outline is demonstrated about the process same as 1st Embodiment, and a different process is demonstrated in detail.

図16(a)〜図18(c)は、第1実施形態における図5(j)〜図7(l)にそれぞれ対応する。また、図19(a)〜図20(d)は、第1実施形態における図9(a)〜図10(d)にそれぞれ対応する。   FIGS. 16A to 18C correspond to FIGS. 5J to 7L in the first embodiment, respectively. FIGS. 19A to 20D correspond to FIGS. 9A to 10D in the first embodiment, respectively.

まず、第1実施形態と同一の工程により、図4(h)に示す構成の第1半導体回路層1aを形成する。その後、第1実施形態と同一の材料を用い且つ同一の方法で、図4(i)に示すように、露出した各導電性プラグ15の下端にそれぞれマイクロバンプ電極42を形成する。   First, the first semiconductor circuit layer 1a having the configuration shown in FIG. 4H is formed by the same process as in the first embodiment. Thereafter, using the same material as in the first embodiment and by the same method, as shown in FIG. 4I, a microbump electrode 42 is formed at the lower end of each exposed conductive plug 15, respectively.

第1半導体回路層1aの裏面を基準とした電極42の高さHcは、例えば2.5μmとされる。   The height Hc of the electrode 42 with respect to the back surface of the first semiconductor circuit layer 1a is, for example, 2.5 μm.

次に、第1実施形態における接着剤膜44a及び第2実施形態における接着剤膜44b1と同様にして、図16(a)及び図19(a)に示すように、第1半導体回路層1aの裏面(第2主面)すなわちSiO2膜41の露出面に、パターン化された電気的絶縁性の接着剤膜44cを形成する。この接着剤膜44cは、ポリイミド樹脂やSOG材料等の電気絶縁性の接着剤を室温でパターン化(硬化)することにより形成されたものであって、所定温度に加熱することによりその表面(露出面)を軟化または流動化することが可能である。 Next, in the same manner as the adhesive film 44a in the first embodiment and the adhesive film 44b1 in the second embodiment, as shown in FIGS. 16A and 19A, the first semiconductor circuit layer 1a is formed. A patterned electrically insulating adhesive film 44 c is formed on the back surface (second main surface), that is, the exposed surface of the SiO 2 film 41. The adhesive film 44c is formed by patterning (curing) an electrically insulating adhesive such as polyimide resin or SOG material at room temperature, and its surface (exposed) is heated to a predetermined temperature. Surface) can be softened or fluidized.

接着剤膜44cは、電極42(そして導電性プラグ15)とは重ならない形状を持つが、接着剤要素に分割されておらず、電極42のある箇所とその近傍を除いてSiO2膜41の露出面の全体を覆っている。したがって、接着剤膜44cは導電性プラグ15とも重ならない。 The adhesive film 44 c has a shape that does not overlap with the electrode 42 (and the conductive plug 15), but is not divided into adhesive elements, and the SiO 2 film 41 except for a portion where the electrode 42 is present and its vicinity. Covers the entire exposed surface. Therefore, the adhesive film 44 c does not overlap with the conductive plug 15.

図19(a)に示すように、第1半導体回路層1aの裏面を基準とした接着剤膜44cの高さは、Hdであり、例えば、2μmに設定される。   As shown in FIG. 19A, the height of the adhesive film 44c with reference to the back surface of the first semiconductor circuit layer 1a is Hd, and is set to 2 μm, for example.

他方、第1半導体回路層1と同一の方法により製造された第2半導体回路層2の多層配線構造30(すなわち絶縁材料31)の表面(平坦化されている)に、図16(a)及び図19(a)に示すように、複数のマイクロバンプ電極43a(高さはHb)が形成される。電極43aは、第1半導体回路層1aの電極42と同一の方法で形成される。ここでは、第1実施形態と同様に、第1半導体回路層1a(Siウェハー11)の裏面に設けられた電極42の各々について、4個の電極43aが対応している。換言すれば、1個の電極42に対して4個の電極43aが接合せしめられるようになっている。また、電極42と43aを接触させて加圧した時に、電極43aのみが選択的に潰れる(塑性変形する)ようにするため、第1実施形態と同様に、電極43aは電極42よりも機械的強度が低い導電性材料から形成されている。   On the other hand, on the surface (flattened) of the multilayer wiring structure 30 (that is, the insulating material 31) of the second semiconductor circuit layer 2 manufactured by the same method as the first semiconductor circuit layer 1, FIG. As shown in FIG. 19A, a plurality of micro bump electrodes 43a (height is Hb) are formed. The electrode 43a is formed by the same method as the electrode 42 of the first semiconductor circuit layer 1a. Here, as in the first embodiment, four electrodes 43a correspond to each of the electrodes 42 provided on the back surface of the first semiconductor circuit layer 1a (Si wafer 11). In other words, four electrodes 43 a are bonded to one electrode 42. Further, when the electrodes 42 and 43a are brought into contact with each other and pressed, only the electrode 43a is selectively crushed (plastically deformed), so that the electrode 43a is more mechanical than the electrode 42 as in the first embodiment. It is formed from a conductive material having low strength.

第2半導体回路層2の表面を基準とした電極43aの高さHbは、例えば、2μmに設定される。   The height Hb of the electrode 43a with respect to the surface of the second semiconductor circuit layer 2 is set to 2 μm, for example.

次に、第1実施形態における接着剤膜44aと同様にして、第2半導体回路層2の多層配線構造30(すなわち絶縁材料31)の表面に、図16(a)及び図19(a)に示すように、パターン化された電気的絶縁性の接着剤膜44b2が形成される。この接着剤膜44b2は、接着剤膜44b1と同じ電気絶縁性の接着剤を用いて形成されており、所定形状にパターン化(硬化)せしめられた後も粘性(接着性)を有しており、また、所定温度への加熱によりその表面を軟化または流動化させることが可能である。   Next, in the same manner as the adhesive film 44a in the first embodiment, on the surface of the multilayer wiring structure 30 (that is, the insulating material 31) of the second semiconductor circuit layer 2, FIG. 16 (a) and FIG. 19 (a). As shown, a patterned electrically insulating adhesive film 44b2 is formed. This adhesive film 44b2 is formed using the same electrically insulating adhesive as the adhesive film 44b1, and has a viscosity (adhesiveness) after being patterned (cured) into a predetermined shape. In addition, the surface can be softened or fluidized by heating to a predetermined temperature.

接着剤膜44b2は、バンプ状(島状)に形成された多数の接着剤要素44bb2から構成されており、それらの接着剤要素44bb2は、図32(b)に示すようなレイアウトで、多層配線構造30の表面に規則的に分布せしめられている。接着剤膜44b2は、電極43aと重ならない形状を持ち、電極43aが形成された箇所とその近傍を除いて配置されている。したがって、接着剤膜44b2(すなわち、すべての接着剤要素44bb2)は電極42(導電性プラグ15)とも重ならない。   The adhesive film 44b2 is composed of a large number of adhesive elements 44bb2 formed in a bump shape (island shape). These adhesive elements 44bb2 have a layout as shown in FIG. It is distributed regularly on the surface of the structure 30. The adhesive film 44b2 has a shape that does not overlap with the electrode 43a, and is disposed except for a portion where the electrode 43a is formed and its vicinity. Therefore, the adhesive film 44b2 (that is, all the adhesive elements 44bb2) does not overlap with the electrode 42 (conductive plug 15).

第2半導体回路層2の表面を基準とした接着剤要素44bb2の高さHaは、例えば、3μmに設定される。   The height Ha of the adhesive element 44bb2 with respect to the surface of the second semiconductor circuit layer 2 is set to 3 μm, for example.

接着剤膜44cと44b2の全体積(硬化後の全体積)の和は、電極42と43aを用いて第2半導体回路層2と第1半導体回路層1aとを機械的・電気的に接続した際に、それら二つの回路層1aと2の間に生じる隙間全体が接着剤膜44c及び44b2によって充填され、且つその隙間から余分の接着剤膜44c及び44b2がはみ出ないような値に設定されている。これは、回路層1aと2の固着後に、当該隙間からはみ出た余分な接着剤膜44c及び44b2を除去する作業を避けることができるようにするためである。   The sum of the total volume (total volume after curing) of the adhesive films 44c and 44b2 is obtained by mechanically and electrically connecting the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a using the electrodes 42 and 43a. At this time, the entire gap formed between the two circuit layers 1a and 2 is filled with the adhesive films 44c and 44b2, and the value is set so that the excess adhesive films 44c and 44b2 do not protrude from the gap. Yes. This is to avoid the operation of removing the excess adhesive films 44c and 44b2 protruding from the gap after the circuit layers 1a and 2 are fixed.

図19(a)に示すように、接着剤膜44cの厚さHdは、電極42の高さHcよりも小さくされているが(Hd<Hc)、接着剤膜44b2の各接着剤要素44bb2の高さHa(これは接着剤膜44b2の厚さに等しい)は、電極43aの高さHbよりも大きくされている(Ha>Hb)。このため、第2半導体回路層2と第1半導体回路層1aとを接続した際に、加圧によって各接着剤要素44bb2が押し潰されて電極42と電極43aの周囲や各接着剤要素44bb2間の隙間にまでそれぞれ広がって、回路層1aと2の間に残存する隙間全体に充填されやすいようになっている。   As shown in FIG. 19A, the thickness Hd of the adhesive film 44c is smaller than the height Hc of the electrode 42 (Hd <Hc), but each adhesive element 44bb2 of the adhesive film 44b2 has a thickness Hd. The height Ha (which is equal to the thickness of the adhesive film 44b2) is larger than the height Hb of the electrode 43a (Ha> Hb). For this reason, when the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a are connected, each adhesive element 44bb2 is crushed by pressurization, and the periphery of the electrode 42 and the electrode 43a and between each adhesive element 44bb2. Each of the gaps between the circuit layers 1a and 2 is easily filled.

後述するが、第2半導体回路層2と第1半導体回路層1aとを接続した際に、各電極43aも押し潰されて塑性変形しその周囲に広げられる。その結果、各電極42に対応する4個の電極43aは相互に接続されて一体化される。   As will be described later, when the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a are connected, each electrode 43a is also crushed, plastically deformed, and spread around it. As a result, the four electrodes 43a corresponding to each electrode 42 are connected and integrated.

接着剤膜44b2が多数の接着剤要素44bb2に分割されているのは、第2半導体回路層2と第1半導体回路層1aとを接続する際に、両回路層2、1aの間に存在する空気を外部に逃がしやすくするため(つまり脱ガスの容易化のため)である。すなわち、回路層2と1aがほとんど接続された状態でも、両層2、1aの間に存在する空気が隣接する接着剤要素44bb2の間の隙間を通って外部に押し出されるようにするためである。   The adhesive film 44b2 is divided into a plurality of adhesive elements 44bb2 when the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a are connected to each other between the circuit layers 2 and 1a. This is to facilitate the escape of air to the outside (that is, to facilitate degassing). That is, even when the circuit layers 2 and 1a are almost connected, the air existing between the layers 2 and 1a is pushed out through the gap between the adjacent adhesive elements 44bb2. .

ここでは、マイクロバンプ電極42を形成してから接着剤膜44cを形成し、マイクロバンプ電極43aを形成してから接着剤膜44b2を形成しているが、接着剤膜44cを形成してからマイクロバンプ電極42を形成してもよいし、接着剤膜44b2を形成してからマイクロバンプ電極43aを形成してもよい。   Here, the adhesive film 44c is formed after the microbump electrode 42 is formed, and the adhesive film 44b2 is formed after the microbump electrode 43a is formed. However, after the adhesive film 44c is formed, the microbump electrode 42a is formed. The bump electrode 42 may be formed, or the microbump electrode 43a may be formed after the adhesive film 44b2 is formed.

続いて、図16(a)及び図19(a)に示すように、支持基板40を介して固定された第1半導体回路層1aの裏面に、下方から第2半導体回路層2の表面を対向させる。(逆に、第2半導体回路層2を固定しておき、上方から支持基板40に固定された第1半導体回路層1aを対向させてもよい。)その後、回路層2と1aの間に押圧力を加えて回路層2と1aを相互に近接させると、各接着剤要素44bb2の高さ(接着剤膜44b2の厚さ)Haは、電極43aの高さHbよりも大きく(Ha>Hb)、接着剤膜44cの厚さHdは、電極42の高さHcよりも小さく(Hd<Hc)、且つ、Ha+Hd>Hb+Hcであるから、最初に、図19(b)に示すように、第2半導体回路層2の接着剤膜44b2(接着剤要素44bb2)の先端(頂部)が第1半導体回路層1aの接着剤膜44cの表面に接触せしめられる。   Subsequently, as shown in FIGS. 16A and 19A, the surface of the second semiconductor circuit layer 2 is opposed to the back surface of the first semiconductor circuit layer 1a fixed via the support substrate 40 from below. Let (Conversely, the second semiconductor circuit layer 2 may be fixed and the first semiconductor circuit layer 1a fixed to the support substrate 40 may be opposed from above.) Thereafter, the second semiconductor circuit layer 2 is pushed between the circuit layers 2 and 1a. When pressure is applied to bring the circuit layers 2 and 1a close to each other, the height of each adhesive element 44bb2 (the thickness of the adhesive film 44b2) Ha is larger than the height Hb of the electrode 43a (Ha> Hb). Since the thickness Hd of the adhesive film 44c is smaller than the height Hc of the electrode 42 (Hd <Hc) and Ha + Hd> Hb + Hc, first, as shown in FIG. The tip (top) of the adhesive film 44b2 (adhesive element 44bb2) of the semiconductor circuit layer 2 is brought into contact with the surface of the adhesive film 44c of the first semiconductor circuit layer 1a.

その後、回路層2と1aの間に押圧力を加えて両者間の距離を狭めることにより、図16(b)及び図20(c)に示すように、第2半導体回路層2の各電極43aを対応する第1半導体回路層1aの電極42に接触させる。この時の第1半導体回路層1aの裏面と第2半導体回路層2の表面との距離、すなわち層間ギャップをG1とすると、層間ギャップG1は電極42の厚さと電極43aの厚さの和に等しい、すなわちG1=Hc+Hbである。この時、接着剤膜44c及び44b2はいずれも押し潰されて変形し、回路層1と2の間の隙間のほぼ全体に押し広げられるが、接着剤膜44b2は島状の接着剤要素44bb2に分割されているので、接着剤膜44b2は当該隙間中にほぼ均一に広がる。また、変形せしめられた接着剤膜44cと接着剤膜44b2との間(と隣接する接着剤要素44bb2の間)には、空隙45が形成されやすいことから、当該隙間中に残存する空気が空隙45を通って外部に確実に排出されることができ、最終的に一体化・硬化せしめられた接着剤膜44b2c中に気泡が生じる恐れをなくすことができる。   Thereafter, a pressing force is applied between the circuit layers 2 and 1a to reduce the distance between the two, and as shown in FIGS. 16B and 20C, each electrode 43a of the second semiconductor circuit layer 2 is obtained. Is brought into contact with the electrode 42 of the corresponding first semiconductor circuit layer 1a. When the distance between the back surface of the first semiconductor circuit layer 1a and the surface of the second semiconductor circuit layer 2 at this time, that is, the interlayer gap is G1, the interlayer gap G1 is equal to the sum of the thickness of the electrode 42 and the thickness of the electrode 43a. That is, G1 = Hc + Hb. At this time, the adhesive films 44c and 44b2 are both crushed and deformed, and are spread over almost the entire gap between the circuit layers 1 and 2, but the adhesive film 44b2 is formed on the island-shaped adhesive element 44bb2. Since it is divided, the adhesive film 44b2 spreads almost uniformly in the gap. Further, since the gap 45 is easily formed between the deformed adhesive film 44c and the adhesive film 44b2 (and between the adjacent adhesive elements 44bb2), the air remaining in the gap is void. It can be reliably discharged to the outside through 45, and the risk of bubbles being generated in the finally integrated and cured adhesive film 44b2c can be eliminated.

上述した第1半導体回路層1aと第2半導体回路層2とを対向させてから電極42と43aを相互接触させる工程は、第1実施形態と同様に、室温で行う。第1半導体回路層1aと第2半導体回路層2との距離G1の値は、例えば2μm〜10μmの範囲で適宜決定されるが、典型的には4μmである。しかし、電極42と43aの高さHcとHbをいっそう小さくすることにより、2μm以下とすることも可能である。この場合、距離G1の値は、例えば0.1μm〜2μmの範囲で適宜決定される。この点も第1実施形態と同様である。   The step of bringing the electrodes 42 and 43a into contact with each other after the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 are opposed to each other is performed at room temperature, as in the first embodiment. The value of the distance G1 between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 is appropriately determined within a range of 2 μm to 10 μm, for example, but is typically 4 μm. However, the heights Hc and Hb of the electrodes 42 and 43a can be further reduced to 2 μm or less. In this case, the value of the distance G1 is appropriately determined within a range of 0.1 μm to 2 μm, for example. This is also the same as in the first embodiment.

その後、互いに接触せしめられた電極43aと電極42を、以下のようにして相互に接合させる。   Thereafter, the electrode 43a and the electrode 42 brought into contact with each other are bonded to each other as follows.

すなわち、図17(b)及び図20(c)の状態にある第2半導体回路層2と第1半導体回路層1aを室温から所定温度まで加熱する。その温度は、加圧変形状態にある接着剤膜44c及び44b2の表面(露出面)がわずかに軟化するか、それらの表面がわずかに流動状態になる温度に設定する。その温度は、接着剤膜44c及び44b2に使用する接着剤の種類によって異なるが、電極42と電極43aとが「圧接」する温度を考慮しながら、例えば100〜400℃の範囲内で任意に設定される。このとき、設定する加熱温度によっては、電極42及び電極43aの少なくとも一方が部分的に溶融状態となり、その表面が湾曲することがある。   That is, the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a in the states of FIGS. 17B and 20C are heated from room temperature to a predetermined temperature. The temperature is set to a temperature at which the surfaces (exposed surfaces) of the adhesive films 44c and 44b2 in the pressure-deformed state are slightly softened or the surfaces are slightly fluidized. The temperature varies depending on the type of adhesive used for the adhesive films 44 c and 44 b 2, but is arbitrarily set within a range of, for example, 100 to 400 ° C. in consideration of the temperature at which the electrode 42 and the electrode 43 a “pressure contact”. Is done. At this time, depending on the heating temperature to be set, at least one of the electrode 42 and the electrode 43a may be partially melted and the surface thereof may be curved.

続いて、第1実施形態と同様にして、図18(c)及び図20(d)に示すように、回路層1aと2の間の隙間を狭めることにより、回路層1aと2の間の層間ギャップをG1からそれより小さいG2(G2<G1)とする。この時、第1半導体回路層1aの電極42よりも機械的強度が低い第2半導体回路層2の電極43aのみが選択的に押し潰され、電極42と電極43とが「圧接」によって相互に接合せしめられると共に、接着剤要素44bb2がさらに押し広げられて相互に連結・一体化され、さらに接着剤膜44cとも連結・一体化される。このとき、1個の電極42に対応する4個の電極43aが潰されて一体的になり、その結果、電極42と電極43aとが一対一対応になる。こうして、相互に圧接された電極43aと電極42の箇所を除いて、回路層2と1aの間の隙間の全体が接着剤膜44b2cによって充填され、余分の接着剤膜44b1または44b2が当該隙間からはみ出ることもない。この時の状態は図18(c)及び図20(c)に示すようになる。   Subsequently, as in the first embodiment, as shown in FIGS. 18C and 20D, the gap between the circuit layers 1a and 2 is reduced by narrowing the gap between the circuit layers 1a and 2. The interlayer gap is set to G2 smaller than G1 (G2 <G1). At this time, only the electrode 43a of the second semiconductor circuit layer 2 whose mechanical strength is lower than that of the electrode 42 of the first semiconductor circuit layer 1a is selectively crushed, and the electrode 42 and the electrode 43 are mutually pressed by “pressure contact”. At the same time, the adhesive element 44bb2 is further spread and connected to and integrated with each other, and further connected to and integrated with the adhesive film 44c. At this time, the four electrodes 43a corresponding to one electrode 42 are crushed and integrated, and as a result, the electrodes 42 and the electrodes 43a have a one-to-one correspondence. Thus, the entire gap between the circuit layers 2 and 1a is filled with the adhesive film 44b2c except for the portions of the electrode 43a and the electrode 42 that are in pressure contact with each other, and the extra adhesive film 44b1 or 44b2 is removed from the gap. It does not protrude. The state at this time is as shown in FIG. 18 (c) and FIG. 20 (c).

加熱時に電極42及び電極43aの少なくとも一方が部分的に溶融状態となった場合は、電極42と電極43aの接合は、溶融した電極42、43aの「再凝固」により行われるか、「圧接」と「再凝固」が混合した形で行われる。この点は第1実施形態と同様である。   When at least one of the electrode 42 and the electrode 43a is partially melted during heating, the electrode 42 and the electrode 43a are joined by “re-solidification” of the melted electrodes 42 and 43a or “pressure welding”. And “re-solidification” are performed in a mixed form. This is the same as in the first embodiment.

この加熱圧接工程では、層間ギャップがG1からG2に減少せしめられる際に、接着剤膜44b2が多数の接着剤要素44bb2に分割されているので、回路層1aと2の間の隙間に存在する空気は、接着剤膜44c及び44b2(これらはいずれも加熱によって表面が軟化または流動化している)の間の空隙45と、隣接する接着剤要素44bb2の間に残存する微小空間とを通って、外部に確実に排出されることができる。また、接着剤膜44cの表面と接着剤膜44bb2の表面がいずれも軟化または流動化しているので、層間ギャップがG2になった時に、接着剤膜44cと接着剤膜44bb2が接着されやすく、その結果、回路層1aと2が確実に相互接着されることができる。   In this heating and pressing process, when the interlayer gap is reduced from G1 to G2, the adhesive film 44b2 is divided into a large number of adhesive elements 44bb2, so that air existing in the gap between the circuit layers 1a and 2 is present. Passes through the gap 45 between the adhesive films 44c and 44b2 (both of which are softened or fluidized by heating) and the minute space remaining between the adjacent adhesive elements 44bb2, Can be reliably discharged. In addition, since both the surface of the adhesive film 44c and the surface of the adhesive film 44bb2 are softened or fluidized, when the interlayer gap becomes G2, the adhesive film 44c and the adhesive film 44bb2 are easily bonded. As a result, the circuit layers 1a and 2 can be securely bonded to each other.

層間ギャップG2の値は、例えば1μm〜9μmの範囲で適宜決定されるが、典型的には3μmである。しかし、電極42と43aの高さHcとHbをいっそう小さくすることにより、1μm以下とすることも可能である。この場合、距離G2の値は、例えば0.05μm〜1μmの範囲で適宜決定される。   The value of the interlayer gap G2 is appropriately determined within a range of 1 μm to 9 μm, for example, but is typically 3 μm. However, the heights Hc and Hb of the electrodes 42 and 43a can be further reduced to 1 μm or less. In this case, the value of the distance G2 is appropriately determined in the range of 0.05 μm to 1 μm, for example.

第2半導体回路層2は、以上のようにして、電極42と電極43aを用いて第1半導体回路層1aの裏面側に固着(つまり機械的に接続)せしめられると共に、両回路層1a及び2の間の電気的接続も同時に行われる。また、それと同時に、両回路層1a及び2は、互いに圧接せしめられた電極43aと電極42の箇所を除いて回路層1aと2の間の隙間全体に充填された接着剤膜44c及び44b2によって、相互に接着される。   As described above, the second semiconductor circuit layer 2 is fixed (that is, mechanically connected) to the back surface side of the first semiconductor circuit layer 1a using the electrode 42 and the electrode 43a, and both the circuit layers 1a and 2 are connected. The electrical connection between is also made simultaneously. At the same time, the circuit layers 1a and 2 are bonded to each other by the adhesive films 44c and 44b2 filled in the entire gap between the circuit layers 1a and 2 except for the portions of the electrodes 43a and 42 that are pressed against each other. Bonded to each other.

以上のようにして電極42と電極43aの機械的・電気的接続と接着剤膜44c及び44b2の接着が終わると、相互に接合された回路層1と2aは室温まで自然冷却される。そこで、加熱、紫外線照射、薬剤添加等によって一体化された接着剤膜44b1及び44b2を最終的に硬化させる。処理が容易であることから、加熱により硬化させるのが好ましい。加熱温度は、接着剤膜44b1及び44b2として使用した接着剤の性質に応じて、例えば120〜500℃の範囲内で適宜設定される。こうして、二つの半導体回路層1aと2の間の機械的接続と電気的接続が完了する。   When the mechanical and electrical connection between the electrode 42 and the electrode 43a and the bonding of the adhesive films 44c and 44b2 are completed as described above, the circuit layers 1 and 2a bonded to each other are naturally cooled to room temperature. Therefore, the adhesive films 44b1 and 44b2 integrated by heating, ultraviolet irradiation, chemical addition, etc. are finally cured. Since treatment is easy, it is preferable to cure by heating. The heating temperature is appropriately set within a range of 120 to 500 ° C., for example, depending on the properties of the adhesive used as the adhesive films 44b1 and 44b2. Thus, the mechanical connection and the electrical connection between the two semiconductor circuit layers 1a and 2 are completed.

その後の工程は、第1実施形態の場合と同じであるから、その説明は省略する。   Since the subsequent steps are the same as those in the first embodiment, the description thereof is omitted.

以上説明したように、本発明の第3実施形態に係る集積回路装置の製造方法は、第1半導体回路層1aの裏面と第2半導体回路層2の表面の双方に電気的絶縁性の接着剤膜44c及び44b2をそれぞれ形成した点を除いて、上述した第1実施形態に係る集積回路装置の製造方法と同じであるから、第1実施形態において得られるものと同一の効果が得られることは明らかである。ただ、第3実施形態では、二つの接着剤膜44c及び44b2を使用しているので、第2実施形態と同様に、第1実施形態におけるよりも第2半導体回路層2と第1半導体回路層1aの接着力が増すという利点がある。   As described above, the manufacturing method of the integrated circuit device according to the third embodiment of the present invention is an electrically insulating adhesive on both the back surface of the first semiconductor circuit layer 1a and the surface of the second semiconductor circuit layer 2. Since the manufacturing method of the integrated circuit device according to the first embodiment is the same as that of the first embodiment except that the films 44c and 44b2 are formed, the same effect as that obtained in the first embodiment can be obtained. it is obvious. However, in the third embodiment, since the two adhesive films 44c and 44b2 are used, as in the second embodiment, the second semiconductor circuit layer 2 and the first semiconductor circuit layer than in the first embodiment are used. There is an advantage that the adhesive force of 1a is increased.

第3実施形態では、接着剤膜44b2は接着剤要素に分割されているが、接着剤膜44cは接着剤要素に分割されていないので、回路層1と2aの間の隙間45にある空気の排出されやすさは、それだけ第2実施形態よりも劣る。しかし、接着剤膜44cを接着剤要素に分割する必要がないため、接着剤膜44cの形成工程はそれだけ容易である。   In the third embodiment, the adhesive film 44b2 is divided into adhesive elements, but since the adhesive film 44c is not divided into adhesive elements, the air in the gap 45 between the circuit layers 1 and 2a Ease of discharging is inferior to that of the second embodiment. However, since it is not necessary to divide the adhesive film 44c into adhesive elements, the process of forming the adhesive film 44c is that much easier.

(第4実施形態)
図21(a)〜図23(c)及び図24(a)〜図25(c)は、本発明の第4実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図である。この第4実施形態も、半導体ウェハーを積み重ねて三次元積層構造を持つ集積回路装置を製造する例である。
(Fourth embodiment)
21 (a) to 23 (c) and FIGS. 24 (a) to 25 (c) show a method of manufacturing an integrated circuit device having a three-dimensional stacked structure according to the fourth embodiment of the present invention for each step. It is a fragmentary sectional view shown. The fourth embodiment is also an example of manufacturing an integrated circuit device having a three-dimensional stacked structure by stacking semiconductor wafers.

第4実施形態の集積回路装置の製造方法は、三次元積層構造を構成する第1半導体回路層1aの裏面(第2主面)と第2半導体回路層2の表面(第1主面)の双方に電気的絶縁性の接着剤膜44c1及び44c2をそれぞれ形成した点を除き、第1実施形態の集積回路装置の製造方法と同一である。接着剤膜44c1は、導電性プラグ15及びマイクロバンプ電極42とは重ならない形状を持つが、連続的に形成されており、多数の接着剤要素には分割されていない。接着剤膜44c2も同様に、マイクロバンプ電極43aとは重ならない形状を持つが、連続的に形成されており、多数の接着剤要素には分割されていない。よって、以下では、第1実施形態と同一の工程についてはその概略のみを説明し、相違する工程について詳細に説明する。   The manufacturing method of the integrated circuit device of 4th Embodiment is the back surface (2nd main surface) of the 1st semiconductor circuit layer 1a and the surface (1st main surface) of the 2nd semiconductor circuit layer 2 which comprise a three-dimensional laminated structure. The method is the same as the method of manufacturing the integrated circuit device of the first embodiment except that electrically insulating adhesive films 44c1 and 44c2 are formed on both sides. The adhesive film 44c1 has a shape that does not overlap the conductive plug 15 and the microbump electrode 42, but is formed continuously and is not divided into a large number of adhesive elements. Similarly, the adhesive film 44c2 has a shape that does not overlap the microbump electrode 43a, but is formed continuously and is not divided into a large number of adhesive elements. Therefore, below, only the outline is demonstrated about the process same as 1st Embodiment, and a different process is demonstrated in detail.

図21(a)〜図23(c)は、第1実施形態における図5(j)〜図7(l)にそれぞれ対応する。また、図24(a)〜図25(c)は、第1実施形態における図9(a)〜図10(c)にそれぞれ対応する。   FIG. 21A to FIG. 23C correspond to FIG. 5J to FIG. 7L in the first embodiment, respectively. FIGS. 24A to 25C correspond to FIGS. 9A to 10C in the first embodiment, respectively.

まず、第1実施形態と同一の工程により、図4(h)に示す構成の第1半導体回路層1aを形成する。その後、第1実施形態と同一の材料を用い且つ同一の方法で、図4(i)に示すように、露出した各導電性プラグ15の下端にそれぞれマイクロバンプ電極42を形成する。   First, the first semiconductor circuit layer 1a having the configuration shown in FIG. 4H is formed by the same process as in the first embodiment. Thereafter, using the same material as in the first embodiment and by the same method, as shown in FIG. 4I, a microbump electrode 42 is formed at the lower end of each exposed conductive plug 15, respectively.

第1半導体回路層1aの裏面を基準とした電極42の高さHcは、例えば2.5μmとされる。   The height Hc of the electrode 42 with respect to the back surface of the first semiconductor circuit layer 1a is, for example, 2.5 μm.

次に、第1実施形態における接着剤膜44a及び第2実施形態における接着剤膜44b1と同様にして、図21(a)及び図24(a)に示すように、第1半導体回路層1aの裏面(第2主面)すなわちSiO2膜41の露出面に、パターン化されていない電気的絶縁性の接着剤膜44c1を形成する。この接着剤膜44c1は、ポリイミド樹脂やSOG材料等の電気絶縁性の接着剤を室温でパターン化(硬化)することにより形成されたものであって、所定温度に加熱することによりその表面(露出面)を軟化または流動化することが可能である。 Next, similarly to the adhesive film 44a in the first embodiment and the adhesive film 44b1 in the second embodiment, as shown in FIGS. 21A and 24A, the first semiconductor circuit layer 1a is formed. An unpatterned electrically insulating adhesive film 44c1 is formed on the back surface (second main surface), that is, the exposed surface of the SiO 2 film 41. The adhesive film 44c1 is formed by patterning (curing) an electrically insulating adhesive such as polyimide resin or SOG material at room temperature, and its surface (exposed) is heated to a predetermined temperature. Surface) can be softened or fluidized.

接着剤膜44c1は、電極42(そして導電性プラグ15)とは重ならない形状を持つが、接着剤要素に分割されておらず、電極42のある箇所とその近傍を除いてSiO2膜41の露出面の全体を覆っている。したがって、接着剤膜44c1は導電性プラグ15とも重ならない。 The adhesive film 44 c 1 has a shape that does not overlap the electrode 42 (and the conductive plug 15), but is not divided into adhesive elements, and the SiO 2 film 41 except for a portion where the electrode 42 is present and its vicinity. Covers the entire exposed surface. Therefore, the adhesive film 44 c 1 does not overlap with the conductive plug 15.

図24(a)に示すように、第1半導体回路層1aの裏面を基準とした接着剤要素44c1の高さは、Hdであり、例えば、2μmに設定される。   As shown in FIG. 24A, the height of the adhesive element 44c1 with respect to the back surface of the first semiconductor circuit layer 1a is Hd, and is set to 2 μm, for example.

他方、第1半導体回路層1と同一の方法により製造された第2半導体回路層2の多層配線構造30(すなわち絶縁材料31)の表面(平坦化されている)に、図21(a)及び図24(a)に示すように、複数のマイクロバンプ電極43a(高さはHb)が形成される。電極43aは、第1半導体回路層1aの電極42と同一の方法で形成される。ここでは、第1実施形態と同様に、第1半導体回路層1a(Siウェハー11)の裏面に設けられた電極42の各々について、4個の電極43aが対応している。換言すれば、1個の電極42に対して4個の電極43aが接合せしめられるようになっている。また、電極42と43aを接触させて加圧した時に、電極43aのみが選択的に潰れる(塑性変形する)ようにするため、第1実施形態と同様に、電極43aは電極42よりも機械的強度が低い導電性材料から形成されている。   On the other hand, on the surface (flattened) of the multilayer wiring structure 30 (that is, the insulating material 31) of the second semiconductor circuit layer 2 manufactured by the same method as the first semiconductor circuit layer 1, FIG. As shown in FIG. 24A, a plurality of micro bump electrodes 43a (height is Hb) are formed. The electrode 43a is formed by the same method as the electrode 42 of the first semiconductor circuit layer 1a. Here, as in the first embodiment, four electrodes 43a correspond to each of the electrodes 42 provided on the back surface of the first semiconductor circuit layer 1a (Si wafer 11). In other words, four electrodes 43 a are bonded to one electrode 42. Further, when the electrodes 42 and 43a are brought into contact with each other and pressed, only the electrode 43a is selectively crushed (plastically deformed), so that the electrode 43a is more mechanical than the electrode 42 as in the first embodiment. It is formed from a conductive material having low strength.

第2半導体回路層2の表面を基準とした電極43aの高さHbは、例えば、2.5μmに設定される。   The height Hb of the electrode 43a with respect to the surface of the second semiconductor circuit layer 2 is set to 2.5 μm, for example.

次に、第1実施形態における接着剤膜44aと同様にして、第2半導体回路層2の多層配線構造30(すなわち絶縁材料31)の表面に、図21(a)及び図24(a)に示すように、パターン化された電気的絶縁性の接着剤膜44c2が形成される。この接着剤膜44c2は、接着剤膜44c1と同じ電気絶縁性の接着剤を用いて形成されており、所定形状に硬化せしめられた後も粘性(接着性)を有しており、また、所定温度への加熱によりその表面を軟化または流動化させることが可能である。   Next, in the same manner as the adhesive film 44a in the first embodiment, on the surface of the multilayer wiring structure 30 (that is, the insulating material 31) of the second semiconductor circuit layer 2, FIG. 21 (a) and FIG. 24 (a). As shown, a patterned electrically insulating adhesive film 44c2 is formed. The adhesive film 44c2 is formed using the same electrically insulating adhesive as the adhesive film 44c1, and has a viscosity (adhesiveness) after being cured into a predetermined shape. The surface can be softened or fluidized by heating to temperature.

接着剤膜44c2も、接着剤膜44c1と同様に、電極43aとは重ならない形状を持つが、接着剤要素に分割されておらず、電極43aのある箇所とその近傍を除いて多層配線構造30の表面の全体を覆っている。   Similarly to the adhesive film 44c1, the adhesive film 44c2 has a shape that does not overlap the electrode 43a, but is not divided into adhesive elements, and the multilayer wiring structure 30 except for a portion where the electrode 43a is located and its vicinity. Covers the entire surface of the.

第2半導体回路層2の表面を基準とした接着剤膜44c2の厚さHaは、例えば、2μmに設定される。   A thickness Ha of the adhesive film 44c2 with respect to the surface of the second semiconductor circuit layer 2 is set to 2 μm, for example.

接着剤膜44c1と44c2の全体積(硬化後の全体積)の和は、電極42と43aを用いて第2半導体回路層2と第1半導体回路層1aとを機械的・電気的に接続した際に、それら二つの回路層1aと2の間に生じる隙間全体が接着剤膜44c1及び44c2によって充填され、且つその隙間から余分の接着剤膜44c1及び44c2がはみ出ないような値に設定されている。これは、回路層1aと2の接続後に、当該隙間からはみ出た余分な接着剤膜44c1及び44c2を除去する作業を避けることができるようにするためである。   The sum of the total volume (total volume after curing) of the adhesive films 44c1 and 44c2 is obtained by mechanically and electrically connecting the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a using the electrodes 42 and 43a. At this time, the entire gap formed between the two circuit layers 1a and 2 is filled with the adhesive films 44c1 and 44c2, and the adhesive film 44c1 and 44c2 are set so as not to protrude from the gap. Yes. This is to avoid the operation of removing the excess adhesive films 44c1 and 44c2 protruding from the gap after the circuit layers 1a and 2 are connected.

接着剤膜44c1及び44c2は、電極42と43aがある箇所とその近傍には存在しないため、図24(a)に示すように、接着剤膜44c1の厚さHdは、電極42の高さHcよりも小さく設定され(Hd<Hc)、且つ、接着剤膜44c2の厚さHaは、電極43aの高さHbよりも小さく設定されている(Ha<Hb)。これは、第2半導体回路層2と第1半導体回路層1aとを接続した際に、加圧によって接着剤膜44c1と44c2がそれぞれ押し潰されて電極42と電極43aの周囲にまで広がって、回路層1aと2の間に残存する隙間全体に充填されるようにするためである。   Since the adhesive films 44c1 and 44c2 do not exist in the vicinity of the positions where the electrodes 42 and 43a are present, the thickness Hd of the adhesive film 44c1 is equal to the height Hc of the electrode 42 as shown in FIG. Is set smaller (Hd <Hc), and the thickness Ha of the adhesive film 44c2 is set smaller than the height Hb of the electrode 43a (Ha <Hb). This is because when the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a are connected, the adhesive films 44c1 and 44c2 are crushed by the pressure and spread around the electrodes 42 and 43a, This is because the entire gap remaining between the circuit layers 1a and 2 is filled.

後述するが、第2半導体回路層2と第1半導体回路層1aとを接続した際に、各電極43aも押し潰されて塑性変形しその周囲に広げられる。その結果、各電極42に対応する4個の電極43aは相互に接続されて一体化される。   As will be described later, when the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a are connected, each electrode 43a is also crushed, plastically deformed, and spread around it. As a result, the four electrodes 43a corresponding to each electrode 42 are connected and integrated.

ここでは、マイクロバンプ電極42を形成してから接着剤膜44c1を形成し、マイクロバンプ電極43aを形成してから接着剤膜44c2を形成しているが、接着剤膜44c1を形成してからマイクロバンプ電極42を形成してもよいし、接着剤膜44c2を形成してからマイクロバンプ電極43aを形成してもよい。   Here, the adhesive film 44c1 is formed after the microbump electrode 42 is formed, and the adhesive film 44c2 is formed after the microbump electrode 43a is formed. However, the microbump electrode 42a is formed after the adhesive film 44c1 is formed. The bump electrode 42 may be formed, or the microbump electrode 43a may be formed after the adhesive film 44c2 is formed.

続いて、図21(a)及び図24(a)に示すように、支持基板40を介して固定された第1半導体回路層1aの裏面に、下方から第2半導体回路層2の表面を対向させる。(逆に、第2半導体回路層2を固定しておき、上方から支持基板40に固定された第1半導体回路層1aを対向させてもよい。)その後、回路層2と1aの間に押圧力を加えて回路層2と1aを相互に近接させると、接着剤膜44c1の厚さHdは電極42の高さHcよりも小さく設定され(Hd<Hc)、接着剤膜44c2の厚さHaは電極43aの高さHbよりも小さく設定されている(Ha<Hb)ので、最初に、図22(b)及び図24(b)に示すように、第2半導体回路層2の電極42の先端(頂部)が第1半導体回路層1aの電極43aの先端(頂部)に接触せしめられる。この時の回路層1と2の間の層間ギャップはG1である(G1=Hc+Hb)。   Subsequently, as shown in FIGS. 21A and 24A, the surface of the second semiconductor circuit layer 2 is opposed to the back surface of the first semiconductor circuit layer 1a fixed via the support substrate 40 from below. Let (Conversely, the second semiconductor circuit layer 2 may be fixed and the first semiconductor circuit layer 1a fixed to the support substrate 40 may be opposed from above.) Thereafter, the second semiconductor circuit layer 2 is pushed between the circuit layers 2 and 1a. When the circuit layers 2 and 1a are brought close to each other by applying pressure, the thickness Hd of the adhesive film 44c1 is set to be smaller than the height Hc of the electrode 42 (Hd <Hc), and the thickness Ha of the adhesive film 44c2 is set. Is set to be smaller than the height Hb of the electrode 43a (Ha <Hb). First, as shown in FIGS. 22B and 24B, the electrode 42 of the second semiconductor circuit layer 2 The tip (top) is brought into contact with the tip (top) of the electrode 43a of the first semiconductor circuit layer 1a. The interlayer gap between the circuit layers 1 and 2 at this time is G1 (G1 = Hc + Hb).

この時、接着剤膜44c1及び44c2は接合・一体化せず、接着剤膜44c1及び44c2の対向面の間に隙間45が形成される。このため、空気はその隙間45を通って容易に外部に排出されることができる。   At this time, the adhesive films 44c1 and 44c2 are not joined and integrated, and a gap 45 is formed between the opposing surfaces of the adhesive films 44c1 and 44c2. For this reason, air can be easily discharged outside through the gap 45.

上述した第1半導体回路層1aと第2半導体回路層2とを対向させてから電極42と43aを相互接触させる工程は、第1実施形態と同様に、室温で行う。第1半導体回路層1aと第2半導体回路層2との距離G1の値は、例えば2μm〜10μmの範囲で適宜決定されるが、典型的には4μmである。しかし、電極42と43aの高さHcとHbをいっそう小さくすることにより、2μm以下とすることも可能である。この場合、距離G1の値は、例えば0.1μm〜2μmの範囲で適宜決定される。この点も第1実施形態と同様である。   The step of bringing the electrodes 42 and 43a into contact with each other after the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 are opposed to each other is performed at room temperature, as in the first embodiment. The value of the distance G1 between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 is appropriately determined within a range of 2 μm to 10 μm, for example, but is typically 4 μm. However, the heights Hc and Hb of the electrodes 42 and 43a can be further reduced to 2 μm or less. In this case, the value of the distance G1 is appropriately determined within a range of 0.1 μm to 2 μm, for example. This is also the same as in the first embodiment.

その後、互いに接触せしめられた電極43aと電極42を、以下のようにして相互に接合させる。   Thereafter, the electrode 43a and the electrode 42 brought into contact with each other are bonded to each other as follows.

すなわち、図22(b)及び図24(b)の状態にある第2半導体回路層2と第1半導体回路層1aを室温から所定温度まで加熱する。その温度は、接着剤膜44c1及び44c2の表面(露出面)がわずかに軟化するか、それらの表面がわずかに流動状態になる温度に設定する。その温度は、接着剤膜44c1及び44c2に使用する接着剤の種類によって異なるが、電極42と電極43aとが「圧接」する温度を考慮しながら、例えば100〜400℃の範囲内で任意に設定される。このとき、設定する加熱温度によっては、電極42及び電極43aの少なくとも一方が部分的に溶融状態となり、その表面が湾曲することがある。   That is, the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1a in the states of FIGS. 22B and 24B are heated from room temperature to a predetermined temperature. The temperature is set to a temperature at which the surfaces (exposed surfaces) of the adhesive films 44c1 and 44c2 are slightly softened or the surfaces thereof are slightly fluidized. The temperature differs depending on the type of adhesive used for the adhesive films 44c1 and 44c2, but is arbitrarily set within a range of, for example, 100 to 400 ° C. in consideration of the temperature at which the electrode 42 and the electrode 43a are “pressed”. Is done. At this time, depending on the heating temperature to be set, at least one of the electrode 42 and the electrode 43a may be partially melted and the surface thereof may be curved.

続いて、押圧力を印加することにより、第1実施形態と同様にして、図23(c)及び図25(c)に示すように、回路層1aと2の間の隙間を狭めることにより、回路層1aと2の間の層間ギャップをG1からそれより小さいG2(G2<G1)とする。この時、第2半導体回路層2の電極43aと第1半導体回路層1aの電極42の間には、圧縮力が作用する。その結果、電極42よりも機械的強度が低い電極43aのみが選択的に押し潰されて、電極42と電極43とが「圧接」によって相互に接合せしめられると共に、接着剤膜44c1及び44c2が相互に接触し、押し広げられながら相互に連結・一体化される。このとき、1個の電極42に対応する4個の電極43aが潰されて一体的になり、その結果、電極42と電極43aとが一対一対応になる。こうして、相互に圧接された電極43aと電極42の箇所を除いて、回路層2と1aの間の隙間の全体が接着剤膜44c1c2によって充填され、余分の接着剤膜44c1または44c2が当該隙間からはみ出ることもない。る。この時の状態は図23(c)及び図25(c)に示すようになる。   Subsequently, by applying a pressing force, as in the first embodiment, as shown in FIGS. 23 (c) and 25 (c), by narrowing the gap between the circuit layers 1a and 2, The interlayer gap between the circuit layers 1a and 2 is G2 and smaller G2 (G2 <G1). At this time, a compressive force acts between the electrode 43a of the second semiconductor circuit layer 2 and the electrode 42 of the first semiconductor circuit layer 1a. As a result, only the electrode 43a having a mechanical strength lower than that of the electrode 42 is selectively crushed so that the electrode 42 and the electrode 43 are joined to each other by “pressure contact”, and the adhesive films 44c1 and 44c2 are mutually connected. It is connected and integrated with each other while being pushed and spread. At this time, the four electrodes 43a corresponding to one electrode 42 are crushed and integrated, and as a result, the electrodes 42 and the electrodes 43a have a one-to-one correspondence. In this way, the entire gap between the circuit layers 2 and 1a is filled with the adhesive film 44c1c2 except for the portions of the electrodes 43a and 42 that are in pressure contact with each other, and the extra adhesive film 44c1 or 44c2 is removed from the gap. It does not protrude. The The state at this time is as shown in FIG. 23 (c) and FIG. 25 (c).

加熱時に電極42及び電極43aの少なくとも一方が部分的に溶融状態となった場合は、電極42と電極43aの接合は、溶融した電極42、43aの「再凝固」により行われるか、「圧接」と「再凝固」が混合した形で行われる。この点は第1実施形態と同様である。   When at least one of the electrode 42 and the electrode 43a is partially melted during heating, the electrode 42 and the electrode 43a are joined by “re-solidification” of the melted electrodes 42 and 43a or “pressure welding”. And “re-solidification” are performed in a mixed form. This is the same as in the first embodiment.

この第4実施形態では、接着剤膜44c1及び44c2の双方が接着剤要素に分割されていないので、この加熱圧接工程では、接着剤膜44c1及び44c2の対向面の間に存在する空気は、層間ギャップがG2に狭められる前に隙間45を通って外部に排出される。接着剤膜44c1の表面と接着剤膜44c2の表面がいずれも軟化または流動化しているので、層間ギャップがG2になった時に、接着剤膜44c1と接着剤膜44c2が接着されやすく、その結果、回路層1aと2が確実に相互接着されることができる。この点は、第1実施形態と同様である。   In the fourth embodiment, since both of the adhesive films 44c1 and 44c2 are not divided into adhesive elements, the air existing between the opposing surfaces of the adhesive films 44c1 and 44c2 is not heated between Before the gap is narrowed to G2, it is discharged to the outside through the gap 45. Since both the surface of the adhesive film 44c1 and the surface of the adhesive film 44c2 are softened or fluidized, the adhesive film 44c1 and the adhesive film 44c2 are easily bonded when the interlayer gap becomes G2, and as a result, The circuit layers 1a and 2 can be securely bonded to each other. This is the same as in the first embodiment.

層間ギャップG2の値は、例えば1μm〜9μmの範囲で適宜決定されるが、典型的には3μmである。しかし、電極42と43aの高さHcとHbをいっそう小さくすることにより、1μm以下とすることも可能である。この場合、距離G2の値は、例えば0.05μm〜1μmの範囲で適宜決定される。   The value of the interlayer gap G2 is appropriately determined within a range of 1 μm to 9 μm, for example, but is typically 3 μm. However, the heights Hc and Hb of the electrodes 42 and 43a can be further reduced to 1 μm or less. In this case, the value of the distance G2 is appropriately determined in the range of 0.05 μm to 1 μm, for example.

第2半導体回路層2は、以上のようにして、電極42と電極43aを用いて第1半導体回路層1aの裏面側に固着(つまり機械的に接続)せしめられると共に、両回路層1a及び2の間の電気的接続も同時に行われる。また、それと同時に、両回路層1a及び2は、互いに接続された電極43aと電極42の箇所を除いて回路層1aと2の間の隙間全体に充填された接着剤膜44b1及び44b2によって、相互に接着される。   As described above, the second semiconductor circuit layer 2 is fixed (that is, mechanically connected) to the back surface side of the first semiconductor circuit layer 1a using the electrode 42 and the electrode 43a, and both the circuit layers 1a and 2 are connected. The electrical connection between is also made simultaneously. At the same time, both circuit layers 1a and 2 are mutually connected by adhesive films 44b1 and 44b2 filled in the entire gap between the circuit layers 1a and 2 except for the portions of the electrodes 43a and 42 connected to each other. Glued to.

以上のようにして電極42と電極43aの機械的・電気的接続と接着剤膜44c1及び44c2の接着が終わると、相互に接合された回路層1と2aは室温まで自然冷却される。そこで、加熱、紫外線照射、薬剤添加等によって一体化された接着剤膜44c1及び44c2を最終的に硬化させる。処理が容易であることから、加熱により硬化させるのが好ましい。加熱温度は、接着剤膜44c1及び44cとして使用した接着剤の性質に応じて、例えば120〜500℃の範囲内で適宜設定される。こうして、二つの半導体回路層1aと2の間の機械的接続と電気的接続が完了する。   When the mechanical / electrical connection between the electrode 42 and the electrode 43a and the bonding of the adhesive films 44c1 and 44c2 are completed as described above, the circuit layers 1 and 2a bonded to each other are naturally cooled to room temperature. Therefore, the adhesive films 44c1 and 44c2 integrated by heating, ultraviolet irradiation, chemical addition, etc. are finally cured. Since treatment is easy, it is preferable to cure by heating. The heating temperature is appropriately set within a range of 120 to 500 ° C., for example, depending on the properties of the adhesive used as the adhesive films 44c1 and 44c. Thus, the mechanical connection and the electrical connection between the two semiconductor circuit layers 1a and 2 are completed.

その後の工程は、第1実施形態の場合と同じであるから、その説明は省略する。   Since the subsequent steps are the same as those in the first embodiment, the description thereof is omitted.

以上説明したように、本発明の第4実施形態に係る集積回路装置の製造方法は、第1半導体回路層1aの裏面と第2半導体回路層2の表面の双方に電気的絶縁性の接着剤膜44c1及び44c2をそれぞれ形成した点を除いて、上述した第1実施形態に係る集積回路装置の製造方法と同じであるから、第1実施形態において得られるものと同一の効果が得られることは明らかである。ただ、第4実施形態では、二つの接着剤膜44c1及び44c2を使用しているので、第2実施形態と同様に、第1実施形態におけるよりも第2半導体回路層2と第1半導体回路層1aの接着力が増すという利点がある。   As described above, the method for manufacturing an integrated circuit device according to the fourth embodiment of the present invention has an electrically insulating adhesive on both the back surface of the first semiconductor circuit layer 1a and the surface of the second semiconductor circuit layer 2. Except for forming the films 44c1 and 44c2, respectively, it is the same as the manufacturing method of the integrated circuit device according to the first embodiment described above, and therefore the same effect as that obtained in the first embodiment can be obtained. it is obvious. However, in the fourth embodiment, since the two adhesive films 44c1 and 44c2 are used, as in the second embodiment, the second semiconductor circuit layer 2 and the first semiconductor circuit layer than in the first embodiment are used. There is an advantage that the adhesive force of 1a is increased.

第4実施形態では、接着剤膜44c1及び44c2の双方が接着剤要素に分割されていないので、回路層1と2aの間の隙間45にある空気の排出されやすさは、それだけ第2実施形態よりも劣る。しかし、接着剤膜44c1及び44c2を接着剤要素に分割する必要がないため、接着剤膜44c1及び44c2の形成工程はそれだけ容易である。   In the fourth embodiment, since both of the adhesive films 44c1 and 44c2 are not divided into adhesive elements, the air in the gap 45 between the circuit layers 1 and 2a is easily discharged as much as the second embodiment. Inferior to. However, since it is not necessary to divide the adhesive films 44c1 and 44c2 into adhesive elements, the process of forming the adhesive films 44c1 and 44c2 is much easier.

(第5実施形態)
図26(a)〜図29(e)及び図30(a)〜図31(d)は、本発明の第5実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図である。この第5実施形態も、半導体ウェハーを積み重ねて三次元積層構造を持つ集積回路装置を製造する例である。
(Fifth embodiment)
26 (a) to 29 (e) and FIGS. 30 (a) to 31 (d) show a method of manufacturing an integrated circuit device having a three-dimensional stacked structure according to the fifth embodiment of the present invention for each step. It is a fragmentary sectional view shown. The fifth embodiment is also an example of manufacturing an integrated circuit device having a three-dimensional stacked structure by stacking semiconductor wafers.

第5実施形態の集積回路装置の製造方法は、三次元積層構造を構成する第1半導体回路層1aの裏面(第2主面)にはマイクロバンプ電極を形成せず、導電性プラグ15の端を直接、第2半導体回路層2の表面(第1主面)のマイクロバンプ電極43aに接触させるようにした点を除き、第1実施形態の集積回路装置の製造方法と同一である。よって、以下では、第1実施形態と同一の工程についてはその概略のみを説明し、相違する工程について詳細に説明する。   In the manufacturing method of the integrated circuit device of the fifth embodiment, the microbump electrode is not formed on the back surface (second main surface) of the first semiconductor circuit layer 1a constituting the three-dimensional stacked structure, and the end of the conductive plug 15 is formed. Is directly in contact with the micro bump electrode 43a on the surface (first main surface) of the second semiconductor circuit layer 2, and is the same as the manufacturing method of the integrated circuit device of the first embodiment. Therefore, below, only the outline is demonstrated about the process same as 1st Embodiment, and a different process is demonstrated in detail.

まず、第1実施形態と同一の工程により、図3(f)に示す構成の第1半導体回路層1aを形成する。その後、第1実施形態と同様にして、基板11の裏面と露出したSiO2膜14の上にSiO2膜41を形成し、図3(g)に示す構成を得る。こうして得た構成を再度、図26(a)に示している。この後の工程は、第1実施形態とは異なる。 First, the first semiconductor circuit layer 1a having the configuration shown in FIG. 3F is formed by the same process as in the first embodiment. Thereafter, similarly to the first embodiment, the SiO 2 film 41 is formed on the back surface of the substrate 11 and the exposed SiO 2 film 14 to obtain the configuration shown in FIG. The configuration thus obtained is again shown in FIG. The subsequent steps are different from those in the first embodiment.

すなわち、図3(g)及び図26(a)に示す構成において、公知のエッチング方法により、導電性プラグ15の端部を覆う部分のSiO2膜41を選択的に除去し、導電性プラグ15の端部15aを露出させる。その結果、図26(b)に示すように、導電性プラグ15の端部15aがSiO2膜41から突出する。残存したSiO2膜41は、半導体基板11の裏面の導電性プラグ15以外の部分を覆っている。以下、このような構造を持つ第1半導体回路層を1bとする。第1実施形態とは異なり、第1半導体回路層1bの裏面全体は平坦になっていない。また、露出した各導電性プラグ15の下端に、マイクロバンプ電極42は形成されない。 That is, in the configuration shown in FIGS. 3G and 26A, the portion of the SiO 2 film 41 covering the end of the conductive plug 15 is selectively removed by a known etching method, and the conductive plug 15 is removed. The edge part 15a of this is exposed. As a result, the end 15a of the conductive plug 15 protrudes from the SiO 2 film 41 as shown in FIG. The remaining SiO 2 film 41 covers portions other than the conductive plug 15 on the back surface of the semiconductor substrate 11. Hereinafter, the first semiconductor circuit layer having such a structure is referred to as 1b. Unlike the first embodiment, the entire back surface of the first semiconductor circuit layer 1b is not flat. Further, the micro bump electrode 42 is not formed at the lower end of each exposed conductive plug 15.

図30(a)に示すように、各導電性プラグ15の突出部分の第1半導体回路層1bの裏面(SiO2膜41の表面)を基準とした高さは、Heであり、例えば1μmとされる。 As shown in FIG. 30A, the height of the protruding portion of each conductive plug 15 with respect to the back surface of the first semiconductor circuit layer 1b (the surface of the SiO 2 film 41) is He, for example, 1 μm. Is done.

次に、第1半導体回路層1bの裏面に、以下のようにして、第2半導体回路層2を固着させる。ここでは、第2半導体回路層2は、第1半導体回路層1とほぼ同一の構成を有しており、また第1半導体回路層1と同一の方法で製造されると仮定し、対応する要素には第1半導体回路層1の場合と同一符号を付してその説明を省略する。なお、必要に応じて、第2半導体回路層2を第1半導体回路層1とは異なる構成としてもよいことは言うまでもない。   Next, the second semiconductor circuit layer 2 is fixed to the back surface of the first semiconductor circuit layer 1b as follows. Here, it is assumed that the second semiconductor circuit layer 2 has substantially the same configuration as that of the first semiconductor circuit layer 1 and is manufactured by the same method as that of the first semiconductor circuit layer 1. Are denoted by the same reference numerals as those of the first semiconductor circuit layer 1 and description thereof is omitted. Needless to say, the second semiconductor circuit layer 2 may be configured differently from the first semiconductor circuit layer 1 as necessary.

第2半導体回路層2の多層配線構造30(すなわち絶縁材料31)の表面(平坦化されている)には、図27(c)及び図30(a)に示すように、複数のマイクロバンプ電極43aが形成される。これらの電極43aは、第1実施形態における第1半導体回路層1bのマイクロバンプ電極42と同一の方法で形成される。ここでは、第1半導体回路層1b(Siウェハー11)に設けられた導電性プラグ15の各々について、4個の電極43aが対応している。換言すれば、1個の導電性プラグ15に対して4個の電極43aが接合せしめられるようになっている。   As shown in FIGS. 27 (c) and 30 (a), a plurality of micro bump electrodes are formed on the surface (flattened) of the multilayer wiring structure 30 (that is, the insulating material 31) of the second semiconductor circuit layer 2. 43a is formed. These electrodes 43a are formed by the same method as the micro bump electrodes 42 of the first semiconductor circuit layer 1b in the first embodiment. Here, four electrodes 43a correspond to each of the conductive plugs 15 provided on the first semiconductor circuit layer 1b (Si wafer 11). In other words, four electrodes 43 a are bonded to one conductive plug 15.

また、導電性プラグ15と電極43aを互いに加圧接触させた時に、電極43aのみが選択的に潰れる(塑性変形する)ようにするため、電極43aは導電性プラグ15よりも硬度が十分低い導電性材料から形成されている。例えば、第1実施形態と同様に、電極42をタングステン(W)により形成した場合、電極43aはインジウム(In)と金(Au)の積層体(In/Au)により形成するのが好ましい。また、電極42を銅(Cu)により形成した場合は、電極43aは錫(Sn)と銀(Ag)の積層体(Sn/Ag)により形成するのが好ましい。   Further, when the conductive plug 15 and the electrode 43a are brought into pressure contact with each other, only the electrode 43a is selectively crushed (plastically deformed), so that the electrode 43a has a conductivity sufficiently lower than that of the conductive plug 15. It is formed from a functional material. For example, as in the first embodiment, when the electrode 42 is formed of tungsten (W), the electrode 43a is preferably formed of a laminate (In / Au) of indium (In) and gold (Au). Moreover, when the electrode 42 is formed of copper (Cu), the electrode 43a is preferably formed of a laminate (Sn / Ag) of tin (Sn) and silver (Ag).

次に、第2半導体回路層2の多層配線構造30(すなわち絶縁材料31)の表面に、図27(c)及び図30(a)に示すように、パターン化された電気的絶縁性の接着剤膜44aが第1実施形態と同じ方法で形成される。この接着剤膜44aは、第1実施形態で用いられたものと同じであって、バンプ状(島状)に形成された多数の接着剤要素44aa(高さはHa)から構成されており、それら接着剤要素44aaは多層配線構造30の表面に規則的に分布せしめられている。接着剤膜44aは、電極43aのいずれとも重ならない形状を持ち、電極43aが形成された箇所とその近傍を除いて配置されている。したがって、接着剤膜44a(すなわち、すべての接着剤要素44aa)は、第1半導体回路層1bの導電性プラグ15とも重ならない。   Next, as shown in FIGS. 27 (c) and 30 (a), a patterned electrically insulating adhesive is adhered to the surface of the multilayer wiring structure 30 (that is, the insulating material 31) of the second semiconductor circuit layer 2. The agent film 44a is formed by the same method as in the first embodiment. This adhesive film 44a is the same as that used in the first embodiment, and is composed of a number of adhesive elements 44aa (height Ha) formed in a bump shape (island shape). These adhesive elements 44aa are regularly distributed on the surface of the multilayer wiring structure 30. The adhesive film 44a has a shape that does not overlap any of the electrodes 43a, and is disposed except for the portion where the electrode 43a is formed and the vicinity thereof. Accordingly, the adhesive film 44a (that is, all the adhesive elements 44aa) does not overlap with the conductive plug 15 of the first semiconductor circuit layer 1b.

図30(a)に示すように、第2半導体回路層2の表面を基準とした接着剤要素44aaの高さは、Haであり、例えば、4μmに設定される。   As shown in FIG. 30A, the height of the adhesive element 44aa on the basis of the surface of the second semiconductor circuit layer 2 is Ha, and is set to 4 μm, for example.

接着剤膜44aの全体積(硬化後の全体積)は、導電性プラグ15と電極43aを用いて第2半導体回路層2と第1半導体回路層1bとを接続した際に、それら二つの回路層1bと2の間に生じる隙間全体が接着剤膜44aによって充填され、且つその隙間から余分の接着剤膜44aがはみ出ないような値に設定される。接着剤膜44aは、導電性プラグ15と電極43aがある箇所とその近傍には存在しないので、図30(a)に示すように、各接着剤要素44aaの高さHa(これは接着剤膜44aの厚さに等しい)は、電極43aの高さHbよりも大きくされており(Ha>Hb)、第2半導体回路層2と第1半導体回路層1bとを接合した際に各接着剤要素44aaが押しつぶされて導電性プラグ15と電極43aがある箇所の周囲まで広がり、回路層1bと2の間に生じる隙間全体に充填されやすいようになっている。   The total volume of the adhesive film 44a (the total volume after curing) is determined when the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1b are connected using the conductive plug 15 and the electrode 43a. The entire gap formed between the layers 1b and 2 is filled with the adhesive film 44a, and the value is set so that the excess adhesive film 44a does not protrude from the gap. Since the adhesive film 44a does not exist in the vicinity of the conductive plug 15 and the electrode 43a and in the vicinity thereof, as shown in FIG. 30A, the height Ha of each adhesive element 44aa (this is the adhesive film 44a is equal to the height Hb of the electrode 43a (Ha> Hb), and each adhesive element is bonded to the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1b. 44aa is crushed and spreads around the place where the conductive plug 15 and the electrode 43a are present, so that the entire gap formed between the circuit layers 1b and 2 can be easily filled.

第2半導体回路層2の表面を基準とした電極43aの高さHbの典型例は、例えば、2μmである。   A typical example of the height Hb of the electrode 43a with respect to the surface of the second semiconductor circuit layer 2 is 2 μm, for example.

接着剤膜44aが多数の接着剤要素44aaに分けられているのは、第2半導体回路層2と第1半導体回路層1bとを接合する際に、両回路層2、1bの間に存在する空気を外部に逃がしやすくするため(つまり脱ガスの容易化のため)である。すなわち、回路層2と1bがほとんど接続された状態でも、両層2、1bの間に存在する空気が隣接する接着剤要素44aaの間の隙間を通って外部に押し出されるようにするためである。   The adhesive film 44a is divided into a large number of adhesive elements 44aa when the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1b are bonded to each other between the circuit layers 2 and 1b. This is to facilitate the escape of air to the outside (that is, to facilitate degassing). That is, even when the circuit layers 2 and 1b are almost connected, the air existing between the layers 2 and 1b is pushed out through the gap between the adjacent adhesive elements 44aa. .

ここでは、マイクロバンプ電極43aを形成してから接着剤膜44aを形成しているが、接着剤膜44aを形成してからマイクロバンプ電極43aを形成してもよい。   Here, the adhesive film 44a is formed after the microbump electrode 43a is formed, but the microbump electrode 43a may be formed after the adhesive film 44a is formed.

続いて、図27(a)及び図30(a)に示すように、支持基板40を介して固定された第1半導体回路層1bの裏面に、下方から第2半導体回路層2の表面を対向させる。(逆に、第2半導体回路層2を固定しておき、上方から支持基板40に固定された第1半導体回路層1bを対向させてもよい。)その後、回路層2と1bの間に押圧力を加えて回路層2と1bを相互に近接させると、各接着剤要素44aaの高さ(接着剤膜44aの厚さ)Haは、電極43aの高さHbよりも大きく(Ha>Hb)、且つ導電性プラグ15の突出高さHeと電極43aの高さHbの和より大きい(Ha>Hb+He)ため、最初に、図30(b)に示すように、第2半導体回路層2の接着剤膜44a(接着剤要素44aa)の先端(頂部)が第1半導体回路層1bの裏面に接触せしめられる。   Subsequently, as shown in FIGS. 27A and 30A, the surface of the second semiconductor circuit layer 2 is opposed to the back surface of the first semiconductor circuit layer 1b fixed through the support substrate 40 from below. Let (Conversely, the second semiconductor circuit layer 2 may be fixed and the first semiconductor circuit layer 1b fixed to the support substrate 40 may be opposed from above.) Thereafter, the second semiconductor circuit layer 2 is pushed between the circuit layers 2 and 1b. When pressure is applied to bring the circuit layers 2 and 1b close to each other, the height of each adhesive element 44aa (the thickness of the adhesive film 44a) Ha is larger than the height Hb of the electrode 43a (Ha> Hb). And larger than the sum of the protruding height He of the conductive plug 15 and the height Hb of the electrode 43a (Ha> Hb + He), first, as shown in FIG. 30B, the second semiconductor circuit layer 2 is bonded. The tip (top) of the agent film 44a (adhesive element 44aa) is brought into contact with the back surface of the first semiconductor circuit layer 1b.

その後、回路層2と1bの間に押圧力を加えて両者間の距離を狭めることにより、図28(d)及び図31(c)に示すように、第2半導体回路層2の各電極43aを対応する第1半導体回路層1bの電極42に接触させる。この時の第1半導体回路層1bの裏面と第2半導体回路層2の表面との距離すなわち層間ギャップG1は、導電性プラグ15の突出高さと電極43aの高さの和に等しい、すなわちG1=He+Hbである。この時、接着剤膜44aは押し潰されて変形し、回路層1bと2の間の隙間のほぼ全体に押し広げられるが、接着剤膜44aは島状の接着剤要素44aaに分割されているので、接着剤膜44aは当該隙間中にほぼ均一に広がる。また、第1半導体回路層1bの裏面と変形せしめられた接着剤膜44aとの間(と隣接する接着剤要素44aaの間)には、空隙45が形成されやすいことから、当該隙間中に残存する空気が空隙45を通って外部に確実に排出されることができ、最終的に一体化・硬化せしめられた接着剤膜44a中に気泡が生じる恐れをなくすことができる。   Thereafter, a pressing force is applied between the circuit layers 2 and 1b to reduce the distance between the two, and as shown in FIGS. 28D and 31C, each electrode 43a of the second semiconductor circuit layer 2 is obtained. Is brought into contact with the electrode 42 of the corresponding first semiconductor circuit layer 1b. At this time, the distance between the back surface of the first semiconductor circuit layer 1b and the surface of the second semiconductor circuit layer 2, that is, the interlayer gap G1, is equal to the sum of the protruding height of the conductive plug 15 and the height of the electrode 43a, that is, G1 = He + Hb. At this time, the adhesive film 44a is crushed and deformed to be spread over almost the entire gap between the circuit layers 1b and 2, but the adhesive film 44a is divided into island-shaped adhesive elements 44aa. Therefore, the adhesive film 44a spreads almost uniformly in the gap. Further, since a gap 45 is easily formed between the back surface of the first semiconductor circuit layer 1b and the deformed adhesive film 44a (and between the adjacent adhesive elements 44aa), it remains in the gap. The air to be discharged can be surely discharged to the outside through the gap 45, and the risk of bubbles being generated in the finally integrated and cured adhesive film 44a can be eliminated.

上述した第1半導体回路層1bと第2半導体回路層2とを対向させてから導電性プラグ15と電極43aとを相互接触させる工程は、第1実施形態と同様に、室温で行う。第1半導体回路層1bと第2半導体回路層2との距離G1の値は、例えば2μm〜10μmの範囲で適宜決定されるが、典型的には4μmである。しかし、電極42と43aの高さHcとHbをいっそう小さくすることにより、2μm以下とすることも可能である。この場合、距離G1の値は、例えば0.1μm〜2μmの範囲で適宜決定される。この点も第1実施形態と同様である。   The step of making the conductive plug 15 and the electrode 43a contact each other after the first semiconductor circuit layer 1b and the second semiconductor circuit layer 2 are opposed to each other is performed at room temperature, as in the first embodiment. The value of the distance G1 between the first semiconductor circuit layer 1b and the second semiconductor circuit layer 2 is appropriately determined within a range of 2 μm to 10 μm, for example, and is typically 4 μm. However, the heights Hc and Hb of the electrodes 42 and 43a can be further reduced to 2 μm or less. In this case, the value of the distance G1 is appropriately determined within a range of 0.1 μm to 2 μm, for example. This is also the same as in the first embodiment.

その後、互いに接触せしめられた電極43aと電極42を、以下のようにして相互に接続させる。   Thereafter, the electrodes 43a and 42 brought into contact with each other are connected to each other as follows.

すなわち、図28(d)及び図30(b)の状態にある第2半導体回路層2と第1半導体回路層1bを室温から所定温度まで加熱する。その温度は、加圧変形状態にある接着剤膜44aの表面(露出面)がわずかに軟化するか、その表面がわずかに流動状態になる温度に設定する。その温度は、接着剤膜44aに使用する接着剤の種類によって異なるが、導電性プラグ15と電極43aとが「圧接」する温度を考慮しながら、例えば100〜400℃の範囲内で任意に設定される。このとき、設定する加熱温度によっては、電極43aが部分的に溶融状態となり、その表面が湾曲することがある。   That is, the second semiconductor circuit layer 2 and the first semiconductor circuit layer 1b in the states of FIG. 28D and FIG. 30B are heated from room temperature to a predetermined temperature. The temperature is set to a temperature at which the surface (exposed surface) of the adhesive film 44a in a pressure-deformed state is slightly softened or the surface is slightly fluidized. The temperature varies depending on the type of adhesive used for the adhesive film 44a, but is arbitrarily set within a range of, for example, 100 to 400 ° C. in consideration of the temperature at which the conductive plug 15 and the electrode 43a are “press-contacted”. Is done. At this time, depending on the heating temperature to be set, the electrode 43a may be partially melted and the surface may be curved.

続いて、押圧力を印加することにより、第1半導体回路層1bに対して下方から第2半導体回路層2をさらに近づけ、あるいは第2半導体回路層2に対して上方から第1半導体回路層1bを下降させることにより、図29(e)及び図31(d)に示すように、回路層1bと2の間の隙間を狭める。換言すれば、回路層1bと2の間の層間ギャップをG1からそれより小さいG2(G2<G1)とする。この時、第2半導体回路層2の電極43aと第1半導体回路層1bの導電性プラグ15の間には、圧縮力が作用する。その結果、導電性プラグ15よりも機械的強度が低い電極43aのみが選択的に押し潰されて、導電性プラグ15と電極43とが「圧接」によって相互に接合せしめられると共に、接着剤要素44aaがさらに押し広げられて相互に連結・一体化される。このとき、1個の導電性プラグ15に対応する4個の電極43aが潰されて一体的になり、その結果、導電性プラグ15と電極43aとが一対一対応になる。こうして、相互に圧接された電極43aと導電性プラグ15の箇所を除いて、回路層2と1bの間の隙間の全体が接着剤膜44aによって充填され、余分の接着剤膜44b1または44b2が当該隙間からはみ出ることもない。この時の状態は図29(e)及び図31(d)に示すようになる。   Subsequently, by applying a pressing force, the second semiconductor circuit layer 2 is brought closer to the first semiconductor circuit layer 1b from below, or the first semiconductor circuit layer 1b is viewed from above with respect to the second semiconductor circuit layer 2. As shown in FIGS. 29 (e) and 31 (d), the gap between the circuit layers 1b and 2 is narrowed. In other words, the interlayer gap between the circuit layers 1b and 2 is set to G2 smaller than G1 (G2 <G1). At this time, a compressive force acts between the electrode 43a of the second semiconductor circuit layer 2 and the conductive plug 15 of the first semiconductor circuit layer 1b. As a result, only the electrode 43a having a mechanical strength lower than that of the conductive plug 15 is selectively crushed so that the conductive plug 15 and the electrode 43 are joined to each other by “pressure contact” and the adhesive element 44aa. Are further expanded and connected and integrated with each other. At this time, the four electrodes 43a corresponding to one conductive plug 15 are crushed and integrated, and as a result, the conductive plug 15 and the electrode 43a have a one-to-one correspondence. In this way, the entire gap between the circuit layers 2 and 1b is filled with the adhesive film 44a except for the electrode 43a and the conductive plug 15 that are in pressure contact with each other, and the extra adhesive film 44b1 or 44b2 is filled with the adhesive film 44a. It does not protrude from the gap. The state at this time is as shown in FIGS. 29 (e) and 31 (d).

この加熱圧接工程では、層間ギャップがG1からG2に減少せしめられる際に、回路層1aと2の間の隙間に存在する空気(大気)は、第1半導体回路層1bの裏面と接着剤膜44a(これらはいずれも加熱によって表面が軟化または流動化している)との間の空隙45と、隣接する接着剤要素44aaの間に残存する微小空間とを通って、外部に確実に排出されることができる。また、接着剤膜44aの表面が軟化または流動化しているので、層間ギャップがG2になった時に、第1半導体回路層1bの裏面と接着剤膜44aが接着されやすく、その結果、回路層1bと2が確実に相互接着されることができる。   In this heating and pressure welding process, when the interlayer gap is reduced from G1 to G2, the air (atmosphere) existing in the gap between the circuit layers 1a and 2 is removed from the back surface of the first semiconductor circuit layer 1b and the adhesive film 44a. (All of which are softened or fluidized by heating) and the minute space remaining between the adjacent adhesive elements 44aa and reliably discharged to the outside. Can do. Further, since the surface of the adhesive film 44a is softened or fluidized, when the interlayer gap becomes G2, the back surface of the first semiconductor circuit layer 1b and the adhesive film 44a are easily bonded, and as a result, the circuit layer 1b. And 2 can be securely bonded to each other.

加熱時に電極43aが部分的に溶融状態となった場合は、導電性プラグ15と電極43aの接合は、溶融した電極43aの「再凝固」により行われるか、「圧接」と「再凝固」が混合した形で行われる。この点は第1実施形態と同様である。   When the electrode 43a is partially melted during heating, the conductive plug 15 and the electrode 43a are joined by “re-solidification” of the molten electrode 43a, or “pressure welding” and “re-solidification” are performed. It is done in a mixed form. This is the same as in the first embodiment.

層間ギャップG2の値は、例えば1μm〜9μmの範囲で適宜決定されるが、典型的には3μmである。しかし、電極42と43aの高さHcとHbをいっそう小さくすることにより、1μm以下とすることも可能である。この場合、距離G2の値は、例えば0.05μm〜1μmの範囲で適宜決定される。   The value of the interlayer gap G2 is appropriately determined within a range of 1 μm to 9 μm, for example, but is typically 3 μm. However, the heights Hc and Hb of the electrodes 42 and 43a can be further reduced to 1 μm or less. In this case, the value of the distance G2 is appropriately determined in the range of 0.05 μm to 1 μm, for example.

第2半導体回路層2は、以上のようにして、導電性プラグ15と電極43aを用いて第1半導体回路層1bの裏面側に固着(つまり機械的に接続)せしめられると共に、両回路層1b及び2の間の電気的接続も同時に行われる。また、それと同時に、両回路層1b及び2は、互いに接続された導電性プラグ15及び電極43aの箇所を除いて回路層1bと2の間の隙間全体に充填された接着剤膜44aによって、相互に接着される。   As described above, the second semiconductor circuit layer 2 is fixed (that is, mechanically connected) to the back surface side of the first semiconductor circuit layer 1b using the conductive plug 15 and the electrode 43a, and both the circuit layers 1b. And the electrical connection between the two. At the same time, both circuit layers 1b and 2 are mutually connected by an adhesive film 44a filled in the entire gap between the circuit layers 1b and 2 except for the conductive plug 15 and the electrode 43a connected to each other. Glued to.

以上のようにして導電性プラグ15と電極43aの機械的・電気的接続と接着剤膜44aの接着が終わると、相互に接合された回路層1bと2は室温まで自然冷却される。そこで、加熱、紫外線照射、薬剤添加等によって一体化された接着剤膜44aを最終的に硬化させる。処理が容易であることから、加熱により硬化させるのが好ましい。加熱温度は、接着剤膜44aとして使用した接着剤の性質に応じて、例えば120〜500℃の範囲内で適宜設定される。こうして、二つの半導体回路層1bと2の間の機械的接続と電気的接続が完了する。   When the mechanical and electrical connection between the conductive plug 15 and the electrode 43a and the bonding of the adhesive film 44a are completed as described above, the circuit layers 1b and 2 bonded to each other are naturally cooled to room temperature. Therefore, the integrated adhesive film 44a is finally cured by heating, ultraviolet irradiation, chemical addition, or the like. Since treatment is easy, it is preferable to cure by heating. The heating temperature is appropriately set within a range of 120 to 500 ° C., for example, depending on the properties of the adhesive used as the adhesive film 44a. Thus, the mechanical connection and electrical connection between the two semiconductor circuit layers 1b and 2 are completed.

その後の工程は、第1実施形態の場合と同じであるから、その説明は省略する。   Since the subsequent steps are the same as those in the first embodiment, the description thereof is omitted.

以上説明したように、本発明の第5実施形態に係る集積回路装置の製造方法は、第1半導体回路層1bと第2半導体回路層2の接合を導電性プラグ15(電極42は使用しない)と電極43aを用いて行う点を除いて、上述した第1実施形態に係る集積回路装置の製造方法と同じであるから、第1実施形態において得られるものと同一の効果が得られることは明らかである。また、第5実施形態では、電極42を形成する工程が不要なので、第1実施形態におけるよりも工程が少し簡単になる、という利点がある。   As described above, in the method of manufacturing an integrated circuit device according to the fifth embodiment of the present invention, the conductive plug 15 (the electrode 42 is not used) is used to join the first semiconductor circuit layer 1b and the second semiconductor circuit layer 2. And the electrode 43a are the same as the method for manufacturing the integrated circuit device according to the first embodiment described above, and it is clear that the same effect as that obtained in the first embodiment can be obtained. It is. Further, in the fifth embodiment, since the process of forming the electrode 42 is unnecessary, there is an advantage that the process is a little simpler than in the first embodiment.

(第6実施形態)
図33は、本発明の第6実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。この第6実施形態は、上述した第1実施形態の変形例1に相当する。
(Sixth embodiment)
FIG. 33 is a partial enlarged cross-sectional view showing a method for manufacturing an integrated circuit device having a three-dimensional laminated structure according to the sixth embodiment of the present invention. The sixth embodiment corresponds to Modification 1 of the first embodiment described above.

上記第1実施形態では、図9(a)に示すように、島状の接着剤要素44aaの高さ(接着剤膜44aの厚さ)Haは、電極43aの高さHbよりも大きく設定され(Ha>Hb)、且つ電極42の高さHcと電極43aの高さHbの和よりも大きく設定されている(Ha>Hb+Hc)。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、接着剤膜44aが第1半導体回路層1aに先に接触して変形せしめられ、その後で電極42と43aが相互に接触する。しかし、本発明はこのような関係に限定されるわけではない。   In the first embodiment, as shown in FIG. 9A, the height of the island-shaped adhesive element 44aa (the thickness of the adhesive film 44a) Ha is set larger than the height Hb of the electrode 43a. (Ha> Hb) and larger than the sum of the height Hc of the electrode 42 and the height Hb of the electrode 43a (Ha> Hb + Hc). For this reason, in the connection process of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, the adhesive film 44a is first brought into contact with the first semiconductor circuit layer 1a and deformed, and then the electrodes 42 and 43a are mutually connected. To touch. However, the present invention is not limited to such a relationship.

ここで述べる第6実施形態に係る集積回路装置の製造方法では、図33(a)に示すように、島状の接着剤要素44aaの高さ(接着剤膜44aの厚さ)Haが、電極43aの高さHbよりも大きく設定されている(Ha>Hb)点は、上記第1実施形態と同じであるが、電極42の高さHcと電極43aの高さHbの和よりも小さく設定されている(Ha<Hb+Hc)点が異なる。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、図33(b)に示すように、まず電極42と43aが相互に接触し、その後に、加圧による電極43aの変形に伴って、接着剤膜44aが第1半導体回路層1aに接触して変形せしめられる。それ以外の点は上記第1実施形態と同じである。   In the method of manufacturing an integrated circuit device according to the sixth embodiment described here, as shown in FIG. 33A, the height of the island-shaped adhesive element 44aa (the thickness of the adhesive film 44a) Ha is the electrode. The point set larger than the height Hb of 43a (Ha> Hb) is the same as in the first embodiment, but is set smaller than the sum of the height Hc of the electrode 42 and the height Hb of the electrode 43a. (Ha <Hb + Hc) is different. For this reason, in the connecting step of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, as shown in FIG. 33 (b), the electrodes 42 and 43a are first brought into contact with each other, and then the electrode 43a by pressurization is applied. With the deformation, the adhesive film 44a comes into contact with the first semiconductor circuit layer 1a and is deformed. The other points are the same as in the first embodiment.

したがって、第6実施形態に係る集積回路装置の製造方法においても、上記第1実施形態と同様の効果が得られることは明らかである。   Therefore, it is obvious that the same effect as that of the first embodiment can be obtained in the method of manufacturing an integrated circuit device according to the sixth embodiment.

(第7実施形態)
図34は、本発明の第7実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。この第7実施形態は、上述した第1実施形態の変形例2に相当する。
(Seventh embodiment)
FIG. 34 is a partial enlarged cross-sectional view showing a method for manufacturing an integrated circuit device having a three-dimensional laminated structure according to the seventh embodiment of the present invention. The seventh embodiment corresponds to Modification 2 of the first embodiment described above.

ここで述べる第7実施形態に係る集積回路装置の製造方法では、図34(a)に示すように、島状の接着剤要素44aaの高さ(接着剤膜44aの厚さ)Haが、電極43aの高さHbよりも小さく設定されている(Ha<Hb)点で、上記第1実施形態とは異なる。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、図34(b)に示すように、まず電極42と43aが相互に接触し、その後に、加圧による電極43aの変形に伴って、接着剤膜44aが第1半導体回路層1aに接触して変形せしめられる。また、電極43aの変形量が、第6実施形態よりも大きくなる。それ以外の点は上記第1実施形態と同じである。   In the method of manufacturing an integrated circuit device according to the seventh embodiment described here, as shown in FIG. 34A, the height of the island-like adhesive element 44aa (the thickness of the adhesive film 44a) Ha is the electrode. It differs from the said 1st Embodiment by the point set smaller than the height Hb of 43a (Ha <Hb). For this reason, in the connecting step of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, as shown in FIG. 34 (b), the electrodes 42 and 43a are first brought into contact with each other, and thereafter, the electrode 43a by pressure is applied. With the deformation, the adhesive film 44a comes into contact with the first semiconductor circuit layer 1a and is deformed. Further, the deformation amount of the electrode 43a is larger than that in the sixth embodiment. The other points are the same as in the first embodiment.

第7実施形態では、第1半導体回路層1aと第2半導体回路層2の間の隙間に接着剤膜44aが充填されるようにするため、電極43aの変形量を大きくする必要がある。そこで、電極43aと共に電極42も塑性変形するように構成するのが好ましい。   In the seventh embodiment, it is necessary to increase the amount of deformation of the electrode 43a in order to fill the gap between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 with the adhesive film 44a. Therefore, it is preferable to configure the electrode 42 so as to be plastically deformed together with the electrode 43a.

第7実施形態に係る集積回路装置の製造方法においても、上記第1実施形態と同様の効果が得られることは明らかである。   It is clear that the same effect as that of the first embodiment can be obtained in the method of manufacturing an integrated circuit device according to the seventh embodiment.

(第8実施形態)
図35は、本発明の第8実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。この第8実施形態は、上述した第1実施形態の変形例3に相当する。
(Eighth embodiment)
FIG. 35 is a partial enlarged cross-sectional view showing a method of manufacturing an integrated circuit device having a three-dimensional laminated structure according to the eighth embodiment of the present invention. The eighth embodiment corresponds to Modification 3 of the first embodiment described above.

ここで述べる第8実施形態に係る集積回路装置の製造方法では、図35(a)に示すように、島状の接着剤要素44aaの高さ(接着剤膜44aの厚さ)Haが、電極43aの高さHbよりも大きく設定されている(Ha>Hb)点は、上記第1実施形態と同じであるが、電極42の高さHcと電極43aの高さHbの和にほぼ等しく設定されている(Ha≒Hb+Hc)点が異なる。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、電極42と43aが相互に接触するのとほぼ同時に、接着剤膜44aが第1半導体回路層1aの裏面に接触する。それ以外の点は上記第1実施形態と同じである。   In the method of manufacturing an integrated circuit device according to the eighth embodiment described here, as shown in FIG. 35A, the height of the island-shaped adhesive element 44aa (the thickness of the adhesive film 44a) Ha is the electrode. The point set to be larger than the height Hb of 43a (Ha> Hb) is the same as in the first embodiment, but is set substantially equal to the sum of the height Hc of the electrode 42 and the height Hb of the electrode 43a. (Ha≈Hb + Hc) is different. For this reason, in the connection process of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, the adhesive film 44a contacts the back surface of the first semiconductor circuit layer 1a almost simultaneously with the electrodes 42 and 43a contacting each other. To do. The other points are the same as in the first embodiment.

したがって、第8実施形態に係る集積回路装置の製造方法においても、上記第1実施形態と同様の効果が得られることは明らかである。   Therefore, it is obvious that the same effect as that of the first embodiment can be obtained in the method of manufacturing an integrated circuit device according to the eighth embodiment.

(第9実施形態)
図36は、本発明の第9実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。この第9実施形態は、上述した第2実施形態の変形例1に相当する。
(Ninth embodiment)
FIG. 36 is a partial enlarged cross-sectional view showing a method of manufacturing an integrated circuit device having a three-dimensional stacked structure according to the ninth embodiment of the present invention. The ninth embodiment corresponds to Modification 1 of the second embodiment described above.

上記第2実施形態では、図14(a)に示すように、島状の接着剤要素44bb2の高さ(接着剤膜44b2の厚さ)Haは、電極43aの高さHbよりも大きく設定され(Ha>Hb)、島状の接着剤要素44bb1の高さ(接着剤膜44b1の厚さ)Hdは、電極42の高さHcよりも大きく設定されている(Hc<Hd)。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、先に接着剤膜44b1及び44b2が相互に接触して変形せしめられ、その後で電極42と43aが相互に接触する。しかし、本発明はこのような関係に限定されるわけではない。   In the second embodiment, as shown in FIG. 14A, the height (the thickness of the adhesive film 44b2) Ha of the island-shaped adhesive element 44bb2 is set larger than the height Hb of the electrode 43a. (Ha> Hb), the height (the thickness of the adhesive film 44b1) Hd of the island-shaped adhesive element 44bb1 is set to be larger than the height Hc of the electrode 42 (Hc <Hd). For this reason, in the connection process of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, the adhesive films 44b1 and 44b2 are first brought into contact with each other and deformed, and then the electrodes 42 and 43a are brought into contact with each other. . However, the present invention is not limited to such a relationship.

ここで述べる第9実施形態に係る集積回路装置の製造方法では、図36(a)に示すように、島状の接着剤要素44bb2の高さ(接着剤膜44b2の厚さ)Haが、電極43aの高さHbよりも大きく設定されている(Ha>Hb)点は、上記第2実施形態と同じであるが、島状の接着剤要素44bb1の高さ(接着剤膜44b1の厚さ)Hdが、電極42の高さHcよりも小さく設定されており(Hc>Hd)、且つ、接着剤要素44bb2の高さ(接着剤膜44b2の厚さ)Haと接着剤要素44bb1の高さ(接着剤膜44b1の厚さ)Hdの和が、電極42の高さHcと電極43aの高さHbの和よりも大きく設定されている(Ha+Hd>Hb+Hc)点が異なる。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、まず接着剤膜44b1と44b2が相互に接触し、その後、電極42と43aが相互に接触する。それ以外の点は上記第2実施形態と同じである。   In the method of manufacturing an integrated circuit device according to the ninth embodiment described here, as shown in FIG. 36A, the height of the island-shaped adhesive element 44bb2 (the thickness of the adhesive film 44b2) Ha is the electrode. The point set to be larger than the height Hb of 43a (Ha> Hb) is the same as that of the second embodiment, but the height of the island-shaped adhesive element 44bb1 (the thickness of the adhesive film 44b1). Hd is set smaller than the height Hc of the electrode 42 (Hc> Hd), and the height of the adhesive element 44bb2 (the thickness of the adhesive film 44b2) Ha and the height of the adhesive element 44bb1 ( The difference is that the sum of the thickness Hd of the adhesive film 44b1) is set to be larger than the sum of the height Hc of the electrode 42 and the height Hb of the electrode 43a (Ha + Hd> Hb + Hc). For this reason, in the connection process of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, the adhesive films 44b1 and 44b2 are first in contact with each other, and then the electrodes 42 and 43a are in contact with each other. The other points are the same as in the second embodiment.

したがって、第9実施形態に係る集積回路装置の製造方法においても、上記第2実施形態と同様の効果が得られることは明らかである。   Therefore, it is apparent that the same effect as that of the second embodiment can be obtained in the method of manufacturing an integrated circuit device according to the ninth embodiment.

(第10実施形態)
図37は、本発明の第10実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。この第10実施形態は、上述した第2実施形態の変形例2に相当する。
(10th Embodiment)
FIG. 37 is a partial enlarged cross-sectional view showing a method for manufacturing an integrated circuit device having a three-dimensional stacked structure according to the tenth embodiment of the present invention. The tenth embodiment corresponds to the second modification of the second embodiment described above.

ここで述べる第9実施形態に係る集積回路装置の製造方法では、図37(a)に示すように、島状の接着剤要素44bb2の高さ(接着剤膜44b2の厚さ)Haが、電極43aの高さHbよりも大きく設定されている(Ha>Hb)点は、上記第2実施形態と同じであるが、島状の接着剤要素44bb1の高さ(接着剤膜44b1の厚さ)Hdが、電極42の高さHcよりも小さく設定されており(Hc>Hd)、且つ、接着剤要素44bb2の高さHaと接着剤要素44bb1の高さHdの和が、電極42の高さHcと電極43aの高さHbの和よりも小さく設定されている(Ha+Hd<Hb+Hc)点が異なる。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、まず電極42と43aが相互に接触し、その後、接着剤膜44b1と44b2が相互に接触する。それ以外の点は上記第2実施形態と同じである。   In the method of manufacturing an integrated circuit device according to the ninth embodiment described here, as shown in FIG. 37A, the height of the island-shaped adhesive element 44bb2 (the thickness of the adhesive film 44b2) Ha is the electrode. The point set to be larger than the height Hb of 43a (Ha> Hb) is the same as that of the second embodiment, but the height of the island-shaped adhesive element 44bb1 (the thickness of the adhesive film 44b1). Hd is set smaller than the height Hc of the electrode 42 (Hc> Hd), and the sum of the height Ha of the adhesive element 44bb2 and the height Hd of the adhesive element 44bb1 is the height of the electrode 42. The difference is that it is set smaller than the sum of Hc and the height Hb of the electrode 43a (Ha + Hd <Hb + Hc). For this reason, in the connection process of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, the electrodes 42 and 43a first contact each other, and then the adhesive films 44b1 and 44b2 contact each other. The other points are the same as in the second embodiment.

したがって、第10実施形態に係る集積回路装置の製造方法においても、上記第2実施形態と同様の効果が得られることは明らかである。   Therefore, it is apparent that the same effect as that of the second embodiment can be obtained in the method of manufacturing an integrated circuit device according to the tenth embodiment.

第10実施形態では、第1半導体回路層1aと第2半導体回路層2の間の隙間に接着剤膜44b1及び44b2が充填されるようにするため、電極43aの変形量を大きくする必要がある。そこで、電極43aと共に電極42も塑性変形するように構成するのが好ましい。   In the tenth embodiment, it is necessary to increase the amount of deformation of the electrode 43a in order to fill the gap between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 with the adhesive films 44b1 and 44b2. . Therefore, it is preferable to configure the electrode 42 so as to be plastically deformed together with the electrode 43a.

(第11実施形態)
図38は、本発明の第11実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。この第11実施形態は、上述した第2実施形態の変形例3に相当する。
(Eleventh embodiment)
FIG. 38 is a partial enlarged cross-sectional view showing a method of manufacturing an integrated circuit device having a three-dimensional stacked structure according to the eleventh embodiment of the present invention. The eleventh embodiment corresponds to the third modification of the second embodiment described above.

ここで述べる第11実施形態に係る集積回路装置の製造方法では、図38(a)に示すように、島状の接着剤要素44bb2の高さ(接着剤膜44b2の厚さ)Haが、電極43aの高さHbよりも小さく設定され(Ha<Hb)、島状の接着剤要素44bb1の高さ(接着剤膜44b1の厚さ)Hdが、電極42の高さHcよりも小さく設定されている(Hc>Hd)点が、第2実施形態とは異なる。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、まず電極42と43aが相互に接触し、その後、接着剤膜44b1と44b2が相互に接触する。それ以外の点は上記第2実施形態と同じである。   In the method of manufacturing an integrated circuit device according to the eleventh embodiment described here, as shown in FIG. 38A, the height of the island-shaped adhesive element 44bb2 (the thickness of the adhesive film 44b2) Ha is the electrode. 43a is set smaller than the height Hb (Ha <Hb), and the island-shaped adhesive element 44bb1 height (the thickness of the adhesive film 44b1) Hd is set smaller than the height Hc of the electrode 42. (Hc> Hd) is different from the second embodiment. For this reason, in the connection process of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, the electrodes 42 and 43a first contact each other, and then the adhesive films 44b1 and 44b2 contact each other. The other points are the same as in the second embodiment.

したがって、第11実施形態に係る集積回路装置の製造方法においても、上記第2実施形態と同様の効果が得られることは明らかである。   Therefore, it is obvious that the same effects as those of the second embodiment can be obtained in the method of manufacturing an integrated circuit device according to the eleventh embodiment.

(第12実施形態)
図39は、本発明の第12実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。この第12実施形態は、上述した第2実施形態の変形例4に相当する。
(Twelfth embodiment)
FIG. 39 is a partial enlarged cross-sectional view showing a method of manufacturing an integrated circuit device having a three-dimensional stacked structure according to the twelfth embodiment of the present invention. The twelfth embodiment corresponds to Modification 4 of the second embodiment described above.

ここで述べる第12実施形態に係る集積回路装置の製造方法では、図39(a)に示すように、島状の接着剤要素44bb1の高さ(接着剤膜44b1の厚さ)Hdが、電極42の高さHcよりも大さく設定されている(Hc<Hd)点は、第2実施形態と同じであるが、島状の接着剤要素44bb2の高さ(接着剤膜44b2の厚さ)Haが、電極43aの高さHbよりも小さく設定され(Ha<Hb)、且つ、接着剤要素44bb2の高さHaと接着剤要素44bb1の高さHdの和が、電極42の高さHcと電極43aの高さHbの和よりも大きく設定されている(Ha+Hd>Hb+Hc)点が異なる。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、まず接着剤膜44b1と44b2が相互に接触し、その後、電極42と43aが相互に接触する。それ以外の点は上記第2実施形態と同じである。   In the method of manufacturing an integrated circuit device according to the twelfth embodiment described here, as shown in FIG. 39A, the height of the island-like adhesive element 44bb1 (the thickness of the adhesive film 44b1) Hd is The point set larger than the height Hc of 42 (Hc <Hd) is the same as in the second embodiment, but the height of the island-shaped adhesive element 44bb2 (the thickness of the adhesive film 44b2). Ha is set smaller than the height Hb of the electrode 43a (Ha <Hb), and the sum of the height Ha of the adhesive element 44bb2 and the height Hd of the adhesive element 44bb1 is equal to the height Hc of the electrode 42. The difference is that it is set larger than the sum of the heights Hb of the electrodes 43a (Ha + Hd> Hb + Hc). For this reason, in the connection process of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, the adhesive films 44b1 and 44b2 are first in contact with each other, and then the electrodes 42 and 43a are in contact with each other. The other points are the same as in the second embodiment.

したがって、第12実施形態に係る集積回路装置の製造方法においても、上記第2実施形態と同様の効果が得られることは明らかである。   Therefore, it is obvious that the same effects as those of the second embodiment can be obtained in the method of manufacturing an integrated circuit device according to the twelfth embodiment.

(第13実施形態)
図40は、本発明の第13実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。この第13実施形態は、上述した第2実施形態の変形例5に相当する。
(13th Embodiment)
FIG. 40 is a partial enlarged cross-sectional view showing a method of manufacturing an integrated circuit device having a three-dimensional stacked structure according to the thirteenth embodiment of the present invention. The thirteenth embodiment corresponds to Modification 5 of the second embodiment described above.

ここで述べる第13実施形態に係る集積回路装置の製造方法では、図40(a)に示すように、島状の接着剤要素44bb1の高さ(接着剤膜44b1の厚さ)Hdが、電極42の高さHcよりも大さく設定されている(Hc<Hd)点は、第2実施形態と同じであるが、島状の接着剤要素44bb2の高さ(接着剤膜44b2の厚さ)Haが、電極43aの高さHbよりも小さく設定されており(Ha<Hb)、且つ、接着剤要素44bb2の高さHaと接着剤要素44bb1の高さHdの和が、電極42の高さHcと電極43aの高さHbの和よりも小さく設定されている(Ha+Hd<Hb+Hc)点が異なる。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、まず電極42と43aが相互に接触し、その後、接着剤膜44b1と44b2が相互に接触する。それ以外の点は上記第2実施形態と同じである。   In the method of manufacturing an integrated circuit device according to the thirteenth embodiment described here, as shown in FIG. 40A, the height of the island-like adhesive element 44bb1 (the thickness of the adhesive film 44b1) Hd is The point set larger than the height Hc of 42 (Hc <Hd) is the same as in the second embodiment, but the height of the island-shaped adhesive element 44bb2 (the thickness of the adhesive film 44b2). Ha is set smaller than the height Hb of the electrode 43a (Ha <Hb), and the sum of the height Ha of the adhesive element 44bb2 and the height Hd of the adhesive element 44bb1 is the height of the electrode 42. The difference is that it is set smaller than the sum of Hc and the height Hb of the electrode 43a (Ha + Hd <Hb + Hc). For this reason, in the connection process of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, the electrodes 42 and 43a first contact each other, and then the adhesive films 44b1 and 44b2 contact each other. The other points are the same as in the second embodiment.

したがって、第13実施形態に係る集積回路装置の製造方法においても、上記第2実施形態と同様の効果が得られることは明らかである。   Therefore, it is apparent that the same effect as that of the second embodiment can be obtained in the method of manufacturing an integrated circuit device according to the thirteenth embodiment.

第13実施形態では、第1半導体回路層1aと第2半導体回路層2の間の隙間に接着剤膜44b1及び44b2が充填されるようにするため、電極43aの変形量を大きくする必要がある。そこで、電極43aと共に電極42も塑性変形するように構成するのが好ましい。   In the thirteenth embodiment, it is necessary to increase the deformation amount of the electrode 43a so that the adhesive films 44b1 and 44b2 are filled in the gap between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2. . Therefore, it is preferable to configure the electrode 42 so as to be plastically deformed together with the electrode 43a.

(第14実施形態)
図41は、本発明の第14実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。この第14実施形態は、上述した第2実施形態の変形例6に相当する。
(14th Embodiment)
FIG. 41 is a partial enlarged cross-sectional view showing a method of manufacturing an integrated circuit device having a three-dimensional stacked structure according to the fourteenth embodiment of the present invention. The fourteenth embodiment corresponds to Modification 6 of the second embodiment described above.

ここで述べる第14実施形態に係る集積回路装置の製造方法では、図41(a)に示すように、島状の接着剤要素44bb1の高さ(接着剤膜44b1の厚さ)Hdが、電極42の高さHcよりも大さく設定されている(Hc<Hd)点は、第2実施形態と同じであるが、島状の接着剤要素44bb2の高さ(接着剤膜44b2の厚さ)Haが、電極43aの高さHbよりも小さく設定されており(Ha<Hb)、且つ、接着剤要素44bb2の高さHaと接着剤要素44bb1の高さHdの和が、電極42の高さHcと電極43aの高さHbの和とほぼ等しく設定されている(Ha+Hd≒Hb+Hc)点が異なる。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、電極42と43aが相互に接触するのとほぼ同時に、接着剤膜44b1と44b2が相互に接触する。それ以外の点は上記第2実施形態と同じである。   In the method of manufacturing an integrated circuit device according to the fourteenth embodiment described here, as shown in FIG. 41A, the height of the island-shaped adhesive element 44bb1 (the thickness of the adhesive film 44b1) Hd is The point set larger than the height Hc of 42 (Hc <Hd) is the same as in the second embodiment, but the height of the island-shaped adhesive element 44bb2 (the thickness of the adhesive film 44b2). Ha is set smaller than the height Hb of the electrode 43a (Ha <Hb), and the sum of the height Ha of the adhesive element 44bb2 and the height Hd of the adhesive element 44bb1 is the height of the electrode 42. The difference is that it is set to be substantially equal to the sum of Hc and the height Hb of the electrode 43a (Ha + Hd≈Hb + Hc). For this reason, in the connecting step of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, the adhesive films 44b1 and 44b2 are in contact with each other almost simultaneously with the electrodes 42 and 43a being in contact with each other. The other points are the same as in the second embodiment.

したがって、第14実施形態に係る集積回路装置の製造方法においても、上記第2実施形態と同様の効果が得られることは明らかである。   Therefore, it is apparent that the same effects as those of the second embodiment can be obtained also in the integrated circuit device manufacturing method according to the fourteenth embodiment.

(第15実施形態)
図42は、本発明の第15実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。この第15実施形態は、上述した第3実施形態の変形例1に相当する。
(Fifteenth embodiment)
FIG. 42 is a partial enlarged cross-sectional view showing the method of manufacturing the integrated circuit device having a three-dimensional stacked structure according to the fifteenth embodiment of the present invention. The fifteenth embodiment corresponds to the first modification of the third embodiment described above.

上記第3実施形態では、図19(a)に示すように、島状の接着剤要素44bb2の高さ(接着剤膜44b2の厚さ)Haは、電極43aの高さHbよりも大きく設定され(Ha>Hb)、連続的な接着剤膜44cの厚さHdは、電極42の高さHcよりも小さく設定され(Hc>Hd)、さらに、接着剤要素44bb2の高さHaと接着剤膜44cの厚さHdの和が、電極43aの高さHbと電極の高さHCの和よりも大きく設定されている(Ha+Hd>Hb+Hc)。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、先に接着剤膜44c及び44b2が相互に接触して変形せしめられ、その後で電極42と43aが相互に接触する。しかし、本発明はこのような関係に限定されるわけではない。   In the third embodiment, as shown in FIG. 19A, the height of the island-shaped adhesive element 44bb2 (the thickness of the adhesive film 44b2) Ha is set to be larger than the height Hb of the electrode 43a. (Ha> Hb), the thickness Hd of the continuous adhesive film 44c is set smaller than the height Hc of the electrode 42 (Hc> Hd), and the height Ha of the adhesive element 44bb2 and the adhesive film The sum of the thickness Hd of 44c is set larger than the sum of the height Hb of the electrode 43a and the height HC of the electrode (Ha + Hd> Hb + Hc). For this reason, in the connection process of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, the adhesive films 44c and 44b2 are first brought into contact with each other and deformed, and then the electrodes 42 and 43a are brought into contact with each other. . However, the present invention is not limited to such a relationship.

ここで述べる第15実施形態に係る集積回路装置の製造方法では、図42(a)に示すように、接着剤要素44bb2の高さ(接着剤膜44b2の厚さ)Haは、電極43aの高さHbよりも大きく設定され(Ha>Hb)、連続的な接着剤膜44cの厚さHdは、電極42の高さHcよりも小さく設定されている(Hc>Hd)点は、上記第3実施形態と同じであるが、接着剤要素44bb2の高さHaと接着剤膜44cの厚さHdの和が、電極43aの高さHbと電極42の高さHcの和よりも小さく設定されている(Ha+Hd<Hb+Hc)点が異なる。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、まず電極42と43aが相互に接触し、その後に接着剤膜44b1と44b2が相互に接触する。それ以外の点は上記第3実施形態と同じである。   In the method of manufacturing the integrated circuit device according to the fifteenth embodiment described here, as shown in FIG. 42A, the height of the adhesive element 44bb2 (the thickness of the adhesive film 44b2) Ha is the height of the electrode 43a. Is set to be larger than the height Hb (Ha> Hb), and the thickness Hd of the continuous adhesive film 44c is set to be smaller than the height Hc of the electrode 42 (Hc> Hd). Although the same as the embodiment, the sum of the height Ha of the adhesive element 44bb2 and the thickness Hd of the adhesive film 44c is set to be smaller than the sum of the height Hb of the electrode 43a and the height Hc of the electrode 42. (Ha + Hd <Hb + Hc). For this reason, in the connection process of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, the electrodes 42 and 43a first contact each other, and then the adhesive films 44b1 and 44b2 contact each other. The other points are the same as in the third embodiment.

したがって、第15実施形態に係る集積回路装置の製造方法においても、上記第3実施形態と同様の効果が得られることは明らかである。   Therefore, it is apparent that the same effects as those of the third embodiment can be obtained also in the integrated circuit device manufacturing method according to the fifteenth embodiment.

第15実施形態は、上述した第4実施形態の変形例1にも相当する。   The fifteenth embodiment corresponds to the first modification of the fourth embodiment described above.

第15実施形態では、第1半導体回路層1aと第2半導体回路層2の間の隙間に接着剤膜44c及び44b2が充填されるようにするため、電極43aの変形量を大きくする必要がある。そこで、電極43aと共に電極42も塑性変形するように構成するのが好ましい。   In the fifteenth embodiment, it is necessary to increase the amount of deformation of the electrode 43a in order to fill the gap between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 with the adhesive films 44c and 44b2. . Therefore, it is preferable to configure the electrode 42 so as to be plastically deformed together with the electrode 43a.

(第16実施形態)
図43は、本発明の第16実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。この第16実施形態は、上述した第3実施形態の変形例2に相当する。
(Sixteenth embodiment)
FIG. 43 is a partial enlarged cross-sectional view showing a method of manufacturing an integrated circuit device having a three-dimensional laminated structure according to the sixteenth embodiment of the present invention. The sixteenth embodiment corresponds to the second modification of the third embodiment described above.

ここで述べる第16実施形態に係る集積回路装置の製造方法では、図43(a)に示すように、接着剤要素44bb2の高さ(接着剤膜44b2の厚さ)Haは、電極43aの高さHbよりも大きく設定されている(Ha>Hb)点は、上記第3実施形態と同じであるが、連続的な接着剤膜44cの厚さHdは、電極42の高さHcよりも大きく設定されている(Hc<Hd)点が異なる。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、まず接着剤膜44b1と44b2が相互に接触し、その後に電極42と43aが相互に接触する。それ以外の点は上記第3実施形態と同じである。   In the method of manufacturing an integrated circuit device according to the sixteenth embodiment described here, as shown in FIG. 43A, the height of the adhesive element 44bb2 (the thickness of the adhesive film 44b2) Ha is the height of the electrode 43a. The point set to be larger than the height Hb (Ha> Hb) is the same as in the third embodiment, but the thickness Hd of the continuous adhesive film 44c is larger than the height Hc of the electrode 42. The set point (Hc <Hd) is different. For this reason, in the connection process of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, the adhesive films 44b1 and 44b2 are first in contact with each other, and then the electrodes 42 and 43a are in contact with each other. The other points are the same as in the third embodiment.

したがって、第16実施形態に係る集積回路装置の製造方法においても、上記第3実施形態と同様の効果が得られることは明らかである。   Therefore, it is apparent that the same effects as those of the third embodiment can be obtained also in the integrated circuit device manufacturing method according to the sixteenth embodiment.

第16実施形態は、上述した第4実施形態の変形例2にも相当する。   The sixteenth embodiment corresponds to the second modification of the fourth embodiment described above.

(第17実施形態)
図44は、本発明の第17実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。この第17実施形態は、上述した第3実施形態の変形例3に相当する。
(17th Embodiment)
FIG. 44 is a partial enlarged cross-sectional view showing a method of manufacturing an integrated circuit device having a three-dimensional laminated structure according to the seventeenth embodiment of the present invention. The seventeenth embodiment corresponds to the third modification of the third embodiment described above.

ここで述べる第17実施形態に係る集積回路装置の製造方法では、図44(a)に示すように、連続的な接着剤膜44cの厚さHdが、電極42の高さHcよりも小さく設定されている(Hc>Hd)点は、上記第3実施形態と同じであるが、接着剤要素44bb2の高さ(接着剤膜44b2の厚さ)Haが、電極43aの高さHbよりも小さく設定されている(Ha<Hb)点が異なる。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、まず電極42と43aが相互に接触し、その後に接着剤膜44b1と44b2が相互に接触する。それ以外の点は上記第3実施形態と同じである。   In the integrated circuit device manufacturing method according to the seventeenth embodiment described here, the thickness Hd of the continuous adhesive film 44c is set smaller than the height Hc of the electrode 42, as shown in FIG. (Hc> Hd) is the same as in the third embodiment, but the height of the adhesive element 44bb2 (the thickness of the adhesive film 44b2) Ha is smaller than the height Hb of the electrode 43a. The set point (Ha <Hb) is different. For this reason, in the connection process of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, the electrodes 42 and 43a first contact each other, and then the adhesive films 44b1 and 44b2 contact each other. The other points are the same as in the third embodiment.

したがって、第17実施形態に係る集積回路装置の製造方法においても、上記第3実施形態と同様の効果が得られることは明らかである。   Therefore, it is apparent that the same effect as that of the third embodiment can be obtained in the method of manufacturing an integrated circuit device according to the seventeenth embodiment.

第17実施形態は、上述した第4実施形態の変形例3にも相当する。   The seventeenth embodiment also corresponds to the third modification of the fourth embodiment described above.

第17実施形態では、第1半導体回路層1aと第2半導体回路層2の間の隙間に接着剤膜44c及び44b2が充填されるようにするため、電極43aの変形量を大きくする必要がある。そこで、電極43aと共に電極42も塑性変形するように構成するのが好ましい。   In the seventeenth embodiment, it is necessary to increase the deformation amount of the electrode 43a so that the adhesive films 44c and 44b2 are filled in the gap between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2. . Therefore, it is preferable to configure the electrode 42 so as to be plastically deformed together with the electrode 43a.

(第18実施形態)
図45は、本発明の第18実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。この第18実施形態は、上述した第3実施形態の変形例4に相当する。
(Eighteenth embodiment)
FIG. 45 is a partial enlarged cross-sectional view showing a method of manufacturing an integrated circuit device having a three-dimensional laminated structure according to the eighteenth embodiment of the present invention. The eighteenth embodiment corresponds to Modification 4 of the third embodiment described above.

ここで述べる第18実施形態に係る集積回路装置の製造方法では、図45(a)に示すように、連続的な接着剤膜44cの厚さHdが、電極42の高さHcよりも小さく設定されている(Hc>Hd)点は、上記第3実施形態と同じであるが、接着剤要素44bb2の高さ(接着剤膜44b2の厚さ)Haが、電極43aの高さHbよりも大きく設定されており(Ha>Hb)、且つ、接着剤膜44b2の高さHaと接着剤膜44cの厚さHdの和が、電極43aの高さHbと電極43aの高さHcの和とほぼ同じに設定されている点が異なる。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、電極42と43aが相互に接触するのとほぼ同時に、接着剤膜44b1と44b2が相互に接触する。それ以外の点は上記第3実施形態と同じである。   In the integrated circuit device manufacturing method according to the eighteenth embodiment described here, the thickness Hd of the continuous adhesive film 44c is set smaller than the height Hc of the electrode 42, as shown in FIG. (Hc> Hd) is the same as in the third embodiment, but the height of the adhesive element 44bb2 (the thickness of the adhesive film 44b2) Ha is larger than the height Hb of the electrode 43a. Is set (Ha> Hb), and the sum of the height Ha of the adhesive film 44b2 and the thickness Hd of the adhesive film 44c is substantially equal to the sum of the height Hb of the electrode 43a and the height Hc of the electrode 43a. The difference is that they are set the same. For this reason, in the connecting step of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, the adhesive films 44b1 and 44b2 are in contact with each other almost simultaneously with the electrodes 42 and 43a being in contact with each other. The other points are the same as in the third embodiment.

したがって、第18実施形態に係る集積回路装置の製造方法においても、上記第3実施形態と同様の効果が得られることは明らかである。   Therefore, it is apparent that the same effect as that of the third embodiment can be obtained in the method of manufacturing an integrated circuit device according to the eighteenth embodiment.

第18実施形態は、上述した第4実施形態の変形例4にも相当する。   The eighteenth embodiment also corresponds to the fourth modification of the fourth embodiment described above.

(第19実施形態)
図46は、本発明の第19実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。この第19実施形態は、上述した第5実施形態の変形例1に相当する。
(Nineteenth embodiment)
FIG. 46 is a partially enlarged cross-sectional view showing the method of manufacturing the integrated circuit device having a three-dimensional stacked structure according to the nineteenth embodiment of the present invention. The nineteenth embodiment corresponds to Modification 1 of the fifth embodiment described above.

上記第5実施形態では、図30(a)に示すように、島状の接着剤要素44aの高さ(接着剤膜44aの厚さ)Haは、電極43aの高さHbよりも大きく設定され(Ha>Hb)、且つ、接着剤膜44aの厚さHaは、導電性バンプ15の突出高さHeと電極43aの高さHbの和よりも大きく設定されている(Ha>Hb+He)。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、先に接着剤膜44aが第1半導体回路層1bの裏面に接触して変形せしめられ、その後で導電性バンプ15と電極43aが相互に接触する。しかし、本発明はこのような関係に限定されるわけではない。   In the fifth embodiment, as shown in FIG. 30A, the height of the island-shaped adhesive element 44a (the thickness of the adhesive film 44a) Ha is set larger than the height Hb of the electrode 43a. (Ha> Hb), and the thickness Ha of the adhesive film 44a is set to be larger than the sum of the protruding height He of the conductive bump 15 and the height Hb of the electrode 43a (Ha> Hb + He). For this reason, in the connecting step of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, the adhesive film 44a is first deformed by contacting the back surface of the first semiconductor circuit layer 1b, and then the conductive bump 15 And the electrode 43a are in contact with each other. However, the present invention is not limited to such a relationship.

ここで述べる第19実施形態に係る集積回路装置の製造方法では、図46(a)に示すように、島状の接着剤要素44aの高さ(接着剤膜44aの厚さ)Haが、電極43aの高さHbよりも大きく設定されている(Ha>Hb)点は、上記第5実施形態と同じであるが、導電性バンプ15の突出高さHeと電極43aの高さHbの和よりも小さく設定されている(Ha<Hb+He)点が異なる。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、まず導電性バンプ15と電極43aが相互に接触し、その後、接着剤膜44aが第1半導体回路層1bの裏面に接触する。それ以外の点は上記第5実施形態と同じである。   In the method of manufacturing an integrated circuit device according to the nineteenth embodiment described here, as shown in FIG. 46A, the height of the island-like adhesive element 44a (the thickness of the adhesive film 44a) Ha is the electrode. The point set to be larger than the height Hb of 43a (Ha> Hb) is the same as that of the fifth embodiment, but from the sum of the protruding height He of the conductive bump 15 and the height Hb of the electrode 43a. Is different (Ha <Hb + He). For this reason, in the connection process of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, first, the conductive bump 15 and the electrode 43a are in contact with each other, and then the adhesive film 44a is the back surface of the first semiconductor circuit layer 1b. To touch. The other points are the same as in the fifth embodiment.

したがって、第19実施形態に係る集積回路装置の製造方法においても、上記第5実施形態と同様の効果が得られることは明らかである。   Therefore, it is apparent that the same effect as that of the fifth embodiment can be obtained also in the manufacturing method of the integrated circuit device according to the nineteenth embodiment.

第19実施形態では、第1半導体回路層1aと第2半導体回路層2の間の隙間に接着剤膜44aが充填されるようにするため、電極43aの変形量を大きくする必要があるが、それには限界がある。そこで、接着剤膜44aの厚さHaと、導電性バンプ15の突出高さHeと電極43aの高さHbの和との差(Ha−Hb−He)を、あまり大きくしないようにするのが好ましい。   In the nineteenth embodiment, it is necessary to increase the deformation amount of the electrode 43a in order to fill the gap between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 with the adhesive film 44a. It has its limits. Therefore, the difference (Ha−Hb−He) between the thickness Ha of the adhesive film 44a and the sum of the protruding height He of the conductive bump 15 and the height Hb of the electrode 43a should not be so large. preferable.

(第20実施形態)
図47は、本発明の第20実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。この第20実施形態は、上述した第5実施形態の変形例2に相当する。
(20th embodiment)
FIG. 47 is a partially enlarged cross-sectional view showing the method of manufacturing the integrated circuit device having a three-dimensional stacked structure according to the twentieth embodiment of the present invention. The twentieth embodiment corresponds to the second modification of the fifth embodiment described above.

ここで述べる第20実施形態に係る集積回路装置の製造方法では、図47(a)に示すように、島状の接着剤要素44aの高さ(接着剤膜44aの厚さ)Haが、電極43aの高さHbよりも小さく設定されている(Ha<Hb)点が、上記第5実施形態とは異なる。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、まず導電性バンプ15と電極43aが相互に接触し、その後、接着剤膜44aが第1半導体回路層1bの裏面に接触する。それ以外の点は上記第5実施形態と同じである。   In the method of manufacturing an integrated circuit device according to the twentieth embodiment described here, as shown in FIG. 47A, the height of the island-shaped adhesive element 44a (the thickness of the adhesive film 44a) Ha is the electrode. The point which is set smaller than the height Hb of 43a (Ha <Hb) is different from the fifth embodiment. For this reason, in the connection process of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, first, the conductive bump 15 and the electrode 43a are in contact with each other, and then the adhesive film 44a is the back surface of the first semiconductor circuit layer 1b. To touch. The other points are the same as in the fifth embodiment.

したがって、第20実施形態に係る集積回路装置の製造方法においても、上記第5実施形態と同様の効果が得られることは明らかである。   Therefore, it is apparent that the same effect as that of the fifth embodiment can be obtained in the method of manufacturing an integrated circuit device according to the twentieth embodiment.

第20実施形態では、第1半導体回路層1aと第2半導体回路層2の間の隙間に接着剤膜44aが充填されるようにするため、電極43aの変形量を大きくする必要があるが、それには限界がある。そこで、接着剤膜44aの厚さHaと、導電性バンプ15の突出高さHeと電極43aの高さHbの和との差(Ha−Hb−He)を、あまり大きくしないようにするのが好ましい。   In the twentieth embodiment, it is necessary to increase the deformation amount of the electrode 43a in order to fill the gap between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 with the adhesive film 44a. It has its limits. Therefore, the difference (Ha−Hb−He) between the thickness Ha of the adhesive film 44a and the sum of the protruding height He of the conductive bump 15 and the height Hb of the electrode 43a should not be so large. preferable.

(第21実施形態)
図48は、本発明の第21実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。この第20実施形態は、上述した第5実施形態の変形例3に相当する。
(21st Embodiment)
FIG. 48 is a partial enlarged cross-sectional view showing the method of manufacturing the integrated circuit device having a three-dimensional stacked structure according to the twenty-first embodiment of the present invention. The twentieth embodiment corresponds to the third modification of the fifth embodiment described above.

ここで述べる第21実施形態に係る集積回路装置の製造方法では、図48(a)に示すように、島状の接着剤要素44aの高さ(接着剤膜44aの厚さ)Haが、電極43aの高さHbよりも大きく設定されている(Ha>Hb)点は、上記第5実施形態と同じであるが、導電性バンプ15の突出高さHeと電極43aの高さHbの和とほぼ同じに設定されている(Ha≒Hb+He)点が異なる。このため、第1半導体回路層1aと第2半導体回路層2の接続工程では、導電性バンプ15と電極43aが相互に接触≒するのとほぼ同時に、接着剤膜44aが第1半導体回路層1bの裏面に接触する。それ以外の点は上記第5実施形態と同じである。   In the method of manufacturing an integrated circuit device according to the twenty-first embodiment described here, as shown in FIG. 48A, the height of the island-like adhesive element 44a (the thickness of the adhesive film 44a) Ha is the electrode. The point set to be larger than the height Hb of 43a (Ha> Hb) is the same as in the fifth embodiment, but the sum of the protruding height He of the conductive bump 15 and the height Hb of the electrode 43a is The points that are set substantially the same (Ha≈Hb + He) are different. For this reason, in the connection process of the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2, the adhesive film 44a is formed on the first semiconductor circuit layer 1b almost simultaneously with the contact between the conductive bump 15 and the electrode 43a. Touch the back of the. The other points are the same as in the fifth embodiment.

したがって、第21実施形態に係る集積回路装置の製造方法においても、上記第5実施形態と同様の効果が得られることは明らかである。   Therefore, it is obvious that the same effect as that of the fifth embodiment can be obtained in the method of manufacturing an integrated circuit device according to the twenty-first embodiment.

第21実施形態では、第1半導体回路層1aと第2半導体回路層2の間の隙間に接着剤膜44aが充填されるようにするため、電極43aの変形量を大きくする必要がある。   In the twenty-first embodiment, it is necessary to increase the deformation amount of the electrode 43a in order to fill the gap between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 with the adhesive film 44a.

(第22実施形態)
図49は、本発明の第22実施形態に係る三次元積層構造を持つ集積回路装置の製造方法において使用される電極のレイアウトと接着剤膜のパターンを示す、図32(b)と同様の図である。
(Twenty-second embodiment)
FIG. 49 is a view similar to FIG. 32B, showing an electrode layout and an adhesive film pattern used in the method of manufacturing an integrated circuit device having a three-dimensional stacked structure according to the twenty-second embodiment of the present invention. It is.

図49に示された矩形の四つの頂点にそれぞれ配置された四つの電極43a(第2半導体回路層2の表面に設けられる)は、一組になっていて、図32(a)に示したものと同様に、一つの電極42または導電性バンプ15の突出部(第1半導体回路層1aまたは1bの裏面に設けられる)に対して一対一で接続される。   49. Four electrodes 43a (provided on the surface of the second semiconductor circuit layer 2) respectively disposed at the four vertices of the rectangle shown in FIG. 49 form a set, and are shown in FIG. 32 (a). Similarly to the above, one electrode 42 or the protruding portion of the conductive bump 15 (provided on the back surface of the first semiconductor circuit layer 1a or 1b) is connected on a one-to-one basis.

図32(b)では、接着剤膜44aは、規則的に配置された多数の島状の接着剤要素44aaに分割されており、電極43aの各組の周囲を取り囲んでいる。他方、図49に示された接着剤膜44dは、X方向及びY方向に連続的に形成されたものである。すなわち、接着剤膜44dは、格子状パターンを持っていて、X方向に延在する複数の帯状部と、それらと直交するY方向に延在する複数の帯状部とから構成されている。この接着剤膜44dは、上述した接着剤膜44c、44c1、44c2に相当するものである。   In FIG. 32 (b), the adhesive film 44a is divided into a number of regularly arranged island-like adhesive elements 44aa, and surrounds each set of electrodes 43a. On the other hand, the adhesive film 44d shown in FIG. 49 is continuously formed in the X direction and the Y direction. That is, the adhesive film 44d has a lattice pattern, and includes a plurality of strips extending in the X direction and a plurality of strips extending in the Y direction orthogonal to them. The adhesive film 44d corresponds to the above-described adhesive films 44c, 44c1, and 44c2.

第22実施形態の製造方法では、図49に示された格子状の接着剤膜44dを使用するので、平面的には(つまり、接着剤膜44dを含む平面内では)気体の逃げ道はない。しかし、第1半導体回路層1aと第2半導体回路層2の間の隙間(電極43aの各組の周囲)に存在する気体は、両者の間に形成される空隙45(図6(k)を参照)を通って外部に排出されることができる。   In the manufacturing method of the twenty-second embodiment, since the lattice-like adhesive film 44d shown in FIG. 49 is used, there is no gas escape route in a plane (that is, in a plane including the adhesive film 44d). However, the gas existing in the gaps (around each set of electrodes 43a) between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 passes through the gaps 45 (FIG. 6 (k)) formed between them. See) can be discharged to the outside.

(第23実施形態)
図50は、本発明の第23実施形態に係る三次元積層構造を持つ集積回路装置の製造方法において使用される電極のレイアウトと接着剤膜のパターンを示す、図32(b)と同様の図である。
(23rd Embodiment)
FIG. 50 is a view similar to FIG. 32B, showing an electrode layout and an adhesive film pattern used in the method of manufacturing an integrated circuit device having a three-dimensional stacked structure according to the twenty-third embodiment of the present invention. It is.

図50に示された電極43aのレイアウトは、図49の電極43aと同じである。図50に示された接着剤膜44eは、X方向にのみ連続的に形成されたものである。接着剤膜44eは、ストライプ状パターンを持っていて、X方向に延在する複数の帯状部から構成されている。隣接する帯状部の間には、それぞれ、脱ガス用の通路となる空隙51が存在する。   The layout of the electrode 43a shown in FIG. 50 is the same as that of the electrode 43a in FIG. The adhesive film 44e shown in FIG. 50 is formed continuously only in the X direction. The adhesive film 44e has a striped pattern and is composed of a plurality of strips extending in the X direction. Between adjacent strips, there are gaps 51 that serve as degassing passages.

第23実施形態の製造方法では、図50に示された格子状の接着剤膜44eを使用するので、第1半導体回路層1aと第2半導体回路層2の間の隙間(電極43aの各組の周囲)に存在する気体は、両者の間に形成される空隙45(図6(k)を参照)と、接着剤膜44eの空隙51とを通って外部に排出される。このため、第22実施形態に比べて気体が排出されやすい利点がある。   In the manufacturing method of the twenty-third embodiment, since the lattice-like adhesive film 44e shown in FIG. 50 is used, the gaps between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 (each set of the electrodes 43a). The gas existing in the vicinity of the gas is discharged to the outside through the gap 45 (see FIG. 6 (k)) formed between them and the gap 51 of the adhesive film 44e. For this reason, there exists an advantage which is easy to discharge | emit gas compared with 22nd Embodiment.

(第24実施形態)
図51は、本発明の第24実施形態に係る三次元積層構造を持つ集積回路装置の製造方法において使用される電極のレイアウトと接着剤膜のパターンを示す、図32(b)と同様の図である。
(24th Embodiment)
FIG. 51 is a view similar to FIG. 32B, showing an electrode layout and an adhesive film pattern used in the method of manufacturing an integrated circuit device having a three-dimensional stacked structure according to the twenty-fourth embodiment of the present invention. It is.

図51に示された電極43aのレイアウトは、図49の電極43aと同じである。図51に示された接着剤膜44fは、Y方向に延在する帯状部に複数のスリット52が形成されている点を除き、図49の接着剤膜44dと同じである。   The layout of the electrode 43a shown in FIG. 51 is the same as that of the electrode 43a in FIG. The adhesive film 44f shown in FIG. 51 is the same as the adhesive film 44d shown in FIG. 49 except that a plurality of slits 52 are formed in a belt-like portion extending in the Y direction.

第24実施形態の製造方法では、図51に示された格子状の接着剤膜44fを使用するので、第1半導体回路層1aと第2半導体回路層2の間の隙間(電極43aの各組の周囲)に存在する気体は、両者の間に形成される空隙45と、接着剤膜44fの空隙51及びスリット52とを通って外部に排出される。このため、第22実施形態に比べて気体が排出されやすい利点がある。   In the manufacturing method of the twenty-fourth embodiment, since the lattice-like adhesive film 44f shown in FIG. 51 is used, the gap between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 (each set of the electrodes 43a). The gas existing in the vicinity of the gas is discharged to the outside through the gap 45 formed between them, the gap 51 of the adhesive film 44f, and the slit 52. For this reason, there exists an advantage which is easy to discharge | emit gas compared with 22nd Embodiment.

(第25実施形態)
図52は、本発明の第25実施形態に係る三次元積層構造を持つ集積回路装置の製造方法において使用される電極のレイアウトと接着剤膜のパターンを示す、図32(b)と同様の図である。
(25th Embodiment)
FIG. 52 is a view similar to FIG. 32B, showing an electrode layout and an adhesive film pattern used in the method of manufacturing an integrated circuit device having a three-dimensional stacked structure according to the twenty-fifth embodiment of the present invention. It is.

図52に示された電極43aのレイアウトは、図49の電極43aと同じである。図52に示された接着剤膜44gは、Y方向に延在する帯状部とX方向に延在する帯状部にそれぞれ複数のスリット52及び53が形成されている点を除き、図49の接着剤膜44dと同じである。   The layout of the electrode 43a shown in FIG. 52 is the same as that of the electrode 43a in FIG. The adhesive film 44g shown in FIG. 52 is similar to the adhesive film shown in FIG. 49 except that a plurality of slits 52 and 53 are formed in the belt-like portion extending in the Y direction and the belt-like portion extending in the X direction. It is the same as the agent film 44d.

第25実施形態の製造方法では、図52に示された格子状の接着剤膜44gを使用するので、第1半導体回路層1aと第2半導体回路層2の間の隙間(電極43aの各組の周囲)に存在する気体は、両者の間に形成される空隙45と、接着剤膜44fの空隙51並びにスリット52及び53とを通って外部に排出される。このため、第22実施形態及び第23実施形態に比べて気体が排出されやすい利点がある。   In the manufacturing method of the twenty-fifth embodiment, since the lattice-like adhesive film 44g shown in FIG. 52 is used, the gaps between the first semiconductor circuit layer 1a and the second semiconductor circuit layer 2 (each set of the electrodes 43a). The gas existing in the periphery) is discharged to the outside through the gap 45 formed therebetween, the gap 51 of the adhesive film 44f, and the slits 52 and 53. For this reason, there exists an advantage which gas is easy to be discharged | emitted compared with 22nd Embodiment and 23rd Embodiment.

(変形例)
上述した第1〜第25実施形態は本発明を具体化した例を示すものであり、したがって本発明はこれらの実施形態に限定されるものではなく、本発明の趣旨を外れることなく種々の変形が可能であることは言うまでもない。例えば、上述した第1〜第25実施形態では、隣接する半導体回路層のマイクロバンプ電極同士(あるいは導電性プラグとマイクロバンプ電極)を「加熱圧接」によって接合させているが、本発明はこれに限定されない。マイクロバンプ電極や導電性プラグの材質によっては、室温における圧接すなわち「室温圧接」が可能であるから、そのような場合には「室温圧接」を使用してもよいことは言うまでもない。また、マイクロバンプ電極同士(あるいは導電性プラグとマイクロバンプ電極)を適当な接合用金属(例えばハンダ合金)を介在させて相互に接合させてもよい。
(Modification)
The first to 25th embodiments described above show examples embodying the present invention. Therefore, the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention. It goes without saying that is possible. For example, in the first to 25th embodiments described above, the microbump electrodes of the adjacent semiconductor circuit layers (or the conductive plug and the microbump electrode) are joined together by “heating pressure welding”. It is not limited. Depending on the material of the micro-bump electrode and the conductive plug, pressure welding at room temperature, that is, “room temperature pressure welding” is possible. Needless to say, “room temperature pressure welding” may be used in such a case. Alternatively, the microbump electrodes (or the conductive plug and the microbump electrode) may be bonded to each other with an appropriate bonding metal (for example, a solder alloy) interposed therebetween.

また、上述した第1〜第25実施形態では、主として第1半導体回路層を支持基板に固着する場合について説明しているが、本発明はこれに限定されない。例えば、本発明を第2半導体回路層に適用すれば、当該第2半導体回路層はそれに隣接する第1半導体回路層に固着されることになる。   In the first to 25th embodiments described above, the case where the first semiconductor circuit layer is mainly fixed to the support substrate has been described, but the present invention is not limited to this. For example, when the present invention is applied to the second semiconductor circuit layer, the second semiconductor circuit layer is fixed to the first semiconductor circuit layer adjacent thereto.

さらに、上述した第1〜第25実施形態では、半導体回路層の各々を単一の半導体ウェハーにより形成する場合について述べているが、本発明はこれらに限定されない。例えば、半導体回路層の各々を複数の半導体チップにより形成してもよい。また、少なくとも一つの半導体回路層を単一の半導体ウェハーにより形成し、残りの半導体回路層の各々を複数の半導体チップにより形成してもよい。ある半導体回路層を複数の半導体チップにより形成する場合、それら半導体チップのすべてが電子回路を内蔵していなくてもよい。すなわち、いくつかの半導体チップは電子回路を内蔵していない(または電子回路を内蔵しているが使用されていない)「ダミーチップ」でもよい。また、ある半導体回路層を単一の半導体ウェハーにより形成する場合、その半導体ウェハーが、電子回路を内蔵していない(または電子回路を内蔵しているが使用されていない)「ダミー領域」を含んでいてもよい。   Furthermore, in the first to 25th embodiments described above, the case where each of the semiconductor circuit layers is formed by a single semiconductor wafer is described, but the present invention is not limited to these. For example, each of the semiconductor circuit layers may be formed by a plurality of semiconductor chips. Further, at least one semiconductor circuit layer may be formed by a single semiconductor wafer, and each of the remaining semiconductor circuit layers may be formed by a plurality of semiconductor chips. When a certain semiconductor circuit layer is formed of a plurality of semiconductor chips, all of the semiconductor chips do not have to incorporate an electronic circuit. That is, some semiconductor chips may be “dummy chips” that do not contain electronic circuits (or that contain electronic circuits but are not used). When a semiconductor circuit layer is formed of a single semiconductor wafer, the semiconductor wafer includes a “dummy region” that does not contain an electronic circuit (or that contains an electronic circuit but is not used). You may go out.

本発明の第1実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図である。It is a fragmentary sectional view which shows the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure which concerns on 1st Embodiment of this invention for every process. 本発明の第1実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図1の続きである。FIG. 3 is a partial cross-sectional view illustrating the method for manufacturing the integrated circuit device having the three-dimensional stacked structure according to the first embodiment of the present invention for each process, and is a continuation of FIG. 1. 本発明の第1実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図2の続きである。FIG. 3 is a partial cross-sectional view illustrating the method for manufacturing the integrated circuit device having the three-dimensional stacked structure according to the first embodiment of the present invention for each process, and is a continuation of FIG. 2. 本発明の第1実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図3の続きである。FIG. 4 is a partial cross-sectional view illustrating the method for manufacturing the integrated circuit device having the three-dimensional stacked structure according to the first embodiment of the present invention for each step, and is a continuation of FIG. 3. 本発明の第1実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図4の続きである。FIG. 5 is a partial cross-sectional view illustrating the method for manufacturing the integrated circuit device having the three-dimensional stacked structure according to the first embodiment of the present invention for each process, and is a continuation of FIG. 4. 本発明の第1実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図5の続きである。FIG. 6 is a partial cross-sectional view illustrating the method for manufacturing the integrated circuit device having the three-dimensional stacked structure according to the first embodiment of the present invention for each step, and is a continuation of FIG. 5. 本発明の第1実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図6の続きである。FIG. 7 is a partial cross-sectional view illustrating the method for manufacturing the integrated circuit device having the three-dimensional stacked structure according to the first embodiment of the present invention for each process, and is a continuation of FIG. 6. 本発明の第1実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図7の続きである。FIG. 9 is a partial cross-sectional view showing the method for manufacturing the integrated circuit device having the three-dimensional stacked structure according to the first embodiment of the present invention for each step, and is a continuation of FIG. 7. (a)、(b)は、本発明の第1実施形態に係る三次元積層構造を持つ集積回路装置の製造方法の図5の工程と図6の工程の詳細をそれぞれ示す部分拡大断面図である。(A), (b) is the elements on larger scale which each show the detail of the process of FIG. 5 of the manufacturing method of the integrated circuit device with the three-dimensional laminated structure which concerns on 1st Embodiment of this invention, and the process of FIG. is there. 本発明の第1実施形態に係る三次元積層構造を持つ集積回路装置の製造方法の図7(l)の工程の詳細を示す部分拡大断面図である。FIG. 8 is a partial enlarged cross-sectional view showing details of the step of FIG. 7L of the method for manufacturing the integrated circuit device having a three-dimensional laminated structure according to the first embodiment of the present invention. 本発明の第2実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図5に対応するものである。FIG. 7 is a partial cross-sectional view showing a method for manufacturing an integrated circuit device having a three-dimensional laminated structure according to a second embodiment of the present invention for each step, and corresponds to FIG. 5. 本発明の第2実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図11の続きであり、図6に対応するものである。FIG. 12 is a partial cross-sectional view illustrating a method for manufacturing an integrated circuit device having a three-dimensional stacked structure according to a second embodiment of the present invention for each step, which is a continuation of FIG. 11 and corresponds to FIG. 6. 本発明の第2実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図12の続きであり、図7に対応するものである。FIG. 13 is a partial cross-sectional view illustrating a method of manufacturing an integrated circuit device having a three-dimensional stacked structure according to a second embodiment of the present invention for each step, which is a continuation of FIG. 12 and corresponds to FIG. (a)、(b)は、本発明の第2実施形態に係る三次元積層構造を持つ集積回路装置の製造方法の図11と図12の工程の詳細をそれぞれ示す部分拡大断面図である。(A), (b) is a partial expanded sectional view which shows the detail of the process of FIG. 11 and FIG. 12 of the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure which concerns on 2nd Embodiment of this invention, respectively. 本発明の第2実施形態に係る三次元積層構造を持つ集積回路装置の製造方法の図13の工程の詳細を示す部分拡大断面図である。FIG. 14 is a partial enlarged cross-sectional view showing details of the step of FIG. 13 in the method of manufacturing an integrated circuit device having a three-dimensional laminated structure according to the second embodiment of the present invention. 本発明の第3実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図5に対応するものである。FIG. 5 is a partial cross-sectional view showing a method for manufacturing an integrated circuit device having a three-dimensional stacked structure according to a third embodiment of the present invention for each step, and corresponds to FIG. 5. 本発明の第3実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図16の続きであり、図6に対応するものである。FIG. 17 is a partial cross-sectional view illustrating a method of manufacturing an integrated circuit device having a three-dimensional stacked structure according to a third embodiment of the present invention for each process, and is a continuation of FIG. 16 and corresponds to FIG. 本発明の第3実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図17の続きであり、図7に対応するものである。FIG. 18 is a partial cross-sectional view illustrating the method for manufacturing the integrated circuit device having a three-dimensional stacked structure according to the third embodiment of the present invention for each process, and is a continuation of FIG. 17 and corresponds to FIG. (a)、(b)は、本発明の第3実施形態に係る三次元積層構造を持つ集積回路装置の製造方法の図16と図17の工程の詳細をそれぞれ示す部分拡大断面図である。(A), (b) is a partial expanded sectional view which respectively shows the detail of the process of FIG. 16 and FIG. 17 of the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 3rd Embodiment of this invention. 本発明の第3実施形態に係る三次元積層構造を持つ集積回路装置の製造方法の図18の工程の詳細を示す部分拡大断面図である。FIG. 19 is a partial enlarged cross-sectional view illustrating details of the process of FIG. 18 of the method for manufacturing the integrated circuit device having a three-dimensional stacked structure according to the third embodiment of the present invention. 本発明の第4実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図5に対応するものである。FIG. 9 is a partial cross-sectional view showing a method of manufacturing an integrated circuit device having a three-dimensional laminated structure according to a fourth embodiment of the present invention for each step, corresponding to FIG. 5. 本発明の第4実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図21の続きであり、図6に対応するものである。FIG. 22 is a partial cross-sectional view illustrating a method for manufacturing an integrated circuit device having a three-dimensional stacked structure according to a fourth embodiment of the present invention for each step, which is a continuation of FIG. 21 and corresponds to FIG. 6. 本発明の第4実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図22の続きであり、図7に対応するものである。FIG. 24 is a partial cross-sectional view illustrating the method for manufacturing the integrated circuit device having a three-dimensional stacked structure according to the fourth embodiment of the present invention for each step, which is a continuation of FIG. 22 and corresponds to FIG. 7; (a)、(b)は、本発明の第4実施形態に係る三次元積層構造を持つ集積回路装置の製造方法の図21と図22の工程の詳細をそれぞれ示す部分拡大断面図である。(A), (b) is a partial expanded sectional view which shows the detail of the process of FIG. 21 and FIG. 22 of the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 4th Embodiment of this invention, respectively. 本発明の第4実施形態に係る三次元積層構造を持つ集積回路装置の製造方法の図23の工程の詳細を示す部分拡大断面図である。FIG. 24 is a partial enlarged cross-sectional view showing details of the step of FIG. 23 in the method for manufacturing an integrated circuit device having a three-dimensional stacked structure according to the fourth embodiment of the present invention. (a)、(b)は、本発明の第5実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図3(g)と図4(h)にそれぞれ対応するものである。FIGS. 3A and 4B are partial cross-sectional views showing a method of manufacturing an integrated circuit device having a three-dimensional stacked structure according to the fifth embodiment of the present invention for each step, and FIGS. ) Respectively. 本発明の第5実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図26の続きであり、図5に対応するものである。FIG. 27 is a partial cross-sectional view illustrating the method for manufacturing the integrated circuit device having a three-dimensional stacked structure according to the fifth embodiment of the present invention for each process, and is a continuation of FIG. 26 and corresponds to FIG. 5. 本発明の第5実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図27の続きであり、図6に対応するものである。FIG. 28 is a partial cross-sectional view illustrating a method for manufacturing an integrated circuit device having a three-dimensional stacked structure according to a fifth embodiment of the present invention for each step, which is a continuation of FIG. 27 and corresponds to FIG. 6. 本発明の第5実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を工程毎に示す部分断面図で、図28の続きであり、図7に対応するものである。FIG. 29 is a partial cross-sectional view showing the method of manufacturing the integrated circuit device having a three-dimensional stacked structure according to the fifth embodiment of the present invention for each process, and is a continuation of FIG. 28 and corresponds to FIG. (a)、(b)は、本発明の第5実施形態に係る三次元積層構造を持つ集積回路装置の製造方法の図27と図28の工程の詳細をそれぞれ示す部分拡大断面図である。(A), (b) is a partial expanded sectional view which shows the detail of the process of FIG. 27 and FIG. 28 of the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 5th Embodiment of this invention, respectively. 本発明の第5実施形態に係る三次元積層構造を持つ集積回路装置の製造方法の図29の工程の詳細を示す部分拡大断面図である。FIG. 30 is a partial enlarged cross-sectional view showing details of the step of FIG. 29 in the method of manufacturing the integrated circuit device having a three-dimensional stacked structure according to the fifth embodiment of the present invention. (a)は、本発明の第1実施形態に係る三次元積層構造を持つ集積回路装置の製造方法で使用される上下のマイクロバンプ電極の位置と大きさの関係を示す概略平面図、(b)は同製造方法において第2半導体回路層の多層配線構造の表面に配置された、マイクロバンプ電極群と接着剤要素群のレイアウトの一例を示す概念図である。(A) is a schematic top view which shows the relationship between the position and magnitude | size of an upper and lower micro bump electrode used with the manufacturing method of the integrated circuit device which has the three-dimensional laminated structure which concerns on 1st Embodiment of this invention, (b) ) Is a conceptual diagram showing an example of a layout of a micro-bump electrode group and an adhesive element group disposed on the surface of the multilayer wiring structure of the second semiconductor circuit layer in the manufacturing method. 本発明の第6実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。It is a partial expanded sectional view which shows the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 6th Embodiment of this invention. 本発明の第7実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。It is a partial expanded sectional view which shows the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 7th Embodiment of this invention. 本発明の第8実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。It is a partial expanded sectional view which shows the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 8th Embodiment of this invention. 本発明の第9実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。It is a partial expanded sectional view which shows the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 9th Embodiment of this invention. 本発明の第10実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。It is a partial expanded sectional view which shows the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 10th Embodiment of this invention. 本発明の第11実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。It is a partial expanded sectional view which shows the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 11th Embodiment of this invention. 本発明の第12実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。It is a partial expanded sectional view which shows the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 12th Embodiment of this invention. 本発明の第13実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。It is a partial expanded sectional view which shows the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 13th Embodiment of this invention. 本発明の第14実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。It is a partial expanded sectional view which shows the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 14th Embodiment of this invention. 本発明の第15実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。It is a partial expanded sectional view which shows the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 15th Embodiment of this invention. 本発明の第16実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。It is a partial expanded sectional view which shows the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 16th Embodiment of this invention. 本発明の第17実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。It is a partial expanded sectional view which shows the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 17th Embodiment of this invention. 本発明の第18実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。It is a partial expanded sectional view which shows the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 18th Embodiment of this invention. 本発明の第19実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。It is a partial expanded sectional view which shows the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 19th Embodiment of this invention. 本発明の第20実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。It is a partial expanded sectional view which shows the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 20th Embodiment of this invention. 本発明の第21実施形態に係る三次元積層構造を持つ集積回路装置の製造方法を示す部分拡大断面図である。It is a partial expanded sectional view which shows the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 21st Embodiment of this invention. 本発明の第22実施形態に係る三次元積層構造を持つ集積回路装置の製造方法で使用される電極のレイアウトと接着剤膜のパターンを示す部分拡大平面図である。It is the elements on larger scale which show the layout of the electrode used by the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 22nd Embodiment of this invention, and the pattern of an adhesive film. 本発明の第23実施形態に係る三次元積層構造を持つ集積回路装置の製造方法で使用される電極のレイアウトと接着剤膜のパターンを示す部分拡大平面図である。It is a partial enlarged plan view which shows the layout of the electrode used by the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 23rd Embodiment of this invention, and the pattern of an adhesive film. 本発明の第24実施形態に係る三次元積層構造を持つ集積回路装置の製造方法で使用される電極のレイアウトと接着剤膜のパターンを示す部分拡大平面図である。It is a partial enlarged plan view which shows the layout of the electrode used by the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 24th Embodiment of this invention, and the pattern of an adhesive film. 本発明の第25実施形態に係る三次元積層構造を持つ集積回路装置の製造方法で使用される電極のレイアウトと接着剤膜のパターンを示す部分拡大平面図である。It is a partial enlarged plan view which shows the layout of the electrode used by the manufacturing method of the integrated circuit device which has a three-dimensional laminated structure concerning 25th Embodiment of this invention, and the pattern of an adhesive film.

符号の説明Explanation of symbols

1 第1半導体回路層
1a、1b薄くされた第1半導体回路層
2 第2半導体回路層
2a 薄くされた第2半導体回路層
11 半導体基板
12 酸化シリコン(SiO2)膜
12a 窒化シリコン(Si34)膜
12b ゲート絶縁膜
13 トレンチ
14 酸化シリコン(SiO2)膜
15 導電性プラグ
15a 導電性プラグの端部
16 ソース・ドレイン領域
17 フォトレジスト膜
18 ゲート電極
19 層間絶縁膜
20 金属配線膜
21 導電性材料
30 多層配線構造
31 絶縁材料
32、33、34 配線層
35、36 導電体
37 マイクロバンプ電極
38 導電体
39 接着剤
40 支持基板
41 酸化シリコン(SiO2)膜
42、43a マイクロバンプ電極
44a、44b1、44b2、44c、44c1、44c2 接着剤膜
44b1b2、44b2c、44c1c2 一体化された接着剤膜
44d、44e、44f、44g 接着剤膜
45 第1半導体回路層と第2半導体回路層の間に形成される脱ガス用通路
51 脱ガス用空隙
52、53 脱ガス用スリット
DESCRIPTION OF SYMBOLS 1 1st semiconductor circuit layer 1a, 1b Thinned first semiconductor circuit layer 2 Second semiconductor circuit layer 2a Thinned second semiconductor circuit layer 11 Semiconductor substrate 12 Silicon oxide (SiO 2 ) film 12a Silicon nitride (Si 3 N 4 ) Film 12b Gate insulating film 13 Trench 14 Silicon oxide (SiO 2 ) film 15 Conductive plug 15a End of conductive plug 16 Source / drain region 17 Photoresist film 18 Gate electrode 19 Interlayer insulating film 20 Metal wiring film 21 Conductive Conductive material 30 Multi-layer wiring structure 31 Insulating material 32, 33, 34 Wiring layer 35, 36 Conductor 37 Micro bump electrode 38 Conductor 39 Adhesive 40 Support substrate 41 Silicon oxide (SiO 2 ) film 42, 43a Micro bump electrode 44a, 44b1, 44b2, 44c, 44c1, 44c2 Adhesive film 44b b2, 44b2c, 44c1c2 Integrated adhesive film 44d, 44e, 44f, 44g Adhesive film 45 Degassing passage 51 formed between the first semiconductor circuit layer and the second semiconductor circuit layer 51 Degassing gap 52 53 Degassing slit

Claims (1)

複数の半導体回路層を支持基板上に積層してなる三次元積層構造を持つ集積回路装置の製造方法であって、
前記三次元積層構造を構成する一つの半導体回路層の内部に、一端が当該半導体回路層の裏面から露出せしめられた複数の埋込配線を形成する工程と、
前記半導体回路層の裏面、あるいは前記三次元積層構造を構成する他の半導体回路層の表面、またはそれらの双方に、複数のバンプ電極を形成する工程と、
前記半導体回路層の裏面、あるいは前記他の半導体回路層の表面、またはそれらの双方に、前記埋込配線の露出端および前記バンプ電極とは重ならない形状にパターン化された電気的絶縁性の接着剤膜を形成する工程と、
前記接着剤膜を間に介在させながら、前記半導体回路層の裏面と前記他の半導体回路層の表面とを相互に対向させる工程と、
相互に対向せしめられた前記半導体回路層の裏面と前記他の半導体回路層の表面を、それらの間の層間ギャップが第1所定値になるまで近接させる工程と、
前記層間ギャップを第2所定値まで狭めることにより、前記接着剤膜を前記半導体回路層の裏面と前記他の半導体回路層の表面との間に残存する隙間内で変形させながら、また、前記埋込配線の露出端および前記バンプ電極の少なくとも一方を変形させながら、前記埋込配線の前記露出端と前記バンプ電極とを相互に接合させ、もって前記半導体回路層の裏面と前記他の半導体回路層の表面とを相互接続する工程とを備え、
前記接着剤膜を形成する前記工程では、パターン化された前記接着剤膜の総量は、前記層間ギャップが前記第2所定値にまで狭められた時に前記半導体回路層の裏面と前記他の半導体回路層の表面との間に残存する前記隙間の総体積にほぼ等しくなるように調整され、
前記半導体回路層の裏面と前記他の半導体回路層の表面とを相互接続する前記工程では、前記埋込配線の一つに対応する複数の前記バンプ電極が変形して一体化されることで、前記埋込配線と前記バンプ電極とが一対一対応になり、
前記半導体回路層の裏面と前記他の半導体回路層の表面とを相互接続する前記工程の終了後には、前記隙間は前記接着剤膜によって充填せしめられると共に、前記半導体回路層の裏面と前記他の半導体回路層の表面は前記接着剤膜によって相互接着されることを特徴とする集積回路装置の製造方法。
A method of manufacturing an integrated circuit device having a three-dimensional stacked structure in which a plurality of semiconductor circuit layers are stacked on a support substrate,
Forming a plurality of embedded wirings, one end of which is exposed from the back surface of the semiconductor circuit layer, inside one semiconductor circuit layer constituting the three-dimensional stacked structure;
Forming a plurality of bump electrodes on the back surface of the semiconductor circuit layer, or on the surface of another semiconductor circuit layer constituting the three-dimensional stacked structure, or both of them;
Electrically insulating adhesion patterned in a shape that does not overlap the exposed end of the embedded wiring and the bump electrode on the back surface of the semiconductor circuit layer, the surface of the other semiconductor circuit layer, or both of them Forming the agent film;
Making the back surface of the semiconductor circuit layer and the surface of the other semiconductor circuit layer face each other while interposing the adhesive film therebetween,
Bringing the back surface of the semiconductor circuit layer and the surface of the other semiconductor circuit layer facing each other close to each other until an interlayer gap therebetween becomes a first predetermined value;
By narrowing the interlayer gap to a second predetermined value, the adhesive film is deformed in the gap remaining between the back surface of the semiconductor circuit layer and the surface of the other semiconductor circuit layer, and the filling is performed. The exposed end of the embedded wiring and the bump electrode are bonded to each other while deforming at least one of the exposed end of the embedded wiring and the bump electrode, so that the back surface of the semiconductor circuit layer and the other semiconductor circuit layer are joined together. And interconnecting the surface of the
In the step of forming the adhesive film, the total amount of the patterned adhesive film is such that the back surface of the semiconductor circuit layer and the other semiconductor circuit when the interlayer gap is narrowed to the second predetermined value. Adjusted to be approximately equal to the total volume of the gap remaining between the surface of the layer,
In the step of interconnecting the back surface of the semiconductor circuit layer and the surface of the other semiconductor circuit layer, a plurality of the bump electrodes corresponding to one of the embedded wirings are deformed and integrated, The embedded wiring and the bump electrode have a one-to-one correspondence,
After the step of interconnecting the back surface of the semiconductor circuit layer and the surface of the other semiconductor circuit layer, the gap is filled with the adhesive film, and the back surface of the semiconductor circuit layer and the other semiconductor circuit layer A method of manufacturing an integrated circuit device, wherein surfaces of semiconductor circuit layers are bonded to each other by the adhesive film.
JP2005259824A 2005-09-07 2005-09-07 Manufacturing method of integrated circuit device having three-dimensional laminated structure Expired - Fee Related JP5175003B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005259824A JP5175003B2 (en) 2005-09-07 2005-09-07 Manufacturing method of integrated circuit device having three-dimensional laminated structure
TW095133066A TWI433244B (en) 2005-09-07 2006-09-07 Method of fabricating integrated circuit device with three-dimensional stacked structure
PCT/JP2006/317716 WO2007037106A1 (en) 2005-09-07 2006-09-07 Method for manufacturing integrated circuit device having three-dimensional multilayer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259824A JP5175003B2 (en) 2005-09-07 2005-09-07 Manufacturing method of integrated circuit device having three-dimensional laminated structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012162142A Division JP5383874B2 (en) 2012-07-20 2012-07-20 Integrated circuit device with three-dimensional laminated structure

Publications (2)

Publication Number Publication Date
JP2007073775A JP2007073775A (en) 2007-03-22
JP5175003B2 true JP5175003B2 (en) 2013-04-03

Family

ID=37899536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259824A Expired - Fee Related JP5175003B2 (en) 2005-09-07 2005-09-07 Manufacturing method of integrated circuit device having three-dimensional laminated structure

Country Status (3)

Country Link
JP (1) JP5175003B2 (en)
TW (1) TWI433244B (en)
WO (1) WO2007037106A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009115449A1 (en) * 2008-03-19 2009-09-24 Interuniversitair Microelektronica Centrum Vzw (Imec) Method for fabricating through-substrate vias
JP2010153645A (en) * 2008-12-25 2010-07-08 Nikon Corp Method for manufacturing laminated semiconductor device
US8749027B2 (en) 2009-01-07 2014-06-10 Taiwan Semiconductor Manufacturing Company, Ltd. Robust TSV structure
DE112011101135B4 (en) * 2010-03-29 2021-02-11 X-Celeprint Limited Electrically connected fields of active components in transfer printing technology
US9161448B2 (en) 2010-03-29 2015-10-13 Semprius, Inc. Laser assisted transfer welding process
US8525342B2 (en) * 2010-04-12 2013-09-03 Qualcomm Incorporated Dual-side interconnected CMOS for stacked integrated circuits
JP5710918B2 (en) * 2010-09-13 2015-04-30 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
JP2012195514A (en) 2011-03-17 2012-10-11 Seiko Epson Corp Substrate with element, infrared sensor, and through electrode formation method
US9412727B2 (en) 2011-09-20 2016-08-09 Semprius, Inc. Printing transferable components using microstructured elastomeric surfaces with pressure modulated reversible adhesion
EP2761651B1 (en) * 2011-09-30 2019-05-29 Intel Corporation Method for handling a very thin device wafer with a solder bump using a support substrate with a planar wetting surface and a layer of thermosetting material
US9082764B2 (en) 2012-03-05 2015-07-14 Corning Incorporated Three-dimensional integrated circuit which incorporates a glass interposer and method for fabricating the same
JP6017297B2 (en) 2012-12-14 2016-10-26 オリンパス株式会社 Manufacturing method of semiconductor device
MY182253A (en) 2014-07-20 2021-01-18 X Celeprint Ltd Apparatus and methods for micro-transfer-printing
US9704821B2 (en) 2015-08-11 2017-07-11 X-Celeprint Limited Stamp with structured posts
US10748793B1 (en) 2019-02-13 2020-08-18 X Display Company Technology Limited Printing component arrays with different orientations
WO2024062926A1 (en) * 2022-09-20 2024-03-28 東京エレクトロン株式会社 Method for bonding substrates, and bonded substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2676828B2 (en) * 1988-09-30 1997-11-17 株式会社デンソー Manufacturing method of hybrid integrated circuit device
JP2932840B2 (en) * 1992-08-06 1999-08-09 日本電気株式会社 Semiconductor device bonding method
JPH0722578A (en) * 1993-07-05 1995-01-24 Hitachi Ltd Laminated integrated semiconductor device and its manufacture
JP2655496B2 (en) * 1994-11-21 1997-09-17 日本電気株式会社 Integrated circuit device for face-down connection
JP4123682B2 (en) * 2000-05-16 2008-07-23 セイコーエプソン株式会社 Semiconductor device and manufacturing method thereof
JP2004342861A (en) * 2003-05-16 2004-12-02 Sony Corp Chip type electronic component, dummy wafer, methods of manufacturing them, and packaging structure of electronic component
JP4706180B2 (en) * 2003-12-22 2011-06-22 セイコーエプソン株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
TWI433244B (en) 2014-04-01
TW200729367A (en) 2007-08-01
WO2007037106A1 (en) 2007-04-05
JP2007073775A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP5175003B2 (en) Manufacturing method of integrated circuit device having three-dimensional laminated structure
US7906363B2 (en) Method of fabricating semiconductor device having three-dimensional stacked structure
US11062990B2 (en) Semiconductor package of using insulating frame
JP5052130B2 (en) Semiconductor device having three-dimensional laminated structure and method for manufacturing the same
US10276540B2 (en) Chip packaging method and chip packaging structure
TWI629759B (en) Chip package and method for forming the same
US7875481B2 (en) Semiconductor apparatus and method for manufacturing the same
JP3938759B2 (en) Semiconductor device and manufacturing method of semiconductor device
US7691672B2 (en) Substrate treating method and method of manufacturing semiconductor apparatus
KR100809718B1 (en) Stack type semiconductor chip package having different type of chips and fabrication method thereof
JP5183708B2 (en) Semiconductor device and manufacturing method thereof
CN106997855A (en) Ic package and forming method thereof
JP2009181981A (en) Manufacturing process of semiconductor device, and the semiconductor device
JP2009500820A (en) Method and assembly for manufacturing an assembly
JP2012501077A (en) A semiconductor device including a stress relaxation gap to enhance chip-package interaction stability.
KR102480685B1 (en) Semiconductor devices and methods of manufacture
US20170117242A1 (en) Chip package and method for forming the same
JP5025922B2 (en) Circuit board, method for manufacturing circuit board, and semiconductor device
JP5383874B2 (en) Integrated circuit device with three-dimensional laminated structure
JP2005026363A (en) Semiconductor device and its manufacturing method
JP4696152B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2001267358A (en) Method for assembling semiconductor device
JP2001267489A (en) Semiconductor device and semiconductor chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120910

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121230

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees