JP5174367B2 - Membrane element and submerged flat membrane filtration device - Google Patents

Membrane element and submerged flat membrane filtration device Download PDF

Info

Publication number
JP5174367B2
JP5174367B2 JP2007090829A JP2007090829A JP5174367B2 JP 5174367 B2 JP5174367 B2 JP 5174367B2 JP 2007090829 A JP2007090829 A JP 2007090829A JP 2007090829 A JP2007090829 A JP 2007090829A JP 5174367 B2 JP5174367 B2 JP 5174367B2
Authority
JP
Japan
Prior art keywords
membrane
filtration
membrane element
oscillation
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007090829A
Other languages
Japanese (ja)
Other versions
JP2008246371A (en
Inventor
茂之 森
智一 北野
康信 岡島
英俊 桝谷
公博 石川
一生 南里
彩子 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2007090829A priority Critical patent/JP5174367B2/en
Publication of JP2008246371A publication Critical patent/JP2008246371A/en
Application granted granted Critical
Publication of JP5174367B2 publication Critical patent/JP5174367B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は膜エレメントおよび浸漬型平膜ろ過装置に関し、特に下水や産業廃水等の処理に使用される膜ろ過技術に係るものである。   The present invention relates to a membrane element and a submerged flat membrane filtration apparatus, and particularly relates to a membrane filtration technique used for treatment of sewage, industrial wastewater, and the like.

従来、この種の技術においては、活性汚泥による膜間閉塞を防止するために、エアースクラビングを行なっている。このエアースクラビングは汚泥へ酸素を供給するために行なう散気を利用するものであり、散気によって槽内に生じる気液混相流を膜面に沿った掃流として流すものである。   Conventionally, in this type of technology, air scrubbing is performed to prevent clogging between membranes due to activated sludge. This air scrubbing uses aeration performed to supply oxygen to sludge, and flows a gas-liquid mixed phase flow generated in the tank by the diffusion as a sweep along the film surface.

また、例えば特許文献1に記載する浸漬型膜分離装置の膜面閉塞防止装置には、膜表面に付着する粘着物質の発生を抑制することでろ過膜の膜面の閉塞を防止する技術が記載されており、ろ板の表面にろ過膜を配置した複数の膜カートリッジを槽内に浸漬して配置する浸漬型膜分離装置において、膜カートリッジに抗菌材を担持し、もしくは抗菌材を担持した部材を膜カートリッジの近傍位置に配置し、抗菌材から抗菌性金属イオンを溶出させ、抗菌性金属イオンによる微生物の増殖抑制作用もしくは殺菌作用によってろ過膜の膜表面に付着する活性汚泥由来の粘着物質の発生を抑制する。   Further, for example, in the membrane surface blocking prevention device of the submerged membrane separation device described in Patent Document 1, a technique for preventing the membrane surface of the filtration membrane from being blocked by suppressing generation of an adhesive substance adhering to the membrane surface is described. In a submerged membrane separation apparatus in which a plurality of membrane cartridges having filtration membranes arranged on the surface of a filter plate are immersed in a tank, the membrane cartridge carries an antibacterial material or a member carrying an antibacterial material Is placed in the vicinity of the membrane cartridge, the antibacterial metal ions are eluted from the antibacterial material, and the adhesive substance derived from activated sludge that adheres to the membrane surface of the filtration membrane by the antibacterial metal ion suppressive action or bactericidal action Suppresses the occurrence.

また、特許文献2に記載する膜処理装置は、膜表面のゲル層の成長を防止して汚泥による閉塞を防止するものであり、平膜状の濾過膜を縦方向に複数並設して濾過膜間に膜間流路と濾液の排出部を交互に形成し、且つ膜間流路の下端部に微細気泡の吐出部を設けてなる膜装置を有し、膜装置と吐出部に空気を供給する散気装置を備えている。
特開2002−224541公報 特開平8−323165号公報
Moreover, the membrane processing apparatus described in Patent Document 2 prevents the growth of a gel layer on the membrane surface and prevents clogging with sludge. Filtration is performed by arranging a plurality of flat membrane-like filtration membranes in parallel in the vertical direction. It has a membrane device in which intermembrane flow paths and filtrate discharge portions are alternately formed between the membranes, and a fine bubble discharge portion is provided at the lower end of the intermembrane flow passage, and air is supplied to the membrane device and the discharge portion. A supply air diffuser is provided.
JP 2002-224541 A JP-A-8-323165

ところで、上述したような、ろ板の表面にろ過膜を配置した膜カートリッジは相互間に所定間隔をあけて流路を確保し、散気装置から供給する空気によって生じる気液混相流を膜カートリッジ間の流路へ供給するが、相対向するろ過膜の膜間隔が10mm以下となると、気液混相流よるエアースクラビングだけでは汚泥の詰まりによる膜間閉塞を防止できなかった。   By the way, as described above, the membrane cartridge in which the filtration membrane is arranged on the surface of the filter plate secures the flow path with a predetermined interval between them, and the gas-liquid mixed phase flow generated by the air supplied from the diffuser is used as the membrane cartridge. However, when the distance between the opposing filtration membranes is 10 mm or less, the membrane clogging due to clogging of sludge could not be prevented only by air scrubbing by gas-liquid mixed phase flow.

これは、従来の膜カートリッジでは平膜からなるろ過膜をろ板で支持しているので、気液混相流によってろ過膜に与える揺動がろ板の剛性によって抑制されて軽度となるためであり、中空糸膜を使用する場合において生じる膜相互の接触による汚泥の剥離は従来の膜カートリッジにおいては期待できなかった。   This is because in conventional membrane cartridges, a filtration membrane consisting of a flat membrane is supported by a filter plate, so that the oscillation given to the filtration membrane by the gas-liquid mixed phase flow is suppressed by the stiffness of the filter plate and becomes light. In the case of using a hollow fiber membrane, peeling of sludge caused by contact between membranes cannot be expected in a conventional membrane cartridge.

本発明は上記した課題を解決するものであり、気液混相流を駆動源としてろ過膜を十分に揺動させてエアースクラビングとの相乗によってろ過膜の洗浄を行なうことができる膜エレメントおよび浸漬型平膜ろ過装置を提供することを目的とする。   MEANS TO SOLVE THE PROBLEM This invention solves the above-mentioned subject, The membrane element which can wash | clean a filtration membrane by synergistically with an air scrubbing by fully rocking | fluctuating a filtration membrane using a gas-liquid multiphase flow as a drive source, and an immersion type It aims at providing a flat membrane filtration apparatus.

上記課題を解決するために、本発明の膜エレメントは、フレキシブルなシート状をなし、表面にろ過膜を配置した膜エレメントであって、少なくとも一方の面に凸状体からなる複数の揺動促進手段を設けてなり、揺動促進手段はろ過膜の膜面全体に分布することを特徴とする。 In order to solve the above-mentioned problems, the membrane element of the present invention is a membrane element having a flexible sheet shape and having a filtration membrane disposed on the surface thereof, and a plurality of swinging accelerations comprising a convex body on at least one surface. Means is provided, and the oscillation promoting means is distributed over the entire membrane surface of the filtration membrane .

本発明の浸漬型平膜ろ過装置は、フレキシブルなシート状をなし、表面にろ過膜を配置した複数の膜エレメントを平行に所定間隔で配置し、相対向する膜エレメントの少なくとも一方の面に凸状体からなる複数の揺動促進手段を設けてなり、揺動促進手段はろ過膜の膜面全体に分布することを特徴とする。 The submerged flat membrane filtration device of the present invention has a flexible sheet shape, a plurality of membrane elements having filtration membranes arranged on the surface thereof are arranged in parallel at predetermined intervals, and are projected on at least one surface of the opposing membrane elements. A plurality of rocking promotion means made of a body is provided, and the rocking promotion means is distributed over the entire membrane surface of the filtration membrane .

また、前記所定間隔をd、前記凸部のろ過膜面からの高さをhとしたとき、d/10≦h<dの関係を満たすことを特徴とする。 Further, when the predetermined interval is d and the height of the convex portion from the filtration membrane surface is h, the relationship d / 10 ≦ h <d is satisfied .

以上のように本発明によれば、運転時には、膜エレメントの下方に配置した散気装置から洗浄用の気体を散気し、この気体によって生じる気液混相の上昇流を膜エレメントの相互間の流路に供給する。この気液混相の上昇流はフレキシブルな膜エレメントを揺動させるので、相対向する膜エレメントの相互の膜間隔は常に変動し、膜エレメントの相互間の流路には膜間隔が拡大する領域と縮小する領域が形成され、これらの領域が遷移する。   As described above, according to the present invention, during operation, the cleaning gas is diffused from the diffuser disposed below the membrane element, and the upward flow of the gas-liquid mixed phase caused by this gas is diffused between the membrane elements. Supply to the flow path. This upward flow of gas-liquid mixed phase causes the flexible membrane elements to oscillate, so that the membrane distance between the membrane elements facing each other always fluctuates, and there is a region where the membrane gap increases in the flow path between the membrane elements. Areas to be reduced are formed, and these areas transition.

膜間隔が縮小する領域では、揺動促進手段をなす各凸状体がその対向する膜エレメントの膜面を叩き、膜エレメントに局部的な揺動を与える。結果、膜エレメントには、気液混相の上昇流に起因する全体的な揺動と、揺動促進手段をなす凸状体が起す局部的な揺動とが重畳して生じ、膜エレメントを十分に揺動させてエアースクラビングとの相乗によってろ過膜の洗浄を行なうことができる。   In the region where the membrane interval is reduced, each convex body constituting the oscillation promoting means strikes the membrane surface of the opposing membrane element, and gives local oscillation to the membrane element. As a result, the membrane element overlaps with the overall oscillation caused by the upward flow of the gas-liquid mixed phase and the local oscillation caused by the convex body that constitutes the oscillation promoting means. The filter membrane can be washed by synergy with air scrubbing.

さらに、凸状体が膜間スペーサーを兼ねることで、常に最低限の膜間隔を確保できるので、膜間閉塞を予防することができる。   Furthermore, since the convex body also serves as an intermembrane spacer, a minimum intermembrane spacing can always be ensured, so that intermembrane occlusion can be prevented.

以下、本発明の実施の形態を図面に基づいて説明する。図1は運転を停止した状態における無曝気状態の浸漬型平膜ろ過装置1を示している。浸漬型平膜ろ過装置1は、複数の膜エレメント2を平行に所定間隔で配置して膜ユニット3を形成し、膜ユニット3の下方に散気管4を配置している。浸漬型平膜ろ過装置1は浸漬槽5に貯留する処理液中に浸漬配置しており、膜エレメント2は後述する集水手段に連通し、散気管4はブロア(図示省略)を接続している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a submerged flat membrane filtration device 1 in an aeration state in a state where operation is stopped. In the submerged flat membrane filtration device 1, a plurality of membrane elements 2 are arranged in parallel at predetermined intervals to form a membrane unit 3, and an air diffuser 4 is arranged below the membrane unit 3. The submerged flat membrane filtration device 1 is immersed in a treatment liquid stored in a submerging tank 5, the membrane element 2 communicates with water collecting means described later, and the air diffuser 4 is connected to a blower (not shown). Yes.

図2に示すように、膜エレメント2は可撓性のあるポリエステル、ポリオレフィン等からなるフレキシブルなシート状の膜支持体6の表裏にろ過膜2aを形成したフレキシブルなシート状の膜エレメント2であって、膜支持体6は表裏の膜支持部6aが織布もしくは不織布からなり、両側の膜支持部6aを多数のフィラメント糸6bで結合している。フィラメント糸6bは両側の膜支持部6aの間に所定幅の水の通り道6cを形成している。膜エレメント2は上下の両端部がシールしてあり、両側または片側において水の通り道6cが開放してある。   As shown in FIG. 2, the membrane element 2 is a flexible sheet-like membrane element 2 in which a filtration membrane 2a is formed on the front and back of a flexible sheet-like membrane support 6 made of flexible polyester, polyolefin or the like. The membrane support 6 has front and back membrane support portions 6a made of woven or non-woven fabric, and the membrane support portions 6a on both sides are connected by a large number of filament yarns 6b. The filament yarn 6b forms a water passage 6c having a predetermined width between the membrane support portions 6a on both sides. The upper and lower ends of the membrane element 2 are sealed, and the water passage 6c is opened on both sides or one side.

膜エレメント2は少なくとも一方の面にゴム等からなる複数の凸状体7を備えている。凸状体7は揺動促進手段を兼ねた膜間スペーサであり、その形状は円柱、半球等任意の形状とすることができる。   The membrane element 2 includes a plurality of convex bodies 7 made of rubber or the like on at least one surface. The convex body 7 is an intermembrane spacer also serving as a swing accelerating means, and the shape thereof can be any shape such as a cylinder or a hemisphere.

凸状体7の分布パターンは任意であり、千鳥状、格子状等で膜面全体に均等に分布させることが好ましい。凸状体7はエポキシ系接着剤を用いて膜エレメント2に接着固定したものであっても良く、膜支持体6の膜支持部6aに一体形成したものであっても良い。凸状体7の高さhは無曝気時の膜エレメント2の相互間の膜間隔をdとしてd/10≦h<dの条件を満たすものである。   The distribution pattern of the convex bodies 7 is arbitrary, and it is preferable that the convex bodies 7 are uniformly distributed over the entire film surface in a staggered pattern, a lattice pattern, or the like. The convex body 7 may be bonded and fixed to the membrane element 2 using an epoxy adhesive, or may be integrally formed with the membrane support portion 6 a of the membrane support 6. The height h of the convex body 7 satisfies the condition of d / 10 ≦ h <d, where d is the distance between the membrane elements 2 when no aeration occurs.

図3に示すように、本実施の形態では、膜エレメント2の膜面上に配置する各凸状体7は相互の位置関係が三角形の各頂点位置に相応しており、図3(a)に示す分布パターンAの膜エレメント2と、図3(b)に示す分布パターンBの膜エレメント2がある。   As shown in FIG. 3, in the present embodiment, the convex bodies 7 arranged on the membrane surface of the membrane element 2 correspond to the positions of the vertices of the triangle in the mutual positional relationship. And a membrane element 2 having a distribution pattern B shown in FIG. 3B.

膜エレメント2の配列構成としては、分布パターンAの膜エレメント2だけを配列したAAA配列構成と、分布パターンBの膜エレメント2だけを配列したBBB配列構成と、図4に示すように、分布パターンAの膜エレメント2と分布パターンBの膜エレメント2を交互に配列したABA配列構成等がある。また、膜エレメント2の凸状体7の分布パターンを増やせばさらに多くの配列構成が実現できる。   As an arrangement configuration of the membrane elements 2, an AAA arrangement configuration in which only the membrane elements 2 of the distribution pattern A are arranged, a BBB arrangement configuration in which only the membrane elements 2 of the distribution pattern B are arranged, and a distribution pattern as shown in FIG. There is an ABA arrangement configuration in which the A film element 2 and the distribution pattern B film element 2 are arranged alternately. Further, if the distribution pattern of the convex bodies 7 of the membrane element 2 is increased, more arrangement configurations can be realized.

本実施の形態では、図4に示すように、分布パターンAの膜エレメント2と分布パターンBの膜エレメント2を交互に配列したABA配列構成であり、膜エレメント2を介した一方側に在る凸状体7が他方側に在る凸状体7の相互間に相応する位置に配置される。   In the present embodiment, as shown in FIG. 4, an ABA arrangement configuration in which the membrane elements 2 of the distribution pattern A and the membrane elements 2 of the distribution pattern B are alternately arranged, is on one side via the membrane element 2. The convex bodies 7 are arranged at corresponding positions between the convex bodies 7 on the other side.

図5および図6に示すように、膜ユニット3は膜エレメント2の両側辺部を左右の集水ケース8、9で固定支持している。集水ケース8、9は中空状の本体部8a、9aと蓋部8b、9bからなる。各膜エレメント2はその側辺部を集水ケース8、9に形成した複数のスリット10のそれぞれに挿入して配置し、一方側の集水ケース8においては集水ケース8の内部に接着剤11を充満させて各膜エレメント2の側辺部の開放部をシールするとともに、膜エレメント2の側辺部を集水ケース8に接着固定している。他方側の集水ケース9では、図6に示すように、膜エレメント2の相互間および膜エレメント2と集水ケース9との間に接着剤11を充填し、各膜エレメント2の側部において水の通り道6cを開放した状態で膜エレメント2の側辺部を集水ケース9に接着固定している。このため、他方側の集水ケース9は中空状の集水空間を形成し、上端部にノズル12を備えている。   As shown in FIGS. 5 and 6, the membrane unit 3 fixes and supports both side portions of the membrane element 2 with left and right water collecting cases 8 and 9. The water collection cases 8 and 9 are composed of hollow main body portions 8a and 9a and lid portions 8b and 9b. Each membrane element 2 is arranged by inserting a side portion thereof into each of a plurality of slits 10 formed in the water collecting cases 8 and 9, and in one water collecting case 8, an adhesive is provided inside the water collecting case 8. 11 is filled to seal the open part of the side part of each membrane element 2, and the side part of the membrane element 2 is bonded and fixed to the water collecting case 8. In the water collecting case 9 on the other side, as shown in FIG. 6, an adhesive 11 is filled between the membrane elements 2 and between the membrane element 2 and the water collecting case 9, and at the side of each membrane element 2. The side portion of the membrane element 2 is bonded and fixed to the water collection case 9 with the water passage 6c open. For this reason, the other water collecting case 9 forms a hollow water collecting space and is provided with a nozzle 12 at the upper end.

集水ケース8を集水ケース9と同じ構造とし、膜ユニット3当たりのノズル12を複数個としてもよい。
図7に示すように、膜ユニット3は天吊り方式のフレーム13で懸垂支持して配置し、膜ユニット3の下方に配置した散気管4から散気する状態で運転し、ノズル12に接続した膜透過液管14を通して膜透過液を取り出す。膜ユニット3は多段、並列に配置することも可能である。
The water collection case 8 may have the same structure as the water collection case 9, and a plurality of nozzles 12 per membrane unit 3 may be provided.
As shown in FIG. 7, the membrane unit 3 is suspended and supported by a ceiling-type frame 13, operated in a state of being diffused from the diffuser tube 4 arranged below the membrane unit 3, and connected to the nozzle 12. The membrane permeate is taken out through the membrane permeate tube 14. The membrane units 3 can be arranged in multiple stages in parallel.

多段配置するには膜ユニット下部に接続用のノズル12’を、下段の膜ユニット3のノズル12に対向する位置に設ける。並列配置するには集水ケース9に横連結用のノズル15および横連結管16を設ける。   For multi-stage arrangement, a connecting nozzle 12 ′ is provided below the membrane unit at a position facing the nozzle 12 of the lower membrane unit 3. In order to arrange them in parallel, the water collecting case 9 is provided with a nozzle 15 for horizontal connection and a horizontal connection pipe 16.

上記した構成により、運転時には、散気管4に接続したブロア(図示省略)から洗浄用の気体として本実施の形態では空気を供給する。この空気によって生じる気液混相の上昇流を膜エレメント2の相互間の流路に供給する。ノズル12に接続した膜透過液管14を通して吸引圧を与えて吸引ろ過し、あるいは槽内の水頭により重力ろ過することにより、槽内の処理液をろ過する。   With the above-described configuration, in the present embodiment, air is supplied as a cleaning gas from a blower (not shown) connected to the diffuser tube 4 during operation. The upward flow of the gas-liquid mixed phase generated by the air is supplied to the flow path between the membrane elements 2. The processing liquid in the tank is filtered by applying suction pressure through the membrane permeate pipe 14 connected to the nozzle 12 and performing suction filtration, or by gravity filtration with a water head in the tank.

各膜エレメント2のろ過膜2aおよび膜支持部aを透過した膜透過液はフィラメント糸6bで形成する水の通り道6cへ流入し、水の通り道6cから膜ケース9のノズル12を通して膜透過液管14へ流れ出る。   The membrane permeate that has permeated the filtration membrane 2a and the membrane support part a of each membrane element 2 flows into the water passage 6c formed by the filament yarn 6b, and passes through the nozzle 12 of the membrane case 9 from the water passage 6c. It flows out to 14.

図8に示すように、各膜エレメント2の相互間の流路を流れる気液混相の上昇流は、フレキシブルな膜エレメント2を揺動させる。このため、相対向する膜エレメント2の相互の膜間隔は常に変動し、膜エレメント2の相互間の流路には膜間隔が拡大する領域と縮小する領域が形成され、これらの領域が遷移する。   As shown in FIG. 8, the upward flow of the gas-liquid mixed phase flowing through the flow path between the membrane elements 2 causes the flexible membrane element 2 to oscillate. For this reason, the mutual film | membrane space | interval of the film | membrane element 2 which opposes always fluctuates, The area | region where a film | membrane space expands and the area | region to which a film | membrane space expands are formed in the flow path between the film | membrane elements 2, These areas | regions change .

膜間隔が縮小する領域では、揺動促進手段をなす各凸状体7がその対向する膜エレメント2の膜面を打ち、膜エレメント2に局部的な揺動を与える。結果、膜エレメント2には、気液混相の上昇流に起因する全体的な揺動と、揺動促進手段をなす凸状体7が起す局部的な揺動とが重畳して生じ、膜エレメント2を十分に揺動させてエアースクラビングとの相乗によってろ過膜の洗浄を行なうことができる。   In the region where the membrane interval is reduced, each convex body 7 constituting the oscillation promoting means strikes the membrane surface of the opposing membrane element 2 and gives the membrane element 2 local oscillation. As a result, the membrane element 2 is generated by superimposing the overall oscillation caused by the upward flow of the gas-liquid mixed phase and the local oscillation caused by the convex body 7 serving as the oscillation promoting means. The filter membrane can be washed by synergizing with the air scrubbing by sufficiently swinging 2.

図9は、シミュレーションにおける凸状体7を設けたことによる膜振動(揺動)効果を示すものである。ここでの、計算条件は、膜エレメント厚2.8mm、膜エレメント間隔10mm、凸状体7の分布パターンA、AAA配列構成、散気量12NL/min/m(両面)である。 FIG. 9 shows the membrane vibration (oscillation) effect obtained by providing the convex body 7 in the simulation. The calculation conditions here are a membrane element thickness of 2.8 mm, a membrane element interval of 10 mm, a distribution pattern A of convex bodies 7, an AAA arrangement configuration, and an air diffusion amount of 12 NL / min / m 2 (both sides).

図9(a)は、凸状体7を設けない構成、つまりh=0の構成における振動幅の分布を示すものであり、膜エレメント2に生じる振動は幅方向の中央において大きく、漸次に側部ほど小さくなる。この振動は単純なものである。   FIG. 9A shows the distribution of the vibration width in the configuration in which the convex body 7 is not provided, that is, in the configuration in which h = 0, and the vibration generated in the membrane element 2 is large at the center in the width direction and gradually increases. The part gets smaller. This vibration is simple.

図9(b)は、h=5mmの凸状体7を設けた構成における振動幅の分布を示すものである。凸状体7は隣の膜を叩く効果と、膜の振動幅を抑制する効果を発揮する。本実施の形態では、凸状体7が隣の膜エレメント2の凸状体7の裏面側を叩き、振動の大きさは凸状体7に叩かれる部分で最大であり、次に凸状体7の間で大きく、漸次に側部ほど小さくなる。この振動は気液混相の上昇流に起因する全体的な揺動(単純な振動)と、凸状体7が起す局部的な揺動(限定的な振動)とが重畳したものとなる。   FIG. 9B shows the distribution of vibration width in the configuration in which the convex body 7 having h = 5 mm is provided. The convex body 7 exhibits the effect of hitting the adjacent film and the effect of suppressing the vibration width of the film. In the present embodiment, the convex body 7 strikes the back surface side of the convex body 7 of the adjacent membrane element 2, and the magnitude of vibration is greatest at the portion hit by the convex body 7, and then the convex body. 7 is larger and gradually becomes smaller toward the side portion. This vibration is a superposition of the overall fluctuation (simple vibration) caused by the upward flow of the gas-liquid mixed phase and the local fluctuation (limited vibration) caused by the convex body 7.

図9(c)は、h=8mmの凸状体7を設けた構成における振動幅の分布を示すものである。図9(b)のものと同様に、凸状体7は隣の膜を叩く効果と、膜の振動幅を抑制する効果を発揮する。振動の大きさは凸状体7に叩かれる部分で最大であり、次に凸状体7の間で大きく、漸次に側部ほど小さくなるが、振動幅抑制の効果が上回り、図9(b)のものより振動の大きさが小さくなる。この振動も気液混相の上昇流に起因する全体的な揺動と、凸状体7が起す局部的な揺動とが重畳したものとなる。   FIG. 9C shows the distribution of vibration width in the configuration in which the convex body 7 having h = 8 mm is provided. As in FIG. 9B, the convex body 7 exhibits the effect of hitting the adjacent film and the effect of suppressing the vibration width of the film. The magnitude of the vibration is greatest at the portion hit by the convex body 7, and then increases between the convex bodies 7 and gradually decreases toward the side, but the effect of suppressing the vibration width is greater, and FIG. The magnitude of vibration is smaller than that of). This vibration is also a superposition of the overall oscillation caused by the upward flow of the gas-liquid mixed phase and the local oscillation caused by the convex body 7.

図10は突起の高さとTMP(駆動圧力)との関係を示している。ここで、汚泥性状は、水温が13〜18℃、pH6〜8、DO1mg/L以上、MLSS1200mg/L、粘度50mPa・s、運転条件は、Flux0.8m/d、空気倍率10倍であり、ろ過ユニットの構成は、膜エレメントの寸法、500mm×1000mm、エレメント厚2.8mm、エレメント間隔10mm、凸状部の配置は千鳥、形状は円柱(直径1cm、個数13、面積率0.1%)であった。   FIG. 10 shows the relationship between the height of the protrusion and TMP (driving pressure). Here, the sludge properties are such that the water temperature is 13-18 ° C., pH 6-8, DO1 mg / L or more, MLSS 1200 mg / L, viscosity 50 mPa · s, operating conditions are Flux 0.8 m / d, air magnification 10 times, filtration The structure of the unit is the dimensions of the membrane element, 500 mm x 1000 mm, element thickness 2.8 mm, element spacing 10 mm, the convex arrangement is staggered, the shape is a cylinder (diameter 1 cm, number 13 and area ratio 0.1%) there were.

図10から明らかなように、TMP(駆動圧力)は、凸状部7の高さが5mmで極小となり、これよりも高くても低くても増大したが、1≦h≦8mmの範囲では実用的に許容できるレベル内であった。   As apparent from FIG. 10, the TMP (driving pressure) becomes minimum when the height of the convex portion 7 is 5 mm, and increases when it is higher or lower than this, but is practical in the range of 1 ≦ h ≦ 8 mm. Was within an acceptable level.

本発明の実施の形態における運転停止、無曝気状態の浸漬型平膜ろ過装置を示す模式図The schematic diagram which shows the submerged flat membrane filtration apparatus of the operation stop and aeration state in embodiment of this invention 同実施の形態における膜エレメントの断面を示す模式図Schematic diagram showing a cross section of the membrane element in the same embodiment 同実施の形態における膜エレメントの正面を示す模式図Schematic diagram showing the front of the membrane element in the same embodiment 同実施の形態における膜エレメントの配列構成図Arrangement configuration diagram of membrane elements in the same embodiment 同実施の形態における膜ユニットの斜視図Perspective view of membrane unit in same embodiment 図5のA矢視平面図FIG. 5A plan view 同実施の形態における浸漬型平膜ろ過装置の斜視図The perspective view of the immersion type flat membrane filtration apparatus in the same embodiment 同実施の形態における浸漬型平膜ろ過装置を示す模式図Schematic showing an immersion flat membrane filtration device in the same embodiment シミュレーション結果を示す図Diagram showing simulation results 経過時間とTMPの関係を示すグラフ図Graph showing the relationship between elapsed time and TMP

符号の説明Explanation of symbols

1 浸漬型平膜ろ過装置
2 膜エレメント
2a ろ過膜
3 膜ユニット
4 散気管
5 浸漬槽
6 膜支持体
6a 膜支持部
6b フィラメント糸
6c 水の通り道
7 凸状体
8、9 集水ケース
8a、9a 本体部
8b、9b 蓋部
10 スリット
11 接着剤
12、12’ ノズル
13 フレーム
14 膜透過液管
15 横連結用のノズル
16 横連結管
DESCRIPTION OF SYMBOLS 1 Submerged flat membrane filtration apparatus 2 Membrane element 2a Filtration membrane 3 Membrane unit 4 Air diffuser tube 5 Immersion tank 6 Membrane support 6a Membrane support 6b Filament yarn 6c Water passage 7 Convex body 8, 9 Water collecting case 8a, 9a Body portion 8b, 9b Lid portion 10 Slit 11 Adhesive 12, 12 ′ Nozzle 13 Frame 14 Membrane permeate tube 15 Horizontal connection nozzle 16 Horizontal connection tube

Claims (3)

フレキシブルなシート状をなし、表面にろ過膜を配置した膜エレメントであって、少なくとも一方の面に凸状体からなる複数の揺動促進手段を設けてなり、揺動促進手段はろ過膜の膜面全体に分布することを特徴とする膜エレメント。 A membrane element having a flexible sheet shape and having a filtration membrane disposed on the surface thereof, comprising a plurality of oscillation promoting means made of convex bodies on at least one surface, and the oscillation promotion means is a membrane of a filtration membrane A membrane element that is distributed over the entire surface . フレキシブルなシート状をなし、表面にろ過膜を配置した複数の膜エレメントを平行に所定間隔で配置し、相対向する膜エレメントの少なくとも一方の面に凸状体からなる複数の揺動促進手段を設けてなり、揺動促進手段はろ過膜の膜面全体に分布することを特徴とする浸漬型平膜ろ過装置。 A plurality of membrane elements having a flexible sheet shape and having membranes arranged on the surface in parallel are arranged at predetermined intervals in parallel, and a plurality of swing accelerating means composed of convex bodies are provided on at least one surface of the opposing membrane elements. An immersion type flat membrane filtration device, characterized in that the oscillation promoting means is distributed over the entire membrane surface of the filtration membrane . 前記所定間隔をd、前記凸部のろ過膜面からの高さをhとしたとき、d/10≦h<dの関係を満たすことを特徴とする請求項2に記載の浸漬型平膜ろ過装置。 3. The submerged flat membrane filtration according to claim 2, wherein the predetermined interval is d, and the height of the convex portion from the filtration membrane surface is h, and the relationship d / 10 ≦ h <d is satisfied. apparatus.
JP2007090829A 2007-03-30 2007-03-30 Membrane element and submerged flat membrane filtration device Expired - Fee Related JP5174367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090829A JP5174367B2 (en) 2007-03-30 2007-03-30 Membrane element and submerged flat membrane filtration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090829A JP5174367B2 (en) 2007-03-30 2007-03-30 Membrane element and submerged flat membrane filtration device

Publications (2)

Publication Number Publication Date
JP2008246371A JP2008246371A (en) 2008-10-16
JP5174367B2 true JP5174367B2 (en) 2013-04-03

Family

ID=39971956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090829A Expired - Fee Related JP5174367B2 (en) 2007-03-30 2007-03-30 Membrane element and submerged flat membrane filtration device

Country Status (1)

Country Link
JP (1) JP5174367B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5409079B2 (en) * 2009-03-31 2014-02-05 株式会社クボタ Membrane separator
US20120111784A1 (en) * 2009-07-10 2012-05-10 Sumitomo Electric Fine Polymer, Inc. Filtration purpose flat-membrane element, flat-membrane-type separation membrane module, and filtration apparatus
JPWO2013103083A1 (en) * 2012-01-05 2015-05-11 住友重機械工業株式会社 Membrane separation method and membrane separation apparatus
US20190015788A1 (en) * 2016-02-29 2019-01-17 Toray Industries, Inc. Flat-sheet separation membrane element, element unit, flat-sheet separation membrane module, and operation method for flat-sheet separation membrane module
JP6222320B1 (en) * 2016-09-21 2017-11-01 株式会社明電舎 Membrane separator
CA3079461C (en) 2016-05-31 2022-04-26 Meidensha Corporation Film separation device, structure for arranging film element, and film cassette and film unit
JP6222284B1 (en) * 2016-05-31 2017-11-01 株式会社明電舎 Membrane element arrangement structure, membrane cassette and membrane unit
CN115487685B (en) * 2022-10-25 2023-06-20 深圳市爱佳尔科技有限公司 Zero release water purification unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126728A (en) * 1990-09-18 1992-04-27 Nippon Soda Co Ltd Polymer membrane
JPH06327949A (en) * 1993-05-21 1994-11-29 Nitto Denko Corp Membrane cleaning method for membrane separation device
JPH07185269A (en) * 1993-12-28 1995-07-25 Hitachi Plant Eng & Constr Co Ltd Flat membrane filter apparatus
JP3603596B2 (en) * 1998-03-31 2004-12-22 日立プラント建設株式会社 Immersion type flat membrane separator

Also Published As

Publication number Publication date
JP2008246371A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP5174367B2 (en) Membrane element and submerged flat membrane filtration device
JP4230569B2 (en) Hollow fiber membrane module
JP4445862B2 (en) Hollow fiber membrane module, hollow fiber membrane module unit, membrane filtration device using the same, and operating method thereof
US10828607B2 (en) Aerator device, filter system including an aerator device, and method of aerating a filter using an aerator device
JPH1133367A (en) Hollow yarn membrane module
JPH07275665A (en) Hollow yarn membrane module
JPH09141063A (en) Hollow fiber membrane module
JP2012148230A (en) Membrane separator
JP2009154032A (en) Filtration module and filtration apparatus using it
JP5733206B2 (en) Processed water filtration method
ES2688024T3 (en) Diffusion pipe and method for washing a diffusion pipe
JP3725124B2 (en) Apparatus and method for purifying fluid such as water
KR100544383B1 (en) Hollow Fiber Membrane Module Combined with Air Diffuser
JP4902684B2 (en) Membrane cartridge in submerged membrane separator
JP2001205054A (en) Hollow fiber membrane module and hollow fiber membrane module unit using the same
JP2003071255A (en) Membrane washing apparatus and membrane separation apparatus
JP2000312815A (en) Immersible membrane separation device
JPH06319964A (en) Flat membrane type filter
JPH0233867Y2 (en)
JP7111355B2 (en) Wastewater treatment equipment
JP3455589B2 (en) Hollow fiber membrane module assembly
JP2000342935A (en) Filter apparatus
JP3418443B2 (en) Membrane module
JP3904693B2 (en) Hollow fiber membrane module
JP4502450B2 (en) Immersion membrane separator and water purification system equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121228

R150 Certificate of patent or registration of utility model

Ref document number: 5174367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees