JP5172230B2 - Redox flow battery system having emergency power supply function and emergency operation method of redox flow battery system - Google Patents

Redox flow battery system having emergency power supply function and emergency operation method of redox flow battery system Download PDF

Info

Publication number
JP5172230B2
JP5172230B2 JP2007177754A JP2007177754A JP5172230B2 JP 5172230 B2 JP5172230 B2 JP 5172230B2 JP 2007177754 A JP2007177754 A JP 2007177754A JP 2007177754 A JP2007177754 A JP 2007177754A JP 5172230 B2 JP5172230 B2 JP 5172230B2
Authority
JP
Japan
Prior art keywords
emergency
power supply
battery system
flow rate
flow battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007177754A
Other languages
Japanese (ja)
Other versions
JP2009016219A (en
Inventor
敏夫 重松
正樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2007177754A priority Critical patent/JP5172230B2/en
Publication of JP2009016219A publication Critical patent/JP2009016219A/en
Application granted granted Critical
Publication of JP5172230B2 publication Critical patent/JP5172230B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、通常用負荷運転機能を有し、非常時には、非常用負荷への電源供給を可能とする非常用電源機能を有するレドックスフロー電池システム及びレドックスフロー電池システムの非常時運転方法に関する。   The present invention relates to a redox flow battery system having a normal load operation function and having an emergency power supply function capable of supplying power to an emergency load in an emergency, and an emergency operation method of the redox flow battery system.

通常運転時には負荷平準化用として機能し、夜間電力を活用して電池に充電し、昼間に、電池から放電する運転を行い、万一、停電した時等には、例えば2時間程度の放電出力が可能な「非常用電源」として使用可能な機能を有するレドックスフロー電池システムが知られている。このレドックスフロー電池システムは、セル(電池セル)に電池反応を起こす電解液を供給して充放電を行う二次電池であり、例えば、電解液としてバナジウムイオンを含む電解液を用いたバナジウムレドックスフロー電池が知られている(例えば特許文献1参照)。図4は、バナジウムレドックスフロー電池システムの動作原理を説明する説明図である。   It functions as a load leveling unit during normal operation, uses the nighttime power to charge the battery, discharges the battery during the daytime, and in the event of a power failure, for example, a discharge output of about 2 hours There is known a redox flow battery system having a function that can be used as an “emergency power supply” that can be used. This redox flow battery system is a secondary battery that charges and discharges by supplying an electrolytic solution that causes a battery reaction to a cell (battery cell) .For example, a vanadium redox flow using an electrolytic solution containing vanadium ions as an electrolytic solution. A battery is known (see, for example, Patent Document 1). FIG. 4 is an explanatory view illustrating the operating principle of the vanadium redox flow battery system.

セル100は、イオン交換膜(隔膜)101により分離された正極セル102と負極セル103を具える。各極セル102,103にはそれぞれ、タンク106,107に貯留される正極電解液、負極電解液が供給側輸送路108,109を介して供給される。各極セル102,103から排出された正極電解液、負極電解液はそれぞれ、排出側輸送路110,111を介してタンク106,107に戻される。供給側輸送路108,109にはそれぞれ、ポンプ112,113が配置され、そのポンプ112,113を用いて、上述のように、タンク→供給側輸送路→セル→排出側輸送路→タンクという経路で電解液の循環が行われる。また、セル100は、交流/直流変換器を介して発電所や需要家などの外部電力系統に接続され、発電所などを電力供給源として充電を行い、需要家などを放電対象として放電を行う。 The cell 100 includes a positive electrode cell 102 and a negative electrode cell 103 separated by an ion exchange membrane (diaphragm) 101. The positive electrode electrolyte and negative electrode electrolyte stored in the tanks 106 and 107 are supplied to the electrode cells 102 and 103 via the supply-side transport paths 108 and 109, respectively. The positive electrode electrolyte and the negative electrode electrolyte discharged from the electrode cells 102 and 103 are returned to the tanks 106 and 107 via the discharge-side transport paths 110 and 111, respectively. Pumps 112 and 113 are disposed in the supply side transport paths 108 and 109, respectively. Using the pumps 112 and 113, as described above, the route of tank → supply side transport path → cell → discharge side transport path → tank The electrolyte solution is circulated. The cell 100 is connected to an external power system such as a power plant or a consumer via an AC / DC converter, and is charged using the power plant or the like as a power supply source and discharged using the consumer or the like as a discharge target. .

上述のようなレドックスフロー電池システムでは、通常、複数セルを積層させたセルスタックと称される構成が用いられる。図5はセルスタック200の構成を示す。上記セルとしてセルフレーム120を用いた構成が知られている。セルフレーム120は、一面に正極電極104が接するように配置され、他面に負極電極105が接するように配置される双極板121と、その外周に形成されるフレーム枠122とを具える。フレーム枠122には、各電極104,105に各極電解液を供給する給液用マニホールド123,124と、各電極104,105からの電解液を排出する排液用マニホールド125,126とが形成され、これらマニホールド123,124,125,126は、複数のセルフレーム120を積層することで電解液の流路を構成し、供給側輸送路(図4参照)、排出側輸送路(同)に接続される。また、フレーム枠122においてマニホールド123,124,125,126と双極板121との間には、それぞれ電解液を流通させるスリット127,128が設けられている。セルスタック200は、セルフレーム120、正極電極104、イオン交換膜101、負極電極105、セルフレーム120、・・・と順に繰り返し積層されて構成される。   In the redox flow battery system as described above, a configuration called a cell stack in which a plurality of cells are stacked is usually used. FIG. 5 shows the configuration of the cell stack 200. A configuration using a cell frame 120 as the cell is known. The cell frame 120 includes a bipolar plate 121 disposed so that the positive electrode 104 is in contact with one surface and the negative electrode 105 is in contact with the other surface, and a frame frame 122 formed on the outer periphery thereof. The frame frame 122 is formed with supply manifolds 123 and 124 for supplying the electrode electrolytes to the electrodes 104 and 105 and drain manifolds 125 and 126 for discharging the electrolyte from the electrodes 104 and 105, respectively. The manifolds 123, 124, 125, and 126 constitute a flow path for the electrolyte by stacking a plurality of cell frames 120, and are connected to the supply side transport path (see FIG. 4) and the discharge side transport path (same as above). Connected. In the frame 122, slits 127 and 128 are provided between the manifolds 123, 124, 125, and 126 and the bipolar plate 121, respectively, for allowing the electrolyte to flow therethrough. The cell stack 200 includes a cell frame 120, a positive electrode 104, an ion exchange membrane 101, a negative electrode 105, a cell frame 120,.

上述のように構成されるレドックスフロー電池システムの理論電池容量は、電解液量とその時点での充電状態(充電深度)で決定され、さらに実際に使用可能な取り出しうる電池容量は、電池の内部抵抗(セル抵抗)で決定される。そして、通常の運転で最も充電状態が低くなる放電終了時において、非常電源容量分が取り出せるような充電状態を維持するように管理、制御される。具体的には、電池電圧或いはモニタセル電圧(通電しないセルの開放電圧)を測定することで電解液の充電状態を把握し、設定された最低充電状態を常に維持するように運転される。例えば図6に示すように、非常容量(非常電源用電池容量分,ハッチング部分)を残した充電状態が常に維持されるように運転される。例えば、充電完了時の充電深度を80%、非常容量を含めた放電終了時の充電深度を20%として20%〜80%の充電範囲で運転する場合には、充電深度35%で負荷平準化用放電を終了すれば、所要の非常容量(非常放電時間20)を確保することができる。このような運転を行うためには、非常容量分の電解液を常時確保しておく必要があり、そのための対策は、例えば通常用負荷(負荷平準化用等)に常時使用しているタンクの電解液を増量しておくこと、或いは増量分を別のタンクに設けておくこと等によって可能である。
特開2006-351346号公報
The theoretical battery capacity of the redox flow battery system configured as described above is determined by the amount of electrolyte and the state of charge (charge depth) at that time, and the battery capacity that can be actually used is the internal battery capacity. It is determined by resistance (cell resistance). Then, the battery is managed and controlled so as to maintain a charging state in which an emergency power source capacity can be taken out at the end of discharging when the charging state is lowest in normal operation. Specifically, the battery voltage or monitor cell voltage (open voltage of a cell that is not energized) is measured to determine the state of charge of the electrolyte, and the system is operated so as to always maintain the set minimum charge state. For example, as shown in FIG. 6, the operation is performed so that the charged state with the emergency capacity (the emergency power supply battery capacity, hatched portion) is always maintained. For example, when operating in the charging range of 20% to 80% with the charging depth at the end of charging being 80% and the charging depth at the end of discharging including emergency capacity being 20%, load leveling is performed at a charging depth of 35% When the electrical discharge is completed, the required emergency capacity (emergency discharge time 20) can be secured. In order to perform such an operation, it is necessary to always reserve an electrolyte solution for an emergency capacity. For example, a countermeasure for this is the case of a tank that is always used for a normal load (for load leveling, etc.). It is possible to increase the amount of the electrolyte solution or to provide the increased amount in another tank.
JP 2006-351346 A

上述のような非常電源が必要となるのは、まさに非常時となる万一の場合であり、10年にわたる電源設備寿命中で一度あるかないかの頻度である。従って、従来では、このような万一の時に備えて、上述のような非常電源用容量を確保するための電解液を(余分に)常時貯蔵しておくためにコストが嵩む上に、その貯蔵スペースも余分に必要とされるという問題があった。   The emergency power supply as described above is necessary in the unlikely event that an emergency occurs, and the frequency of whether or not the power supply equipment has been used for 10 years. Therefore, conventionally, in preparation for such an emergency, the electrolyte for securing the capacity for emergency power supply as described above is stored (excessively) at all times, and the cost is increased, and the storage is performed. There was a problem that extra space was required.

本発明は、このような事情に鑑みてなされ、コストやスペースを余分に要することなく、充分な非常電源用容量を確保することができる非常用電源機能を有するレドックスフロー電池システム及びレドックスフロー電池システムの非常時運転方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a redox flow battery system and a redox flow battery system having an emergency power supply function capable of ensuring a sufficient emergency power supply capacity without requiring extra cost and space. The purpose is to provide an emergency driving method.

本発明の非常用電源機能を有するレドックスフロー電池システムは、電解液が供給されるセルを備え、通常用負荷に対して電力供給を可能にする通常運転機能を有し、非常時には、非常用負荷への電力供給を可能とする非常用電源機能を有するレドックスフロー電池システムにあって、
非常運転時には前記セルへの送液流量を通常運転時の定格流量よりも増大させるために、通常運転時の定格流量以上の流量を送液可能とする電解液送液ポンプを備えることを特徴とする。
The redox flow battery system having an emergency power supply function of the present invention includes a cell to which an electrolytic solution is supplied and has a normal operation function that enables power supply to a normal load. A redox flow battery system having an emergency power supply function that enables power supply to
In order to increase the flow rate of liquid to the cell during emergency operation, compared to the rated flow rate during normal operation, an electrolyte liquid feed pump is provided that enables flow of a flow rate higher than the rated flow rate during normal operation. To do.

このような構成によれば、負荷平準化用運転等の通常運転における放電終了後であっても、送液流量を増加させることで、定格出力での放電運転が可能となる。即ち、従来の負荷平準化機能等を有するレドックスフロー電池システムと同量の電解液(電解液貯蔵用タンク)を有するレドックスフロー電池にあって、非常時には放電終了後であっても送液流量を増加させることのみで、定格出力での放電が可能となり、非常時に最低限必要とされる電力の供給が確保される。従って、万一の非常時のために電解液を増量しておく必要がなく、そのためのコストやスペースを割く必要がなくなる。尚、万一の非常の際なので効率が多少低下しても問題になることはない。 According to such a configuration, even after the end of the discharge in the normal operation such as the load leveling operation, the discharge operation at the rated output can be performed by increasing the liquid feeding flow rate. That is, in a redox flow battery having the same amount of electrolytic solution (electrolyte storage tank) as a conventional redox flow battery system having a load leveling function, etc. Only by increasing it, discharge at the rated output becomes possible, and the supply of the power required at the minimum in an emergency is ensured. Therefore, it is not necessary to increase the amount of the electrolyte in case of an emergency, and it is not necessary to devote cost and space for that purpose. In the unlikely event of an emergency, there will be no problem even if the efficiency drops slightly.

本発明の非常用電源機能を有するレドックスフロー電池システムの非常時運転方法は、電解液が供給されるセルを備え、通常用負荷に対して電力供給を可能にする通常運転機能を有し、非常時には、非常用負荷への電力供給を可能とする非常用電源機能を有するレドックスフロー電池システムの非常時運転方法にあって、
非常運転時には、前記セルへの送液流量を通常運転時の定格流量よりも増大させるために、通常運転時の定格流量以上の流量で送液することを特徴とする。
The emergency operation method of the redox flow battery system having an emergency power supply function of the present invention includes a cell to which an electrolyte is supplied, has a normal operation function that enables power supply to a normal load, Sometimes, in an emergency operation method of a redox flow battery system having an emergency power supply function that enables power supply to an emergency load,
In an emergency operation, in order to increase the flow rate of liquid supplied to the cell above the rated flow rate during normal operation, the flow rate is higher than the rated flow rate during normal operation.

このような方法によれば、非常運転時には、セルへの送液流量を通常運転時の定格流量よりも増大させるために、通常運転時の定格流量以上の流量で送液するので、定格出力での放電運転が可能となる。即ち、従来の負荷平準化機能等を有するレドックスフロー電池システムと同量の電解液(電解液貯蔵用タンク)を有するレドックスフロー電池にあって、非常時には放電終了後であっても送液流量を増加させることのみで、定格出力での放電が可能となり、非常時に最低限必要とされる電力の供給が確保される。従って、万一の非常時のために電解液を増量しておく必要がなく、そのためのコストやスペースを割く必要がなくなる。尚、万一の非常の際なので効率が多少低下しても問題になることはない。   According to such a method, during emergency operation, in order to increase the liquid flow rate to the cell over the rated flow rate during normal operation, liquid is delivered at a flow rate that is higher than the rated flow rate during normal operation. The discharge operation can be performed. That is, in a redox flow battery having the same amount of electrolytic solution (electrolyte storage tank) as a conventional redox flow battery system having a load leveling function, etc. Only by increasing it, discharge at the rated output becomes possible, and the supply of the power required at the minimum in an emergency is ensured. Therefore, it is not necessary to increase the amount of the electrolyte in case of an emergency, and it is not necessary to devote cost and space for that purpose. In the unlikely event of an emergency, there will be no problem even if the efficiency drops slightly.

本発明の非常用電源機能を有するレドックスフロー電池システムは、電解液が供給されるセルを備え、通常用負荷に対して電力供給を可能にする通常運転機能を有し、非常時には、非常用負荷への電力供給を可能とする非常用電源機能を有するレドックスフロー電池システムにあって、
停電を検知する停電検知手段と、停電検知時、通常用負荷への電力供給を遮断し、通常用負荷よりも小さな非常用負荷に電力供給を行う切替制御手段とを備えることを特徴とする。
The redox flow battery system having an emergency power supply function of the present invention includes a cell to which an electrolytic solution is supplied and has a normal operation function that enables power supply to a normal load. A redox flow battery system having an emergency power supply function that enables power supply to
A power failure detection means for detecting a power failure, and a switching control means for interrupting power supply to the normal load and supplying power to an emergency load smaller than the normal load when a power failure is detected.

このような構成によれば、通常運転における放電終了後であっても、非常時には、通常用負荷よりも小さな非常用負荷に対して電力供給を行うので、必要な放電運転が可能となる。即ち、従来の負荷平準化機能等を有するレドックスフロー電池システムと同量の電解液(電解液貯蔵用タンク)を有するレドックスフロー電池システムにおいて、予め非常用負荷の大きさを通常用負荷よりも小さくなるように設定しておくことで、停電が検知された非常時には、放電終了後であっても、定格出力より低い出力での放電が可能となり、非常時に最低限必要とされる電力の供給が確保される。従って、非常時には、例えば冷暖房や照明への給電を停止し、必要最小限の使用(非常用灯、スプリンクラー、排煙ファン、電話等)に止めることにより所要の放電運転が可能となる。尚、万一の非常の際なので効率が多少低下しても問題になることはない。   According to such a configuration, even after the end of discharge in normal operation, power is supplied to an emergency load that is smaller than the normal load in an emergency, so that the necessary discharge operation can be performed. That is, in a redox flow battery system having the same amount of electrolytic solution (electrolyte storage tank) as a conventional redox flow battery system having a load leveling function or the like, the size of the emergency load is made smaller than the normal load in advance. By setting so that, in the event of an emergency when a power failure is detected, it is possible to discharge at an output lower than the rated output even after the end of the discharge, and supply of the minimum required power in an emergency is possible. Secured. Therefore, in an emergency, for example, the required discharge operation can be performed by stopping the power supply to the air conditioner and the lighting and stopping to the minimum necessary use (emergency lamp, sprinkler, smoke exhaust fan, telephone, etc.). In the unlikely event of an emergency, there will be no problem even if the efficiency drops slightly.

本発明のレドックスフロー電池システムの非常時運転方法は、電解液が供給されるセルを備え、通常用負荷に対して電力供給を可能にする通常運転機能を有し、非常時には、非常用負荷への電力供給を可能とする非常用電源機能を有するレドックスフロー電池システムの運転方法にあって、
停電検知時には、通常用負荷への電力供給を遮断し、通常用負荷よりも小さな非常用負荷に電力供給を行うことを特徴とする。
The emergency operation method of the redox flow battery system of the present invention includes a cell to which an electrolyte is supplied, has a normal operation function that enables power supply to a normal load, and in an emergency, to an emergency load. In the operation method of the redox flow battery system having an emergency power supply function that enables the power supply of
When a power failure is detected, power supply to the normal load is interrupted, and power is supplied to an emergency load smaller than the normal load.

このような方法によれば、通常運転における放電終了後であっても、非常時には、通常運転用定格出力よりも小さな非常用出力で電力供給を行うので、必要な放電運転が可能となる。即ち、従来の負荷平準化機能専用等のレドックスフロー電池システムと同量の電解液(電解液貯蔵用タンク)を有するレドックスフロー電池システムにおいて、予め非常用負荷の大きさを通常用負荷よりも小さくなるように設定しておくことで、停電が検知された非常時には、放電終了後であっても、定格出力より低い出力での放電が可能となり、非常時に最低限必要とされる電力の供給が確保される。従って、非常時には、例えば冷暖房や照明への給電を停止し、必要最小限の使用(非常用灯、スプリンクラー、排煙ファン、電話等)に止めることにより所要の放電運転が可能となる。尚、万一の非常の際なので効率が多少低下しても問題になることはない。   According to such a method, even after the end of discharge in normal operation, power is supplied with an emergency output smaller than the rated output for normal operation in an emergency, so that necessary discharge operation can be performed. That is, in a redox flow battery system having the same amount of electrolyte (electrolyte storage tank) as that of a conventional redox flow battery system dedicated to load leveling functions, the size of the emergency load is made smaller than the normal load in advance. By setting so that, in the event of an emergency when a power failure is detected, it is possible to discharge at an output lower than the rated output even after the end of the discharge, and supply of the minimum required power in an emergency is possible. Secured. Therefore, in an emergency, for example, the required discharge operation can be performed by stopping the power supply to the air conditioner and the lighting and stopping to the minimum necessary use (emergency lamp, sprinkler, smoke exhaust fan, telephone, etc.). In the unlikely event of an emergency, there will be no problem even if the efficiency drops slightly.

本発明の非常用電源機能を有するレドックスフロー電池システムは、非常運転時にはセルへの送液流量を通常運転時の定格流量よりも増大させるために、通常運転時の定格流量以上の流量を送液可能とする電解液送液ポンプを備えるので、負荷平準化用運転等の通常運転における放電終了後であっても、送液流量を増加させることで、定格出力での放電運転が可能となり、非常時に最低限必要とされる電力の供給が確保される。従って、万一の非常時のために電解液を増量しておく必要がなく、そのためのコストやスペースを割く必要がなくなる。   The redox flow battery system having an emergency power supply function according to the present invention supplies a flow rate higher than the rated flow rate during normal operation in order to increase the flow rate to the cell during emergency operation than the rated flow rate during normal operation. Equipped with an electrolyte solution pump that enables discharge, even after the end of discharge in normal operation such as load leveling operation, increasing the solution flow rate enables discharge operation at the rated output, The supply of power that is sometimes required at least is secured. Therefore, it is not necessary to increase the amount of the electrolyte in case of an emergency, and it is not necessary to devote cost and space for that purpose.

本発明の非常用電源機能を有するレドックスフロー電池システムの非常時運転方法は、非常運転時には、セルへの送液流量を通常運転時の定格流量よりも増大させるために、通常運転時の定格流量以上の流量で送液するので、定格出力での放電運転が可能となり、非常時に最低限必要とされる電力の供給が確保される。従って、万一の非常時のために電解液を増量しておく必要がなく、そのためのコストやスペースを割く必要がなくなる。 The emergency operation method of the redox flow battery system having an emergency power supply function according to the present invention is such that, during emergency operation, the flow rate to the cell is increased from the rated flow rate during normal operation. Since the liquid is fed at the above flow rate, the discharge operation at the rated output is possible, and the supply of the power required at the minimum in an emergency is ensured. Therefore, it is not necessary to increase the amount of the electrolyte in case of an emergency, and it is not necessary to devote cost and space for that purpose.

本発明の非常用電源機能を有するレドックスフロー電池システムは、停電を検知する停電検知手段と、停電検知時、通常用負荷への電力供給を遮断し、通常用負荷よりも小さな非常用負荷に電力供給を行う切替制御手段とを備えるので、非常時には、通常運転用定格出力よりも小さな非常用負荷に電力供給を行うので、必要な放電運転が可能となり、非常時に最低限必要とされる電力の供給が確保される。従って、非常時には、例えば冷暖房や照明への給電を停止し、必要最小限の使用(非常用灯、スプリンクラー、排煙ファン、電話等)に止めることにより所要の放電運転が可能となる。   The redox flow battery system having an emergency power supply function of the present invention includes a power failure detection means for detecting a power failure, and the power supply to the normal load is cut off when the power failure is detected, and power is supplied to an emergency load smaller than the normal load. In the event of an emergency, power is supplied to an emergency load that is smaller than the rated output for normal operation, so that the necessary discharge operation can be performed and the minimum power required in an emergency. Supply is secured. Therefore, in an emergency, for example, the required discharge operation can be performed by stopping the power supply to the air conditioner and the lighting and stopping to the minimum necessary use (emergency lamp, sprinkler, smoke exhaust fan, telephone, etc.).

本発明のレドックスフロー電池システムの非常時運転方法は、停電検知時には、通常用負荷への電力供給を遮断し、通常用負荷よりも小さな非常用負荷に電力供給を行うので、停電が検知された非常時には、放電終了後であっても、定格出力より低い出力での放電が可能となり、非常時に最低限必要とされる電力の供給が確保される。従って、非常時には、例えば冷暖房や照明への給電を停止し、必要最小限の使用(非常用灯、スプリンクラー、排煙ファン、電話等)に止めることにより所要の放電運転が可能となる。   In the emergency operation method of the redox flow battery system of the present invention, when a power failure is detected, power supply to the normal load is cut off and power is supplied to an emergency load smaller than the normal load, so a power failure is detected. In an emergency, even after the end of the discharge, discharge at an output lower than the rated output is possible, and the supply of electric power required at the minimum in an emergency is ensured. Therefore, in an emergency, for example, the required discharge operation can be performed by stopping the power supply to the air conditioner and the lighting and stopping to the minimum necessary use (emergency lamp, sprinkler, smoke exhaust fan, telephone, etc.).

以下に、本発明の実施の形態に係る非常用電源機能を有するレドックスフロー電池システム及びレドックスフロー電池システムの非常時運転方法について説明する。
〈実施の形態1〉
図1は、レドックスフロー電池システムの構成説明図である。このレドックスフロー電池システムは、主セル(本発明のセル)1と、主セル1に供給/排出される正極電解液を貯蔵する正極電解液タンク10と、主セル1に供給/排出される負極電解液を貯蔵する負極電解液タンク11と、主セル1と各タンク10,11間を連結して電解液を輸送する供給側輸送路12,13及び排出側輸送路14,15と、主セル1に電解液を循環供給するために供給側輸送路12,13と排出側輸送路14,15の間に配置されるポンプ(本発明の電解液送液ポンプ)16,17とを具えている。これらのポンプ16,17は、コンピュータ40に接続されており、これらポンプ16,17の制御(流量調整)を行うための制御手段やタイマ手段、命令手段等がコンピュータ40に設けられている。即ち、コンピュータ40は、停電を検知するための停電検知手段と、停電検知時に、通常用負荷への電力供給を遮断し、通常用負荷よりも小さな非常用負荷に電力供給を行う切替制御手段として機能する。
Hereinafter, a redox flow battery system having an emergency power supply function according to an embodiment of the present invention and an emergency operation method of the redox flow battery system will be described.
<Embodiment 1>
FIG. 1 is a diagram illustrating the configuration of a redox flow battery system. This redox flow battery system includes a main cell (cell of the present invention) 1, a positive electrode electrolyte tank 10 for storing a positive electrode electrolyte supplied / discharged to the main cell 1, and a negative electrode supplied / discharged to the main cell 1. A negative electrode electrolyte tank 11 for storing the electrolyte, a supply-side transport path 12, 13 and a discharge-side transport path 14, 15 for transporting the electrolyte by connecting the main cell 1 and the tanks 10, 11, and the main cell 1 is provided with pumps (electrolyte solution pumps of the present invention) 16 and 17 disposed between the supply-side transport paths 12 and 13 and the discharge-side transport paths 14 and 15 in order to circulate and supply the electrolyte to 1. . These pumps 16 and 17 are connected to the computer 40, and the computer 40 is provided with control means, timer means, command means and the like for controlling the pumps 16 and 17 (flow rate adjustment). That is, the computer 40 is a power failure detection means for detecting a power failure, and a switching control means for cutting off the power supply to the normal load and supplying power to an emergency load smaller than the normal load when a power failure is detected. Function.

また、主セル1は、レドックスフロー電池システムのセルを複数積層させた積層体(セルスタック)を用いている。セルの具体的な構成は、図5に示すものと同様である。即ち、セルは、プラスチックカーボン製の双極板の外周に設けられる塩化ビニル製のフレーム枠からなるセルフレーム、カーボンフェルト製の正極電極、イオン交換膜からなる隔膜、カーボンフェルト製の負極電極、上記と同様のセルフレームを順に積層させて形成される。フレーム枠には、電解液を電極に供給する給液用マニホールド、電極から電解液を排出する排液用マニホールド、双極板とマニホールド間に設けられるスリットとを具える。また、正極電解液として5価数のバナジウムイオンを含む溶液、負極電解液として2価数のバナジウムイオンを含む溶液を用いている。そして、主セル1には、交流/直流変換器(図5参照)が接続され、この交流/直流変換器を介して、発電所などの充電電力源や需要家などの放電対象である外部電力系統が接続され、これら外部電力系統に対して充放電を行う。 The main cell 1 uses a stacked body (cell stack) in which a plurality of cells of the redox flow battery system are stacked. The specific configuration of the cell is the same as that shown in FIG. That is, the cell comprises a cell frame made of a vinyl chloride frame provided on the outer periphery of a plastic carbon bipolar plate, a positive electrode made of carbon felt, a diaphragm made of an ion exchange membrane, a negative electrode made of carbon felt, Similar cell frames are sequentially stacked. The frame frame includes a liquid supply manifold for supplying the electrolytic solution to the electrode, a drainage manifold for discharging the electrolytic solution from the electrode, and a slit provided between the bipolar plate and the manifold. A solution containing pentavalent vanadium ions is used as the positive electrode electrolyte, and a solution containing divalent vanadium ions is used as the negative electrode electrolyte. The main cell 1 is connected to an AC / DC converter (see FIG. 5), and through this AC / DC converter, a charging power source such as a power plant and an external power that is a discharge target such as a consumer. A system is connected, and charge and discharge are performed for these external power systems.

このようなレドックスフロー電池システムは、従来と同様に、通常は、負荷平準化用運転(通常運転)として、夜間などの電力オフピーク時に充電を行い、昼間などの電力ピーク時に放電を行うように運用することが可能である。そして、非常時の運用として、停電を検知すると、負荷平準化用運用時に電力供給している一般負荷を切り離し、消防用設備等の非常用負荷への電力の供給が可能なように接続を切り換える機能を兼ね備えている。そして、特に、ポンプ16,17は、負荷平準化用運転時の定格流量以上の送液が可能な容量のものを使用しており、電池が負荷平準化用運転の放電終了後の状態における非常時には、ポンプ16,17の流量を負荷平準化用運転時の定格流量以上で運転させるようにしている。 Such a redox flow battery system is normally operated as a load leveling operation (normal operation) so that it is charged at a power off-peak at night and discharged at a power peak at daytime. Is possible. Then, when a power failure is detected as an emergency operation, the general load that supplies power during load leveling operation is disconnected, and the connection is switched so that power can be supplied to emergency loads such as fire fighting equipment. It has a function. In particular, the pumps 16 and 17 have capacities that can deliver liquids that exceed the rated flow during the load leveling operation, and the battery is in an emergency state after the discharge of the load leveling operation is completed. Sometimes, the pumps 16 and 17 are operated at a flow rate higher than the rated flow rate during load leveling operation.

ところで、主セル1への電解液流量は、セルへの充放電出力に応じて必要最低流量が決定される。通常、電解液流量を増加させるほど主セル1での効率が高くなり、電解液利用率も向上する。しかし、流量を増加させると、補機動力であるポンプ動力は著しく増加し、ポンプ16,17を含めたシステム全体としての総合的な効率は低下する。従って、通常の負荷平準化用運転機能を有するレドックスフロー電池システムを設計する場合に、このようなトレードオフにある関係を考慮して、負荷平準化用機能として重要な指標であるシステム効率を損なわない範囲で定格流量が決定されている。 By the way, the required minimum flow rate of the electrolytic solution flow rate to the main cell 1 is determined according to the charge / discharge output to the cell. Normally, the efficiency in the main cell 1 increases as the electrolyte flow rate increases, and the electrolyte utilization factor improves. However, when the flow rate is increased, the pump power as auxiliary power is significantly increased, and the overall efficiency of the entire system including the pumps 16 and 17 is lowered. Therefore, when designing a redox flow battery system having a normal load leveling operation function, the system efficiency, which is an important index for the load leveling function, is impaired in consideration of such a trade-off relationship. The rated flow rate is determined within the specified range.

定格流量を定めた負荷平準化用運転を実施する場合、電解液利用率は、通常、充電状態の20%〜80%の範囲内としている。ここで、電解液利用率とは、電解液の有する理論的な電池容量(Ah)に対する実際の充放電で使用する利用範囲のことを指す。電解液の流量を高めることで、この利用範囲を拡大することができるが、極端にいえば、内部抵抗を0として無限大の流量としない限り利用率を100%にすることはできない。 When carrying out the load leveling operation with the rated flow rate defined, the electrolyte utilization rate is usually in the range of 20% to 80% of the charged state. Here, the electrolyte utilization factor refers to a utilization range used in actual charge / discharge with respect to the theoretical battery capacity (Ah) of the electrolyte. By increasing the flow rate of the electrolyte, this range of use can be expanded, but in extreme terms, the utilization rate cannot be made 100% unless the internal resistance is 0 and the flow rate is infinite.

発明者らは、電解液の流量と電解液利用率の関係に着目して、放電終了時には、電池内部抵抗が急速に大きくなり、そのために電池電圧が低下することから放電停止電圧に到達し放電が終了するが、この際の内部抵抗の大きさは、電解液の送液流量に大きく依存するという特性を見出した。即ち、起電力E、電流Iとした場合、V=E−IRで表される放電時の電池電圧Vを与える式において、電解液の流量を増加させると、内部抵抗Rは小さくなり、その結果、例えば図2(a)に示すように、電池電圧がVAに増大するという関係を見出した。このような知見に基づき、例えば図2(b)に示すように、定格流量での放電終了時点において、電解液の流量を定格比の1.5倍とした場合には、定格出力での定格放電容量に対して2割程度のハッチングで示す増分(放電容量増分)を確保できることを確認することができた。 The inventors paid attention to the relationship between the flow rate of the electrolyte and the utilization rate of the electrolyte, and at the end of the discharge, the battery internal resistance rapidly increased, so that the battery voltage decreased and reached the discharge stop voltage. However, the present inventors have found that the magnitude of the internal resistance at this time largely depends on the flow rate of the electrolyte solution. That is, when the electromotive force E and the current I are set, the internal resistance R decreases as the flow rate of the electrolyte is increased in the formula that gives the battery voltage V at the time of discharge represented by V = E-IR. For example, as shown in FIG. 2 (a), a relationship has been found in which the battery voltage increases to V A. Based on this knowledge, for example, as shown in Fig. 2 (b), at the end of discharge at the rated flow rate, when the electrolyte flow rate is 1.5 times the rated ratio, It was confirmed that an increase indicated by hatching about 20% of the discharge capacity (discharge capacity increase) could be secured.

従って、この2割増加容量分を非常電源容量とすれば、万一の非常時には、電解液の流量を増加させるだけで非常電源容量を確保できることになる。その間の流量と内部抵抗Rとの関係は、例えば図2(b)に示すように、放電終了時点で電解液の流量を定格比の1.5倍に増大させると、放電終了時に急速に増大した内部抵抗R1がR2に大きく低下する。従って、V=E−IRの式から明らかなように、電池電圧がVAに増大する(図2(a)参照)。これにより、図2(a)にハッチングで示す増分(放電容量増分)を確保できることになる。この放電容量増分では、例えば電池規模が100kW×8hrの場合、定格出力で1.6hr程度の非常用給電時間を確保することができる。 Therefore, if this 20% increased capacity is used as the emergency power supply capacity, the emergency power supply capacity can be secured only by increasing the flow rate of the electrolyte in the event of an emergency. The relationship between the flow rate and the internal resistance R during that time, for example, as shown in Fig. 2 (b), when the electrolyte flow rate is increased to 1.5 times the rated ratio at the end of discharge, it rapidly increases at the end of discharge. The internal resistance R 1 is greatly reduced to R 2 . Therefore, as is clear from the equation V = E−IR, the battery voltage increases to V A (see FIG. 2 (a)). Thereby, the increment (discharge capacity increment) indicated by hatching in FIG. 2A can be secured. With this increase in discharge capacity, for example, when the battery scale is 100 kW × 8 hr, an emergency power supply time of about 1.6 hr can be secured at the rated output.

〈実施の形態2〉
本レドックスフロー電池システムの非常時運転方法では、図1に示すようなレドックスフロー電池システム自体の構成を変更することなく、コンピュータ40による放電出力の制御を行うことで、非常時に対処できるようにしている。即ち、例えば図3に示すように、定格流量での放電終了時点において、流量はそのまま定格流量とし、放電出力を6割程度に低下させることによって放電を継続させるようにした。即ち、V=E−IRの式において電流Iを小にして電池電圧をVBに増大させ、定格出力での定格放電容量に対して、ハッチングで示す2割程度の増分(放電容量増分)の確保が可能となった。この場合、例えば冷暖房や照明への給電を停止し、必要最小限の使用(非常用灯、スプリンクラー、電話等)に止めることにより所要の放電時間を確保することができる。尚、万一の非常の際なので効率が少し低下しても問題になることはない。図3にハッチングで示す増分(放電容量増分)では、例えば電池規模が100kW×8hrの場合、6割の定格出力で2.8hr程度の非常用給電時間を確保することができる。
尚、本発明は、実施の形態に限定されることなく、発明の要旨を逸脱しない限りにおいて、適宜、必要に応じて改良、変更等は自由である。
<Embodiment 2>
In the emergency operation method of this redox flow battery system, the discharge output is controlled by the computer 40 without changing the configuration of the redox flow battery system itself as shown in FIG. Yes. That is, as shown in FIG. 3, for example, at the end of discharge at the rated flow rate, the flow rate is kept at the rated flow rate, and the discharge is continued by reducing the discharge output to about 60%. That is, in the formula V = E−IR, the current I is reduced to increase the battery voltage to V B , and the rated discharge capacity at the rated output is increased by about 20% (discharge capacity increment) indicated by hatching. Securement is possible. In this case, for example, the required discharge time can be ensured by stopping the power supply to the air conditioning and lighting and stopping to the minimum necessary use (emergency lamp, sprinkler, telephone, etc.). In the unlikely event of an emergency, there is no problem even if the efficiency drops slightly. In the increment (discharge capacity increment) indicated by hatching in FIG. 3, for example, when the battery scale is 100 kW × 8 hr, an emergency power supply time of about 2.8 hr can be secured at 60% rated output.
It should be noted that the present invention is not limited to the embodiment, and can be freely improved, changed, etc. as necessary without departing from the gist of the invention.

本発明の非常用電源機能を有するレドックスフロー電池システム及びその運転方法によれば、コストやスペースを要することなく、充分な非常電源用容量を確保することができるので、停電が発生した時の対策が求められる外部電力系統への適用に好適である。   According to the redox flow battery system having an emergency power supply function and its operation method of the present invention, it is possible to secure a sufficient capacity for emergency power supply without requiring cost and space. It is suitable for application to an external power system that requires

本発明の実施の形態に係るレドックスフロー電池システムの基本的な構成を示す構成図である。It is a block diagram which shows the basic composition of the redox flow battery system which concerns on embodiment of this invention. (a)は本発明の実施の形態1における放電出力と電池電圧の経過時間対応の変化状態を示すグラフ、(b)は内部抵抗と流量の経過時間対応の変化状態を示すグラフである。(a) is a graph showing the change state corresponding to the elapsed time of the discharge output and the battery voltage in Embodiment 1 of the present invention, and (b) is a graph showing the change state of the internal resistance and the flow rate corresponding to the elapsed time. 本発明の実施の形態2における放電出力と電池電圧の経過時間対応の変化状態を示すグラフである。6 is a graph showing a change state corresponding to an elapsed time between a discharge output and a battery voltage in Embodiment 2 of the present invention. バナジウムレドックスフロー電池システムの動作原理を示す説明図である。It is explanatory drawing which shows the operating principle of a vanadium redox flow battery system. レドックスフロー電池システムに利用されるセルスタックの概略構成図である。It is a schematic block diagram of the cell stack utilized for a redox flow battery system. 定格放電容量と非常容量(非常電源用電池容量分)の経過時間対応の変化状態を示すグラフである。It is a graph which shows the change state corresponding to elapsed time of rated discharge capacity and emergency capacity (for the battery capacity for emergency power supplies).

符号の説明Explanation of symbols


1 主セル 2p,22p 第1モニタセル 2n,22n
第2モニタセル
10 正極電解液タンク 11 負極電解液タンク

12,13 供給側輸送路 14,15 排出側輸送路

16,17 ポンプ(電解液送液ポンプ)
40 コンピュータ(停電検知手段及び切替制御手段)
V1,V2 電圧値
100 セル
101 イオン交換膜(隔膜) 102 正極セル 103 負極セル
104 正極電極 105 負極電極
106 正極電解液タンク 107 負極電解液タンク
108,109 供給側輸送路 110,111 排出側輸送路
112,113 ポンプ
120 セルフレーム 121 双極板 122 フレーム枠
123,124 給液用マニホールド 125,126 排液用マニホールド
127,128 スリット 200 セルスタック

1 Main cell 2p, 22p First monitor cell 2n, 22n
Second monitor cell
10 Cathode electrolyte tank 11 Cathode electrolyte tank

12,13 Supply side transport route 14,15 Discharge side transport route

16,17 pump (electrolyte pump)
40 Computer (Power failure detection means and switching control means)
V 1 and V 2 voltage values
100 cells
101 Ion exchange membrane (diaphragm) 102 Positive electrode cell 103 Negative electrode cell
104 Positive electrode 105 Negative electrode
106 Cathode electrolyte tank 107 Cathode electrolyte tank
108,109 Supply side transport route 110,111 Discharge side transport route
112,113 pump
120 cell frame 121 bipolar plate 122 frame frame
123,124 Supply manifold 125,126 Drain manifold
127,128 slit 200 cell stack

Claims (4)

電解液が供給されるセルを備え、通常用負荷に対して電力供給を可能にする通常運転機能を有し、非常時には、非常用負荷への電力供給を可能とする非常用電源機能を有するレドックスフロー電池システムであって、
非常運転時には前記セルへの送液流量を通常運転時の定格流量よりも増大させるために、通常運転時の定格流量以上の流量を送液可能とする電解液送液ポンプを備えることを特徴とする非常用電源機能を有するレドックスフロー電池システム。
Redox with a cell to which electrolyte is supplied, a normal operation function that enables power supply to a normal load, and an emergency power supply function that enables power supply to an emergency load in an emergency A flow battery system,
In order to increase the flow rate of liquid to the cell during emergency operation, compared to the rated flow rate during normal operation, an electrolyte liquid feed pump is provided that enables flow of a flow rate higher than the rated flow rate during normal operation. A redox flow battery system having an emergency power supply function.
前記非常時が停電であり、  The emergency is a power failure,
前記停電を検知する停電検知手段と、  A power failure detection means for detecting the power failure;
停電検知時、通常用負荷への電力供給を遮断し、通常用負荷よりも小さな非常用負荷に電力供給を行う切替制御手段とをさらに備えることを特徴とする請求項1に記載のレドックスフロー電池システム。  2. The redox flow battery according to claim 1, further comprising switching control means for interrupting power supply to the normal load and detecting power supply to an emergency load smaller than the normal load when a power failure is detected. system.
電解液が供給されるセルを備え、通常用負荷に対して電力供給を可能にする通常運転機能を有し、非常時には、非常用負荷への電力供給を可能とする非常用電源機能を有するレドックスフロー電池システムの非常時運転方法であって、
非常運転時には、前記セルへの送液流量を通常運転時の定格流量よりも増大させるために、通常運転時の定格流量以上の流量で送液することを特徴とする非常用電源機能を有するレドックスフロー電池システムの非常時運転方法
Redox with a cell to which electrolyte is supplied, a normal operation function that enables power supply to a normal load, and an emergency power supply function that enables power supply to an emergency load in an emergency An emergency operation method for a flow battery system,
In emergency operation, the redox having an emergency power supply function is characterized in that liquid is supplied at a flow rate higher than the rated flow rate during normal operation in order to increase the flow rate to the cell above the rated flow rate during normal operation. Emergency operation method of flow battery system .
前記非常時が停電であり、  The emergency is a power failure,
停電検知時には、通常用負荷への電力供給を遮断し、通常用負荷よりも小さな非常用負荷に電力供給を行うことを特徴とする請求項3に記載の非常用電源機能を有するレドックスフロー電池システムの非常時運転方法。  4. The redox flow battery system having an emergency power supply function according to claim 3, wherein when a power failure is detected, power supply to the normal load is interrupted and power is supplied to an emergency load smaller than the normal load. Emergency driving method.
JP2007177754A 2007-07-05 2007-07-05 Redox flow battery system having emergency power supply function and emergency operation method of redox flow battery system Expired - Fee Related JP5172230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007177754A JP5172230B2 (en) 2007-07-05 2007-07-05 Redox flow battery system having emergency power supply function and emergency operation method of redox flow battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007177754A JP5172230B2 (en) 2007-07-05 2007-07-05 Redox flow battery system having emergency power supply function and emergency operation method of redox flow battery system

Publications (2)

Publication Number Publication Date
JP2009016219A JP2009016219A (en) 2009-01-22
JP5172230B2 true JP5172230B2 (en) 2013-03-27

Family

ID=40356871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177754A Expired - Fee Related JP5172230B2 (en) 2007-07-05 2007-07-05 Redox flow battery system having emergency power supply function and emergency operation method of redox flow battery system

Country Status (1)

Country Link
JP (1) JP5172230B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820321B2 (en) 2008-07-07 2010-10-26 Enervault Corporation Redox flow battery system for distributed energy storage
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US20170012307A1 (en) * 2014-02-17 2017-01-12 Sumitomo Electric Industries, Ltd. Redox flow battery system and method for operating redox flow battery
WO2018117069A1 (en) * 2016-12-19 2018-06-28 昭和電工株式会社 Method for operating redox flow cell
CN109923719A (en) * 2016-12-19 2019-06-21 昭和电工株式会社 The operation method of redox flow batteries
AU2018412242A1 (en) * 2018-03-09 2020-09-17 Sumitomo Electric Industries, Ltd. Cell, cell stack, redox flow battery, and redox flow battery system
JP6944067B2 (en) * 2018-12-13 2021-10-06 昭和電工株式会社 Redox flow battery and its operation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315197A (en) * 2001-04-13 2002-10-25 Ohbayashi Corp Hybrid power supply system and its operation method

Also Published As

Publication number Publication date
JP2009016219A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP5172230B2 (en) Redox flow battery system having emergency power supply function and emergency operation method of redox flow battery system
US9966618B2 (en) Flow battery with voltage-limiting device
AU2002251534B2 (en) Secondary battery system and operating method thereof
JP5191129B2 (en) Fuel cell system and starting method thereof
WO2013002137A1 (en) Redox flow battery
US20170263956A1 (en) Fuel cell system and method for operating a fuel cell system
JP2006313691A (en) Redox flow battery system
US20050266280A1 (en) Electronic apparatus system, fuel cell unit and power supply control method
WO2014045337A9 (en) Redox flow battery
JP2011233372A (en) Redox flow battery
KR20170132005A (en) Redox flow battery
KR101760983B1 (en) Flow battery and method of preventing mix of the electrolyte
JPH11176454A (en) Power source for fuel cell accessory
CN111092249B (en) Fuel cell system and control method thereof
JP3583914B2 (en) Auxiliary power supply for fuel cell
US20110053015A1 (en) Control Method for a Fuel Cell System and Fuel Cell System
JP2011134530A (en) Control method of fuel cell system
JP2010244980A (en) Fuel cell system and electric vehicle mounted with the same
JP6683953B2 (en) Fuel cell system
JP2009129679A (en) Fuel cell system
WO2023027643A2 (en) Flow battery charging initiation method, controller for flow battery system and flow battery system
JPWO2018235355A1 (en) Redox flow battery system and method of operating the redox flow battery system
WO2019026634A1 (en) Redox flow battery system, and method for operating redox flow battery system
JP2020089022A (en) Control device of electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

R150 Certificate of patent or registration of utility model

Ref document number: 5172230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees