JP5166856B2 - Method for improving profile of profile drawing - Google Patents

Method for improving profile of profile drawing Download PDF

Info

Publication number
JP5166856B2
JP5166856B2 JP2007338304A JP2007338304A JP5166856B2 JP 5166856 B2 JP5166856 B2 JP 5166856B2 JP 2007338304 A JP2007338304 A JP 2007338304A JP 2007338304 A JP2007338304 A JP 2007338304A JP 5166856 B2 JP5166856 B2 JP 5166856B2
Authority
JP
Japan
Prior art keywords
die
pass
product
square millimeters
area reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007338304A
Other languages
Japanese (ja)
Other versions
JP2009154201A (en
Inventor
仁司 石井
Original Assignee
山陽金属鋼業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽金属鋼業株式会社 filed Critical 山陽金属鋼業株式会社
Priority to JP2007338304A priority Critical patent/JP5166856B2/en
Publication of JP2009154201A publication Critical patent/JP2009154201A/en
Application granted granted Critical
Publication of JP5166856B2 publication Critical patent/JP5166856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Extraction Processes (AREA)

Description

本発明は、金属の異形成形の引抜きにおける異形引抜き製品・中間品の特性並びに引抜き過程での工程上の特性の改善方法に関するものである。 The present invention relates to a method for improving characteristics of irregularly drawn products and intermediate products in the drawing of deformed metal shapes and process characteristics in the drawing process.

一般に異形金属製品で、少しでも形状が複雑になってくると、1回での引く抜きでは無理となり、2回以上のマルチパスの引抜により所定の形状を得ることができる。回数が増えれば増えるほど滑らかに変形させて所定の形状を得ることができるが、回数が増えればその分、金型費用、管理、所要時間等が増加し、コストアップに繋がる。 In general, when the shape of a deformed metal product becomes a little complicated, it is impossible to pull it out at one time, and a predetermined shape can be obtained by pulling out multiple passes twice or more. As the number of times increases, the predetermined shape can be obtained by smoothly deforming. However, if the number of times increases, the mold cost, management, required time, etc. increase accordingly, leading to an increase in cost.

したがってパス回数はできるだけ回数を抑えたいという要望があって、その実現のためには各パスでの減面率をアップして回数を減らして来たが、素材コストで有利な丸材や角材等の汎用素材から引抜く場合、最早現状ではぎりぎりのところまで各パスでの減面率をアップしており、一般的な異形引抜でも3回或いは4回は当たり前で、最早限界に達していると言える。 Therefore, there is a request to reduce the number of passes as much as possible, and in order to realize it, we have increased the area reduction rate in each pass and reduced the number of passes, but such as round and square materials that are advantageous in terms of material cost When pulling out from general-purpose materials, the area reduction rate at each pass has been increased to the limit at the moment, and even if it is a general variant drawing, it is natural that it has reached the limit, 3 or 4 times. .

このような複数パスの異形引抜きにおいて、一応引抜きにより形状が出せる段階にまで達しているが、引抜いた製品の特性を多少変えたい場合がある。そのような場合、一般にはダイスを修正することも考えられるものの、折角形が出せる段階に達している状況では、ダイスに修正を加えると、形状がでなくなることも経験上多く見られてきたため、その段階からはコストが決して低くないダイスをダメにしてしまう危険性があるダイスの修正は避けられ、アプローチ挿入角度の調整、素材の変更、各パス間或いは製品引抜き後に種々の処理を加えること等により、特性の修正を行ってきている。 In such irregular drawing of multiple passes, it has reached a stage where the shape can be obtained by drawing, but there are cases where it is desired to slightly change the characteristics of the drawn product. In such a case, although it is generally considered that the die can be corrected, in the situation where it has reached the stage where a polygonal shape can be produced, it has been seen from experience that if the die is corrected, the shape will not be lost. From that stage, it is possible to avoid the modification of dies, which may cause the cost of dies that are not low cost to be lost, adjust the approach insertion angle, change the material, add various treatments between each pass or after product removal, etc. Thus, the characteristics have been corrected.

しかしながら折角パスの回数を減らそうとして来ているにも拘らず、各パス間に熱処理や歪取り処理等をはさむと、その分工程が増え、処理時間も長くならざるを得ないことになっていた。 However, despite the fact that the number of corner passes has been reduced, if heat treatment or strain relief processing is inserted between the passes, the number of steps is increased and the processing time must be increased. It was.

このような状況から、中間処理・後処理をすることなく、引抜き自体によって所定の特性を出そうとすることが研究されてきており、その一例として、素材に予めブラスト処理で表面を粗化し、それに表面処理を施しておいて、これを複数回のパスで引抜くに当たり、最初の引抜きの断面減少率を大きく以後の引抜き断面減少率を徐々に小さくなるようにして引抜くことにより、コストダウンを図る手法が知られている。 From such a situation, it has been researched to give a predetermined characteristic by drawing itself without performing intermediate treatment / post-treatment, and as an example, the surface is roughened by blasting in advance, When it is surface-treated and then pulled out in multiple passes, the cost is reduced by increasing the cross-section reduction rate of the first drawing and gradually reducing the subsequent drawing cross-section reduction rate. There are known methods for achieving this.

しかしながら中間処理や後処理を省いての複数パスの連続引抜きにおいて、後段のパスでの減面率を前段のパスより低くすることは従来からスキンパスの手法として広く知られており、内部応力除去、表面硬度の改善、殊に硬くすることはできるが、他の歪や焼付け特性等の改善は期待できないものであった。しかも一旦形状が出せるに至った後でも、その後の設置装置の変更、素材のロットの変更、素材自体の変更等の理由により、中間品や製品の特性に変化が生じてもそれには対応できず、別途処理を追加して対応していた。 However, in continuous drawing of multiple passes without intermediate processing and post-processing, it has been widely known as a skin pass method to reduce the area reduction rate in the subsequent pass as compared to the previous pass, and internal stress removal, Although the surface hardness can be improved, in particular, the hardness can be increased, other improvements such as distortion and baking characteristics cannot be expected. Moreover, even after the shape can be obtained once, it cannot respond to changes in the characteristics of intermediate products or products due to subsequent changes in installation equipment, material lots, material itself, etc. , Added a separate process.

本発明は、一旦形状が出るに至った後に、工程を増やすことなく、製品及び中間品の特性或いは引抜き過程での特性を改善させることができる異形引抜き成形の特性改善方法を得ようとするものである。
特開平6−328123号公報
The present invention seeks to obtain a method for improving the characteristics of a modified pultrusion molding which can improve the characteristics of products and intermediate products or the characteristics in the drawing process without increasing the number of processes once the shape has come out. It is.
JP-A-6-328123

本発明は、異形金属製品の引抜きにおいて、各パス間での中間処理を加えることなく、ダイスを活かして使用し、また修正するダイスにおいてもアプローチとベアリングとの整合性もとり易く、僅かな修正で目的とする製品或いは中間品の物性を得ることができる異形引抜き成形ダイスの修正方法を提供するものである。 The present invention makes it possible to take advantage of the dies when drawing out deformed metal products without any intermediate treatment between passes, and to easily match the approach and the bearing in the dies to be corrected. It is an object of the present invention to provide a method for correcting a deformed pultrusion die capable of obtaining the properties of a target product or an intermediate product.

本発明の主たる特徴は、金属の異形引抜き成形において、複数のパスのダイス1a、1b、1c・・・1nを、一旦引抜き形状が出る状態に製作した後、最終回のダイス1nより前方のダイス1a、1b・・・1n-1のいずれかのベアリングBを等肉微小拡大修正することである。 The main feature of the present invention is that, in metal profile drawing, after a plurality of passes dies 1a, 1b, 1c,. 1a, 1b,.

また、同様の主旨から、金属の異形引抜き成形において、複数のパスのダイス1a、1b、1c・・・1nを、一旦引抜き形状が出る状態に製作した後、最終回のダイス1nより前方のダイス1a、1b・・・1n-1のいずれかのベアリングBを等肉微小縮小修正することである。 Further, for the same purpose, in a metal profile drawing, a plurality of passes of dies 1a, 1b, 1c,... 1 a, 1 b,.

一般に、一旦製品の形状が確保される段階にまで達している場合でも、物性や特性であと少し修正したい場合が多い。即ち同じ規格のダイスでもその設置の仕方、引抜きの条件の違いにより、引抜かれた製品或いは中間品の特性(硬度、歪、曲がり等)や引抜き過程での特性(引抜き易さや焼け付き、破断の出易さ等)に相当の差が出る。また、サイズの違い、或いは同じ設計に基づくダイスでもそのメーカーの違いによっても、製品や中間品の物性や引抜き癖等に相当の違いが出ることが知られており、そのダイスを設置した引抜きメーカーで製品や物性の修正をしたい場合も少なくないのである。 In general, even when the product has reached the stage where the shape of the product has been ensured, there are many cases where it is desired to slightly modify the physical properties and characteristics. That is, even with dies of the same standard, depending on the installation method and the conditions of drawing, the characteristics of the drawn product or intermediate product (hardness, strain, bending, etc.) and the characteristics in the drawing process (ease of drawing, seizure, breakage) There is a considerable difference in ease of use. Also, it is known that due to differences in size or dies based on the same design, there are considerable differences in the physical properties of the products and intermediate products and the pulling habits, etc., and the drawing manufacturer that installed the die There are many cases where you want to modify products and physical properties.

例えば、製品の硬度、曲がり等の特性を修正したい場合や、引抜き回数を重ねると破断が増えて引けなくなったり、焼付き等の症状が生じるため、それを改善したい場合等に多々遭遇するが、従来はパス間に熱処理や鈍し等種々の中間乃至後処理で対応して来ていた。 For example, if you want to modify the properties of the product, such as hardness, bending, etc., or if you want to ameliorate the symptoms such as seizure, etc., because the fracture will increase and the seizure will occur if the number of extractions is repeated, Conventionally, various intermediate to post-treatments such as heat treatment and blunting have been performed between passes.

このような状況下、本発明では、複数(2以上)のパスのダイス1a、1b、1c・・・1nを、一旦引抜き形状が出る状態に製作した後、最終回のダイス1nより前方のダイス1a、1b・・・1n-1のいずれかのベアリングBを等肉微小修正するもので、修正が拡大の場合はダイスのベアリングを減肉することにより行い、修正が縮小の場合はダイスの再製作により対応するものである。 Under such circumstances, according to the present invention, after a plurality of (two or more) dies 1a, 1b, 1c,. 1a, 1b... 1n-1 is slightly modified with the same thickness. If the correction is expanded, the bearing of the die is reduced. If the correction is reduced, the die is re-adjusted. It corresponds by manufacturing.

そして本発明ではそのベアリングの修正を極微小な均等修正(いわゆるオフセット修正)としたので、その修正数値を決めれば、同じ製品のダイスであれば、同じ成果が確実に再現でき、しかも極微細な修正であるにも拘わらず、予想を遥かに超えて、製品や中間品の特性・物性、或いは引抜き過程の弊害の改善が達成できたのである。 In the present invention, the correction of the bearing is an extremely small uniform correction (so-called offset correction). If the correction value is determined, the same result can be reliably reproduced with the same product die, and the extremely fine In spite of the correction, the characteristics and physical properties of the products and intermediate products, or the adverse effects of the drawing process, were achieved far beyond expectations.

またベアリングの修正が等肉修正であるので、複雑な異形製品であってもCADに基づくダイスのベアリングのオフセット修正処理が容易であり、異形であっても微小修正のためにアプローチとベアリング等との整合性が良く、そのベアリング修正に応じてアプローチに難しい修正をすることなく、ダイスの修正が簡単に行え、しかも修正が微細にあるにも拘わらず、修正後のダイスにより引抜かれた製品・中間品の物性・特性にメリハリの効いた修正を加えることができる。 In addition, because the bearing correction is equal, the offset correction processing of the die bearing based on CAD is easy even for complex deformed products. The consistency of the product is good, the die can be easily corrected without making difficult corrections to the approach according to the bearing correction, and even though the correction is fine, the product drawn with the corrected die It is possible to add sharp corrections to the physical properties and characteristics of intermediate products.

その詳細な理由はまだまだ今後の解明に待たなければならない段階であるが、現状では、一般に異形の場合、図4のように、ベアリングを全周に亘り均等寸法だけ増減して修正すると、重心位置移動及び各部位の減面率変更等の(相似的変更ではないための変化)が必然的に生じることになり、その重心移動、各部位での減面率変更等に起因して、製品或いは中間品の特性・物性を変化させ、また、引抜き過程の特性にも影響を与えるものと推測される。 The detailed reason is still in the stage where we have to wait for further elucidation. However, at present, in the case of irregular shape, if the bearing is corrected by increasing / decreasing the same dimension all around as shown in Fig. 4, the position of the center of gravity Movement and change of area reduction ratio of each part (change because it is not a similar change) will inevitably occur. It is presumed that it changes the properties and physical properties of the intermediate product and also affects the properties of the drawing process.

図1は第1ダイス1a、第2ダイス1b、第3ダイス1cによる3パスで金属素材2から製品3を引抜く例で、形状の変化は例えば図2に示されるように徐々に減肉されて成形される。その引抜きの形状変化は図2の通りである。4は口部5を掴んで引く掴み手段である。 FIG. 1 shows an example in which the product 3 is pulled out from the metal material 2 in three passes by the first die 1a, the second die 1b, and the third die 1c, and the change in shape is gradually reduced, for example, as shown in FIG. To be molded. The shape change of the drawing is as shown in FIG. Reference numeral 4 denotes gripping means for gripping and pulling the mouth portion 5.

ダイス設計を経て各パスのダイスは製作されるが、各パスのダイスはいずれも何度かの試引きと修正を経て製品或いは中間品の形状が出せるようになる。そして一旦このように形状が出せる段階になり、引いてみたが、製品或いは中間品の特性や製造過程での特性で改善すべき点が見つかった場合、ダイスのベアリングBを微小等肉修正するもので、ベアリングBを微小拡大する場合は超硬素材のベアリングの成形面をワイヤーカット等により修正し、微小縮小する場合はCADデータに基づきダイスを再製作するものである(図3参照)。この修正が拡大であるか縮小であるか、微細数値がどの程度であるかは、そのダイスの製作過程での試行錯誤のデータの蓄積により的確に決定できるが、修正により得られた改善度合いによっては若干の修正をし直すこともあり得る。以下、本発明の改善例を幾つか挙げて詳細に説明する。 The dies for each pass are manufactured through the die design, and the dies for each pass can be shaped through a number of trials and corrections to produce a product or intermediate product. And once it is in the stage where the shape can be put out like this, it was drawn, but when a point to be improved in the characteristics of the product or intermediate product or the characteristics in the manufacturing process was found, the bearing B of the die is corrected to a minute thickness When the bearing B is slightly enlarged, the molding surface of the cemented carbide bearing is corrected by wire cutting or the like, and when it is minutely reduced, the die is remanufactured based on CAD data (see FIG. 3). Whether this correction is an enlargement or reduction, or how much the fine value is, can be determined accurately by the accumulation of trial and error data in the manufacturing process of the die, but depending on the degree of improvement obtained by the correction Can also be modified slightly. Hereinafter, some improvement examples of the present invention will be described in detail.

(実施例1)硬度改善例
太さ1385平方ミリの丸材(直径42mm)を金属素材2として、
第1パスで1160平方ミリ(第1ダイス1aの減面率が16.3%)→
第2パスで914平方ミリ(第2ダイス1bの減面率が21.2%)→
第3パスで823平方ミリ(第3ダイス1cの減面率が10.0%)
で製品(レールシャフト:断面形状図6参照)を引抜いた。
ここで金属素材としては、Cが0.55〜0.58%、Sが0.15〜0.30%、Mnが0.75〜0.90%、Pが0.025%以下、Sが0.025%以下、Crが0.10〜0.20%、Moが0.08%以下、Niが0.02%以下、Cuが0.02.%以下のものを使用した。以下の実施例も同じである。
そしてこの状態で製品3の形状は出ているが、硬度がHRB94であって、目標のHRB95以上という目標値から外れていた。そこで第2ダイス1bのベアリングBを微小均等拡大(オフセット量0.6mm)してそれにより同じ材料を用いて引抜いた。この修正後は
第1パスで1160平方ミリ(減面率16.3%)(変更なし)→
第2パスで993平方ミリ(減面率14.4%)(変化:オフセット量0.6mm)→
第3パスで823平方ミリ(変更なし)(減面率17.1%:変更)
で引抜かれ、得られた製品の硬度はHRB96に改善された。
(Example 1) Hardness improvement example A round material (diameter 42 mm) having a thickness of 1385 square millimeters as a metal material 2,
1160 square millimeters in the first pass (area reduction of the first die 1a is 16.3%) →
914 square millimeters in the second pass (the area reduction rate of the second die 1b is 21.2%) →
823 square millimeters in the third pass (the area reduction rate of the third die 1c is 10.0%)
The product (rail shaft: see cross-sectional shape diagram 6) was pulled out.
Here, as a metal material, C is 0.55-0.58%, S is 0.15-0.30%, Mn is 0.75-0.90%, P is 0.025% or less, S is 0.025% or less, Cr is 0.10 to 0.20%, Mo is 0.08% or less, Ni is 0.02% or less, and Cu is 0.02. % Or less was used. The following examples are also the same.
In this state, the shape of the product 3 comes out, but the hardness is HRB94, which is out of the target value of HRB95 or higher. Therefore, the bearing B of the second die 1b was slightly evenly enlarged (offset amount 0.6 mm), and thereby extracted using the same material. After this correction, 1160 square millimeters (area reduction of 16.3%) in the first pass (no change) →
In the second pass, 993 square millimeters (area reduction rate 14.4%) (change: offset amount 0.6 mm) →
823 square millimeters in the third pass (no change) (area reduction rate 17.1%: change)
The hardness of the resulting product was improved to HRB96.

(実施例2)中間口部破断現象改善の例
太さ1809平方ミリの丸材(直径48mm)を金属素材2として、
第1パスで1404平方ミリ(第1ダイス1aの減面率が22.4%)→
第2パスで1135平方ミリ(第2ダイス1bの減面率が19.2%)→
第3パスで956平方ミリ(第3ダイス1cの減面率が15.8%)
で製品(レールシャフト:断面形状図7参照)を引抜いた。この例では100本程度引抜いた後、第2パスでの引抜きで口部の破断が頻繁に生ずるようになった。そこで第2ダイス1bのベアリングBを微小均等拡大(オフセット量0.35mm)してそれにより同じ材料を用いて引抜いたところ、
第1パスで1404平方ミリ(減面率22.4%)(変更なし)→
第2パスで1185平方ミリ(減面率15.6%)(拡大:オフセット量0.35mm)→
第3パスで956平方ミリ(変更なし)(減面率19.4%:変更)
で引抜いたところ、途中で口部に破断は発生せず、引抜き時の当初の弊害が解消した。
(Example 2) Example of improvement of breaking phenomenon at the middle opening part As a metal material 2, a round material (diameter 48 mm) having a thickness of 1809 square millimeters,
1404 square millimeters in the first pass (area reduction of the first die 1a is 22.4%) →
1135 square millimeters in the second pass (area reduction of the second die 1b is 19.2%) →
956 mm2 in the 3rd pass (area reduction of the third die 1c is 15.8%)
The product (rail shaft: see cross-sectional shape in FIG. 7) was pulled out. In this example, after about 100 pieces were pulled out, the mouth portion was frequently broken by the second pass. Therefore, when the bearing B of the second die 1b is slightly evenly enlarged (offset amount 0.35 mm) and pulled out using the same material,
1404 mm2 in the first pass (area reduction rate 22.4%) (no change) →
In the second pass, 1185 square millimeters (area reduction 15.6%) (enlargement: offset 0.35 mm) →
956 mm2 in the 3rd pass (no change) (area reduction 19.4%: change)
When it was pulled out, there was no breakage at the mouth partway, eliminating the initial problem at the time of drawing.

(実施例3)中間品焼付き改善
太さ1134平方ミリの丸材(直径38mm)を金属素材2として、
第1パスで898平方ミリ(第1ダイス1aの減面率が20.8%)→
第2パスで700平方ミリ(第2ダイス1bの減面率が22.0%)→
第3パスで623平方ミリ(第3ダイス1cの減面率が11.1%)
で製品(レールシャフト:断面形状図6参照)を引抜いた。これは形状が出ていたが、第2パスで引抜き時に焼付きが生じた。そこでこの場合は、第2パスでの減面率が負担になっていると判断し、第2ダイス1bのベアリングBをオフセット量0.45mmで均等微小拡大修正したところ、
第1パスで898平方ミリ(減面率20.8%)(変更なし)→
第2パスで752平方ミリ(減面率16.3%)(縮小:オフセット量0.45mm)→
第3パスで623平方ミリ(変更なし)(減面率17.2%:変更)
で引抜いたところ、第2パスでの負担が減少して焼付きが解消された。
(Example 3) Improvement of seizure of intermediate product As a metal material 2, a round material (diameter 38 mm) having a thickness of 1134 square millimeters was used.
898 square millimeters in the first pass (area reduction of the first die 1a is 20.8%) →
700 mm2 in the second pass (the area reduction rate of the second die 1b is 22.0%) →
623 square millimeters in the third pass (the area reduction rate of the third die 1c is 11.1%)
The product (rail shaft: see cross-sectional shape diagram 6) was pulled out. This had a shape, but seizure occurred during drawing in the second pass. Therefore, in this case, it is determined that the area reduction rate in the second pass is a burden, and the bearing B of the second die 1b is corrected evenly and finely with an offset amount of 0.45 mm.
898 square millimeters in the first pass (area reduction 20.8%) (no change) →
In the second pass, 752 square millimeters (area reduction rate 16.3%) (reduction: offset amount 0.45 mm) →
623 square millimeters in the third pass (no change) (area reduction rate 17.2%: change)
When it was pulled out, the burden on the second pass decreased and the seizure was eliminated.

(実施例4)製品の曲がり改善
太さ4814平方ミリの角材(70mm角)を金属素材2として、
第1パスで3681平方ミリ(第1ダイス1aの減面率が23.5%)→
第2パスで3180平方ミリ(第2ダイス1bの減面率が13.6%)→
第3パスで2887平方ミリ(第3ダイス1cの減面率が9.2%)
で製品(レールシャフト:断面形状図6参照)を引抜いた。この例では製品に曲がりが許容範囲(0.5mm/m以内)外の曲がり(0.8mm/m)が生じた。そこで第1ダイス1aのベアリングBを微小均等拡大(オフセット量1.25mm)、第2ダイス1bのベアリングBを微小均等拡大(オフセット量0.8mm)してそれにより同じ材料を用いて引抜いたところ、
第1パスで3989平方ミリ(減面率17.14%)(拡大:オフセット量1.25mm)→
第2パスで3371.3平方ミリ(減面率15.5%)(拡大:オフセット量0.8mm)→
第3パスで2887平方ミリ(変更なし)(減面率14.4%:変更)
で引抜いた。これにより、製品の曲がりが0.8mm/mから0.4mm/mに改善された。
(Example 4) Bending improvement of a product A square material (70 mm square) having a thickness of 4814 square millimeters as a metal material 2,
3681 square millimeters in the first pass (area reduction of the first die 1a is 23.5%) →
3180 square millimeters in the second pass (the area reduction rate of the second die 1b is 13.6%) →
2887 square millimeters in the third pass (the area reduction rate of the third die 1c is 9.2%)
The product (rail shaft: see cross-sectional shape diagram 6) was pulled out. In this example, the product was bent (0.8 mm / m) outside the allowable range (within 0.5 mm / m). Therefore, the bearing B of the first die 1a is slightly evenly enlarged (offset amount of 1.25 mm), and the bearing B of the second die 1b is minutely enlarged (offset amount of 0.8 mm), thereby being pulled out using the same material. ,
In the first pass, 3989 square millimeters (area reduction rate 17.14%) (enlargement: offset amount 1.25 mm) →
In the second pass, 3371.3 square millimeters (area reduction 15.5%) (enlargement: offset amount 0.8 mm) →
2887 square millimeters in 3rd pass (no change) (Area reduction rate 14.4%: change)
I pulled it out. Thereby, the bending of the product was improved from 0.8 mm / m to 0.4 mm / m.

この場合のダイスの修正と重心の移動、製品又は中間品の曲がりについては、図9の通りであり、(a)は素材と第1パスのダイスによる中間品の断面の形状を示しており、中間体の断面形状はダイスの拡大修正により実線から想像線のように拡大される。この場合、中間品の重心は(b)のように下に偏肉している場合はダイスの拡大修正により重心が上方に移動し、その結果、(c)のように修正前の製品又は中間品に上に反った曲がりが生じていた場合は、この修正によりその曲がりが低減されるのである。従って曲がりを逆に修正したい場合は反対に微小縮小のオフセットデータにより該当のダイスを再作製することにより対応することができる。 In this case, the correction of the die and the movement of the center of gravity, the bending of the product or the intermediate product are as shown in FIG. 9, and (a) shows the shape of the cross-section of the intermediate product by the material and the first pass die, The cross-sectional shape of the intermediate body is expanded from a solid line to an imaginary line by expanding and correcting the die. In this case, if the center of gravity of the intermediate product is biased downward as shown in (b), the center of gravity moves upward due to enlargement and correction of the die, and as a result, the product or intermediate before correction as shown in (c) If the product is warped upward, this correction will reduce the curvature. Therefore, if it is desired to correct the bending reversely, it can be dealt with by remanufacturing the corresponding die with the offset data of minute reduction.

(実施例5)工程飛ばしによる焼付き改善(中間熱処理省略による焼付きの改善)
太さ1134平方ミリの丸材(直径38mm)を金属素材2として、
第1パスで898平方ミリ(第1ダイス1aの減面率が20.8%)→
第2パスで733平方ミリ(第2ダイス1bの減面率が18.4%)→
第3パスで651平方ミリ(第3ダイス1cの減面率が11.2%)
で製品(レールシャフト:断面形状図6参照)を引抜いた。この例では当初、第1パスと第2パスとの間に熱処理を入れて引抜いていたのであるが、工程省略のため、その熱処理を省略したものである。そしてそれでも形状は出ていたが、第2パスで焼付き及び口部破断が生ずる弊害が出て来た。そこで第2ダイス1bのベアリングBを微小均等拡大(オフセット量0.45mm)してそれにより同じ材料を用いて引抜いたところ、
第1パスで898平方ミリ(減面率20.8%)(変更なし)→
第2パスで783平方ミリ(減面率12.8%)(拡大:オフセット量0.45mm)→
第3パスで651平方ミリ(変更なし)(減面率19.4%:変更)
で引抜いたところ、途中で口部に破断は発生せず、引抜き時の当初の弊害が解消した。
(Example 5) Seizure improvement by skipping processes (improving seizure by omitting intermediate heat treatment)
A round material (diameter 38 mm) with a thickness of 1134 square millimeters is used as the metal material 2.
898 square millimeters in the first pass (area reduction of the first die 1a is 20.8%) →
733 square millimeters in the second pass (the area reduction rate of the second die 1b is 18.4%) →
651 square millimeters in the third pass (the area reduction rate of the third die 1c is 11.2%)
The product (rail shaft: see cross-sectional shape diagram 6) was pulled out. In this example, the heat treatment was initially drawn between the first pass and the second pass, and the heat treatment was extracted, but the heat treatment was omitted because the step was omitted. Even though the shape was still present, there was a problem that seizure and mouth breakage occurred in the second pass. Therefore, when the bearing B of the second die 1b is slightly evenly enlarged (offset amount 0.45 mm) and then pulled out using the same material,
898 square millimeters in the first pass (area reduction 20.8%) (no change) →
In the second pass, 783 square millimeters (area reduction rate 12.8%) (enlargement: offset amount 0.45 mm) →
651 square millimeters in 3rd pass (no change) (Area reduction rate 19.4%: change)
When it was pulled out, there was no breakage at the mouth partway, eliminating the initial problem at the time of drawing.

(実施例6)設備能力が異なる別途引抜装置に設置した場合の装置耐久性に対する対応
太さ616平方ミリの丸材(直径28mm)を金属素材2として、
第1パスで492平方ミリ(第1ダイス1aの減面率が20.1%)→
第2パスで390平方ミリ(第2ダイス1bの減面率が20.7%)→
第3パスで312平方ミリ(第3ダイス1cの減面率が20.0%)
で製品(レールシャフト:断面形状図7参照)を引抜いた。これを引抜力が小さい他の引抜装置に各ダイスを装着して引抜いたところ、第2パスにおいて引抜装置の許容範囲を超えていたため装置の耐久年数までに装置を破損してしまった。そこでこの場合は、第2パスでの引抜き力が負担になっていると判断し、ベアリングをオフセット量0.31mmで均等微小拡大修正したところ、
第1パスで492平方ミリ(減面率20.1%)(変更なし)→
第2パスで415平方ミリ(減面率15.6%)(縮小:オフセット量0.31mm)→
第3パスで312平方ミリ(変更なし)(減面率24.9%:変更)
で引抜いたところ、第2パスでの負担が減少して装置を耐用年数まで使用が可能となった。
(Example 6) Corresponding to apparatus durability when installed in a separate drawing apparatus with different equipment capabilities As a metal material 2, a round material (diameter 28 mm) with a thickness of 616 square millimeters,
492 square millimeters in the first pass (area reduction of the first die 1a is 20.1%) →
390 square millimeters in the second pass (the area reduction rate of the second die 1b is 20.7%) →
312 square millimeters in the third pass (area reduction rate of the third die 1c is 20.0%)
The product (rail shaft: see cross-sectional shape in FIG. 7) was pulled out. When each die was attached to another drawing device with a small drawing force and pulled out, the tolerance of the drawing device was exceeded in the second pass, and the device was damaged by the endurance of the device. Therefore, in this case, it is determined that the pulling force in the second pass is a burden, and the bearing is evenly enlarged and corrected with an offset amount of 0.31 mm.
492 square millimeters in the first pass (area reduction rate 20.1%) (no change) →
In the second pass, 415 square millimeters (area reduction 15.6%) (reduction: offset 0.31 mm) →
312 square millimeters in the third pass (no change) (area reduction rate 24.9%: change)
As a result, the load on the second pass was reduced and the device could be used up to its useful life.

(実施例7)材料径変更による焼付き改善(ベアリング縮小の例)
太さ804平方ミリの丸材(直径32mm)を金属素材2として、
第1パスで710平方ミリ(第1ダイス1aの減面率が11.7%)→
第2パスで550平方ミリ(第2ダイス1bの減面率が22.5%)→
第3パスで463平方ミリ(第3ダイス1cの減面率が15.7%)
で製品(レールシャフト:断面形状図8参照)を引抜いいていたが、第2パスで焼付きが生じやすいことが分かり、その対策として、金属素材2を直径が31mmのもの(太さ754平方ミリ)に変更したところ、そのままでは形状は出るが、バランスが崩れる。即ち、太さ754平方ミリ(直径31mm)に変更すると、
第1パスで710平方ミリ(第1ダイス1aの減面率が5.8%)→
第2パスで550平方ミリ(第2ダイス1bの減面率が22.5%)→
第3パスで463平方ミリ(第3ダイス1cの減面率が15.7%)
になる。即ち、素材が僅かに細くなったため、そのままでは第1パスでの絞りが少なく、第1、第2ダイスの減面率の割振りがアンバランスなる。このアンバランスを改善するため、ベアリングをオフセット量0.5mmで均等微小縮小した第1ダイスを再製作してセットし直し、他は変更せずに直径が31mmの丸材を引抜いたところ、焼付きは解消した。セットし直した後は、
第1パスで640平方ミリ(減面率15.0%)(縮小:オフセット量0.5mm)→
第2パスで550平方ミリ(変更なし)(減面率14.1%)(縮小)→
第3パスで463平方ミリ(変更なし)(減面率15.7%:変更なし)
とバランスが改善され、各パスの負担のばらつきが解消した。
(Example 7) Seizure improvement by changing material diameter (example of bearing reduction)
A round material (diameter 32 mm) with a thickness of 804 square millimeters is used as the metal material 2.
710 square millimeters in the first pass (area reduction of the first die 1a is 11.7%) →
550 square millimeters in the second pass (the area reduction rate of the second die 1b is 22.5%) →
463 square millimeters in the third pass (the area reduction rate of the third die 1c is 15.7%)
However, it was found that seizure was likely to occur in the second pass, and as a countermeasure, the metal material 2 was 31 mm in diameter (thickness 754 square). When changed to mm), the shape appears as it is, but the balance is lost. That is, if you change the thickness to 754 square millimeters (diameter 31 mm),
710 square millimeters in the first pass (area reduction of the first die 1a is 5.8%) →
550 square millimeters in the second pass (the area reduction rate of the second die 1b is 22.5%) →
463 square millimeters in the third pass (the area reduction rate of the third die 1c is 15.7%)
become. In other words, since the material has become slightly thinner, if it is left as it is, the aperture in the first pass is small, and the allocation of the area reduction ratios of the first and second dies is unbalanced. In order to improve this imbalance, the first die, which was uniformly reduced by an offset amount of 0.5 mm, was re-manufactured and set again, and the other round was pulled out without changing the diameter, and seizure occurred. Has been resolved. After resetting,
640 square millimeters in the first pass (area reduction rate 15.0%) (reduction: offset amount 0.5 mm) →
550 square millimeters in the second pass (no change) (area reduction rate 14.1%) (reduction) →
463 square millimeters in 3rd pass (no change) (Area reduction rate 15.7%: no change)
The balance has been improved and the variation in the burden on each pass has been eliminated.

このように本発明は、異形引抜きのダイス設計により種々試行錯誤の末にダイスの一旦形状が出せる状態に辿り着いた後において、製品或いは中間品の特性(硬度、曲がり、歪等)を修正したい場合、或いは、所期の形状は出るが、ある程度引き続けると破断が発生し始める(パワー負け現象)ような場合や焼付けが生じやすい場合のように引抜き過程での好ましくない症状の改善に当たって、ダイスを微小に修正することにより、その改善を達成できるので、中間や後に別途工程を追加する必要がなく、ランニングコスト及び処理時間を増加させることなく、効率よくそれらに対処できたものである。 As described above, the present invention is intended to correct the characteristics (hardness, bending, distortion, etc.) of the product or intermediate product after reaching the state where the shape of the die can be once obtained after various trials and errors by the die design of the irregular drawing. In the case where the desired shape comes out, but when it continues to pull to some extent, it begins to break (power loss phenomenon) or when seizure is likely to occur, the improvement of undesired symptoms in the drawing process Since the improvement can be achieved by slightly correcting the above, it is not necessary to add a separate process in the middle or later, and it is possible to deal with them efficiently without increasing the running cost and the processing time.

しかもその際、ダイスのベアリングの修正は、極微小で全周に亘り均等であるため、オフセット処理により、確実に再現できるので、対応がダイス製作者の高度の経験に頼ることなく容易である。 Moreover, since the correction of the die bearing is extremely small and uniform over the entire circumference, it can be reliably reproduced by the offset process, so that the correspondence is easy without depending on the advanced experience of the die maker.

またアプローチとベアリングとの接続境界は引抜き方向に垂直な面に納まるのが理想であるが、本発明にあっては殊に、修正がベアリングの微小均等拡大の場合、その修正が微小であるが故に、アプローチとの取り合いがミクロ的には修正後の接続境界部分に僅かに波打つような不均一が見られたとしても、マクロ的には無視できる程度に納まり、アプローチ角度の修正は無視することができるので、修正も楽である。尚、修正が縮小で、ダイスの再製作の場合、アプローチ角は、境界部分がミクロ的にも均一となるように微修正を加えて対処すれば良いと言える。 Ideally, the connection boundary between the approach and the bearing should be within a plane perpendicular to the drawing direction. However, in the present invention, especially when the correction is a minute uniform enlargement of the bearing, the correction is very small. Therefore, even if there is a slight unevenness in the connection with the approach, the connection with the approach will be negligible on a macro level, and the correction of the approach angle should be ignored. Can be corrected easily. In the case where the correction is reduced and the die is remanufactured, it can be said that the approach angle may be dealt with by making a fine correction so that the boundary portion is also microscopically uniform.

このように本発明にあっては中間又は後に別途処理を追加することなく、製品の特性や工程の弊害症状を改善することができるものである。特性の改善は、修正の大きさにより歪や硬度の改善、引抜き時の改善等種々に及ぶもので、中間或いは引抜き後に処理を追加することなく、引抜きの工程の中で諸特性の改善が行われるため、生産効率が向上するものであり、殊にベアリングを均等微小拡大する場合は、一旦設計・製作されたダイスを廃棄せず活用できて、設備上のコスト低減にも繋がるものである。 As described above, according to the present invention, it is possible to improve the product characteristics and adverse symptoms of the process without adding a separate process in the middle or later. Improvements in properties can be made in various ways, such as improvement in strain and hardness, improvement during drawing, etc., depending on the size of the correction, and various properties can be improved during the drawing process without additional processing in the middle or after drawing. Therefore, the production efficiency is improved. Especially when the bearings are evenly enlarged, the dies once designed and manufactured can be utilized without being discarded, which leads to cost reduction on the equipment.

また、引抜き現場において、一部の遊休引抜き装置がある場合、稼働率を上げるためにそのままダイスを割り振ると、装置の規格が小さいと耐久年数以下で破損する惧れがあるが、予め引抜き力を検討し、それに対応して本発明のダイスの微小均等修正を施すことにより、該当装置を破損させることなく、有効に稼動させて生産効率を改善させることができる。 Also, if there are some idle drawing devices at the drawing site, if you allocate the dies as they are to increase the operating rate, there is a risk that the device will be damaged if the device specification is small. By examining and correspondingly correcting the dice evenly according to the present invention, it is possible to improve the production efficiency by operating effectively without damaging the corresponding apparatus.

更には、同一のダイスで同一の製品を引き抜く場合でも、素材のロットが変わって中間品又は製品の特性が変化する場合がある。また素材のサイズを変更しても同様に特性が変る場合もある。これらの場合、本発明により、ごく僅かなダイスの微小修正により対応できる場合もある。これらの決定にあたり、修正の拡大又は縮小の判断、修正数値の決定は、ダイスの設計から製品の形状を出すに至るまでの種々多岐に亘るダイスの修正履歴を性格に把握することにより判断できると言える。 Furthermore, even when the same product is pulled out with the same die, the lot of the material may change and the characteristics of the intermediate product or product may change. Even if the size of the material is changed, the characteristics may change in the same manner. In these cases, according to the present invention, there are cases where it is possible to cope with a very small correction of the die. In making these decisions, it is possible to judge whether to expand or reduce the correction, or to determine the correction numerical value by grasping the correction history of various dice from the design of the die to the product shape. I can say that.

異形金属の引抜き業界においては、今後ますますコスト・品質面での顧客からの要望が厳しくなり、パス数の更なる減少、中間・後処理の省略及び製品仕様の改善等も要求されてくることが予測されるが、そのような過酷な製造条件下において本発明の手法は引抜きの工程に新たな処理を追加することなく、製品や中間品の特性を改善し、或いは製造工程中での諸特性の改善を図る際に適用が期待できるものである。 In the deformed metal drawing industry, customer demands in terms of cost and quality will become stricter in the future, and further reductions in the number of passes, omission of intermediate and post-processing, and improvements in product specifications will be required. However, under such severe manufacturing conditions, the method of the present invention can improve the characteristics of products and intermediate products without adding new processing to the drawing process, or various processes in the manufacturing process. It can be expected to be applied when improving the characteristics.

本発明の3パスの場合の工程概略図。The process schematic in the case of 3 passes | passes of this invention. 同上の各パスでの断面の変形を示す説明図。Explanatory drawing which shows the deformation | transformation of the cross section in each path | pass same as the above. 同上の工程の一例の概略フロー説明図。Schematic flow explanatory drawing of an example of a process same as the above. 等肉拡大の重心変化の説明図。Explanatory drawing of the gravity center change of equal meat expansion. 本発明の修正の各種パターンの模式図で、(a)は等肉拡大、(b)は等肉縮小を示す。It is a schematic diagram of the various patterns of correction of this invention, (a) is equal thickness expansion, (b) shows equal thickness reduction. 本発明の製品の形状例の外形図。The external view of the example of a shape of the product of this invention. 本発明の製品の他の形状例の外形図。The external view of the other shape example of the product of this invention. 本発明の製品の更に他の形状例の外形図。The external view of the further another example of a shape of the product of this invention. 本発明の微小修正と重心の移動及び曲がりの相関の説明図で、(a)は素材と第1パスによる中間体の重心の移動の概略図、(b)はその修正の前後の重心移動の拡大説明図、(c)は修正前後の製品又は中間体の曲がりの改善の説明図である。It is explanatory drawing of the correlation of the micro correction | amendment of this invention, the movement of a gravity center, and a curve, (a) is a schematic diagram of the movement of the gravity center of an intermediate body by a raw material and a 1st pass, (b) is a gravity center movement before and after the correction. Explanatory explanatory drawing, (c) is explanatory drawing of the improvement of the bending of the product or intermediate body before and behind correction.

符号の説明Explanation of symbols

1aは第1ダイス
1bは第2ダイス
1cは第3ダイス
1nは第n(最終)ダイス
Aはアプローチ
Bはベアリング
1a is the first die 1b is the second die 1c is the third die
1n is nth (final) die A is approach B is bearing

Claims (2)

金属の異形引抜き成形において、複数のパスのダイス1a、1b、1c・・・1nを、一旦引抜き成形による形状が出る状態に製作した後、最終回のダイス1nより前方のダイス1a、1b・・・1n-1のいずれかのベアリングBを等肉微小拡大することを特徴とする異形引抜き成形の特性改善方法。 In metal profile drawing, a plurality of passes of dies 1a, 1b, 1c,..., 1n are once formed in a state where the shape is formed by pultrusion, and then the dies 1a, 1b,. A method for improving the characteristics of the profile pultrusion, characterized in that any bearing 1B of 1n-1 is slightly enlarged. 金属の異形引抜き成形において、複数のパスのダイス1a、1b、1c・・・1nを、一旦引抜き成形による形状が出る状態に製作した後、最終回のダイス1nより前方のダイス1a、1b・・・1n-1のいずれかのベアリングBを等肉微小縮小することを特徴とする異形引抜き成形の特性改善方法。
In a variant pultrusion of metal, dice 1a of the multiple paths, 1b, 1c the ··· 1n, once that was manufactured in a state where the shape comes out by pultrusion, the last round of the dice 1n from the front of the die 1a, 1b ·· A method for improving the characteristics of irregular pultrusion, characterized in that any one of the bearings 1n-1 is reduced to an equal thickness.
JP2007338304A 2007-12-27 2007-12-27 Method for improving profile of profile drawing Active JP5166856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007338304A JP5166856B2 (en) 2007-12-27 2007-12-27 Method for improving profile of profile drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007338304A JP5166856B2 (en) 2007-12-27 2007-12-27 Method for improving profile of profile drawing

Publications (2)

Publication Number Publication Date
JP2009154201A JP2009154201A (en) 2009-07-16
JP5166856B2 true JP5166856B2 (en) 2013-03-21

Family

ID=40958785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007338304A Active JP5166856B2 (en) 2007-12-27 2007-12-27 Method for improving profile of profile drawing

Country Status (1)

Country Link
JP (1) JP5166856B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101514051B1 (en) * 2013-12-13 2015-05-20 주식회사 성산 Method manufacturing double heat transfer tube with low finand high fins

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157716A (en) * 1986-12-22 1988-06-30 Fujikura Ltd Manufacture of wire having special-shaped cross section
JP3365651B2 (en) * 1993-05-25 2003-01-14 Thk株式会社 Drawing method for manufacturing deformed drawn materials such as rails for linear guidance

Also Published As

Publication number Publication date
JP2009154201A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP5783339B2 (en) PRESS MOLD AND METHOD FOR PRODUCING PRESS MOLDED PRODUCT
JP5472518B1 (en) Method for determining limit strain of stretch flange and method for determining press forming possibility
KR101323168B1 (en) Torsional severe plastic deformation method for conical tube metals
KR102479611B1 (en) Manufacturing method of press part and manufacturing method of blank material
JP5166856B2 (en) Method for improving profile of profile drawing
EP2623229B1 (en) Manufacturing method for blade material
JP2019025509A (en) Manufacturing method of press moulding
JP2017164755A (en) Manufacturing method for press-molded article and press-molded article
JP5392168B2 (en) Coining method and apparatus
JP2006035245A (en) Method for controlling springback of press-formed product
JP4621185B2 (en) Design method of two-stage press mold with excellent shape freezing
JP2011240362A (en) Method for forming pulley
JP6908078B2 (en) Manufacturing method of pressed parts and design method of lower die
JP6515274B2 (en) Device and method for manufacturing end-thickened steel pipe
JP6614396B1 (en) Manufacturing method of H-section steel
EP3747566A1 (en) Press molding method, rigidity-improved-position specifying method, press-molding system, and press-molded product
KR101903236B1 (en) Localized torsional severe plastic deformation method for conical tube metals
JP6350504B2 (en) Blank shape determination method and blank shape correction device
JP2015199123A (en) Control method and control method of temper rolling equipment
JP7435895B2 (en) Method for improving delayed fracture characteristics of metal plate, method for producing blank material, and method for producing press-formed product
JP7156340B2 (en) Metal plate bending method
CN109368526B (en) Wall thickness calculation method for winding drum made of steel plate
JP5332925B2 (en) Press molding method with excellent dimensional accuracy of molded products
CN108430663B (en) Roll stamping device and method
Zhang et al. Numerical study of springback laws in metal forming of diaphragm of automotive horn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5166856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250