JP5155668B2 - Titanium alloy casting method - Google Patents

Titanium alloy casting method Download PDF

Info

Publication number
JP5155668B2
JP5155668B2 JP2007556567A JP2007556567A JP5155668B2 JP 5155668 B2 JP5155668 B2 JP 5155668B2 JP 2007556567 A JP2007556567 A JP 2007556567A JP 2007556567 A JP2007556567 A JP 2007556567A JP 5155668 B2 JP5155668 B2 JP 5155668B2
Authority
JP
Japan
Prior art keywords
casting
temperature
alloy
beta
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007556567A
Other languages
Japanese (ja)
Other versions
JP2008531288A (en
Inventor
ゼヴキ・バリクタイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waldemar Link GmbH and Co KG
Original Assignee
Waldemar Link GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waldemar Link GmbH and Co KG filed Critical Waldemar Link GmbH and Co KG
Publication of JP2008531288A publication Critical patent/JP2008531288A/en
Application granted granted Critical
Publication of JP5155668B2 publication Critical patent/JP5155668B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/005Castings of light metals with high melting point, e.g. Be 1280 degrees C, Ti 1725 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Description

本発明は、ベータチタン合金、より詳細にはチタンモリブデン合金から目的物を鋳造するプロセスに関する。   The present invention relates to a process for casting objects from beta titanium alloys, and more particularly titanium molybdenum alloys.

チタン合金は、数多くの有利な特性を有するため、よりポピュラーとなっている。チタン合金は、高温でも良好な化学的安定性を有し機械的特性に優れるとともに、重量が小さいため、目的物に対して高い要求が課される全ての技術分野において使用されている。また、チタン合金は、生体適合性に優れるため、好ましくは医療分野において、特にインプラント及びプロテーゼに使用されている。   Titanium alloys have become more popular because they have many advantageous properties. Titanium alloys have good chemical stability even at high temperatures, are excellent in mechanical properties, and are low in weight, so that they are used in all technical fields in which high demands are imposed on the object. Titanium alloys are excellent in biocompatibility and are therefore preferably used in the medical field, especially for implants and prostheses.

チタン合金を成形するための様々な方法が知られている。これらの方法には、切断プロセスに加えて、主として鋳造及び鍛造プロセスが含まれている。チタン合金は鋳造することが困難であることが分かってきて鍛造プロセスが一般的に使用されるようになったことから、チタン合金といえば原則として鍛造合金である。この方法は、一般的に複雑な形状について執られるが、しかしながら適切な合金の選択という観点から制限される。一方、ベータチタン合金を鋳造する際、望ましくない結果しか得られないということが分かってきた(US−A2004/0136859)。   Various methods for forming titanium alloys are known. These methods mainly include casting and forging processes in addition to the cutting process. Since titanium alloys have proven difficult to cast and forging processes are now commonly used, titanium alloys are in principle forged alloys. This method is generally performed for complex shapes, but is limited in terms of selecting an appropriate alloy. On the other hand, it has been found that only undesirable results are obtained when casting beta titanium alloys (US-A 2004/0136859).

本発明は、複雑な形状でさえ良好な材料特性を備えるように製造することが可能である、ベータチタン合金のための改良された鋳造プロセスを提供することを目的とする。   The present invention seeks to provide an improved casting process for beta titanium alloys that can be manufactured with good material properties even in complex shapes.

本発明の解決手段は、メインクレームの特徴を備えるプロセスにある。有利な改良が、サブクレームの主題を形成している。   The solution of the invention resides in a process comprising the features of the main claim. Advantageous refinements form the subject of the subclaims.

本発明によれば、7.5〜25%のモリブデンを含有するチタンモリブデンを含むベータチタン合金から目的物を鋳造するプロセスにおいて、当該合金を1770℃を超える温度で溶解する工程と、この溶融合金を、製造される目的物に対応する鋳造鋳型に流し込みインベストメント鋳造を行う工程と、熱間等方加圧成形を行う工程と、溶体化焼鈍を行う工程と、その後冷却を行う工程とを含むことが規定されている。   According to the present invention, in a process of casting an object from a beta titanium alloy containing titanium molybdenum containing 7.5 to 25% molybdenum, the step of melting the alloy at a temperature exceeding 1770 ° C., and the molten alloy A process for casting investment into a casting mold corresponding to the object to be manufactured, a process for performing hot isostatic pressing, a process for solution annealing, and a process for cooling thereafter. Is stipulated.

本明細書において、目的物とは、最終使用のために成形された生成物を意味することは理解されよう。この目的物は、例えば飛行機産業においては、ジェットエンジン、ローターベアリング、ウィングボックス、若しくは他の支持構造部材として使用されるパーツであり、また医療分野においては、股関節プロテーゼ等の人工器官、又はプレート若しくはピン等のインプラント若しくはデンタルインプラントである。本願の明細書における用語の対象には、成形プロセスによりさらに加工されることが意図された鋼片、すなわち永久鋳型鋳造を行いさらに鍛造で加工することにより製造されるインゴットは含まれない。   As used herein, it will be understood that the object refers to the product shaped for end use. This object is a part used as a jet engine, a rotor bearing, a wing box or other supporting structural member in the airplane industry, for example, and in the medical field, a prosthetic device such as a hip prosthesis, or a plate or It is an implant such as a pin or a dental implant. The terminology in the present description does not include steel slabs intended to be further processed by the forming process, ie ingots produced by permanent mold casting and further forging.

本発明に係るプロセスによれば、インベストメント鋳造法を使用して、ベータチタン合金からなる目的物を経済的に作製することができる。そのため、本発明によれば、インベストメント鋳造法を使用して目的物を製造することの利点と、ベータチタン合金の有利な特性、特にそれらの優れた機械的特性とを統合することができる。本発明によれば、従来鍛造プロセスを使用しても経済的に製造することが不可能な複雑な形状の目的物でさえ、ベータチタン合金から製造することができる。そのため、本発明によれば、複雑な形状の目的物の適用領域を、好ましい機械的特性及び生体適合性を備えることが知られるベータチタン合金にまで拡げることができる。   According to the process of the present invention, an object made of a beta titanium alloy can be economically produced using an investment casting method. Therefore, according to the present invention, it is possible to integrate the advantages of manufacturing an object using an investment casting method and the advantageous properties of beta titanium alloys, particularly their excellent mechanical properties. According to the present invention, even complex shaped objects that cannot be economically manufactured using conventional forging processes can be manufactured from beta titanium alloys. Therefore, according to the present invention, the application area of the object having a complicated shape can be expanded to a beta titanium alloy known to have favorable mechanical properties and biocompatibility.

当該合金におけるモリブデン含有量若しくはモリブデン等価物の含有量は、7.5〜25%の範囲にある。特にモリブデン含有量が少なくとも10%である場合、室温の範囲にある限りベータ相が充分安定化される。当該含有量は12〜16%の範囲にあることが好ましい。これにより、インベストメント鋳造に続く急冷によってメタ安定なベータ相が達成される。一般的に、別の合金形成成分、特に、バナジウム若しくはアルミニウムを加える必要はない。これらを用いないことにより、上述のように、これらの合金形成成分からの毒性を回避できるという利点を得ることができる。これに対応して、同様のことがビスマスについても当てはまる。このビスマスは、チタンと異なり生体適合性を有さない。   The molybdenum content or molybdenum equivalent content in the alloy is in the range of 7.5-25%. In particular, when the molybdenum content is at least 10%, the beta phase is sufficiently stabilized as long as it is in the range of room temperature. The content is preferably in the range of 12 to 16%. This achieves a metastable beta phase by rapid cooling following investment casting. In general, it is not necessary to add another alloying component, in particular vanadium or aluminum. By not using these, as described above, it is possible to obtain the advantage that toxicity from these alloy forming components can be avoided. Correspondingly, the same is true for bismuth. This bismuth does not have biocompatibility unlike titanium.

本発明によれば、これまでインベストメント鋳造に使用することが殆ど不可能であったベータチタン合金を使用して、例えばTiAl6V4等のアルファ/ベータチタン合金(アルファ/ベータチタン合金は、これまでインベストメント鋳造に使用されてきた)より更に複雑な形状のものを製造することができることが分かってきた。本発明に係るプロセスによれば、モールド充填特性を改善することができる。このことは、本発明によれば、インベストメント鋳造の間、より高品質に、特にシャープにエッジを形成することができることを意味している。モールド充填特性が改善される結果、インベストメント鋳造でボイドが形成されるという影響を受けにくくなる。   According to the present invention, using a beta titanium alloy that has been almost impossible to use for investment casting until now, for example, an alpha / beta titanium alloy such as TiAl6V4 (alpha / beta titanium alloy is an investment casting so far). It has been found that more complex shapes can be produced. The process according to the present invention can improve the mold filling characteristics. This means that, according to the invention, edges can be formed with higher quality, in particular sharper, during investment casting. As a result of the improved mold filling properties, it is less susceptible to the formation of voids in investment casting.

コールドウォールクルーシブル真空誘導装置(cold-wall crucible vacuum induction installation)を使用し、ベータチタン合金を溶解させることが好ましい。このタイプの装置によれば、インベストメント鋳造のためにチタンモリブデン合金を信頼性高く溶解するのに必要である高温を達成することが可能である。例えば、TiMo15の融点は1770℃である。信頼性のあるインベストメント鋳造を達成するためには、これに加えて、好ましくは約60℃を追加すべきである。そのため、TiMo15の場合では、特に1830℃の温度を達成すべきである。   Preferably, a beta-titanium alloy is dissolved using a cold-wall crucible vacuum induction installation. With this type of device, it is possible to achieve the high temperatures required to reliably melt titanium molybdenum alloys for investment casting. For example, the melting point of TiMo15 is 1770 ° C. In addition to this, preferably about 60 ° C. should be added in order to achieve reliable investment casting. Therefore, in the case of TiMo15, a temperature of 1830 ° C. in particular should be achieved.

熱間等方加圧成形工程は、チタンモリブデン合金のベータトランザス温度以下であって、さらに当該ベータトランザス温度から100℃低い温度以上の温度で行うことが好ましい。

Hot isostatic pressing step is equal to or less than the beta transus temperature of the titanium molybdenum alloy, it is preferable to further carry out in the beta transus temperature from 100 ° C. or higher temperature lower temperature.

当該熱間等方加圧成形工程によれば、残余の溶解物を消耗しながら樹枝状組織にモリブデンを濃縮させるという望ましくない効果を、樹枝状沈殿を溶解することにより低減することができる。ベータトランザス温度以下の温度であって、特にこのベータトランザス温度から100℃低い温度以上の温度であることが好ましい。モリブデン含有量15%のチタンモリブデン合金では、およそ1100〜1200バールのアルゴン圧について、710℃〜760℃の範囲の温度、好ましくは約740℃の温度が適切であることが示された。   According to the hot isostatic pressing process, the undesirable effect of concentrating molybdenum in the dendritic tissue while consuming the remaining melt can be reduced by dissolving the dendritic precipitate. It is preferable that the temperature is equal to or lower than the beta transus temperature, and particularly higher than the temperature lower than the beta transus temperature by 100 ° C. For a titanium-molybdenum alloy with a molybdenum content of 15%, a temperature in the range of 710 ° C. to 760 ° C., preferably about 740 ° C., has been suitable for an argon pressure of approximately 1100 to 1200 bar.

少なくとも700℃〜880℃、好ましくは800℃〜860℃の範囲の温度が、溶体化焼鈍にとって適切であることが示された。シーリングガス雰囲気を形成するためには、アルゴンを使用することが好ましい。これにより、合金の耐性を改善することができる。   A temperature in the range of at least 700 ° C. to 880 ° C., preferably 800 ° C. to 860 ° C. has been shown to be suitable for solution annealing. In order to form a sealing gas atmosphere, it is preferable to use argon. Thereby, the tolerance of an alloy can be improved.

また、上記溶体化焼鈍を行った後、水により目的物を冷却することが好ましい。冷たい水を使用することが好ましい。本明細書において、「冷たい」という用語は、加熱されていない水道水の温度を意味すると理解すべきである。この冷却は、最終的に得られる目的物の機械的特性にかなり影響を及ぼす。別の態様では、この冷却は、例えばアルゴン冷却により、シールドガス雰囲気下で行ってもよい。しかしながら、これにより達成される結果は、冷たい水を使用して達成される結果程良くはない。   Moreover, it is preferable to cool the target with water after the solution annealing. It is preferred to use cold water. As used herein, the term “cold” should be understood to mean the temperature of tap water that is not heated. This cooling significantly affects the mechanical properties of the final object. In another aspect, this cooling may be performed in a shielding gas atmosphere, for example by argon cooling. However, the results achieved with this are not as good as those achieved with cold water.

当該目的物は、最終的に硬化されることが好ましい。これにより、もし要請があるのであれば、柔軟度を増加させることができる。このためには、硬化を、約600℃〜約700℃の温度範囲で行うことが好ましい。   The object is preferably finally cured. This can increase the flexibility if requested. For this purpose, curing is preferably performed in a temperature range of about 600 ° C to about 700 ° C.

図面を参照して、以下、本発明をより詳細に説明する。当該図面は、有利な具体的な実施の形態を例示するものである。   Hereinafter, the present invention will be described in more detail with reference to the drawings. The drawings illustrate advantageous specific embodiments.

以下に続く文章は、本発明に係る方法の実行の仕方を説明している。   The text that follows describes how to perform the method according to the invention.

出発物質は、モリブデン含有量が15%のベータチタン合金(TiMo15)である。この合金は、小さな鋼片(インゴット)の形態で商業的に入手可能である。   The starting material is a beta titanium alloy (TiMo15) with a molybdenum content of 15%. This alloy is commercially available in the form of small billets (ingots).

最初の工程は、鋳造される目的物をインベストメント鋳造することに関係する。TiMo15を溶解し鋳造するために鋳造装置を準備する。この鋳造装置は、コールドウォールクルーシブル真空誘導溶融鋳造装置(cold-wall crucible vacuum induction melting and casting installation)であることが好ましい。このタイプの装置は、TiMo15を信頼性高く溶解してインベストメント鋳造するに必要な高温を達成することができる。TiMo15の融点は1770℃であり、信頼性のあるインベストメント鋳造のためには約60℃追加する必要がある。したがって、全体として、1830℃の温度に達する必要がある。その後、失われるモールドである例えばワックスコアやセラミックモールドを用いて、既知のプロセスを使用して、溶融物のインベストメント鋳造を実行する。このタイプのインベストメント鋳造技術は、TiAl6V4のインベストメント鋳造で知られている。   The first step involves investment casting the object to be cast. A casting apparatus is prepared to melt and cast TiMo15. The casting apparatus is preferably a cold-wall crucible vacuum induction melting and casting installation. This type of equipment can achieve the high temperatures necessary to reliably melt TiMo15 and investment cast. The melting point of TiMo15 is 1770 ° C., and about 60 ° C. needs to be added for reliable investment casting. Therefore, it is necessary to reach a temperature of 1830 ° C. as a whole. Thereafter, investment casting of the melt is performed using a known process using a lost mold, such as a wax core or a ceramic mold. This type of investment casting technique is known for investment casting of TiAl6V4.

図2の図面(1000倍に拡大)から分かるように樹枝状結晶が形成され、かなりの沈殿が樹枝状組織においてはっきりと分かる。これは、チタンモリブデン合金のネガティブな偏析として知られているものに由来する。この作用は、図5に例示するように、チタンモリブデン合金の液相線温度および固相線温度の特定のプロファイルに基づいている。例示した、液相(T)と固相(T)の溶融温度のプロファイルから分かるように、溶融物において凝固するのは、モリブデン含有物が高い初期の領域であり、この領域のプロセスでは、図面に示されるような樹枝状結晶が形成される。これにより、残余の溶解物が減少、即ちモリブデン含有量が降下する。鋳造マイクロ構造における樹枝状領域では、モリブデン含有量が15%未満であり、そしてモリブデン含有量は約10%まで降下しうる。モリブデンの減少の結果として、樹枝状領域が充分な量のベータ安定剤を欠くことになる。この結果、アルファ/ベータ遷移温度の増加が局所的に達成され、それにより、図2に示されるような沈殿が形成される。 As can be seen from the drawing in FIG. 2 (enlarged 1000 times), dendrites are formed and considerable precipitation is clearly visible in the dendritic tissue. This is due to what is known as negative segregation of titanium molybdenum alloys. This action is based on a specific profile of the liquidus temperature and the solidus temperature of the titanium molybdenum alloy, as illustrated in FIG. As can be seen from the melt temperature profiles of the liquid phase (T L ) and solid phase (T S ) as illustrated, solidification in the melt is an early region where the molybdenum content is high, A dendritic crystal as shown in the drawing is formed. This reduces the residual melt, i.e. lowers the molybdenum content. In the dendritic regions in the cast microstructure, the molybdenum content is less than 15% and the molybdenum content can drop to about 10%. As a result of the loss of molybdenum, the dendritic region will lack a sufficient amount of beta stabilizer. As a result, an increase in alpha / beta transition temperature is achieved locally, thereby forming a precipitate as shown in FIG.

鋳造する間に硬くて脆い層(アルファーケースとして知られる)として形成される表面領域を酸洗いにより取り除くことが好ましい。この層の膜厚は通常約0.03mmである。   It is preferred that the surface area formed as a hard and brittle layer (known as the alpha case) during casting be removed by pickling. The thickness of this layer is usually about 0.03 mm.

樹枝状組織における沈殿物によるネガティブな偏析が発生するという望ましくない影響を低減するため、本発明によれば、鋳物は、インベストメント鋳造に続いて鋳造鋳型が取り除かれた後、熱処理に供される。これには、具体的には、ベータトランザス温度より僅かに低い温度での熱間等方加圧成形(HIP)が含まれる。この温度は、710℃〜760℃の範囲、好ましくは約740℃であってもよい。これにより、樹枝状組織領域における望ましくない沈殿物が再び溶解する。熱間等方加圧成形の前若しくは後で、初期時効硬化を行う必要が全くない。しかしながら、熱間等方加圧成形に続く冷却の間、好ましくは初期の樹枝状領域において微細な第2層が再び沈殿する(図3(1000倍に拡大)参照)。これにより、当該材料は望ましくない脆化へと導かれる。   In order to reduce the undesired effect of negative segregation due to precipitates in the dendritic structure, according to the present invention, the casting is subjected to a heat treatment after the casting mold is removed following investment casting. This specifically includes hot isostatic pressing (HIP) at a temperature slightly below the beta transus temperature. This temperature may range from 710 ° C to 760 ° C, preferably about 740 ° C. This again dissolves unwanted precipitates in the dendritic tissue region. There is no need for initial age hardening before or after hot isostatic pressing. However, during the cooling following hot isostatic pressing, a fine second layer precipitates again, preferably in the initial dendritic region (see FIG. 3 (enlarged 1000 times)). This leads to undesirable embrittlement of the material.

熱間等方加圧成形後の当該目的物は低い延性を有するのみである。   The object after hot isostatic pressing only has low ductility.

破滅的な沈殿を排除するため、鋳物をシールドガス(例えばアルゴン)雰囲気下、チャンバー炉内で焼鈍を行う。このためには、数時間、一般的には2時間、約700℃〜860℃の温度範囲が選択される。本明細書において、温度と時間との間には相関関係が存在する。つまり、より高い温度では、より短い時間で充分であり、そしてその逆についても言える。溶体化焼鈍に続いて、鋳物は冷たい水を使用して冷却される。図4(1000倍に拡大)は、溶体化焼鈍後のマイクロ構造を示している。主要なベータ粒子が見られ、そしてこの粒子内には非常に微細な樹枝状結晶が見られる(図面の左上の曇り状沈殿と比較)。本発明に係るプロセスを用いてインベストメント鋳造された目的物は、結晶構造において0.3mm以上の平均サイズを有するベータ粒子を含む。このサイズは、本発明により達成される結晶構造にとって一般的である。   In order to eliminate catastrophic precipitation, the casting is annealed in a chamber furnace under a shielding gas (eg, argon) atmosphere. For this, a temperature range of about 700 ° C. to 860 ° C. is selected for several hours, typically 2 hours. In the present specification, there is a correlation between temperature and time. That is, at higher temperatures, shorter times are sufficient, and vice versa. Following solution annealing, the casting is cooled using cold water. FIG. 4 (enlarged 1000 times) shows the microstructure after solution annealing. Major beta particles are seen, and very fine dendrites are seen in these particles (compared to the cloudy precipitate at the top left of the figure). The investment cast object using the process according to the present invention comprises beta particles having an average size of 0.3 mm or more in the crystal structure. This size is common for the crystal structure achieved by the present invention.

溶体化焼鈍後に達成される機械的特性が図1の表に示されている。   The mechanical properties achieved after solution annealing are shown in the table of FIG.

柔軟度は、溶体化焼鈍の間、温度が増加するとともに、60,000N/mmまで降下することが分かる。延性の値は、強度及び硬度が減少するに従って改善される。例えば、800℃で2時間溶体化焼鈍した後、60,000N/mmの柔軟度、約40%の圧延率、約730N/mmの破壊応力が達成される。 It can be seen that the flexibility decreases to 60,000 N / mm 2 with increasing temperature during solution annealing. Ductility values improve as strength and hardness decrease. For example, after solution annealing at 800 ° C. for 2 hours, a flexibility of 60,000 N / mm 2 , a rolling rate of about 40% and a fracture stress of about 730 N / mm 2 are achieved.

図1は、本発明に係るインベストメント鋳造されたチタンの機械的特性を示した表である。FIG. 1 is a table showing mechanical properties of investment-cast titanium according to the present invention. 図2は、鋳造直後の鋳造状態でのマイクロ構造イメージを示している。FIG. 2 shows a microstructure image in a cast state immediately after casting. 図3は、熱間等方加圧成形後のマイクロ構造イメージを示している。FIG. 3 shows a microstructure image after hot isostatic pressing. 図4は、溶体化焼鈍及びそれに続く冷却後のマイクロ構造を示している。FIG. 4 shows the microstructure after solution annealing and subsequent cooling. 図5は、チタンモリブデン合金の液相線温度及び固相線温度を例示している。FIG. 5 illustrates the liquidus temperature and solidus temperature of the titanium molybdenum alloy.

Claims (6)

モリブデン含有量が15%のチタンモリブデンを含むベータチタン合金から目的物を鋳造する方法であって、
1770℃以上の温度で上記合金を溶解する工程と、
製造される目的物に対応する鋳造鋳型に溶融合金を流し込みインベストメント鋳造を行う工程と、
チタンモリブデン合金のベータトランザス温度以下であって、上記ベータトランザス温度から100℃低い温度以上の温度で熱間等方加圧成形を行う工程と、
700℃〜900℃の温度で溶体化焼鈍を行う工程と、
その後冷却を行う工程と、を備えることを特徴とする鋳造方法。
A method of casting an object from a beta titanium alloy containing titanium molybdenum with a molybdenum content of 15%,
Melting the alloy at a temperature of 1770 ° C. or higher;
A process of casting the molten alloy into a casting mold corresponding to the object to be manufactured and performing investment casting;
A step of performing hot isostatic pressing at a temperature not lower than the beta transus temperature of the titanium molybdenum alloy and not lower than 100 ° C. from the beta transus temperature;
Performing solution annealing at a temperature of 700 ° C. to 900 ° C .;
And a step of cooling thereafter.
上記ベータチタン合金を溶解するため、コールドウォールクルーシブル真空誘導装置を使用することを特徴とする請求項1記載の鋳造方法。  The casting method according to claim 1, wherein a cold wall crucible vacuum induction device is used to dissolve the beta titanium alloy. 上記溶体化焼鈍工程が、800℃〜860℃の温度で行われることを特徴とする請求項1記載の鋳造方法。  The casting method according to claim 1, wherein the solution annealing step is performed at a temperature of 800C to 860C. 上記溶体化焼鈍工程に続く冷却工程が、水を用いて行われることを特徴とする請求項1〜3のいずれかに記載の鋳造方法。  The casting method according to claim 1, wherein the cooling step subsequent to the solution annealing step is performed using water. 上記目的物を最終的に硬化させ硬化工程を備えることを特徴とする請求項1〜のいずれかに記載の鋳造方法。The method of casting according to any one of claims 1 to 4, characterized in that it comprises a curing step of Ru is finally curing the desired product. 上記硬化工程が、600℃〜700℃の温度で行われることを特徴とする請求項記載の鋳造方法。The casting method according to claim 5 , wherein the curing step is performed at a temperature of 600 ° C. to 700 ° C.
JP2007556567A 2005-02-25 2006-02-27 Titanium alloy casting method Expired - Fee Related JP5155668B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05004173.0 2005-02-25
EP05004173A EP1696043A1 (en) 2005-02-25 2005-02-25 Process for casting a Titanium-alloy
PCT/EP2006/001790 WO2006089790A1 (en) 2005-02-25 2006-02-27 Method for casting titanium alloy

Publications (2)

Publication Number Publication Date
JP2008531288A JP2008531288A (en) 2008-08-14
JP5155668B2 true JP5155668B2 (en) 2013-03-06

Family

ID=34933944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007556567A Expired - Fee Related JP5155668B2 (en) 2005-02-25 2006-02-27 Titanium alloy casting method

Country Status (18)

Country Link
EP (2) EP1696043A1 (en)
JP (1) JP5155668B2 (en)
KR (1) KR101341298B1 (en)
CN (1) CN100594248C (en)
AR (1) AR052391A1 (en)
AT (1) ATE438746T1 (en)
AU (1) AU2006218029B2 (en)
BR (1) BRPI0607832A2 (en)
CA (1) CA2597248C (en)
DE (1) DE502006004443D1 (en)
DK (1) DK1851350T3 (en)
ES (1) ES2328955T3 (en)
MX (1) MX2007010366A (en)
PL (1) PL1851350T3 (en)
RU (1) RU2402626C2 (en)
TW (1) TWI395821B (en)
WO (1) WO2006089790A1 (en)
ZA (1) ZA200707586B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102019401B (en) * 2010-12-30 2012-05-23 哈尔滨工业大学 Cast forming method of small titanium alloy or titanium-aluminum alloy complicated casting
JP5885169B2 (en) * 2011-02-23 2016-03-15 国立研究開発法人物質・材料研究機構 Ti-Mo alloy and manufacturing method thereof
CN102294436B (en) * 2011-09-19 2013-01-02 哈尔滨实钛新材料科技发展有限公司 Method for precisely casting titanium alloy and titanium aluminum alloy with low cost
RU2492275C1 (en) * 2012-01-11 2013-09-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Method of producing plates from two-phase titanium alloys
CN102978554A (en) * 2012-11-13 2013-03-20 安徽春辉仪表线缆集团有限公司 Titanium alloy valve rod preparation method of plug valve
CN104550949A (en) * 2013-10-24 2015-04-29 中国科学院金属研究所 Method for rapidly forming Ti-6Al-4V three-dimensional metal parts by electron beams
CN105817608B (en) * 2016-04-29 2019-01-18 南京宝泰特种材料股份有限公司 A kind of titanium alloy smelting casting method
CN111850346A (en) * 2020-08-06 2020-10-30 西部金属材料股份有限公司 High-strength titanium alloy without solid solution aging treatment and preparation method thereof
KR20220122374A (en) 2021-02-26 2022-09-02 창원대학교 산학협력단 Method for vacuum centrifugal casting of titanium

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852614A (en) * 1971-11-04 1973-07-24
JPS5217307A (en) * 1975-07-31 1977-02-09 Kobe Steel Ltd Process for heat treatment of beta-type titanium alloy
JPH0686638B2 (en) * 1985-06-27 1994-11-02 三菱マテリアル株式会社 High-strength Ti alloy material with excellent workability and method for producing the same
US4612066A (en) * 1985-07-25 1986-09-16 Lev Levin Method for refining microstructures of titanium alloy castings
US4857269A (en) * 1988-09-09 1989-08-15 Pfizer Hospital Products Group Inc. High strength, low modulus, ductile, biopcompatible titanium alloy
JP2541341B2 (en) * 1990-05-15 1996-10-09 大同特殊鋼株式会社 Precision casting method and precision casting apparatus for Ti and Ti alloy
JP3041080B2 (en) * 1991-04-19 2000-05-15 電気興業株式会社 Precision casting equipment
US5226982A (en) * 1992-05-15 1993-07-13 The United States Of America As Represented By The Secretary Of The Air Force Method to produce hollow titanium alloy articles
US5947723A (en) * 1993-04-28 1999-09-07 Gac International, Inc. Titanium orthodontic appliances
JPH0841565A (en) * 1994-07-29 1996-02-13 Mitsubishi Materials Corp Titanium alloy casting having high strength and high toughness
JPH10130757A (en) * 1996-10-25 1998-05-19 Daido Steel Co Ltd Inplant made of ti alloy
US20040136859A1 (en) * 2000-04-12 2004-07-15 Cana Lab Corporation Titanium alloys having improved castability
US20040168751A1 (en) * 2002-06-27 2004-09-02 Wu Ming H. Beta titanium compositions and methods of manufacture thereof
CA2489432A1 (en) * 2002-06-27 2004-01-08 Memry Corporation Method for manufacturing superelastic .beta. titanium articles and the articles derived therefrom
DE102004022458B4 (en) * 2004-04-29 2006-01-19 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Cold-formable titanium-based alloy bodies and process for their production
EP1695676A1 (en) * 2005-02-25 2006-08-30 WALDEMAR LINK GmbH & Co. KG Method of producing a medical implant made of a beta-Titanium-Molybdenum-alloy and according implant

Also Published As

Publication number Publication date
TWI395821B (en) 2013-05-11
AU2006218029B2 (en) 2011-07-21
ATE438746T1 (en) 2009-08-15
KR101341298B1 (en) 2013-12-12
RU2007135062A (en) 2009-03-27
CN101128609A (en) 2008-02-20
RU2402626C2 (en) 2010-10-27
BRPI0607832A2 (en) 2009-06-13
ES2328955T3 (en) 2009-11-19
AU2006218029A1 (en) 2006-08-31
DK1851350T3 (en) 2009-10-19
CN100594248C (en) 2010-03-17
PL1851350T3 (en) 2010-01-29
WO2006089790A1 (en) 2006-08-31
CA2597248C (en) 2016-04-19
AR052391A1 (en) 2007-03-14
DE502006004443D1 (en) 2009-09-17
KR20070105379A (en) 2007-10-30
EP1696043A1 (en) 2006-08-30
EP1851350B1 (en) 2009-08-05
TW200643182A (en) 2006-12-16
CA2597248A1 (en) 2006-08-31
EP1851350A1 (en) 2007-11-07
ZA200707586B (en) 2008-10-29
MX2007010366A (en) 2007-10-17
JP2008531288A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP5155668B2 (en) Titanium alloy casting method
JP2782189B2 (en) Manufacturing method of nickel-based superalloy forgings
EP2330227B1 (en) METHOD OF FORMING FINE CRYSTAL GRAINS IN NITROGEN-DOPED Co-Cr-Mo ALLOY AND NITROGEN-DOPED Co-Cr-Mo ALLOY
KR102054539B1 (en) Thermo-mechanical processing of nickel-titanium alloys
WO2018176853A1 (en) High-strength and low-modulus -type si-containing titanium alloy, preparation method therefor and use thereof
CN103459630B (en) The aluminium alloy of hot properties excellence
CN111188000B (en) Ti2Stress-relief annealing heat treatment process of AlNb alloy member
US4612066A (en) Method for refining microstructures of titanium alloy castings
JP2009097095A (en) Titanium-aluminum based alloy
JP2016079454A (en) Aluminum alloy forging material and manufacturing method therefor
JP6826879B2 (en) Manufacturing method of Ni-based super heat-resistant alloy
JPWO2018116444A1 (en) α + β type titanium alloy extrusion
JP3485577B2 (en) Diffusion bonded sputter target assembly having a precipitation hardened backing plate and method of making same
US7704339B2 (en) Method of heat treating titanium aluminide
JP2002363675A (en) Co BASED ALLOY FOR LIVING BODY AND PRODUCTION METHOD THEREFOR
WO2002070771A1 (en) Hot isostatic pressing of castings
US20060225818A1 (en) Process for casting a beta-titanium alloy
US5015305A (en) High temperature hydrogenation of gamma titanium aluminide
JP6497689B2 (en) Co-Cr-W base alloy hot-worked material, annealed material, cast material, homogenized heat treatment material, Co-Cr-W-based alloy hot-worked material manufacturing method, and annealed material manufacturing method
JP7485243B1 (en) Hot forging die and manufacturing method thereof
KR101383584B1 (en) Manufacturing method of round bar of alloy material for dental implant abutment
JP2008023545A (en) Method for manufacturing hardly workable alloy sputtering target material
KR20240040295A (en) Manufacturing method of round bar of absorbable magnesium alloy material
JP3322899B2 (en) Manufacturing method of titanium alloy
JP2003529676A (en) Die-cast superalloy members

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110913

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110921

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111013

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111020

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111111

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120416

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120423

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120516

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120523

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120614

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5155668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees