JP5152654B2 - Aluminum silicon carbide powder and method for producing the same - Google Patents

Aluminum silicon carbide powder and method for producing the same Download PDF

Info

Publication number
JP5152654B2
JP5152654B2 JP2008143492A JP2008143492A JP5152654B2 JP 5152654 B2 JP5152654 B2 JP 5152654B2 JP 2008143492 A JP2008143492 A JP 2008143492A JP 2008143492 A JP2008143492 A JP 2008143492A JP 5152654 B2 JP5152654 B2 JP 5152654B2
Authority
JP
Japan
Prior art keywords
silicon carbide
powder
aluminum
carbide powder
aluminum silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008143492A
Other languages
Japanese (ja)
Other versions
JP2009286675A (en
Inventor
聡之 西村
鎭石 李
世勲 李
英彦 田中
義雄 目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2008143492A priority Critical patent/JP5152654B2/en
Publication of JP2009286675A publication Critical patent/JP2009286675A/en
Application granted granted Critical
Publication of JP5152654B2 publication Critical patent/JP5152654B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、六方晶系の結晶構造を持つアルミニウムケイ素炭化物粉末とその製造方法に関する。   The present invention relates to an aluminum silicon carbide powder having a hexagonal crystal structure and a method for producing the same.

アルミニウムケイ素炭化物(AlSiC)は融点が約2037℃と高く、カーボンと比較して耐酸化性に優れることから、高温・構造材料としての応用が期待されている。また、カーボン/カーボン複合材料や耐火物に添加することにより耐酸化性や機械特性の向上も期待されている。
AlSiCは、従来、金属アルミニウム、ケイ素、カーボン粉末の混合物の熱処理(非特許文献1)、酸化アルミニウム、二酸化ケイ素、グラファイトの混合物の熱炭素還元反応(非特許文献2)、アルミニウム炭化物、Al、炭化ケイ素、SiCの混合物の熱処理(非特許文献1、3、4)、金属アルミニウム、ケイ素、カーボン、カオリンの混合物の熱炭素還元反応(非特許文献5)、モンモリロナイト、ポリアクリロニトリルの熱炭素還元反応(非特許文献6)により合成、が試みられているが、最終生成物に得られたAlSiCの粒子形状は不定形であり、理論上、六方晶系特有の形状とされる、六角板状の結晶性の高い粒子は得られていない。
Journal of Materials Science 37 335−342 (2002) Journal of the Ceramic Society of Japan、115[11]761−766(2007) Journal of Materials Science 15 575−580 (1980) Journal of the American Ceramic Society、79[1] 275−278(1996) Journal of the American Ceramic Society、86[6] 1028−1030(2003) Journal of the American Ceramic Society、71[7] C−325−C−327(1988)
Aluminum silicon carbide (Al 4 SiC 4 ) has a high melting point of about 2037 ° C. and is excellent in oxidation resistance as compared with carbon. Therefore, it is expected to be applied as a high-temperature structural material. Further, by adding to a carbon / carbon composite material or a refractory, improvement in oxidation resistance and mechanical properties is also expected.
Al 4 SiC 4 is conventionally a heat treatment of a mixture of metallic aluminum, silicon and carbon powder (Non-Patent Document 1), a thermal carbon reduction reaction of a mixture of aluminum oxide, silicon dioxide and graphite (Non-Patent Document 2), aluminum carbide, Heat treatment of a mixture of Al 4 C 3 , silicon carbide and SiC (Non-patent Documents 1, 3, and 4), thermal carbon reduction reaction of a mixture of metallic aluminum, silicon, carbon, and kaolin (Non-patent Document 5), montmorillonite, polyacrylonitrile Has been attempted by a thermal carbon reduction reaction (Non-patent Document 6) of Al 4 SiC 4 , but the particle shape of Al 4 SiC 4 obtained in the final product is indefinite, and theoretically a shape unique to the hexagonal system Hexagonal plate-like particles with high crystallinity are not obtained.
Journal of Materials Science 37 335-342 (2002) Journal of the Ceramic Society of Japan, 115 [11] 761-766 (2007) Journal of Materials Science 15 575-580 (1980) Journal of the American Ceramic Society, 79 [1] 275-278 (1996). Journal of the American Ceramic Society, 86 [6] 1028-1030 (2003). Journal of the American Ceramic Society, 71 [7] C-325-C-327 (1988).

AlSiCは高い耐酸化性、高温機械特性を持つが、結晶性の高い粒子の合成は難しい。
これは、従来、主に固相原料を混合したのちに熱処理を行っていたため、原料粉末を均一に混合することが難しく、生成反応として固相反応を主としているため反応の進行が遅く、結晶性の高いAlSiCを得ることが難しかった。
本発明は、このような従来得られなかった結晶性の良いAlSiCを得ると同時に、その製造技術を確立することを課題とする。
Al 4 SiC 4 has high oxidation resistance and high temperature mechanical properties, but it is difficult to synthesize particles with high crystallinity.
In the past, heat treatment was performed mainly after mixing the solid phase raw material, so it was difficult to mix the raw material powder uniformly, and the reaction progressed slowly because the main reaction was the solid phase reaction as the formation reaction. It was difficult to obtain high Al 4 SiC 4 .
An object of the present invention is to obtain Al 4 SiC 4 with good crystallinity, which has not been obtained in the past, and at the same time establish a manufacturing technique thereof.

発明1のアルミニウムケイ素炭化物粉末は、その結晶構造が六方晶であり、粒子の形状が六角板状であることを特徴とする。   The aluminum silicon carbide powder of the invention 1 is characterized in that the crystal structure is hexagonal and the shape of the particles is hexagonal plate.

発明2は、発明1のアルミニウムケイ素炭化物粉末において、C軸に垂直方向に選択的に成長して六角板状となっていることを特徴とする。   Invention 2 is characterized in that the aluminum silicon carbide powder of Invention 1 is selectively grown in a direction perpendicular to the C-axis to form a hexagonal plate.

発明3は、発明1又は2のアルミニウムケイ素炭化物粉末の製造方法であって、アルミニウム源と炭素源とケイ素源とからなる原料粉末を、真空あるいは不活性雰囲気中で熱処理して、アルミニウムケイ素炭化物とすることを特徴とする。 Invention 3 is a method for producing the aluminum silicon carbide powder of Invention 1 or 2, wherein a raw material powder comprising an aluminum source, a carbon source and a silicon source is heat-treated in a vacuum or in an inert atmosphere to obtain an aluminum silicon carbide powder. It is characterized by doing.

発明4は、発明3のアルミニウムケイ素炭化物粉末の製造方法において、アルミニウム源として水酸化アルミニウムを用いることを特徴とする。   Invention 4 is characterized in that in the method for producing aluminum silicon carbide powder of Invention 3, aluminum hydroxide is used as an aluminum source.

発明5は、発明3又は4のアルミニウムケイ素炭化物粉末の製造方法において、熱処理前に混合粉末を加圧成形により成形体を作製した後、熱処理することを特徴とする。 The invention 5 is characterized in that, in the method for producing an aluminum silicon carbide powder of the invention 3 or 4, a molded product is produced by pressure molding of the mixed powder before the heat treatment and then heat-treated.

本発明者は上記課題を解決するため、種々の原料を用いてAl−Si−C系化合物粉末の合成を行った結果、六角板状で結晶性の良いAlSiC粉末を合成するに至った。 As a result of synthesizing Al—Si—C-based compound powder using various raw materials in order to solve the above problems, the present inventors have synthesized Al 4 SiC 4 powder having a hexagonal plate shape and good crystallinity. It was.

本発明において、アルミニウム源としてアルミニウム、あるいはアルミニウム化合物、炭素源として炭素あるいは熱処理することにより炭素となる化合物、ケイ素源としてケイ素、あるいはケイ素化合物を原料として用いる。混合する割合は、AlSiC組成であるが、熱処理中の反応により気相成分が発生するため、混合する際、より均一に混合を行うためには、アルミニウム源、炭素源、ケイ素源のうち少なくとも1種類は、液相であることが望ましい。これらをビーカー中でマグネチックスターラーを用いたり、ボールミル、遊星ミル等を用いたりして十分に混合する。得られた混合物を十分に乾燥した後、アルゴン気流中、約1000℃まで熱分解処理する。この処理により、1000℃までの処理で発生する気相成分をさせ、より高温での熱処理で不純物の混入を防ぐ。
このようにして得られたものを、カーボン製のルツボ中で、真空あるいはアルゴン等の不活性ガス中で1800℃(50℃単位、以下同じ)から1900℃で加熱する。中間生成物のAl4O4Cが約1850℃で溶融し始めるため、1900℃よりも高温での加熱は、Al4SiC4の生成には不利である。反応時間はAlSiCの生成を十分進め、粒成長させるためには長時間が望ましいが、粉末の焼結性の点からは、粒子径は小さい方が望ましく、熱処理時間は短い方がよい。
反応を十分進めるためには、ホットプレス法を用いたり、ルツボに充填する前に加圧法による予備成形を行うこともある。この方法により、六角板状の結晶性の良いAlSiC粒子が得られる。
なお、その後、必要に応じ、残留炭素分を取り除く処理を行うことも可能である。
In the present invention, aluminum as an aluminum source or an aluminum compound, carbon as a carbon source or a compound which becomes carbon by heat treatment, silicon as a silicon source, or a silicon compound is used as a raw material. The mixing ratio is Al 4 SiC 4 composition, but a gas phase component is generated by the reaction during the heat treatment. Therefore, in order to mix more uniformly when mixing, the aluminum source, the carbon source, and the silicon source are mixed. At least one of them is preferably a liquid phase. These are thoroughly mixed in a beaker using a magnetic stirrer, a ball mill, a planetary mill or the like. The resulting mixture is sufficiently dried and then pyrolyzed to about 1000 ° C. in an argon stream. By this treatment, gas phase components generated by the treatment up to 1000 ° C. are generated, and impurities are prevented from being mixed by heat treatment at a higher temperature.
The product thus obtained is heated from 1800 ° C. (in units of 50 ° C., the same applies hereinafter) to 1900 ° C. in a vacuum crucible or an inert gas such as argon. Since the intermediate product Al 4 O 4 C begins to melt at about 1850 ° C., heating above 1900 ° C. is disadvantageous for the production of Al 4 SiC 4. The reaction time is preferably long in order to sufficiently advance the generation of Al 4 SiC 4 and grow grains, but from the viewpoint of sinterability of the powder, a smaller particle size is desirable, and a shorter heat treatment time is better. .
In order to sufficiently advance the reaction, a hot press method may be used, or a pre-molding may be performed by a pressure method before filling the crucible. By this method, hexagonal plate-like Al 4 SiC 4 particles having good crystallinity can be obtained.
After that, it is possible to remove the residual carbon as necessary.

水酸化アルミニウム、シリカ、フェノール樹脂を、モル比でAl(OH):SiO:C=4:1:12となるように、エタノールを分散媒として、プラスチック製のポット中、炭化ケイ素製のボールを用いて24時間ボールミル混合した。得られた混合物を乾燥後、架橋反応を進めるため、真空乾燥機中100℃で12時間、熱処理を行った。
得られたゲル状物質を石英の反応管内でアルゴン気流中、1000℃で1/2時間、熱分解処理した。熱分解後の粉末を、カーボンルツボ中、真空あるいはアルゴン気流中、1800℃、1900℃で3時間熱処理した。
得られた粉末を粉末X回折法により分析した結果(図1参照)、AlSiCが主たる結晶相として確認された。(101)に起因する2θ=31.810度付近のピーク高さをI31.810、(0010)に起因する2θ=41.658度付近のピーク高さをI41.685とすると、ICDDカード35−1072ではI41.685/I31.810=0.7で、I31.810>I41.685あるが、本結果では、I31.810<I41.685であり、C軸に垂直な方向への結晶性が高いことが示唆される。また、走査型電子顕微鏡を用いて粒子を観察した結果(図2参照)、六角板状の粒子が多数確認された。これは、六方晶系であるAlSiCの自形が顕著に現れたものであり、粉末X線回折の結果からもわかるように、結晶性の高いAlSiCが得られた。(表1、No.2,3)
結晶性が高いと、
六角板状の結晶がより平になるように成長する。結晶性が高くなる指標としてI41.685/I31.810値を算定して比較した。
Aluminum hydroxide, silica, and phenol resin are made of silicon carbide in a plastic pot using ethanol as a dispersion medium so that the molar ratio is Al (OH) 3 : SiO 2 : C = 4: 1: 12. Ball mill mixing was performed using a ball for 24 hours. After drying the obtained mixture, heat treatment was performed at 100 ° C. for 12 hours in a vacuum dryer in order to proceed with the crosslinking reaction.
The obtained gel-like substance was pyrolyzed in a quartz reaction tube in an argon stream at 1000 ° C. for 1/2 hour. The pyrolyzed powder was heat-treated at 1800 ° C. and 1900 ° C. for 3 hours in a carbon crucible, vacuum or argon stream.
As a result of analyzing the obtained powder by the powder X diffraction method (see FIG. 1), Al 4 SiC 4 was confirmed as a main crystal phase. The peak height of around 2 [Theta] = 31.810 degrees due to (101) I 31.810, When I 41.685 peak heights around 2 [Theta] = 41.658 degrees due to (0010), ICDD card In 35-1072, I 41.85 / I 31.810 = 0.7 and I 31.810 > I 41.585 , but in this result, I 31.810 <I 41.855 , It is suggested that the crystallinity in the vertical direction is high. Further, as a result of observing the particles using a scanning electron microscope (see FIG. 2), a large number of hexagonal plate-like particles were confirmed. This is a remarkable manifestation of the hexagonal Al 4 SiC 4 self-form, and as can be seen from the results of powder X-ray diffraction, Al 4 SiC 4 having high crystallinity was obtained. (Table 1, No. 2, 3)
If the crystallinity is high,
Hexagonal plate-like crystals grow so as to become flatter. As an index for increasing crystallinity, I 41.855 / I 31.810 values were calculated and compared.

水酸化アルミニウム、シリカ、フェノール樹脂を、モル比でAl(OH):SiO:C=4:1:12となるように、エタノールを分散媒として、プラスチック製のポット中、炭化ケイ素製のボールを用いて24時間ボールミル混合した。得られた混合物を乾燥後、架橋反応を進めるため、真空乾燥機中100℃で12時間、熱処理を行った。得られたゲル状物質を石英の反応管内でアルゴン気流中、1000℃で30分間、熱分解処理した。熱分解後の粉末を加圧成形により予備成形し、カーボンルツボ中、真空あるいはアルゴン気流中、1800℃で3時間熱処理した。得られた粉末を粉末X回折法により分析した結果(図3参照)、AlSiCが主たる結晶相として確認された。I31.810<I41.685であった。走査型電子顕微鏡を用いて粒子を観察した結果(図4参照)、六角板状の粒子が多数確認された。700℃で12時間、大気雰囲気にて、熱処理を行うことで、残留炭素分を取り除くことが可能である。 Aluminum hydroxide, silica, and phenol resin are made of silicon carbide in a plastic pot using ethanol as a dispersion medium so that the molar ratio is Al (OH) 3 : SiO 2 : C = 4: 1: 12. Ball mill mixing was performed using a ball for 24 hours. After drying the obtained mixture, heat treatment was performed at 100 ° C. for 12 hours in a vacuum dryer in order to proceed with the crosslinking reaction. The obtained gel-like substance was pyrolyzed in an argon stream at 1000 ° C. for 30 minutes in a quartz reaction tube. The pyrolyzed powder was preformed by pressure molding and heat treated at 1800 ° C. for 3 hours in a carbon crucible, vacuum or argon stream. As a result of analyzing the obtained powder by the powder X diffraction method (see FIG. 3), Al 4 SiC 4 was confirmed as a main crystal phase. It was I 31.810 <I 41.85 . As a result of observing the particles using a scanning electron microscope (see FIG. 4), a large number of hexagonal plate-like particles were confirmed. Residual carbon can be removed by heat treatment at 700 ° C. for 12 hours in an air atmosphere.

特に、予備成形体を、カーボンダイス中、アルゴン気流中、1800℃で3時間、ホットプレス法により熱処理し、得られた粉末から炭素分を取り除くため700℃で12時間、大気雰囲気にて熱処理を行うと、得られた粉末は、粉末X回折法により分析した結果(図5参照)、AlSiCのみが結晶相として確認された。I31.810<I41.685であった。走査型電子顕微鏡を用いて粒子を観察した結果(図6参照)、六角板状の粒子が確認された。(表1、No.4,5)
なお、前記アルゴン気流中に代わり真空にて熱処理することによっても同様な結果を得られるものと考えられる。
In particular, the preform was heat-treated in a carbon die in an argon stream at 1800 ° C. for 3 hours by a hot press method, and heat treatment was performed in an air atmosphere at 700 ° C. for 12 hours in order to remove carbon from the obtained powder. Doing, resulting powder (see FIG. 5) was analyzed by a powder X diffraction, only Al 4 SiC 4 was identified as a crystal phase. It was I 31.810 <I 41.85 . As a result of observing the particles using a scanning electron microscope (see FIG. 6), hexagonal plate-like particles were confirmed. (Table 1, No. 4, 5)
In addition, it is thought that the same result can be obtained also by heat-processing in a vacuum instead of the said argon stream.

水酸化アルミニウム、シリカ、フェノール樹脂を、モル比でAl(OH):SiO:C=4:1:6〜10となるように、エタノールを分散媒として、プラスチック製のポット中、炭化ケイ素製のボールを用いて24時間ボールミル混合した。得られた混合物を乾燥後、架橋反応を進めるため、真空乾燥機中100℃で12時間、熱処理を行った。得られたゲル状物質を石英の反応管内でアルゴン気流中、1000℃で1/2時間、熱分解処理した。熱分解後の粉末を加圧成形により予備成形し、カーボンルツボ中、真空あるいはアルゴン気流中、1750℃で3時間熱処理した。得られた粉末を粉末X回折法により分析した結果(図7参照)、AlSiCが主たる結晶相として確認された。特に、フェノール樹脂のモル比が8の場合、AlSiC単相が得られた。I31.810とI41.685の比は、6〜10のときはI31.810<I41.685だった。走査型電子顕微鏡を用いて粒子を観察した結果(図8参照)、6〜10のときは六角板状の粒子が多数確認された。(表1、No.7〜9) Silicon carbide in a plastic pot with aluminum hydroxide, silica, and phenol resin as a dispersion medium so that the molar ratio of Al (OH) 3 : SiO 2 : C = 4: 1: 6-10 Ball mill mixing was performed for 24 hours using a manufactured ball. After drying the obtained mixture, heat treatment was performed at 100 ° C. for 12 hours in a vacuum dryer in order to proceed with the crosslinking reaction. The obtained gel-like substance was pyrolyzed in a quartz reaction tube in an argon stream at 1000 ° C. for 1/2 hour. The pyrolyzed powder was preformed by pressure molding and heat treated at 1750 ° C. for 3 hours in a carbon crucible, vacuum or argon stream. As a result of analyzing the obtained powder by the powder X diffraction method (see FIG. 7), Al 4 SiC 4 was confirmed as a main crystal phase. In particular, when the molar ratio of the phenol resin was 8, an Al 4 SiC 4 single phase was obtained. The ratio of I 31.810 to I 41.865 was I 31.810 <I 41.85 when it was 6-10. As a result of observing the particles using a scanning electron microscope (see FIG. 8), a large number of hexagonal plate-like particles were confirmed when the number was 6 to 10. (Table 1, No. 7-9)

水酸化アルミニウム、シリカ、フェノール樹脂を、モル比でAl(OH):SiO:C=4:0.94〜0.76:8となるように、エタノールを分散媒として、プラスチック製のポット中、炭化ケイ素製のボールを用いて24時間ボールミル混合した。得られた混合物を乾燥後、架橋反応を進めるため、真空乾燥機中100℃で12時間、熱処理を行った。得られたゲル状物質を石英の反応管内でアルゴン気流中、1000℃で1/2時間、熱分解処理した。熱分解後の粉末を加圧成形により予備成形し、カーボンルツボ中、真空あるいはアルゴン気流中、1750℃で3時間熱処理した。得られた粉末を粉末X回折法により分析した結果(図9参照)、AlSiCが主たる結晶相として確認された。特に、シリカのモル比が0.82の場合、AlSiC単相が得られた。I31.810とI41.685の比は、いずれの場合もI31.810<I41.685だった。(表1、No.10〜14) A plastic pot containing aluminum hydroxide, silica, and phenol resin in a molar ratio of Al (OH) 3 : SiO 2 : C = 4: 0.94 to 0.76: 8 using ethanol as a dispersion medium. Inside, ball mill mixing was performed for 24 hours using silicon carbide balls. After drying the obtained mixture, heat treatment was performed at 100 ° C. for 12 hours in a vacuum dryer in order to proceed with the crosslinking reaction. The obtained gel-like substance was pyrolyzed in a quartz reaction tube in an argon stream at 1000 ° C. for 1/2 hour. The pyrolyzed powder was preformed by pressure molding and heat treated at 1750 ° C. for 3 hours in a carbon crucible, vacuum or argon stream. As a result of analyzing the obtained powder by the powder X diffraction method (see FIG. 9), Al 4 SiC 4 was confirmed as a main crystal phase. In particular, when the molar ratio of silica was 0.82, an Al 4 SiC 4 single phase was obtained. The ratio of I 31.810 and I 41.685 is, in any case was I 31.810 <I 41.685. (Table 1, No. 10-14)

比較例1Comparative Example 1

水酸化アルミニウム、シリカ、フェノール樹脂を、モル比でAl(OH):SiO:C=4:1:12のとなるように、エタノールを分散媒として、プラスチック製のポット中、炭化ケイ素製のボールを用いて24時間ボールミル混合した。得られた混合物を乾燥後、架橋反応を進めるため、真空乾燥機中100℃で12時間、熱処理を行った。得られたゲル状物質を石英の反応管内でアルゴン気流中、1000℃で30分間、熱分解処理した。熱分解後の粉末を、カーボンルツボ中、真空あるいはアルゴン気流中、1700℃で3時間熱処理した。得られた粉末を粉末X回折法により分析した結果(図10参照)、Alが主たる結晶相として確認された。AlSiCも結晶相として確認されたが、第2相に留まった。走査型電子顕微鏡を用いて粒子を観察した結果(図11参照)、観察される粒子は不定形であり、六角板状の粒子は確認されなかった。これは、AlSiCは生成しているものの、結晶性が低いためと考察される。(表1、No.1)本比較例では1700℃での熱処理時間は3時間であるが、熱処理時間を長くすることにより、AlSiCの生成反応を進め、結晶性の高いAlSiC粒子を得ることは可能である。 Aluminum hydroxide, silica and phenol resin are made of silicon carbide in a plastic pot using ethanol as a dispersion medium so that the molar ratio of Al (OH) 3 : SiO 2 : C = 4: 1: 12 And ball mill mixing for 24 hours. After drying the obtained mixture, heat treatment was performed at 100 ° C. for 12 hours in a vacuum dryer in order to proceed with the crosslinking reaction. The obtained gel-like substance was pyrolyzed in an argon stream at 1000 ° C. for 30 minutes in a quartz reaction tube. The pyrolyzed powder was heat-treated at 1700 ° C. for 3 hours in a carbon crucible, vacuum or argon stream. As a result of analyzing the obtained powder by the powder X diffraction method (see FIG. 10), Al 2 O 3 was confirmed as a main crystal phase. Al 4 SiC 4 was also confirmed as a crystal phase, but remained in the second phase. As a result of observing the particles using a scanning electron microscope (see FIG. 11), the observed particles were indeterminate and no hexagonal plate-like particles were confirmed. This is considered because Al 4 SiC 4 is generated but the crystallinity is low. (Table 1, No. 1) In this comparative example, the heat treatment time at 1700 ° C. is 3 hours, but by increasing the heat treatment time, the formation reaction of Al 4 SiC 4 is advanced and Al 4 SiC having high crystallinity is obtained. It is possible to obtain 4 particles.

比較例2Comparative Example 2

水酸化アルミニウム、シリカ、フェノール樹脂を、モル比でAl(OH):SiO:C=4:1:12となるように、エタノールを分散媒として、プラスチック製のポット中、炭化ケイ素製のボールを用いて24時間ボールミル混合した。得られた混合物を乾燥後、架橋反応を進めるため、真空乾燥機中100℃で12時間、熱処理を行った。得られたゲル状物質を石英の反応管内でアルゴン気流中、1000℃で1/2時間、熱分解処理した。熱分解後の粉末を加圧成形により予備成形し、カーボンルツボ中、真空あるいはアルゴン気流中、1750℃で3時間熱処理した。得られた粉末を粉末X回折法により分析した結果(図12参照)、AlSiCが主たる結晶相として確認された。I31.810とI41.685の比は、I31.810>I41.685であった。走査型電子顕微鏡を用いて粒子を観察した結果(図13参照)、粒子は不定形であった。これは、炭素が過剰に存在すると、AlSiCの粒成長が抑制されるためと考えられる。(表1、No.6) Aluminum hydroxide, silica, and phenol resin are made of silicon carbide in a plastic pot using ethanol as a dispersion medium so that the molar ratio is Al (OH) 3 : SiO 2 : C = 4: 1: 12. Ball mill mixing was performed using a ball for 24 hours. After drying the obtained mixture, heat treatment was performed at 100 ° C. for 12 hours in a vacuum dryer in order to proceed with the crosslinking reaction. The obtained gel-like substance was pyrolyzed in a quartz reaction tube in an argon stream at 1000 ° C. for 1/2 hour. The pyrolyzed powder was preformed by pressure molding and heat treated at 1750 ° C. for 3 hours in a carbon crucible, vacuum or argon stream. As a result of analyzing the obtained powder by the powder X diffraction method (see FIG. 12), Al 4 SiC 4 was confirmed as a main crystal phase. The ratio of I 31.810 to I 41.865 was I 31.810 > I 41.585 . As a result of observing the particles using a scanning electron microscope (see FIG. 13), the particles were amorphous. This is thought to be because the grain growth of Al 4 SiC 4 is suppressed when carbon is present in excess. (Table 1, No. 6)

産業上の利用の可能性Industrial applicability

本発明は、融点が高く、カーボンと比較して高い耐酸化性をもつ、AlSiCの結晶性の高い粒子、およびその製造方法に関するものであり、このようにして得られた粒子は、高温・構造用の複合材料、耐火物の分散粒子として好適である。また、AlSiCの高純度焼結体用の原料粒子として好適である。 The present invention relates to a highly crystalline particle of Al 4 SiC 4 having a high melting point and high oxidation resistance compared to carbon, and a method for producing the same, and the particles thus obtained include: Suitable for high temperature / structural composite materials and refractory dispersed particles. Moreover, it is suitable as a raw material particle for high purity sintered bodies of Al 4 SiC 4 .

実施例1の粒子の粉末X回折法による分析結果Analysis result of powder of Example 1 by powder X-ray diffraction method 実施例1の粒子の走査型電子顕微鏡による観察結果Observation results of the particles of Example 1 using a scanning electron microscope 実施例2の粒子の粉末X回折法による分析結果Analysis result of powder of Example 2 by powder X-ray diffraction method 実施例2の粒子の走査型電子顕微鏡による観察結果Observation results of the particles of Example 2 by a scanning electron microscope 実施例2の別例の粒子の粉末X回折法による分析結果Analysis result of powder of another example of Example 2 by powder X diffraction method 実施例2の別例の粒子の走査型電子顕微鏡による観察結果Observation results of particles of another example of Example 2 using a scanning electron microscope 実施例3の粒子の粉末X回折法による分析結果Analysis result of powder of Example 3 by powder X-ray diffraction method 実施例3の粒子の走査型電子顕微鏡による観察結果Observation results of the particles of Example 3 using a scanning electron microscope 実施例4の粒子の粉末X回折法による分析結果Analysis result of powder of Example 4 by powder X-ray diffraction method 比較例1の粒子の粉末X回折法による分析結果Results of analysis of particles of Comparative Example 1 by powder X-ray diffraction method 比較例1の粒子の走査型電子顕微鏡による観察結果Observation result of particles of Comparative Example 1 by scanning electron microscope 比較例2の粒子の粉末X回折法による分析結果Analysis result of powder of Comparative Example 2 by powder X-ray diffraction method 比較例2の粒子の走査型電子顕微鏡による観察結果Observation results of particles of Comparative Example 2 using a scanning electron microscope

Claims (5)

Al、C、Siからなるアルミニウムケイ素炭化物粉末であって、その結晶構造が六方晶であり、粒子の形状が六角板状であることを特徴とするアルミニウムケイ素炭化物粉末 Aluminum silicon carbide powder comprising Al, C, Si, characterized in that its crystal structure is hexagonal and the shape of the particles is hexagonal plate C軸に垂直方向に選択的に成長して六角板状となっていることを特徴とする請求項1に記載のアルミニウムケイ素炭化物粉末 The aluminum silicon carbide powder according to claim 1, wherein the aluminum silicon carbide powder is selectively grown in a direction perpendicular to the C axis to form a hexagonal plate. 請求項1又は2に記載のアルミニウムケイ素炭化物粉末の製造方法であって、アルミニウム源と炭素源とケイ素源とからなる原料粉末を、真空あるいは不活性雰囲気中で熱処理して、アルミニウムケイ素炭化物とすることを特徴とするアルミニウムケイ素炭化物粉末の製造方法 The method for producing aluminum silicon carbide powder according to claim 1 or 2, wherein the raw material powder composed of an aluminum source, a carbon source and a silicon source is heat-treated in vacuum or in an inert atmosphere to obtain aluminum silicon carbide. Method for producing aluminum silicon carbide powder characterized in that 請求項3のアルミニウムケイ素炭化物粉末の製造方法において、アルミニウム源として水酸化アルミニウムを用いることを特徴とする製造方法。   4. The method for producing aluminum silicon carbide powder according to claim 3, wherein aluminum hydroxide is used as the aluminum source. 請求項3又は4に記載のアルミニウムケイ素炭化物粉末の製造方法において、熱処理前に混合粉末を加圧成形により成形体を作製した後、熱処理することを特徴とする製造方法 The method for producing an aluminum silicon carbide powder according to claim 3 or 4, wherein a heat treatment is carried out after producing a molded body of the mixed powder by pressure molding before the heat treatment.
JP2008143492A 2008-05-30 2008-05-30 Aluminum silicon carbide powder and method for producing the same Expired - Fee Related JP5152654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008143492A JP5152654B2 (en) 2008-05-30 2008-05-30 Aluminum silicon carbide powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008143492A JP5152654B2 (en) 2008-05-30 2008-05-30 Aluminum silicon carbide powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009286675A JP2009286675A (en) 2009-12-10
JP5152654B2 true JP5152654B2 (en) 2013-02-27

Family

ID=41456256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008143492A Expired - Fee Related JP5152654B2 (en) 2008-05-30 2008-05-30 Aluminum silicon carbide powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP5152654B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6968653B2 (en) * 2017-10-20 2021-11-17 タテホ化学工業株式会社 Method for manufacturing Al4SiC4 powder
JP7224997B2 (en) * 2019-03-28 2023-02-20 タテホ化学工業株式会社 Al4SiC4 powder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891065A (en) * 1981-11-27 1983-05-30 旭硝子株式会社 Manufacture of silicon carbide ceramic sintered body
JPS6197125A (en) * 1984-08-03 1986-05-15 Natl Inst For Res In Inorg Mater Manufacture of easily sinterable silicon carbide powder
JPS6212663A (en) * 1985-07-09 1987-01-21 株式会社ノリタケカンパニーリミテド Method of sintering b4c base fine body
JPH08119719A (en) * 1994-10-27 1996-05-14 Kyushu Refract Co Ltd Brick containing carbon and aluminum silicon carbide
JP2009190961A (en) * 2008-02-12 2009-08-27 Okayama Ceramics Gijutsu Shinko Zaidan Compound carbide, and method for synthesizing the same

Also Published As

Publication number Publication date
JP2009286675A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
Hu et al. Promising high-thermal-conductivity substrate material for high-power electronic device: Silicon nitride ceramics
JP5706671B2 (en) Silicon carbide powder for producing silicon carbide single crystal by sublimation recrystallization method and method for producing the same
JP5525050B2 (en) Silicon carbide powder manufacturing method and system
JP2012131674A (en) Zirconium diboride powder and method for synthesizing the same
KR102319079B1 (en) SiC composites and method for manufacturing thereof
JP2010143771A (en) METHOD FOR PRODUCING alpha-SILICON CARBIDE PARTICLE
JP5152654B2 (en) Aluminum silicon carbide powder and method for producing the same
Xiang et al. Hydrothermal‐carbothermal synthesis of highly sinterable AlN nanopowders
Huang et al. Preparation and formation mechanism of elongated (Ca, Dy)‐α‐Sialon powder via carbothermal reduction and nitridation
KR102574046B1 (en) Low-temperature production method of boron carbide
US11479463B2 (en) Method of forming a βSiAlON by spark plasma sintering
JPH11322433A (en) Production of composite ceramic sintered body containing boron nitride, and the sintered body
KR101127608B1 (en) ZrB2-SiC Composition of nano dimension and manufacturing method of the same from the zirconium silicides
CN108892528B (en) Porous silicon nitride ceramic material and preparation method thereof
KR101641431B1 (en) Method of manufacturing silicon nitride nano fiber
Parcianello et al. Optimization of phase purity of β′‐sialon ceramics produced from silazanes and nano‐sized alumina
Choi et al. Carbothermic synthesis of monodispersed spherical Si3N4/SiC nanocomposite powder
KR101633448B1 (en) A HfC Powder and A Manufacturing method of the same
JP2005119934A (en) Silicon nitride porous body and method of manufacturing the same
Hao et al. Preparation of (K0. 50Na0. 50) NbO3 lead-free piezoelectric ceramics by mechanical activation assisted method
Sun et al. Synthesis and microstructure evolution of β‐Sialon fibers/barium aluminosilicate (BAS) glass‐ceramic matrix composite with enhanced mechanical properties
KR100976554B1 (en) Grain growth control method through Mg compound addition when synthesis of hexagonal born nitride
JP2009269798A (en) Silicon carbide particles and method for producing the same
KR101588292B1 (en) A TaC Powder and A Manufacturing method of the same
JPH01131072A (en) Production of sintered material having corrosion resistance at high temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5152654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees