JP5146360B2 - Method and apparatus for detecting rust in steel structures - Google Patents

Method and apparatus for detecting rust in steel structures Download PDF

Info

Publication number
JP5146360B2
JP5146360B2 JP2009047650A JP2009047650A JP5146360B2 JP 5146360 B2 JP5146360 B2 JP 5146360B2 JP 2009047650 A JP2009047650 A JP 2009047650A JP 2009047650 A JP2009047650 A JP 2009047650A JP 5146360 B2 JP5146360 B2 JP 5146360B2
Authority
JP
Japan
Prior art keywords
rust
applied current
surface potential
steel
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009047650A
Other languages
Japanese (ja)
Other versions
JP2010203824A (en
Inventor
賢治 宗宮
尚男 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2009047650A priority Critical patent/JP5146360B2/en
Publication of JP2010203824A publication Critical patent/JP2010203824A/en
Application granted granted Critical
Publication of JP5146360B2 publication Critical patent/JP5146360B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、土壌およびコンクリート埋設状態にある鋼製構造物において、鋼表面におけるさびを検知する方法および装置に関するものである。   The present invention relates to a method and an apparatus for detecting rust on a steel surface in a steel structure in a soil and concrete buried state.

土壌やコンクリート埋設状態にある鋼製構造物は、晒された環境における鋼材の腐食を長期防止する目的のため、ポリエチレンなどの有機ライニングや塗装などの表面処理や電気防食などの防食施工が多くなされている。   Steel structures that are buried in soil or concrete are often subjected to anticorrosion work such as surface treatments such as organic linings such as polyethylene and painting, and anticorrosion, in order to prevent corrosion of steel materials in the exposed environment for a long period of time. ing.

しかしながら、有機ライニングや塗装は、ガス導管や水道管などの土壌埋設管の場合、周辺における別用途の工事などに起因する損傷によって防食表面が傷つけられたり、一部が剥離し、鋼が環境に晒されたりと本来の防食性能を失うことがある。   However, in the case of organic lining and coating, in the case of soil buried pipes such as gas pipes and water pipes, the anticorrosion surface is damaged or partly peeled off due to damage caused by construction for other purposes in the surrounding area, and the steel is brought into the environment. If exposed, the original anticorrosion performance may be lost.

腐食やさびは、このような形で何らかの理由により鋼の表面が環境に露出した箇所に発生するのである。   Corrosion and rust occur in this way where the steel surface is exposed to the environment for some reason.

従来、これらのような埋設状態にある鋼製構造物の腐食は、アクセス上の制約が障害となるため容易に検査することができず、その結果、このような制約の下、異常個所の位置を絞り込み、人による掘削調査を実施していた。   Conventionally, the corrosion of steel structures in the embedded state like these cannot be easily inspected because the access restriction becomes an obstacle, and as a result, the location of the abnormal part is under such a restriction. The drilling survey was carried out by humans.

異常個所の位置を把握するために活用されている検査技術として、例えば、異常部による電界の局地的なゆがみを利用した方法(特許文献1および特許文献2)や磁界のゆがみを利用した方法(特許文献3)がある。   As an inspection technique utilized for grasping the position of an abnormal part, for example, a method using local distortion of an electric field by an abnormal part (Patent Document 1 and Patent Document 2) or a method using distortion of a magnetic field (Patent Document 3).

これらの技術を活用すれば、土壌やコンクリート埋設状態にある鋼製構造物の異常個所を非掘削である程度同定することが可能である。   If these techniques are utilized, it is possible to identify to some extent an abnormal part of a steel structure in a soil or concrete buried state without excavation.

しかしながら、異常個所の位置を非掘削である程度同定することができたとしても、限定的な位置の調査とはいえ、掘削調査を行う場合、掘削コストが高いため、頻繁に実施することは困難である。そのため、掘削する前に異常個所において腐食が起こっているリスクを評価し、掘削調査の必要性を判断したり、優先順位を決定したりすることが必要となるが、上記した異常個所を特定する検査方法ではこれらの異常個所における腐食の状態を把握することができない。   However, even if the location of the abnormal location can be identified to some extent by non-excavation, although it is a limited location survey, the excavation cost is high and it is difficult to conduct it frequently. is there. Therefore, it is necessary to evaluate the risk that corrosion has occurred at the abnormal location before drilling, judge the necessity of drilling investigation, and determine the priority, but identify the abnormal location described above. The inspection method cannot grasp the state of corrosion at these abnormal locations.

また、腐食を検知する技術として、
(a)異種金属接触による電位差を利用した方法(特許文献4)
(b)電気抵抗法(特許文献5)
(c)埋設される土壌の抵抗より腐食を推定する方法(特許文献6)
がある。
As a technology to detect corrosion,
(A) Method using potential difference caused by contact with different metal (Patent Document 4)
(B) Electrical resistance method (Patent Document 5)
(C) Method for estimating corrosion from resistance of buried soil (Patent Document 6)
There is.

しかしながら、(a)および(b)については、構造物を埋設する段階で構造物とは異なる金属や抵抗を計測するワイヤーなどを同時に埋める必要があり、既設構造物への適用に難点があるほか、欠陥位置そのものに腐食があるかどうかを判断することはできない。   However, with regard to (a) and (b), it is necessary to simultaneously bury a metal different from the structure, a wire for measuring resistance, etc. at the stage of burying the structure, and there are difficulties in application to existing structures. It cannot be determined whether or not the defect location itself has corrosion.

(c)については、あくまでも環境におけるリスクを評価するものであり、腐食そのものを判断するものではない。   Regarding (c), the risk in the environment is only evaluated, and the corrosion itself is not judged.

さらに、最近では埋設導管においてピグ検査が実用化されている。この検査方法によれば、超音波や漏洩磁束ピグを導管内部に流体と一緒に流し、管内面から内径および残肉厚を計測することが可能である。   In addition, pig inspection has recently been put into practical use in buried conduits. According to this inspection method, it is possible to measure the inner diameter and the remaining thickness from the inner surface of the pipe by flowing an ultrasonic wave or a leakage flux pig with the fluid inside the conduit.

しかしながら、それらを施工するためにはピグランチャーを装備する必要があり、既設でランチャーがないような対象物には適用することができないほか、減肉という異常を検知することができても、それが腐食によるものかどうかを判断することはできない。   However, in order to construct them, it is necessary to equip a piglancher, and it cannot be applied to an existing object that does not have a launcher. It is not possible to judge whether or not is due to corrosion.

一方、埋設鋼製構造物に施工されている電気防食は、鋼製構造物の対地電位を計測することにより管理されているケースがほとんどである。   On the other hand, in most cases, the anticorrosion applied to the buried steel structure is managed by measuring the ground potential of the steel structure.

しかしながら、この管理方法は、構造物全体の平均値管理であり、異常個所における状態を鋭敏に反映した管理にはなっておらず、ケースによっては異常個所において、腐食が発生する状態になっていたとしても平均として正常であるという誤った管理をしてしまうリスクがある。そのため、欠陥という限定的な箇所における腐食の有無を推定できる検知技術が求められている。   However, this management method is the average value management of the whole structure, and it is not management that reflects the state in the abnormal part sensitively, and depending on the case, corrosion has occurred in the abnormal part. Even so, there is a risk of mismanagement that it is normal on average. Therefore, there is a need for a detection technique that can estimate the presence or absence of corrosion at a limited location called a defect.

特開平6−288958号公報JP-A-6-288958 特開2001−19156号公報Japanese Patent Laid-Open No. 2001-19156 特開2001−255304号公報JP 2001-255304 A 特開昭56−18744号公報JP 56-18744 A 特開昭50−10695号公報Japanese Patent Laid-Open No. 50-10695 特開昭58−37398号公報JP 58-37398 A

本発明は、上記のような事情に鑑みてなされたものであり、埋設環境にある鋼製構造物の異常個所における腐食(さび)の有無を非掘削状態でリモート箇所(土壌埋設の場合、地上)において検知することを課題とする。   The present invention has been made in view of the circumstances as described above, and the presence or absence of corrosion (rust) at an abnormal location of a steel structure in an embedded environment is determined in a non-excavated state at a remote location (in the case of soil burial, ) To detect.

本発明者らは、埋設状態にある鋼製構造物のさびを検知するために、まず、鋼の表面状態により変化する表面電位に着目した。鋼の表面電位は電極を利用し、環境が導電性物質であれば、対象表面より距離をおいた場合でも計測が可能であり、表面のさびの有無により変化することが知られている。腐食の結果として形成したさびを検知することにより腐食を検知することが可能となる。   In order to detect rust of a steel structure in an embedded state, the present inventors first focused on the surface potential that changes depending on the surface state of the steel. It is known that the surface potential of steel can be measured even when a distance from the target surface is used if an electrode is used and the environment is a conductive substance, and changes depending on the presence or absence of surface rust. Corrosion can be detected by detecting rust formed as a result of corrosion.

表面電位として、自然電位がもっとも計測しやすいが、鋼およびその表面に形成したさびが安定な物質状態であれば、自然電位は一義的に決定される。そのため、さびの有無を検知に利用する場合は、その電位の絶対値(大きさ)を比較してさびの有無を判断する必要がある。   As the surface potential, the natural potential is most easily measured. However, if the steel and the rust formed on the surface thereof are in a stable material state, the natural potential is uniquely determined. Therefore, when using the presence or absence of rust for detection, it is necessary to determine the presence or absence of rust by comparing the absolute value (magnitude) of the potential.

しかしながら、実際の現場において自然電位を計測しても、ノイズが大きいため、電位の絶対値は大きく変動し、さびの有無を単純に大きさで判断することは困難であるという問題がある。   However, even if the natural potential is measured at an actual site, since the noise is large, the absolute value of the potential fluctuates greatly, and it is difficult to simply determine the presence or absence of rust based on the size.

上記問題を解決するために、本発明者らはさびの表面電位(自然電位)の挙動を誠意研究する過程において、さびが存在する鋼表面に外部から所定の電流(例えば、方形波型に規格化したカソード電流)を印加することにより、表面に形成されたさびの物質を強制的に変化(還元)させることができ、その結果、鋼表面との表面電位(自然電位)が複数の電流パターン条件において、いずれの条件でも共通した特徴を有して変化することを見出した。   In order to solve the above problem, the present inventors conducted a sincere study on the behavior of the surface potential (natural potential) of rust. By applying a cathodic current), the rust material formed on the surface can be forcibly changed (reduced), and as a result, the surface potential (natural potential) with the steel surface has multiple current patterns. It has been found that the conditions change with common characteristics in all conditions.

本発明は、このことを利用し、鋼の表面にこの強制的な変化(還元)が起こるように印加電流(例えば、規格化した方形波型のカソード電流)を通電し、その際に生じる鋼の表面電位(自然電位)の経時的な変化挙動や変化量を定量的に評価することによってさびを検知するものである。さびが有る場合には、印加するパターンを変化させても表面電位(自然電位)は一様な挙動を示し、その変化量も大きいのに対し、さびが無い場合には、挙動に共通性がないほか、変化量も小さいという特徴を利用して検知することが可能であることを見出した。   The present invention takes advantage of this fact, and applies an applied current (for example, a standardized square wave cathode current) so that this forced change (reduction) occurs on the surface of the steel, and the steel generated at that time. Rust is detected by quantitatively evaluating the behavior and amount of change in the surface potential (natural potential) over time. When there is rust, the surface potential (natural potential) shows a uniform behavior even when the pattern to be applied is changed, and the amount of change is large, but when there is no rust, the behavior is common. In addition, it was found that it is possible to detect using the feature that the amount of change is small.

すなわち、本発明は、上記の発想に基づくものであり、具体的には以下の構成を備えている。   That is, the present invention is based on the above idea, and specifically includes the following configuration.

(1)鋼表面に0.01Hz〜10Hzの周波数であってその周波数が異なる複数の印加電流を通電し、非掘削状態でリモート個所に設置した電極を用いて前記印加電流によって生じた表面電位を計測し、表面電位の24時間における変化方向と変化量に基づいてさびの有無を判断する鋼製構造物のさび検知方法であって、前記複数の印加電流に対して記変化方向が卑にシフトし、かつ、前記複数の印加電流に対して記変化量が200mVを超えた場合にさび有りと判断することを特徴とする鋼製構造物のさび検知方法。 (1) A surface potential generated by the applied current is applied to a steel surface by applying a plurality of applied currents having a frequency of 0.01 Hz to 10 Hz and different frequencies, and using an electrode installed at a remote location in a non-excavated state. measured, a rust detection method of the steel structure to determine the presence or absence of rust on the basis of the change direction and variation of 24 hours of the surface potential, the previous SL changes direction with respect to the plurality of applied current baser It shifted, and rust detection method of a steel structure change amount before SL to the plurality of applied current to and determines that there rust if it exceeds 200mV to.

(2)前記印加電流が、方形波型に規格化されたカソード電流であることを特徴とする前記(1)に記載の鋼製構造物のさび検知方法。   (2) The method for detecting rust in a steel structure according to (1), wherein the applied current is a cathode current normalized to a square wave type.

(3)鋼表面に0.01Hz〜10Hzの周波数であってその周波数が異なる複数の印加電流を通電する印加電流通電手段と、非掘削状態でリモート個所に設置した電極を用いて前記印加電流によって生じた表面電位を計測する表面電位計測手段と、該表面電位計測手段が計測した表面電位の24時間における変化方向と変化量に基づいてさびの有無を判断するさび有無判断手段とを備えた鋼製構造物のさび検知装置であって、前記さび有無判断手段が、前記複数の印加電流に対して記変化方向が卑にシフトし、かつ、前記複数の印加電流に対して記変化量が200mVを超えた場合にさび有りと判断する手段であることを特徴とする鋼製構造物のさび検知装置。 (3) By means of the applied current using applied current conducting means for conducting a plurality of applied currents having a frequency of 0.01 Hz to 10 Hz and different frequencies on the steel surface, and an electrode installed at a remote location in a non-excavated state. Steel having surface potential measuring means for measuring the generated surface potential, and rust presence / absence judging means for judging the presence or absence of rust based on the direction and amount of change of the surface potential measured by the surface potential measuring means in 24 hours a rust detection device manufacturing structure, the rust presence determination means shifts prior SL changes direction less noble relative to the plurality of applied current, and varying previous SL to the plurality of applied current A rust detection device for a steel structure, characterized in that it is a means for determining that rust is present when the amount of conversion exceeds 200 mV.

(4)前記印加電流が、方形波型に規格化されたカソード電流であることを特徴とする前記(3)に記載の鋼製構造物のさび検知装置。   (4) The rust detecting device for a steel structure according to (3), wherein the applied current is a cathode current normalized to a square wave type.

本発明によれば、土壌およびコンクリート埋設状態にある鋼製構造物において、非掘削状態でリモート箇所において鋼表面のさびを検知することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to detect the rust of the steel surface in the remote location in the non-digging state in the steel structure in the soil and concrete buried state.

現場での適用イメージを示す図である。It is a figure which shows the application image on the spot. 方形波型カソード電流の印加パターンを示す模式図である。It is a schematic diagram which shows the application pattern of a square wave type cathode current. 方形波型カソード電流を印加した場合の表面電位の挙動を示す図である。It is a figure which shows the behavior of the surface potential at the time of applying a square wave type cathode current. 検知ステップフローを示す図である。It is a figure which shows a detection step flow. 実施例における試験装置を示す図である。It is a figure which shows the test apparatus in an Example. 実施例における試験電極を示す図である。It is a figure which shows the test electrode in an Example. さび有り電極における表面電位の各特徴点の経時変化を示す図である。It is a figure which shows the time-dependent change of each feature point of the surface potential in a rust electrode. さび無し電極における表面電位の各特徴点の経時変化を示す図である。It is a figure which shows the time-dependent change of each feature point of the surface potential in a rust-free electrode. さび有り電極における表面電位の各特徴点の24時間変化量を示す図である。It is a figure which shows the 24-hour variation | change_quantity of each feature point of the surface potential in a rusted electrode. さび無し電極における表面電位の各特徴点の24時間変化量を示す図である。It is a figure which shows the 24-hour variation | change_quantity of each feature point of the surface potential in a rust-free electrode.

以下、図面を用いて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1に、本発明における現場での適用イメージを示す。   FIG. 1 shows an application image in the field in the present invention.

ファンクションジェネレータ3およびガルバノスタット4から構成される電流印加装置から印加電極5を通して、規格化した電流を鋼製構造物1の表面に存在する欠陥2に通電し、地上より参照電極6および電位計7を用いて鋼製構造物1の表面電位(自然電位)を経時的に計測する。なお、ファンクションジェネレータ3は種々の形状の出力信号波形を発生させるための装置であり、ガルバノスタット4は作用電極に流れる電流を定量的に制御するための装置である。   A standardized current is supplied to the defect 2 existing on the surface of the steel structure 1 through the application electrode 5 from the current application device including the function generator 3 and the galvanostat 4, and the reference electrode 6 and the electrometer 7 are supplied from the ground. Is used to measure the surface potential (natural potential) of the steel structure 1 over time. The function generator 3 is a device for generating output signal waveforms of various shapes, and the galvanostat 4 is a device for quantitatively controlling the current flowing through the working electrode.

印加電極5として、白金、銅などの金属電極のほか、カーボン電極を用いることも可能である。参照電極6として、金属電極を用いることができるが、計測時間が長くなれば参照電極自身の腐食により計測結果に誤差が生じる可能性があるため、銅/硫酸銅電極や銀/塩化銀電極などの安定した電極を用いることが好ましい。   As the application electrode 5, in addition to a metal electrode such as platinum or copper, a carbon electrode can be used. Although a metal electrode can be used as the reference electrode 6, if the measurement time is long, an error may occur in the measurement result due to corrosion of the reference electrode itself, so a copper / copper sulfate electrode, a silver / silver chloride electrode, etc. It is preferable to use a stable electrode.

なお、図1中に図示はしていないが、参照電極6および電位計7を用いて計測した表面電位について、その変化方向と変化量に基づいてさびの有無を判断する演算処理装置が設置されている。   Although not shown in FIG. 1, an arithmetic processing unit is installed for determining the presence or absence of rust on the surface potential measured using the reference electrode 6 and the electrometer 7 based on the direction and amount of change. ing.

図2に、方形波型カソード電流の印加パターンを模式的に示した。印加パターン(印加時間および印加サイクル時間)が異なる2種類以上の電流を用いることにより、より精度の高い検知ができるようになる。   FIG. 2 schematically shows a square wave type cathode current application pattern. By using two or more kinds of currents having different application patterns (application time and application cycle time), detection with higher accuracy can be performed.

また、土壌埋設導管の場合、検知する際に迷走電流の影響を受ける可能性がある。迷走電流は、主に商業周波数である50Hzもしくは60Hzの電流であるため、その周波数に近い電流よりも、より低周波数あるいはより高周波数の電流を用いて、それぞれにローパスフィルターやハイパスフィルターでノイズ除去を行って計測すれば精度を向上させることができる。   In the case of soil buried conduits, there is a possibility of being affected by stray currents when detected. The stray current is mainly 50 Hz or 60 Hz, which is a commercial frequency, so use a low-frequency or higher-frequency current to remove noise with a low-pass filter or high-pass filter, respectively, rather than a current close to that frequency. The accuracy can be improved by performing the measurement.

表面電位(自然電位)の挙動は、それぞれの波形パターンに対応して図3のような方形波が崩れた形で計測される。この崩れた形の特徴として、図3に示したように、カソード電流印加直後(A点)、カソード電流印加停止直前(B点)、カソード電流印加停止直後(C点)、カソード電流印加直前(D点)の4つの特徴点が存在する。各特徴点における電位の経時変化を計測し、その変化する方向および量に基づいてさびの有無を判断する。すべての波形パターンに対して、すべての特徴点における表面電位が卑方向に一様に変化し、かつ、計測時間中に200mVを超えるような大きな変化量が確認された場合に、対象となる鋼の表面にさびがある可能性が高いものと判断する。判断に用いる変化量については、カソード電流の印加時間が長く、低周波数ほど大きくなる傾向があるため、それらを考慮した印加電流のパターンを用いることにより判断の精度を上げることが可能となる。さらに計測する時間については、可能な限り長時間が好ましいが、現地計測においてはノイズの少ない午前零時から6時を目安に間欠的に計測することにより精度が上がる。   The behavior of the surface potential (natural potential) is measured in a form in which the square wave is broken as shown in FIG. 3 corresponding to each waveform pattern. As shown in FIG. 3, this collapsed shape is characterized by immediately after applying the cathode current (point A), immediately before stopping the cathode current application (point B), immediately after stopping the cathode current application (point C), and immediately before applying the cathode current (point C). There are four feature points (D point). The change with time of the potential at each feature point is measured, and the presence or absence of rust is determined based on the direction and amount of change. For all waveform patterns, when the surface potential at all feature points changes uniformly in the base direction and a large amount of change exceeding 200 mV is confirmed during the measurement time, the target steel Judge that there is a high possibility of rust on the surface. Regarding the amount of change used for determination, since the cathode current application time is long and tends to increase as the frequency decreases, it is possible to increase the accuracy of the determination by using an applied current pattern that takes them into consideration. Further, the measurement time is preferably as long as possible. However, in the field measurement, the accuracy is improved by intermittently measuring from midnight to 6:00 when noise is low.

図4に、さび検知のステップフローを示した。   FIG. 4 shows a rust detection step flow.

まず、周波数の異なる複数の方形波型カソード電流を選定する。ここでは、例として、0.01Hz、1Hz、10Hzの3種類の周波数を選定する。   First, a plurality of square wave cathode currents having different frequencies are selected. Here, as an example, three types of frequencies of 0.01 Hz, 1 Hz, and 10 Hz are selected.

次に、それぞれのパターンを有する周波数を印加した場合の鋼の表面電位の挙動を地上より参照電極を用いて経時的に計測する。なお、計測に当たり、低周波数側よりも高周波数側から計測することが好ましく、これは低周波数であれば印加時間が長く、その結果、表面電位の変化量が大きくなり、微小なさびを検知することが困難となるためである。   Next, the behavior of the surface potential of steel when a frequency having each pattern is applied is measured over time from the ground using a reference electrode. In the measurement, it is preferable to measure from the high frequency side rather than the low frequency side. This is because the application time is long at the low frequency, and as a result, the amount of change in the surface potential becomes large and minute rust is detected. This is because it becomes difficult.

このようにして計測した表面電位の24時間における変化方向および変化量を評価し、すべての周波数に対して変化方向が卑にシフトし、かつ、変化量が200mVを超えた場合にさび有りと判断し、それ以外はさび無しと判断するのである。   The direction and amount of change of the surface potential measured in this way for 24 hours are evaluated, and when the change direction shifts to the base for all frequencies and the amount of change exceeds 200 mV, it is determined that there is rust. Otherwise, it is judged that there is no rust.

図5に、本実施例に用いた試験装置を示した。   FIG. 5 shows a test apparatus used in this example.

実環境において20年間以上土壌に埋設された炭素鋼管を掘り出し、表面にさびの有る鋼とさびの無い鋼を切り出し、図6に示したような構成の試験電極8に加工した。それぞれの電極を別々のアクリル容器に入れ、これを土壌(抵抗率:1000Ω・cm)中に埋設し、ファンクションジェネレータ3とガルバノスタット4から方形波型のカソード電流を通電し、それぞれの電極における表面電位の挙動を参照電極6と電位差計7により24時間連続計測し、さびの有無による変化を調査した。   A carbon steel pipe buried in soil for 20 years or more in an actual environment was dug out, and steel having rust and rust on the surface were cut out and processed into a test electrode 8 having a configuration as shown in FIG. Place each electrode in a separate acrylic container, embed it in soil (resistivity: 1000 Ω · cm), energize a square-wave cathode current from the function generator 3 and the galvanostat 4, and the surface of each electrode The behavior of the potential was continuously measured for 24 hours using the reference electrode 6 and the potentiometer 7, and changes due to the presence or absence of rust were investigated.

表1に、方形波型カソード電流の印加パターン条件を示す。なお、印加電極5として白金、参照電極6として銀/塩化銀電極を用いた。   Table 1 shows the application pattern conditions of the square wave cathode current. In addition, platinum was used as the application electrode 5, and a silver / silver chloride electrode was used as the reference electrode 6.

Figure 0005146360
Figure 0005146360

図7に、周波数0.01Hzの電流印加パターンである条件1〜条件3において、試験電極8としてさび有り電極を用いた場合の各特徴点(図3参照)における表面電位の経時変化を示した。図7の横軸は計測時間[Hr]を、縦軸は表面電位[V vs.Ag/AgCl]を表し、条件1を○印、条件2を△印、条件3を□印で示した。   FIG. 7 shows the change over time in the surface potential at each characteristic point (see FIG. 3) when a rusted electrode is used as the test electrode 8 in conditions 1 to 3 which are current application patterns having a frequency of 0.01 Hz. . In FIG. 7, the horizontal axis represents the measurement time [Hr], and the vertical axis represents the surface potential [V vs. Ag / AgCl], condition 1 is indicated by a circle, condition 2 is indicated by a triangle, and condition 3 is indicated by a square.

図7より、すべての特徴点の条件1〜条件3において、印加開始初期に比較して24時間後は表面電位が卑な方向に一様にシフトする傾向が見られた。この傾向は、周波数が1Hzおよび10Hzの電流印加パターンである条件4〜条件9においても同様であった。   From FIG. 7, in conditions 1 to 3 of all feature points, the surface potential tended to shift uniformly in the base direction after 24 hours as compared with the initial application start. This tendency was the same in conditions 4 to 9 which are current application patterns with frequencies of 1 Hz and 10 Hz.

図8に、周波数0.01Hzの電流印加パターンである条件1〜条件3において、試験電極8としてさび無し電極を用いた場合の各特徴点における表面電位の経時変化を示した。図8の横軸は計測時間[Hr]を、縦軸は表面電位[V vs.Ag/AgCl]を表し、条件1を○印、条件2を△印、条件3を□印で示した。   FIG. 8 shows changes with time of the surface potential at each characteristic point when a rust-free electrode is used as the test electrode 8 in conditions 1 to 3 which are current application patterns having a frequency of 0.01 Hz. In FIG. 8, the horizontal axis represents measurement time [Hr], and the vertical axis represents surface potential [V vs. Ag / AgCl], condition 1 is indicated by a circle, condition 2 is indicated by a triangle, and condition 3 is indicated by a square.

図8より、それぞれの特徴点の条件1〜条件3において、さび有り電極で見られたような共通した一様な挙動は見られなかった。この傾向は、周波数が1Hzおよび10Hzの電流印加パターンである条件4〜条件9においても同様であった。   From FIG. 8, the common uniform behavior as seen with the rusted electrode was not observed in the condition 1 to condition 3 of each feature point. This tendency was the same in conditions 4 to 9 which are current application patterns with frequencies of 1 Hz and 10 Hz.

24時間での表面電位の変化量(=24時間後の電位−印加開始時の電位)について、さび有り電極の場合を図9に、さび無し電極の場合を図10にそれぞれ示した。なお、図中の横軸は時間率θ(=印加時間/(印加時間+無印加時間))を、縦軸は24時間の表面電位変化量[V]を表している。   Regarding the amount of change in the surface potential in 24 hours (= potential after 24 hours−potential at the start of application), FIG. 9 shows the case of the electrode with rust and FIG. 10 shows the case of the electrode without rust. In the figure, the horizontal axis represents the time rate θ (= application time / (application time + no application time)), and the vertical axis represents the surface potential change [V] for 24 hours.

図9および図10より、さび有り電極の場合、すべての特徴点において200mVを越える大きな変化量が示したのに対し、さび無し電極の場合、ほとんどが100mVに満たない変化量であることがわかった。   9 and 10, it can be seen that in the case of the electrode with rust, a large amount of change exceeding 200 mV was shown in all the characteristic points, whereas in the case of the electrode without rust, most of the amount of change was less than 100 mV. It was.

以上の結果より、鋼の表面にさびの有る場合と無い場合とでは、方形波型のカソード電流を印加した際に見られる表面電位の変化挙動が明らかに異なり、さびの有る場合は、すべての電流印加条件において表面電位が経時的に一様に卑な方向にシフトし、その変化量も大きいのに対し、さびの無い場合は、表面電位の変化に一様な方向性がなく、変化量も小さいという特徴があることがわかった。この特徴を利用して対象よりも離れた箇所に設置した参照電極を用いて、表面電位の応答変化を計測することにより埋設環境にある鋼上のさびの有無を判断することが可能であった。   From the above results, the behavior of the surface potential change observed when a square-wave cathode current is applied is clearly different between when the steel surface has rust and when there is rust. In the current application condition, the surface potential shifts uniformly toward the base over time, and the amount of change is large. On the other hand, when there is no rust, there is no uniform directionality in the change in surface potential, and the amount of change Was found to be small. Using this feature, it was possible to determine the presence or absence of rust on steel in the embedded environment by measuring the change in response of the surface potential using a reference electrode placed at a location far from the target. .

1 …鋼製構造物
2 …欠陥
3 …ファンクションジェネレータ
4 …ガルバノスタット
5 …印加電極
6 …参照電極
7 …電位差計
8 …試験電極
10…導線
11…ガラス管
12…エポキシ樹脂
13…鋼
14…さび
DESCRIPTION OF SYMBOLS 1 ... Steel structure 2 ... Defect 3 ... Function generator 4 ... Galvanostat 5 ... Applied electrode 6 ... Reference electrode 7 ... Potentiometer 8 ... Test electrode 10 ... Conductor 11 ... Glass tube 12 ... Epoxy resin 13 ... Steel 14 ... Rust

Claims (4)

鋼表面に0.01Hz〜10Hzの周波数であってその周波数が異なる複数の印加電流を通電し、非掘削状態でリモート個所に設置した電極を用いて前記印加電流によって生じた表面電位を計測し、表面電位の24時間における変化方向と変化量に基づいてさびの有無を判断する鋼製構造物のさび検知方法であって、前記複数の印加電流に対して記変化方向が卑にシフトし、かつ、前記複数の印加電流に対して記変化量が200mVを超えた場合にさび有りと判断することを特徴とする鋼製構造物のさび検知方法。 Applying a plurality of applied currents having different frequencies at a frequency of 0.01 Hz to 10 Hz on the steel surface, and measuring the surface potential generated by the applied current using an electrode installed at a remote location in a non-excavated state, a rust detection method of the steel structure to determine the presence or absence of rust on the basis of the change direction and variation of 24 hours of the surface potential shifts previous SL changes direction less noble relative to the plurality of applied current and rust detection method of a steel structure change amount before SL to the plurality of applied current to and it determines that there rust if it exceeds 200 mV. 前記印加電流が、方形波型に規格化されたカソード電流であることを特徴とする請求項1に記載の鋼製構造物のさび検知方法。   The method of detecting rust in a steel structure according to claim 1, wherein the applied current is a cathode current normalized to a square wave type. 鋼表面に0.01Hz〜10Hzの周波数であってその周波数が異なる複数の印加電流を通電する印加電流通電手段と、非掘削状態でリモート個所に設置した電極を用いて前記印加電流によって生じた表面電位を計測する表面電位計測手段と、該表面電位計測手段が計測した表面電位の24時間における変化方向と変化量に基づいてさびの有無を判断するさび有無判断手段とを備えた鋼製構造物のさび検知装置であって、前記さび有無判断手段が、前記複数の印加電流に対して記変化方向が卑にシフトし、かつ、前記複数の印加電流に対して記変化量が200mVを超えた場合にさび有りと判断する手段であることを特徴とする鋼製構造物のさび検知装置。 Surface generated by the applied current using an applied current energizing means for energizing a steel surface with a plurality of applied currents having a frequency of 0.01 Hz to 10 Hz and different frequencies , and an electrode installed at a remote location in a non-excavated state Steel structure comprising surface potential measuring means for measuring potential, and rust presence / absence judging means for judging the presence / absence of rust based on the direction and amount of change of the surface potential measured by the surface potential measuring means in 24 hours a rust detection device, the rust presence determination means, prior SL changes direction with respect to the plurality of applied current is shifted to less noble, and change amount before SL to the plurality of applied current is A rust detection device for steel structures, characterized in that it is means for determining the presence of rust when exceeding 200 mV. 前記印加電流が、方形波型に規格化されたカソード電流であることを特徴とする請求項3に記載の鋼製構造物のさび検知装置。   The rust detecting device for a steel structure according to claim 3, wherein the applied current is a cathode current normalized to a square wave type.
JP2009047650A 2009-03-02 2009-03-02 Method and apparatus for detecting rust in steel structures Expired - Fee Related JP5146360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009047650A JP5146360B2 (en) 2009-03-02 2009-03-02 Method and apparatus for detecting rust in steel structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009047650A JP5146360B2 (en) 2009-03-02 2009-03-02 Method and apparatus for detecting rust in steel structures

Publications (2)

Publication Number Publication Date
JP2010203824A JP2010203824A (en) 2010-09-16
JP5146360B2 true JP5146360B2 (en) 2013-02-20

Family

ID=42965459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009047650A Expired - Fee Related JP5146360B2 (en) 2009-03-02 2009-03-02 Method and apparatus for detecting rust in steel structures

Country Status (1)

Country Link
JP (1) JP5146360B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200462A (en) * 2016-07-12 2016-12-07 北京市市政工程研究院 Underground utilities living environment monitor controller and using method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA031855B1 (en) * 2013-03-13 2019-03-29 Солидия Текнолоджиз, Инк. Composite railroad tie and method of production thereof
JP6289216B2 (en) * 2014-03-31 2018-03-07 太平洋セメント株式会社 Corrosion detection sensor and evaluation method for corrosive environment of steel in concrete
CN109470933B (en) * 2018-11-05 2020-10-20 苏州热工研究院有限公司 Multi-channel surface reference potential wireless acquisition device of semi-submerged rotary mechanical device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1254251B (en) * 1992-03-11 1995-09-14 Eniricerche Spa DEVICE AND PROCEDURE FOR THE MONITORING AND LOCALIZATION OF DEFECTS AND RELEASES OF THE PROTECTIVE COATING OF UNDERGROUNDED OR IMMERSED METALLIC PIPES OR STRUCTURES
JP4812687B2 (en) * 2007-05-10 2011-11-09 東京瓦斯株式会社 Method and apparatus for measuring and evaluating cathodic protection of buried pipelines
JP4812691B2 (en) * 2007-05-25 2011-11-09 東京瓦斯株式会社 Cathodic protection status measurement evaluation apparatus and measurement evaluation method for buried pipeline

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200462A (en) * 2016-07-12 2016-12-07 北京市市政工程研究院 Underground utilities living environment monitor controller and using method thereof
CN106200462B (en) * 2016-07-12 2019-02-01 北京市市政工程研究院 Underground utilities living environment monitor and its application method

Also Published As

Publication number Publication date
JP2010203824A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
US10001436B2 (en) In-situ measurement of corrosion in buried pipelines using vertically measured pipe-to-soil potential
US8310251B2 (en) System for assessing pipeline condition
US10883918B2 (en) Multielectrode probes for monitoring fluctuating stray current effects and AC interference on corrosion of buried pipelines and metal structures
JP5146360B2 (en) Method and apparatus for detecting rust in steel structures
JP4857136B2 (en) Abnormally low ground contact point detection method and detection system for buried metal pipeline
JP2010266342A (en) Metal corrosion diagnostic method
US6772622B2 (en) Disbonded coating cathodic protection monitoring coupon
JP4632434B2 (en) Piping diagnostic device
KR100717597B1 (en) protection monitoring system
JP2016114564A (en) Soil corrosiveness evaluation method
JP2004198410A (en) Method for inspecting defect in coated pipe, and method for diagnosing corrosion
Wang et al. An array of multielectrodes for locating, visualizing, and quantifying stray current corrosion
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
JP2013096958A (en) Method and apparatus for estimating potential of coating defect part of underground pipe, and method and apparatus for electric protection management
JP2005308736A (en) Buried pipe corrosion diagnostic system, and buried pipe corrosion diagnostic method
JP6291295B2 (en) Inspection method of laying pipe
JP7489047B2 (en) Equipment for detecting corrosion in rebars in concrete
JP3214777B2 (en) Method and apparatus for identifying damaged part of coating of buried coated metal pipe
Tan et al. An overview of recent progresses in acquiring, visualizing and interpreting pipeline corrosion monitoring data
JPS60111949A (en) Method for detecting coating defect of coated embedded pipe
JP3315189B2 (en) Corrosion spot detection method for cast iron pipes buried in soil
JP3169754B2 (en) Method and apparatus for monitoring damage degree of coated steel pipe
JP3451348B2 (en) Method for detecting paint film damage on buried coated steel pipe
SU998584A1 (en) Method for determining degree of protection of pipelines
RU2472060C2 (en) Detection method of coating strippings of underground pipelines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110804

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R150 Certificate of patent or registration of utility model

Ref document number: 5146360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370