JP5144563B2 - Hydrogen sensor and manufacturing method thereof - Google Patents

Hydrogen sensor and manufacturing method thereof Download PDF

Info

Publication number
JP5144563B2
JP5144563B2 JP2009057637A JP2009057637A JP5144563B2 JP 5144563 B2 JP5144563 B2 JP 5144563B2 JP 2009057637 A JP2009057637 A JP 2009057637A JP 2009057637 A JP2009057637 A JP 2009057637A JP 5144563 B2 JP5144563 B2 JP 5144563B2
Authority
JP
Japan
Prior art keywords
detection film
hydrogen
hydrogen sensor
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009057637A
Other languages
Japanese (ja)
Other versions
JP2010210468A (en
Inventor
克彦 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP2009057637A priority Critical patent/JP5144563B2/en
Publication of JP2010210468A publication Critical patent/JP2010210468A/en
Application granted granted Critical
Publication of JP5144563B2 publication Critical patent/JP5144563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、自動車用燃料電池、家庭用燃料電池等の水素ガスを扱う各種装置から漏れる比較的低濃度の水素ガスを検知するのに用いる水素センサ、或いは水素ガスを扱う装置内の比較的高濃度の水素ガスを制御する等の用途に好適な水素センサに関する。   The present invention relates to a hydrogen sensor used to detect a relatively low concentration of hydrogen gas leaking from various devices that handle hydrogen gas, such as automobile fuel cells and household fuel cells, or a relatively high level in a device that handles hydrogen gas. The present invention relates to a hydrogen sensor suitable for applications such as controlling a concentration of hydrogen gas.

ガスセンサの素子構造には、検知膜と、その出力変化を検出する素子電極とを有するものが広く採用されている。水素ガスを選択的且つ容易に検出可能であり、安価なガスセンサとして、パラジウム(Pd)、ジルコニウム(Zr)、チタン(Ti)等の水素吸蔵金属と、水素と反応しないその他の金属とからなるアモルファス合金で構成される検知膜が提案されている(特許文献1)。しかしながら、このアモルファス合金からなる水素ガスセンサでは、時間の経過に対して抵抗値が一定値を示さない。抵抗値が安定するまでに時間を要することから応答時間が長く、水素濃度の変化に対する抵抗値変化にヒステリシスが生じやすい。従って、この水素ガスセンサでは、水素濃度の変化に対して精度よく検知することは出来ない。   As an element structure of a gas sensor, one having a detection film and an element electrode for detecting a change in its output is widely adopted. As an inexpensive gas sensor that can selectively and easily detect hydrogen gas, it is an amorphous material composed of hydrogen storage metals such as palladium (Pd), zirconium (Zr), titanium (Ti), and other metals that do not react with hydrogen. A sensing film made of an alloy has been proposed (Patent Document 1). However, in the hydrogen gas sensor made of this amorphous alloy, the resistance value does not show a constant value over time. Since it takes time to stabilize the resistance value, the response time is long, and hysteresis tends to occur in the resistance value change with respect to the change in the hydrogen concentration. Therefore, this hydrogen gas sensor cannot accurately detect changes in the hydrogen concentration.

また、他の構造を有する水素ガスセンサとしては、検知膜の出力変化が、検出対象とする成分以外の他の成分による影響を受けないために検知膜上に、目的のガスを選択的に透過する保護膜を有するガスセンサが従来から用いられている。   In addition, as a hydrogen gas sensor having another structure, the change in the output of the detection film is not affected by other components other than the component to be detected, so that the target gas is selectively transmitted through the detection film. A gas sensor having a protective film has been conventionally used.

例えば、イットリウム(Y)やランタン(La)等の希土類金属の薄膜を水素検知膜とするセンサが提案されている(特許文献2)。   For example, a sensor that uses a thin film of rare earth metal such as yttrium (Y) or lanthanum (La) as a hydrogen detection film has been proposed (Patent Document 2).

この提案においては、希土類金属が水素に暴露される際に生じる物理的性質の変化が水素の検出に利用されている。希土類金属(M)自身はプロトン(H)と反応してMHxとなるため、その抵抗値が変化する。この抵抗値の変化を検出することにより、水素ガス濃度を検出できる。しかし、希土類金属は、水素と共存する窒素、酸素、アンモニア、炭化水素等の非水素成分により有害な影響を受ける。この影響を防止するため、このセンサは、希土類金属膜の表面に水素透過性のあるパラジウム(Pd)、白金(Pt)或いはそれらの金属からなる保護膜で被覆されている。 In this proposal, changes in physical properties that occur when a rare earth metal is exposed to hydrogen are used to detect hydrogen. Since the rare earth metal (M) itself reacts with protons (H + ) to become MHx, its resistance value changes. By detecting this change in resistance value, the hydrogen gas concentration can be detected. However, rare earth metals are adversely affected by non-hydrogen components such as nitrogen, oxygen, ammonia, and hydrocarbons that coexist with hydrogen. In order to prevent this influence, this sensor is covered with a protective film made of palladium (Pd), platinum (Pt) or a metal having hydrogen permeability on the surface of the rare earth metal film.

図11は、この水素センサの一例を示す断面図である。図11中、200は水素センサで、21は基板である。基板21の上面に希土類金属からなる水素の検知膜23を形成し、更に検知膜23の上面に、保護膜26が形成してある。前記保護膜26は、多数の水素透過性金属粒子27をマトリックスであるセラミックス材料25の中に略均一に分散してなる。電極29と検知膜23との電気的接続は、保護膜26内に分散された多数の水素透過性金属粒子27相互の接触による導通を介して達成される。該発明の水素センサは、水素ガスに対する選択性が高く、希土類金属で形成された検知膜のセンサとしての性能の非水素ガスによる低下が抑制され、耐久性に優れている。しかしながら、この水素センサにおいても、抵抗値が安定するまで一定時間を要するため、ヒステリシス特性によるセンサ精度の低下が多少みられる。図9はこの水素センサ素子の、水素ガス濃度と抵抗値との変化を示すグラフである。水素センサ素子の抵抗値は水素ガス濃度を0→4%まで上昇させる場合と、4→0%まで下降させる場合において異なる値を示しており、多少ヒステリシス特性によるセンサ精度の低下を生じている。   FIG. 11 is a cross-sectional view showing an example of this hydrogen sensor. In FIG. 11, 200 is a hydrogen sensor and 21 is a substrate. A hydrogen detection film 23 made of a rare earth metal is formed on the upper surface of the substrate 21, and a protective film 26 is further formed on the upper surface of the detection film 23. The protective film 26 is formed by dispersing a large number of hydrogen permeable metal particles 27 substantially uniformly in a ceramic material 25 as a matrix. The electrical connection between the electrode 29 and the detection film 23 is achieved through conduction through contact between a number of hydrogen permeable metal particles 27 dispersed in the protective film 26. The hydrogen sensor of the present invention has high selectivity to hydrogen gas, suppresses a decrease in performance as a sensor of a sensing film formed of a rare earth metal due to non-hydrogen gas, and is excellent in durability. However, even in this hydrogen sensor, since a certain time is required until the resistance value is stabilized, there is a slight decrease in sensor accuracy due to hysteresis characteristics. FIG. 9 is a graph showing changes in the hydrogen gas concentration and the resistance value of this hydrogen sensor element. The resistance value of the hydrogen sensor element shows a different value when the hydrogen gas concentration is increased from 0 to 4% and when the hydrogen gas concentration is decreased from 4 to 0%, and the sensor accuracy slightly decreases due to hysteresis characteristics.

特開2005−164584号公報JP 2005-164484 A 特開2008−082972号公報Japanese Patent Application Laid-Open No. 2008-082972

本発明は上記事情に鑑みなされたもので、その目的とするところは、ヒステリシス特性によるセンサ精度の低下を減少させる水素センサであって、熱ストレス等による割れなどの不具合が生じにくく、電極と検知膜との間で金属が相互拡散しない耐久性が高い水素センサを提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a hydrogen sensor that reduces a decrease in sensor accuracy due to hysteresis characteristics. An object of the present invention is to provide a highly durable hydrogen sensor in which metal does not interdiffuse with a membrane.

本願発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、窒化タンタル(TaN)からなるセラミックス層内に、柱状のPd粒子をその軸心をセラミック層の厚さ方向に配向させてセラミックス層内に分散させる検知膜を用いることによって、別途保護膜を設けなくても検知膜が非水素成分の影響を受けることがなく、また、ヒステリシス特性による水素センサの精度低下を減少できることを知得し、本発明を完成するに到った。   As a result of intensive research to solve the above-mentioned problems, the inventors of the present application have aligned columnar Pd particles in the thickness direction of the ceramic layer in a ceramic layer made of tantalum nitride (TaN). It is known that by using a sensing film dispersed in the ceramic layer, the sensing film is not affected by non-hydrogen components even if a separate protective film is not provided, and the decrease in accuracy of the hydrogen sensor due to hysteresis characteristics can be reduced. As a result, the present invention has been completed.

上記課題を解決する本発明は以下に記載するものである。
〔1〕 基板と、
前記基板の一面に積層してなる検知膜であって、TaNからなるセラミックス層と、前記セラミックス層の厚さ方向にその軸心を配向させてセラミックス層内に分散してなる柱状のPd粒子と、からなる検知膜と、
前記検知膜の表面に所定間隔離れて形成してなる1対の電極と、
を有する水素センサ。
〔2〕 検知膜の厚さが10〜100nmである〔1〕に記載の水素センサ。
〔3〕 検知膜中にPd粒子が20〜70質量%含有されてなる〔1〕に記載の水素センサ。
〔4〕 基板と検知膜との間に、TaNからなるバッファ層を有する〔1〕に記載の水素センサ。
〔5〕 PdとTaとをターゲットとして、アルゴンガスと窒素ガスとの雰囲気下で高周波マグネトロンスパッタリング装置を用いて、基板面に検知膜を形成し、次いでアルゴンガス雰囲気下でAuをターゲットとしてスパッタすることにより、前記検知膜面に1対の金電極を形成することを特徴とする〔1〕に記載の水素センサの製造方法。
〔6〕 Taをターゲットとして、アルゴンガスと窒素ガスとの雰囲気下で高周波マグネトロンスパッタリング装置を用いて基板面にTaNからなるバッファ層を形成し、次いでPdとTaとをターゲットとしてアルゴンガスと窒素ガスとの雰囲気下でスパッタすることにより前記バッファ層の表面に検知膜を形成し、その後アルゴンガス雰囲気下でAuをターゲットとしてスパッタすることにより、前記検知膜面に1対の金電極を形成することを特徴とする〔4〕に記載の水素センサの製造方法。
The present invention for solving the above problems is described below.
[1] a substrate;
A sensing film laminated on one surface of the substrate, comprising a ceramic layer made of TaN, and columnar Pd particles dispersed in the ceramic layer with its axis oriented in the thickness direction of the ceramic layer; A sensing membrane comprising,
A pair of electrodes formed on the surface of the detection film at a predetermined interval;
A hydrogen sensor.
[2] The hydrogen sensor according to [1], wherein the thickness of the detection film is 10 to 100 nm.
[3] The hydrogen sensor according to [1], wherein the detection film contains 20 to 70% by mass of Pd particles.
[4] The hydrogen sensor according to [1], which has a buffer layer made of TaN between the substrate and the detection film.
[5] Using Pd and Ta as a target, a detection film is formed on the substrate surface using a high-frequency magnetron sputtering apparatus in an atmosphere of argon gas and nitrogen gas, and then sputtered using Au as a target in an argon gas atmosphere Thereby, a pair of gold electrodes is formed on the surface of the detection film, The method for producing a hydrogen sensor according to [1].
[6] Using Ta as a target, a buffer layer made of TaN is formed on the substrate surface using a high-frequency magnetron sputtering apparatus in an atmosphere of argon gas and nitrogen gas, and then argon gas and nitrogen gas are used with Pd and Ta as targets. And forming a pair of gold electrodes on the surface of the detection film by sputtering with Au as a target in an argon gas atmosphere. [4] The method for producing a hydrogen sensor according to [4].

本発明の水素センサは、単層膜から構成され、別途の保護膜を有しない。そのため、構造が簡単で製造しやすい。また、ヒステリシス特性の改善によりセンサ精度の向上を図ることができる。   The hydrogen sensor of the present invention is composed of a single layer film and does not have a separate protective film. Therefore, the structure is simple and easy to manufacture. Further, the sensor accuracy can be improved by improving the hysteresis characteristics.

本発明の水素センサの一例を示す概念図である。It is a conceptual diagram which shows an example of the hydrogen sensor of this invention. 本発明の水素センサを構成する検知膜の一例を表すTEMによる図面代用写真である。It is a drawing substitute photograph by TEM showing an example of the detection film | membrane which comprises the hydrogen sensor of this invention. 本発明の水素センサの一例のヒステリシス特性を示す閉曲線である(実施例1)。It is a closed curve which shows the hysteresis characteristic of an example of the hydrogen sensor of this invention (Example 1). 本発明の水素センサを構成する検知膜の一例を表すTEMによる図面代用写真である。It is a drawing substitute photograph by TEM showing an example of the detection film | membrane which comprises the hydrogen sensor of this invention. 本発明の水素センサの一例の水素ガス濃度に対する抵抗値の変化を示すグラフである(実施例2)。It is a graph which shows the change of the resistance value with respect to the hydrogen gas concentration of an example of the hydrogen sensor of this invention (Example 2). 本発明の水素センサの一例のヒステリシス特性を示す閉曲線である(実施例2)。It is a closed curve which shows the hysteresis characteristic of an example of the hydrogen sensor of this invention (Example 2). 本発明の水素センサを構成する検知膜の他の一例を表すTEMによる図面代用写真である。It is a drawing substitute photograph by TEM showing another example of the detection film | membrane which comprises the hydrogen sensor of this invention. 水素センサの水素ガス濃度に対する抵抗値の変化の一例を示すグラフである(比較例2)。It is a graph which shows an example of the change of the resistance value with respect to the hydrogen gas concentration of a hydrogen sensor (comparative example 2). 従来の水素センサの一例の水素ガス濃度に対する抵抗値の変化を示すグラフである(比較例1)。It is a graph which shows the change of the resistance value with respect to the hydrogen gas concentration of an example of the conventional hydrogen sensor (comparative example 1). 従来の水素センサの一例のヒステリシス特性を示す閉曲線である(比較例1)。It is a closed curve which shows the hysteresis characteristic of an example of the conventional hydrogen sensor (comparative example 1). 従来の水素センサの一例を示す概念図である(比較例1)。It is a conceptual diagram which shows an example of the conventional hydrogen sensor (comparative example 1).

(水素センサ素子の構造)
図1は、本発明の水素センサの一例を示す概念図である。
図1中、1は基板で、上面にはTaNからなるバッファ層3が形成される。バッファ層3の上面には、検知膜6が形成される。この検知膜6は、TaNからなるセラミックス層5と、前記セラミックス層の厚さ方向にその軸心を配向させてセラミックス層内に分散してなる柱状のPd粒子7とからなる。前記検知膜6上には、両端側に1対の電極9が平行に形成される。電極9は、検知膜6にのみ接して形成される。
(Structure of hydrogen sensor element)
FIG. 1 is a conceptual diagram showing an example of the hydrogen sensor of the present invention.
In FIG. 1, 1 is a substrate, and a buffer layer 3 made of TaN is formed on the upper surface. A detection film 6 is formed on the upper surface of the buffer layer 3. The detection film 6 includes a ceramic layer 5 made of TaN, and columnar Pd particles 7 having an axis oriented in the thickness direction of the ceramic layer and dispersed in the ceramic layer. On the detection film 6, a pair of electrodes 9 are formed in parallel on both ends. The electrode 9 is formed in contact with only the detection film 6.

(水素センサ素子の製造方法)
本発明の水素センサは、例えば、以下の方法により製造される。最初に基板の少なくとも片面に気相成長法又はスパッタリング法によりバッファ層を形成させる。バッファ層の形成は、Taをターゲットとして、アルゴンガスと窒素ガスとの雰囲気下で、公知の高周波マグネトロンスパッタリング装置を用いて行う。なお、バッファ層の形成は必須ではない。次いで、該バッファ層の上に気相成長法又はスパッタリング法により検知膜を形成させる。バッファ層を形成させない場合は基板の上に気相成長法又はスパッタリング法により検知膜を形成させる。検知膜の形成はPdとTaとをターゲットとして、アルゴンガスと窒素ガスとの雰囲気下で公知の高周波マグネトロンスパッタリング装置を用いて行う。その後、検知膜上に気相成長法又はスパッタリング法により電極を形成させる。電極の形成は、例えばAuをターゲットとして、アルゴンガス雰囲気下で公知の高周波マグネトロンスパッタリング装置を用いて行う。
(Method for manufacturing hydrogen sensor element)
The hydrogen sensor of the present invention is manufactured, for example, by the following method. First, a buffer layer is formed on at least one surface of the substrate by vapor deposition or sputtering. The buffer layer is formed by using a known high-frequency magnetron sputtering apparatus with Ta as a target in an atmosphere of argon gas and nitrogen gas. The formation of the buffer layer is not essential. Next, a detection film is formed on the buffer layer by vapor deposition or sputtering. In the case where the buffer layer is not formed, a detection film is formed on the substrate by vapor deposition or sputtering. The detection film is formed using a known high-frequency magnetron sputtering apparatus in an atmosphere of argon gas and nitrogen gas with Pd and Ta as targets. Thereafter, an electrode is formed on the detection film by vapor deposition or sputtering. The electrodes are formed using, for example, a known high-frequency magnetron sputtering apparatus in an argon gas atmosphere using Au as a target.

(基板)
基板には、サファイア、酸化亜鉛(ZnO)、酸化マグネシウム(MgO)等の単結晶板、ガラス板、セラミックス板等の絶縁性板を用いることができる。基板の下面には、金属抵抗体からなる加熱ヒーターが形成されていてもよい。加熱ヒーターは、白金、酸化ルテニウム、銀−パラジウム合金等の薄膜で形成される薄膜抵抗体が好ましい。加熱ヒーターは、基板の下面に所定のパターンで形成される。
(substrate)
As the substrate, a single crystal plate such as sapphire, zinc oxide (ZnO), magnesium oxide (MgO), or an insulating plate such as a glass plate or a ceramic plate can be used. A heater made of a metal resistor may be formed on the lower surface of the substrate. The heater is preferably a thin film resistor formed of a thin film of platinum, ruthenium oxide, silver-palladium alloy or the like. The heater is formed in a predetermined pattern on the lower surface of the substrate.

(バッファ層)
基板と検知膜の間にはTaNからなるバッファ層を形成させることが好ましい。バッファ層の介在は、基板材質とセラミック層との格子定数の違いにより生じる膜ストレスを緩和させ、検知膜の耐久性を向上させる。バッファ層を介在させる場合、その厚さは10〜200nmで、20〜100nmが好ましい。10nm未満であると検知膜の耐久性向上効果が殆ど見られない。200nmを超えると製造コストがかかる。
(Buffer layer)
It is preferable to form a buffer layer made of TaN between the substrate and the detection film. The interposition of the buffer layer alleviates the film stress caused by the difference in lattice constant between the substrate material and the ceramic layer, and improves the durability of the detection film. When a buffer layer is interposed, the thickness is 10 to 200 nm, and preferably 20 to 100 nm. If it is less than 10 nm, the effect of improving the durability of the detection film is hardly observed. If it exceeds 200 nm, a manufacturing cost is required.

(検知膜)
検知膜はセラミック層とそのセラミック層の厚さ方向に軸心を配向させてセラミック層内に分散してなる柱状のPd粒子とで構成される。検知膜中のセラミック層はTaNを用いる。この構造により検知膜は、保護膜等を有さない単層膜により、水素濃度の検出が可能となり、ヒステリシス特性によるセンサ精度の低下を減少させることが出来る。検知膜の膜厚は10〜100nmが好ましい。この膜厚が10nm未満の場合、検知膜の強度が不足する。一方、膜厚が100nmを超えると、検知膜の抵抗値自体は大きく変わらないが、検知膜容量の増加に伴う応答性の低下や感度の低下、製造コストの上昇などを招く。
(Detection membrane)
The sensing film is composed of a ceramic layer and columnar Pd particles that are dispersed in the ceramic layer with the axial center oriented in the thickness direction of the ceramic layer. TaN is used for the ceramic layer in the detection film. With this structure, the detection film can detect the hydrogen concentration by a single-layer film having no protective film or the like, and can reduce a decrease in sensor accuracy due to hysteresis characteristics. The thickness of the detection film is preferably 10 to 100 nm. When this film thickness is less than 10 nm, the strength of the detection film is insufficient. On the other hand, when the film thickness exceeds 100 nm, the resistance value of the detection film itself does not change greatly, but it causes a decrease in responsiveness, a decrease in sensitivity, an increase in manufacturing cost, etc. due to an increase in the detection film capacity.

検知膜中のPd粒子含有量は20〜70質量%が好ましく、20〜35質量%又は45〜70質量%がより好ましい。Pd粒子の含有量が20質量%未満であると、電極と検知膜との電気的接続が不十分になる。一方、含有量が70質量%を超えると、感度の低下を招く。更に、Pd粒子の含有量が70質量%を超える検知膜は、その膜厚を薄くすると検知膜の機械的強度が不十分となる。このため、膜厚が10〜100nmの検知膜を製造することが困難となる。   The Pd particle content in the detection film is preferably 20 to 70 mass%, more preferably 20 to 35 mass% or 45 to 70 mass%. When the content of the Pd particles is less than 20% by mass, the electrical connection between the electrode and the detection film becomes insufficient. On the other hand, when the content exceeds 70% by mass, the sensitivity is lowered. Furthermore, if the thickness of the detection film in which the content of Pd particles exceeds 70% by mass is reduced, the mechanical strength of the detection film becomes insufficient. For this reason, it becomes difficult to manufacture a detection film having a thickness of 10 to 100 nm.

検知膜は水素ガスの接触によりその抵抗値が変動する。本発明においては、検知膜のPd粒子含有量によってその抵抗値変動の態様が異なる。Pd粒子含有量が少ない場合は水素ガスの接触により抵抗値は低下する、即ち負特性を示す。一方、Pd粒子含有量が多い場合には水素ガスの接触により抵抗値は上昇する、即ち正特性を示す。この負特性と正特性との変曲点は通常はPd粒子含有量35〜45質量%の範囲にある。この変曲点はPd粒子径や検知膜の厚さにより異なるが、実験により容易に確認できる。   The resistance value of the detection film varies depending on the contact of hydrogen gas. In the present invention, the mode of the resistance value variation differs depending on the Pd particle content of the detection film. When the Pd particle content is low, the resistance value decreases due to contact with hydrogen gas, that is, it exhibits a negative characteristic. On the other hand, when the content of Pd particles is large, the resistance value increases due to contact with hydrogen gas, that is, exhibits positive characteristics. The inflection point between the negative characteristic and the positive characteristic is usually in the range of 35 to 45% by mass of the Pd particle content. This inflection point varies depending on the Pd particle diameter and the thickness of the detection film, but can be easily confirmed by experiments.

図5に後述する実施例2の水素センサに関する水素ガス濃度―抵抗値変化の特性を示す。図5は素子温度150℃で水素ガス濃度を0→4%まで変化させる場合と、4→0%まで変化させる場合の素子抵抗値を示している。図5の場合における検知膜のPd粒子含有量は20質量%である。このセンサ素子の特性は、従来のセンサ素子の特性(正特性)と異なり、水素ガス濃度が上昇するにつれ、抵抗値は負に変化(負特性)する。   FIG. 5 shows the hydrogen gas concentration-resistance value change characteristic for the hydrogen sensor of Example 2 described later. FIG. 5 shows the element resistance values when the hydrogen gas concentration is changed from 0 to 4% at the element temperature of 150 ° C. and from 4 to 0%. The Pd particle content of the detection film in the case of FIG. 5 is 20% by mass. The characteristic of this sensor element is different from the characteristic (positive characteristic) of the conventional sensor element, and the resistance value changes to negative (negative characteristic) as the hydrogen gas concentration increases.

Pd粒子はセラミック層の厚さ方向にその軸心を配向させてセラミック層内に分散してなる柱状のPd粒子である。Pd粒子の大きさは長手方向において1〜10nmで、2〜6nmが好ましい。且つ、検知膜の厚さよりも小さい。Pd粒子の幅方向の大きさは1〜5nmで、2〜4nmが好ましい。   The Pd particles are columnar Pd particles that are dispersed in the ceramic layer with the axial center oriented in the thickness direction of the ceramic layer. The size of the Pd particles is 1 to 10 nm in the longitudinal direction, and preferably 2 to 6 nm. And it is smaller than the thickness of the detection film. The size of the Pd particles in the width direction is 1 to 5 nm, preferably 2 to 4 nm.

TaN―Pdからなる検知膜は、前記基材又はバッファ層の上にTaNとPd粒子を同時に気相成長させる方法、或いはスパッタリングする方法により形成させることができる。成膜材料にTaを用い、Pdと共にアルゴンと窒素の混合ガス雰囲気下で形成させる。検知膜は、例えば、Taターゲットの上にTaターゲットよりも小面積のPdチップを載置する複合ターゲットを用い、前記ターゲットの上方に基板を取付けた状態で、複合ターゲットをスパッタすることにより形成させる。スパッタはアルゴンと窒素の混合ガス雰囲気で行う。この方法により、PdとTaとの混合物(分散物)として、検知膜を形成させることができる。また、Taターゲット及びPdターゲットを用いる2元同時スパッタでも、前記混合ガス雰囲気で行うことにより検知膜の形成が可能である。Pd粒子の軸方向を厚さ方向に一致させるにはセラミックス材料及び水素透過金属の界面エネルギーを考慮する必要があり、組み合わせる材料によって界面エネルギーは異なる。本発明者は、TaN−Pdの組み合わせによりPd粒子を軸方向に柱状に分散させることができることを見出した。   The detection film made of TaN—Pd can be formed on the substrate or the buffer layer by a method in which TaN and Pd particles are simultaneously vapor-grown or by a sputtering method. Ta is used as a film forming material, and is formed in a mixed gas atmosphere of argon and nitrogen together with Pd. The detection film is formed, for example, by sputtering a composite target using a composite target in which a Pd chip having a smaller area than the Ta target is placed on the Ta target and a substrate is attached above the target. . Sputtering is performed in a mixed gas atmosphere of argon and nitrogen. By this method, the detection film can be formed as a mixture (dispersion) of Pd and Ta. Further, even in the binary simultaneous sputtering using a Ta target and a Pd target, the detection film can be formed by performing in the mixed gas atmosphere. In order to make the axial direction of the Pd particles coincide with the thickness direction, it is necessary to consider the interfacial energy of the ceramic material and the hydrogen permeable metal, and the interfacial energy differs depending on the material to be combined. The present inventor has found that Pd particles can be dispersed in a columnar shape in the axial direction by a combination of TaN—Pd.

(電極)
電極には、金、白金、パラジウム、チタン、アルミニウム、銅、銀等の導電性材料を用いることができ、金、銅、白金が好ましく、金がより好ましい。電極の形成方法としては、気相成長法或いはスパッタリング法を用いることができる。電極の厚みは5〜1000nmが好ましく、50〜300nmがより好ましい。厚みが5nm未満の場合には電極の形成自体が困難であり、1000nmを超える場合には製造コストが高くなる傾向がある。
(electrode)
For the electrode, a conductive material such as gold, platinum, palladium, titanium, aluminum, copper, or silver can be used. Gold, copper, or platinum is preferable, and gold is more preferable. As a method for forming the electrode, a vapor deposition method or a sputtering method can be used. The thickness of the electrode is preferably 5 to 1000 nm, more preferably 50 to 300 nm. When the thickness is less than 5 nm, it is difficult to form the electrode itself, and when it exceeds 1000 nm, the manufacturing cost tends to increase.

(実施例1)
高周波マグネトロンスパッタリング装置を用い、図1に示す水素センサを作製した。
先ず、高周波マグネトロンスパッタリング装置内に、基板としてサファイア基板を用い(幅25.4mm、長さ25.4mm、厚さ0.33mm)、基板上にメタルマスクを配置した。PdとTaとをターゲットとを配置し、装置内を4×10−5Pa程度まで減圧した。次いで、装置内にアルゴンガスと窒素ガス(体積比40:60Pa)を導入し、圧力9×10−1Pa、室温、出力Ta;200Wでスパッタリングを1分間行った。その結果、基板上にTaNからなるバッファ層が形成された。形成されたバッファ層の厚みは20nmであった。
Example 1
A hydrogen sensor shown in FIG. 1 was produced using a high-frequency magnetron sputtering apparatus.
First, a sapphire substrate was used as a substrate (width 25.4 mm, length 25.4 mm, thickness 0.33 mm) in a high-frequency magnetron sputtering apparatus, and a metal mask was placed on the substrate. A Pd and Ta target was placed, and the inside of the apparatus was decompressed to about 4 × 10 −5 Pa. Next, argon gas and nitrogen gas (volume ratio 40:60 Pa) were introduced into the apparatus, and sputtering was performed for 1 minute at a pressure of 9 × 10 −1 Pa, room temperature, and output Ta; 200 W. As a result, a buffer layer made of TaN was formed on the substrate. The formed buffer layer had a thickness of 20 nm.

次に、装置内にアルゴンガスと窒素ガス(体積比40:60Pa)を導入し、圧力9×10−1Pa、室温、出力Ta;160W、Pd;35Wでスパッタリングを1.5分間行った。その結果、バッファ層の上にTaN−Pdからなる検知膜が形成された。形成された検知膜の厚みは60nmであった。 Next, argon gas and nitrogen gas (volume ratio 40:60 Pa) were introduced into the apparatus, and sputtering was performed for 1.5 minutes at a pressure of 9 × 10 −1 Pa, room temperature, output Ta; 160 W, Pd; As a result, a detection film made of TaN—Pd was formed on the buffer layer. The thickness of the formed detection film was 60 nm.

図2に検知膜のTEM写真を示す。形成された検知膜は、TaNマトリックス内にPdが柱状に成長する組織であった。また、検知膜の組成をEDXにて分析した結果、Pdが48質量%、TaNが52質量%であった。なお、EDX分析を行う際は膜厚を1μmと厚くした試料で測定した。   FIG. 2 shows a TEM photograph of the detection film. The formed detection film had a structure in which Pd grew in a columnar shape in the TaN matrix. Moreover, as a result of analyzing the composition of a detection film | membrane by EDX, Pd was 48 mass% and TaN was 52 mass%. In addition, when performing EDX analysis, it measured with the sample which made the film thickness as thick as 1 micrometer.

その後、装置内にアルゴンガスを導入し、圧力9×10−1Pa、室温、出力Au;100Wでスパッタリングを3分間行った。その結果、検知膜上にAuからなる素子電極が形成される水素センサ素子を得た。形成された素子電極の厚みは200nmであった。 Thereafter, argon gas was introduced into the apparatus, and sputtering was performed for 3 minutes at a pressure of 9 × 10 −1 Pa, room temperature, output Au; 100 W. As a result, a hydrogen sensor element in which an element electrode made of Au was formed on the detection film was obtained. The thickness of the formed device electrode was 200 nm.

次に実施例1で得た水素センサ素子のヒステリシス特性を調査した。この水素センサ素子を用いて、水素濃度が0〜4%の混合ガス(窒素ガスとの混合)について、素子抵抗値を測定した。素子抵抗値の測定は、水素ガス濃度を0→4%まで上昇させる場合と、4→0%まで下降させる場合のそれぞれについて行った。なお、測定中は水素センサの温度は150℃に保った。この素子抵抗値から水素濃度換算値を算出した。その結果を図3に示す。水素ガス濃度を上昇させる場合と下降させる場合との差は最大で7%であった。   Next, the hysteresis characteristics of the hydrogen sensor element obtained in Example 1 were investigated. Using this hydrogen sensor element, the element resistance value was measured for a mixed gas (mixed with nitrogen gas) having a hydrogen concentration of 0 to 4%. The element resistance value was measured for each of a case where the hydrogen gas concentration was increased from 0 to 4% and a case where the hydrogen gas concentration was decreased from 4 to 0%. During the measurement, the temperature of the hydrogen sensor was kept at 150 ° C. A hydrogen concentration conversion value was calculated from the element resistance value. The result is shown in FIG. The difference between when the hydrogen gas concentration was raised and when it was lowered was 7% at the maximum.

(実施例2)
実施例1に示した条件のうち、検知膜成膜時における高周波マグネトロンスパッタリング装置の出力をTa;180W、Pd;20Wに変更し、他の条件は変更せずに検知膜を形成させた。形成させた検知膜の厚みは50nmであった。
図4に検知膜のTEM写真を示す。形成された検知膜は、実施例1と同様、TaNマトリックス内にPdが柱状に成長する組織であった。また、検知膜の組成をEDXにて分析した結果、Pdが20質量%、TaNが80質量%であった。
(Example 2)
Among the conditions shown in Example 1, the output of the high-frequency magnetron sputtering apparatus at the time of forming the detection film was changed to Ta; 180 W, Pd; 20 W, and the detection film was formed without changing other conditions. The thickness of the formed detection film was 50 nm.
FIG. 4 shows a TEM photograph of the detection film. The formed detection film had a structure in which Pd grew in a columnar shape in the TaN matrix, as in Example 1. Moreover, as a result of analyzing the composition of a detection film | membrane by EDX, Pd was 20 mass% and TaN was 80 mass%.

次に実施例1と同様に水素センサ素子のヒステリシス特性を調査した。その結果を図6に示す。水素ガス濃度を上昇させる場合と下降させる場合との差は最大で7%であった。
なお、図5に水素ガス濃度―抵抗値変化の特性を示す。図5は素子温度150℃雰囲気ガスで水素ガス濃度を0→4%まで変化させる場合と、4→0%まで変化させる場合の素子抵抗値を示している。本例の場合は、従来の特性(正特性)と異なり、水素ガス濃度が上昇するにつれ、素子抵抗値は負に変化(負特性)した。
Next, as in Example 1, the hysteresis characteristics of the hydrogen sensor element were investigated. The result is shown in FIG. The difference between when the hydrogen gas concentration was raised and when it was lowered was 7% at the maximum.
FIG. 5 shows the characteristics of hydrogen gas concentration-resistance value change. FIG. 5 shows element resistance values when the hydrogen gas concentration is changed from 0 to 4% and the element temperature is changed from 4 to 0% with the element temperature of 150 ° C. atmosphere gas. In the case of this example, unlike the conventional characteristic (positive characteristic), the element resistance value changed to negative (negative characteristic) as the hydrogen gas concentration increased.

(実施例3)
実施例1に示した条件のうち、検知膜成膜時における高周波マグネトロンスパッタリング装置の出力をTa;200W、Pd;70Wに変更し、他の条件は変更せずに検知膜を形成させた。形成させた検知膜の厚みは50nmであった。
(Example 3)
Among the conditions shown in Example 1, the output of the high-frequency magnetron sputtering apparatus at the time of forming the detection film was changed to Ta; 200 W, Pd; 70 W, and the detection film was formed without changing other conditions. The thickness of the formed detection film was 50 nm.

図7に検知膜のTEM写真を示す。成膜された検知膜は、実施例1及び2と同様、TaNマトリックス内にPdが柱状に成長する組織であった。また、検知膜の組成をEDXにて分析した結果、Pdが65質量%、TaNが35質量%であった。   FIG. 7 shows a TEM photograph of the detection film. The formed detection film was a structure in which Pd grew in a columnar shape in the TaN matrix, as in Examples 1 and 2. Moreover, as a result of analyzing the composition of a detection film | membrane by EDX, Pd was 65 mass% and TaN was 35 mass%.

(比較例1)
高周波マグネトロンスパッタリング装置を用い、基板上に、図11に示す水素センサ素子を作製した。先ず、高周波マグネトロンスパッタリング装置を用いて、基板上にYからなる検知膜を形成させた。形成させた検知膜の厚みは60nmであった。次に、実施例1に準じる方法により、検知膜上にTaN−Pdからなる保護膜を形成させた。形成させた保護膜の厚みは20nmであった。その後、実施例1と同様に素子電極を形成させ、水素センサ素子を得た。
(Comparative Example 1)
A hydrogen sensor element shown in FIG. 11 was produced on a substrate using a high-frequency magnetron sputtering apparatus. First, a detection film made of Y was formed on a substrate using a high-frequency magnetron sputtering apparatus. The thickness of the formed detection film was 60 nm. Next, a protective film made of TaN—Pd was formed on the detection film by a method according to Example 1. The thickness of the protective film formed was 20 nm. Thereafter, an element electrode was formed in the same manner as in Example 1 to obtain a hydrogen sensor element.

次に実施例1と同様に水素センサ素子のヒステリシス特性を調査した。その結果を図10に示す。水素ガス濃度を上昇させる場合と下降させる場合との差は最大で18%であった。   Next, as in Example 1, the hysteresis characteristics of the hydrogen sensor element were investigated. The result is shown in FIG. The difference between the case where the hydrogen gas concentration was raised and the case where it was lowered was 18% at the maximum.

(比較例2)
高周波マグネトロンスパッタリング装置を用い、基板上に、SiN―Pdからなる検知膜を形成させた。形成させた検知膜の厚みは20nmであった。その後、実施例1と同様の方法により素子電極を形成させ、水素センサ素子を得た。成膜条件は出力SiN;200W、Pd;70Wで行った。この水素センサ素子中のPd粒子は柱状ではなく粒状となっていた。
(Comparative Example 2)
A detection film made of SiN—Pd was formed on the substrate using a high-frequency magnetron sputtering apparatus. The thickness of the formed detection film was 20 nm. Thereafter, an element electrode was formed by the same method as in Example 1 to obtain a hydrogen sensor element. Film formation conditions were as follows: output SiN; 200 W, Pd; 70 W. The Pd particles in the hydrogen sensor element were not columnar but granular.

次に実施例1と同様に水素センサ素子のヒステリシス特性を調査した。水素ガス濃度―抵抗値変化特性を調査した結果を図8に示す。この場合、水素ガス濃度が変化しても抵抗変化が殆ど認められず、センサとしての機能を果していないことが分った。このことより、ヒステリシス特性はPd形状が大きく影響していることが示唆された。   Next, as in Example 1, the hysteresis characteristics of the hydrogen sensor element were investigated. FIG. 8 shows the results of investigating the hydrogen gas concentration-resistance value change characteristics. In this case, it was found that even when the hydrogen gas concentration was changed, almost no resistance change was observed, and the sensor function was not achieved. This suggests that the Pd shape has a large influence on the hysteresis characteristics.

本発明の水素センサは、燃料電池自動車、家庭用燃料電池等で用いられる水素ガス漏れ検知用センサ、水素ガス濃度制御用センサや、携帯用又は定置用水素ガス警報器、水素ガス濃度計等に利用できる。   The hydrogen sensor of the present invention is used in hydrogen gas leak detection sensors, hydrogen gas concentration control sensors, portable or stationary hydrogen gas alarms, hydrogen gas concentration meters, etc. used in fuel cell vehicles, household fuel cells, etc. Available.

100 本発明の水素センサ
1 基板
3 TaNからなるバッファ層
5 TaNからなるセラミック層
6 検知膜
7 柱状のPd粒子
9 電極
200 従来の水素センサ
21 基板
23 検知膜
25 セラミック層
26 保護膜
27 粒状のPd粒子
29 電極
100 Hydrogen sensor of the present invention 1 Substrate 3 Buffer layer made of TaN 5 Ceramic layer made of TaN 6 Detection film 7 Columnar Pd particles 9 Electrode 200 Conventional hydrogen sensor 21 Substrate 23 Detection film 25 Ceramic layer 26 Protective film 27 Granular Pd Particle 29 electrode

Claims (6)

基板と、
前記基板の一面に積層してなる検知膜であって、TaNからなるセラミックス層と、前記セラミックス層の厚さ方向にその軸心を配向させてセラミックス層内に分散してなる柱状のPd粒子と、からなる検知膜と、
前記検知膜の表面に所定間隔離れて形成してなる1対の電極と、
を有する水素センサ。
A substrate,
A sensing film laminated on one surface of the substrate, comprising a ceramic layer made of TaN, and columnar Pd particles dispersed in the ceramic layer with the axis oriented in the thickness direction of the ceramic layer; A sensing membrane comprising,
A pair of electrodes formed on the surface of the detection film at a predetermined interval;
A hydrogen sensor.
検知膜の厚さが10〜100nmである請求項1に記載の水素センサ。   The hydrogen sensor according to claim 1, wherein the thickness of the detection film is 10 to 100 nm. 検知膜中にPd粒子が20〜70質量%含有されてなる請求項1に記載の水素センサ。   The hydrogen sensor according to claim 1, wherein 20 to 70 mass% of Pd particles are contained in the detection film. 基板と検知膜との間に、TaNからなるバッファ層を有する請求項1に記載の水素センサ。   The hydrogen sensor according to claim 1, further comprising a buffer layer made of TaN between the substrate and the detection film. PdとTaとをターゲットとして、アルゴンガスと窒素ガスとの雰囲気下で高周波マグネトロンスパッタリング装置を用いて、基板面に検知膜を形成し、次いでアルゴンガス雰囲気下でAuをターゲットとしてスパッタすることにより、前記検知膜面に1対の金電極を形成することを特徴とする請求項1に記載の水素センサの製造方法。   By using Pd and Ta as targets and forming a detection film on the substrate surface using a high-frequency magnetron sputtering apparatus in an atmosphere of argon gas and nitrogen gas, and then sputtering using Au as a target in an argon gas atmosphere, The method for manufacturing a hydrogen sensor according to claim 1, wherein a pair of gold electrodes is formed on the detection film surface. Taをターゲットとして、アルゴンガスと窒素ガスとの雰囲気下で高周波マグネトロンスパッタリング装置を用いて基板面にTaNからなるバッファ層を形成し、次いでPdとTaとをターゲットとしてアルゴンガスと窒素ガスとの雰囲気下でスパッタすることにより前記バッファ層の表面に検知膜を形成し、その後アルゴンガス雰囲気下でAuをターゲットとしてスパッタすることにより、前記検知膜面に1対の金電極を形成することを特徴とする請求項4に記載の水素センサの製造方法。   Using Ta as a target, a buffer layer made of TaN is formed on the substrate surface using a high frequency magnetron sputtering apparatus in an atmosphere of argon gas and nitrogen gas, and then an atmosphere of argon gas and nitrogen gas using Pd and Ta as targets. A detection film is formed on the surface of the buffer layer by sputtering under, and then a pair of gold electrodes is formed on the detection film surface by sputtering with Au as a target in an argon gas atmosphere. The method for manufacturing a hydrogen sensor according to claim 4.
JP2009057637A 2009-03-11 2009-03-11 Hydrogen sensor and manufacturing method thereof Active JP5144563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009057637A JP5144563B2 (en) 2009-03-11 2009-03-11 Hydrogen sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009057637A JP5144563B2 (en) 2009-03-11 2009-03-11 Hydrogen sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010210468A JP2010210468A (en) 2010-09-24
JP5144563B2 true JP5144563B2 (en) 2013-02-13

Family

ID=42970796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009057637A Active JP5144563B2 (en) 2009-03-11 2009-03-11 Hydrogen sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5144563B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6387240B2 (en) * 2014-03-31 2018-09-05 国立大学法人岩手大学 Hydrogen sensor
JP6784486B2 (en) * 2015-10-13 2020-11-11 株式会社ミクニ Hydrogen sensor and its manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4323416B2 (en) * 2003-11-11 2009-09-02 国立大学法人東北大学 Hydrogen gas sensor
JP4659481B2 (en) * 2004-02-27 2011-03-30 株式会社ミクニ Hydrogen sensor and manufacturing method thereof
JP5352049B2 (en) * 2006-09-28 2013-11-27 株式会社ミクニ Hydrogen sensor
EP2098855B1 (en) * 2006-12-28 2015-12-09 Mikuni Corp. Hydrogen sensor and method for manufacturing the same
JP5052607B2 (en) * 2007-06-08 2012-10-17 株式会社ミクニ Hydrogen sensor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010210468A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
Jeon et al. Individual Pd nanowire hydrogen sensors fabricated by electron-beam lithography
US8739604B2 (en) Gas sensor and method of making
EP1693667B1 (en) Gas sensor
JP5352049B2 (en) Hydrogen sensor
Aroutiounian Hydrogen detectors
JP4659481B2 (en) Hydrogen sensor and manufacturing method thereof
EP1568991B1 (en) Hydrogen sensor and process for production thereof
US8205482B2 (en) Hydrogen sensor with detection film comprised of rare earth metal particles dispersed in a ceramic
Weber et al. A study of the SnO2· Nb2O5 system for an ethanol vapour sensor: a correlation between microstructure and sensor performance
EP2896962A1 (en) Gas sensor chip
JP5144563B2 (en) Hydrogen sensor and manufacturing method thereof
JP6784486B2 (en) Hydrogen sensor and its manufacturing method
JP4714825B2 (en) Dissolved hydrogen sensor using metal thin film
JP4895741B2 (en) Hydrogen sensor
JP5052607B2 (en) Hydrogen sensor and manufacturing method thereof
Madhi et al. Screen printed ITO–SnO2 nanocomposite films for NO2 detection
JP4002969B2 (en) Combustible gas sensor
JP4328664B2 (en) Chemical biosensor and manufacturing method thereof
WO2009157123A1 (en) Sensor device and method for manufacturing the same
KR100590305B1 (en) Alcohol sensing element and its manufacturing method
JP5176236B2 (en) Hydrogen gas sensor and manufacturing method thereof
JP2004317449A (en) Hydrogen gas sensor
CN101819176A (en) Gas sensor taking cuprous oxide microcrystalline film as sensing material
Shin et al. Thermoelectric gas sensors of different catalyst oxides and heater metals
Lee et al. A New Micro Sensor Array With Porous Tin Oxide Thin Films and Micro-hotplate Dangled by Wires in Air

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5144563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250