JP5143408B2 - 複合酸化物膜形成用塗布剤 - Google Patents

複合酸化物膜形成用塗布剤 Download PDF

Info

Publication number
JP5143408B2
JP5143408B2 JP2006331835A JP2006331835A JP5143408B2 JP 5143408 B2 JP5143408 B2 JP 5143408B2 JP 2006331835 A JP2006331835 A JP 2006331835A JP 2006331835 A JP2006331835 A JP 2006331835A JP 5143408 B2 JP5143408 B2 JP 5143408B2
Authority
JP
Japan
Prior art keywords
composite oxide
oxide film
substrate
perovskite
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006331835A
Other languages
English (en)
Other versions
JP2008143735A (ja
Inventor
忠利 黒住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2006331835A priority Critical patent/JP5143408B2/ja
Publication of JP2008143735A publication Critical patent/JP2008143735A/ja
Application granted granted Critical
Publication of JP5143408B2 publication Critical patent/JP5143408B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、ペロブスカイト型チタン含有複合酸化物膜を形成する複合酸化物膜形成用塗布剤、並びに、そのような塗布剤を用いたペロブスカイト型チタン含有複合酸化物膜の製造方法、そのような製造方法を用いて作製されたペロブスカイト型チタン含有複合酸化物膜を含む複合体、そのような複合体を含む誘電材料及び圧電材料、これらの材料を用いたコンデンサ及び圧電素子、これらの電子部品を備えた電子機器に関する。
一般式ABOで表されるペロブスカイト型の結晶構造を有する複合酸化物、その中でもペロブスカイト型のチタン含有複合酸化物は、誘電性や圧電性、焦電性などの電気特性に優れているため、様々な電子部品の材料に用いられている。例えば、ペロブスカイト型のチタン含有複合酸化物は、その高い誘電性を利用することによって、積層セラミクスコンデンサを始めとする様々なキャパシタや、誘電体フィルタ、誘電体アンテナ、誘電体共振器、誘電体デュプレクサ、キャパシタ、フェイズシフタなどの誘電材料として用いられている。また、ペロブスカイト型のチタン含有複合酸化物は、その圧電性を利用することによって、積層圧電アクチュエータなどの圧電材料として用いられている。さらに、ペロブスカイト型のチタン含有複合酸化物は、様々な分野への応用が試みられている。
また、一般式(A1A21−X)BO(A1,A2は、Ca,Sr,Ba,Pbの中から選ばれる何れかの金属元素を表す。(但し、0≦X≦1))で表されるチタン含有複合酸化物は、AサイトにA1,A2原子、BサイトにTiを含むペロブスカイト型の結晶構造を有している。この場合、A1原子とA2原子の固溶比(組成比)の違いによって、様々な電気特性を示すことが知られている。
例えば、チタン酸バリウム(BaTiO)は、高い誘電率を示す一方で、温度依存性が大きい。そこで、Ca,Sr,Ba,Pbなどのシフターと呼ばれる金属元素でAサイトを一部置換する。これにより得られたペロブスカイト型のチタン含有複合酸化物は、キュリー点を低温側にシフトさせたり、第二相転移点を高温側にシフトさせたりすることができる。さらに、このようなペロブスカイト型のチタン含有複合酸化物を用いたセラミクスコンデンサでは、室温付近での誘電率を高めたり、静電容量の温度依存性をブロード化させたりすることもできる。
このようなチタン含有複合酸化物は、例えば、チタン酸バリウムの粉に、Ca,Sr,Ba,Pbなどの金属元素を含む化合物を添加し、焼成することによって製造することができる。しかしながら、このような製造方法は、厚膜プロセスとなるため、実用的には膜厚が1μm以上のチタン含有複合酸化物膜しか得られない。コンデンサの静電容量は、電極面積と誘電体層の誘電率に比例し、電極間距離に反比例する。したがって、コンデンサの小型化及び大容量化を図るためには、上述したチタン含有複合酸化物膜の比誘電率を高め、膜厚を薄くする必要がある。
また、チタン含有複合酸化物膜の成膜方法としては、MOCVD法や、スパッター法、イオンビーム法などがある。しかしながら、何れの成膜方法も、沸点や気化速度が原料により異なることなど種々の要因により、上述した(A1A21−X)BOで表されるペロブスカイト型のチタン含有複合酸化物膜を製造する場合において、A1,A2原子の組成比を厳密に制御することは困難である。
そこで、塗布法やディップ法などの湿式の薄膜形成方法により基板上にチタン含有複合酸化物膜を形成する方法が提案されている(例えば、特許文献1〜3、非特許文献1,2を参照。)。このような湿式の薄膜形成方法では、複雑で大掛かりな設備を必要とせず、また、複合酸化物膜中の金属組成の割合を制御しやすいといった利点がある。
ところで、非特許文献1に記載の方法では、チタンのアルコキシドが用いられている。しかしながら、チタンのアルコキシドは、水に不安定なため扱いにくい。すなわち、チタンのアルコキシドは、水により加水分解されやすく、複合酸化物膜を成膜する前に酸化チタンとして析出してしまうおそれがある。すなわち、水溶液の状態が維持されない。この場合、金属組成の割合を精密に制御して塗布剤を調製しても、この塗布剤を塗布した基板上に均一組成を有する複合酸化物膜を成膜することは困難である。また、塗布剤を調製する場合、加水分解を起こさない化合物を選別する必要があるため、このような制約によって種々の金属元素を添加することが困難となる。
一方、特許文献1に記載の方法では、チタンのアルコキシドを分解させずにバリウム化合物を溶解させるため、温度とpHの制御を行っている。しかしながら、温度が50〜110℃と高くなるため扱いにくく、安定した成膜もできないため膜厚の制御も難しい。さらに、pHを制御(pH13以上)するのにKOHを用いている。しかしながら、水洗等によりKOHを完全に成膜後の膜から除去することは不可能のため、除去されずに残ったKOHが電気特性に悪影響を与えることになる。一方、特許文献2に記載の方法では、溶剤としてメタノールを用いている。しかしながら、水は含んではならないとしているため扱いにくい。一方、特許文献3に記載の方法では、水溶性チタン化合物を用いたチタン含有複合酸化物の製法が開示されているものの、溶剤として水のみを用いているため、この場合、表面張力が大きく基板上に塗膜することは困難である。一方、非特許文献2に記載の方法では、グローボックス内で行われるため扱いにくい。
特開平5−124817号公報 特開2005−39282号公報 特開2001−322815号公報 Materials Chemistry and Physics, Vol.69, 2001, 166-171 Thin Solid Films, Vol.353, 1999, 144-148
本発明は、このような従来の事情に鑑みて提案されたものであり、ペロブスカイト型チタン含有複合酸化物膜を基体上に均一に成膜することができる複合酸化物膜形成用塗布剤を提供することを目的とする。
並びに、本発明は、そのような塗布剤を用いたペロブスカイト型チタン含有複合酸化物膜の製造方法、そのような製造方法を用いて作製されたペロブスカイト型チタン含有複合酸化物膜を含む複合体、そのような複合体を含む誘電材料及び圧電材料、これらの材料を用いたコンデンサ及び圧電素子、これらの電子部品を備えた電子機器を提供することを目的とする。
本発明は、以下の手段を提供する。
(1) 基体に塗布することにより成膜し、これを焼成することにより、一般式ATiO(Aサイトは、Ca,Sr,Ba又はPbの中から選ばれる少なくとも1種又は2種以上の金属元素を表す。)で表されるペロブスカイト型チタン含有複合酸化物膜を形成する複合酸化物膜形成用塗布剤であって、
前記Aサイトの金属元素を含む化合物として、焼成温度以下で、なお且つ、大気圧下又は減圧下で、蒸発、昇華、熱分解のうちの少なくとも一つの手段で金属の対イオンを除去できる水酸化物又はヒドロキシカルボン酸塩を用い、
リエタノールアミンを配位したチタン化合物と、前記Aサイトの金属元素を含む化合物とを水に溶解させた後、イソプロピルアルコールを加えた水溶液からなり、なお且つ、この水溶液中の金属化合物濃度が、複合酸化物換算で1〜20質量%になるように調製されてなる複合酸化物膜形成用塗布剤。
(2) 更に、界面活性剤を含む前項(1)に記載の複合酸化物膜形成用塗布剤。
(3) 一般式ATiO(Aサイトは、Ca,Sr,Ba又はPbの中から選ばれる少なくとも1種又は2種以上の金属元素を表す。)で表されるペロブスカイト型チタン含有複合酸化物膜の製造方法であって、前項(1)又は(2)に記載の塗布剤を基体上に塗布する塗布工程と、この基体を焼成する焼成工程とを含むペロブスカイト型チタン含有複合酸化物薄膜の製造方法。
(4) 焼成工程の焼成温度が300〜1500℃である前項(3)に記載のペロブスカイト型チタン含有複合酸化物薄膜の製造方法。
(5) 焼成工程の焼成時間が1分〜24時間である前項(3)又は(4)に記載のペロブスカイト型チタン含有複合酸化物薄膜の製造方法。
(6) 焼成工程において、焼成温度300℃以上600℃未満で焼成を行った後に、焼成温度600℃以上1500℃以下で焼成を行う前項(3)に記載の複合酸化物薄膜の製造方法。
(7) 塗布工程と焼成工程との間に、基体上に塗布された塗布剤を乾燥させる乾燥工程を含む前項(3)乃至(6)の何れか一項に記載のペロブスカイト型チタン含有複合酸化物膜の製造方法。
(8) 乾燥工程の乾燥温度が100℃以上300℃未満である前項(7)に記載のペロブスカイト型チタン含有複合酸化物膜の製造方法。
(9) 乾燥工程の乾燥時間が1分〜3時間である前項(8)に記載のペロブスカイト型チタン含有複合酸化物薄膜の製造方法。
(10) チタン含有複合酸化物膜に含まれるTiに対するAサイトの金属元素の組成比が0.98〜1.02である前項(3)乃至(9)の何れか一項に記載のペロブスカイト型チタン含有複合酸化物膜の製造方法。
(11) 基体と、この基体上に前項(3)乃至(10)の何れか一項に記載の方法を用いて形成されたペロブスカイト型チタン含有複合酸化物膜とを備える複合体。
(12) 前項(11)に記載の複合体を含む誘電材料。
(13) 前項(11)に記載の複合体を含む圧電材料。
(14) 前項(12)に記載の誘電材料を含むコンデンサ。
(15) 前項(13)に記載の圧電材料を含む圧電素子。
(16) 前項(14)に記載のコンデンサを含む電子機器。
(17) 前項(15)に記載の圧電素子を含む電子機器。
以上のように、本発明によれば、水に対して安定且つ基体に対する濡れ性も良好な複合酸化物膜形成用塗布剤を得ることができる。したがって、このような複合酸化物膜形成用塗布剤を用いて、ペロブスカイト型チタン含有複合酸化物膜を基体上に均一に成膜することができる。
以下、本発明の実施の形態について図面を参照して詳細に説明する。
なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上、特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
本発明を適用した複合酸化物膜形成用塗布剤は、基体に塗布することにより成膜し、これを焼成することにより、一般式ATiO(Aサイトは、Ca,Sr,Ba又はPbの中から選ばれる少なくとも1種又は2種以上の金属元素を表す。)で表されるペロブスカイト型チタン含有複合酸化物膜を形成するものであり、チタン化合物と、Aサイトの金属元素を含む化合物との水溶液からなることを特徴とするものである。
このうち、チタン化合物については、ヒドロキシカルボン酸、又は、アミノアルコールを配位したチタン化合物を用いることが好ましい。更に、ヒドロキシカルボン酸として、乳酸を用いることが好ましく、アミノアルコールとして、トリエタノールアミンを用いることが好ましい。
このようなチタン化合物は、水に対して安定なため扱いやすく、水により加水分解されることなく、複合酸化物膜を成膜する前に酸化チタンとして析出してしまうおそれもない。また、ヒドロキシカルボン酸やアミノアルコールを配位したチタン化合物は、基体との濡れ性を高めることができる。さらに、ヒドロキシカルボン酸やアミノアルコールを配位したチタン化合物は、酸性からアルカリまで広いpH領域で溶解するため、Aサイトの金属元素を含む化合物も水溶液に容易に溶解させることができる。
また、水溶液中における水の含有量は、後述する化合物を添加した場合も含めて、10〜90質量%であることが好ましい。上述したように、本発明の複合酸化物膜形成用塗布剤では、水に対して安定なため、溶媒として水を10〜90質量%の範囲で用いることができ、基体との濡れ性も良好なものとすることができる。
本発明の複合酸化物膜形成用塗布剤では、水溶液に添加される化合物の溶解性や、基体との濡れ性、成膜性、密着性、乾燥又は焼成後の膜の緻密性などを向上させるために、更に、アンモニア、アミン、アミノアルコール、アルコール、カルボン酸、又はヒドロキシカルボン酸などの化合物を水溶液に添加するのが効果的である。
具体的に、アミンとしては、例えば、モノメチルアミン、モノエチルアミン、ジメチルアミン、ジエチルアミン、トリメチルアミン、トリエチルアミン等のモノアミンや、エチレンジアミンなどを挙げることができる。
アミノアルコールとしては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルエタノールアミン、N−メチルジエタノールアミン、N−プロピルエタノールアミンなどを挙げることができる。
アルコールとしては、例えば、メタノール、エタノール、プロピルアルコール等のアルコール類や、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類などを挙げることができる。
カルボン酸としては、例えば、蟻酸、酢酸、プロピオン酸等のモノカルボン酸や、マロン酸、こはく酸等のジカルボン酸などを挙げることができる。
ヒドロキシカルボン酸としては、例えば、ヒドロキシモノカルボン酸、ヒドロキシジカルボン酸などを挙げることができる。
また、本発明の複合酸化物膜形成用塗布剤では、例えばノンオン性界面活性剤やアニオン性界面活性剤などの界面活性剤を水溶液に添加してもよく、その他にも、アミノ酸や糖類などを水溶液に添加してもよい。
Aサイトの金属元素については、上述したチタン化合物に含まれるチタンと共に複合酸化物を形成するものであればよく、例えばCa、Sr、Baなどのアルカリ土類金属や、Pbなどを挙げることができる。また、これらAサイトの金属元素を含む化合物としては、上述した水溶液に溶解するものであればよく、例えば、上記Aサイトの金属元素を含む水酸化物や、硝酸塩、酢酸塩、ヒドロキシカルボン酸塩、塩化物等を挙げることができる。さらに、上記Aサイトの金属元素を含む化合物の具体例としては、例えば、塩化カルシウムや、硝酸カルシウム、酢酸カルシウム、塩化ストロンチウム、硝酸ストロンチウム、水酸化バリウム、塩化バリウム、硝酸バリウム、酢酸バリウム、硝酸鉛、酢酸鉛などを挙げることができる。その中でも特に、後述する焼成工程における焼成温度以下で、なお且つ、大気圧下又は減圧下で、蒸発、昇華、熱分解のうちの少なくとも一つの手段で金属の対イオンを除去できる水酸化物やヒドロキシカルボン酸塩を用いることが好ましく、例えば、水酸化バリウムや、酢酸バリウム、ギ酸バリウム、酢酸カルシウム、水酸化カルシウム、クエン酸カルシウム、酢酸ストロンチウム、水酸化ストロンチウム、酢酸鉛などを挙げることができる。なお、これらの化合物は、何れか1種を単独で用いても、或いは2種以上を任意の比率で混合して用いてもよい。本発明では、これらの化合物を1種又は2種以上用いることにより、例えば、BaTiO、CaTiO、SrTiO、BaSrTiO、BaSrCaTiO、SrCaTiO、PbTiOなどの金属酸化物膜を得ることができる。
なお、水溶液には、更に、W、Nb、Ta、Sn、Si、Bi、Al、B、Co、Zn、Mg、Ni、Mn、Fe、及び希土類元素の中から選ばれる少なくとも1種又は2種以上の元素を含む化合物を添加してもよい。この場合、反応後の複合酸化物腹中にこれら元素が5mol%未満だけ含まれるようにすることが好ましい。本発明では、このような金属元素を添加することにより、電気特性を改善することができる。
本発明を適用した複合酸化物膜の製造方法は、上述した本発明の塗布剤を基体上に塗布する塗布工程と、基体上に塗布された塗布剤を乾燥させる乾燥工程と、乾燥後に基体を焼成する焼成工程とを経ることによって、上述したペロブスカイト型チタン含有複合酸化物膜膜を形成することができる。
具体的に、基体の材質については特に制限されるものではなく、上述した焼成時の温度及び雰囲気に耐えるものであればよい。具体的な基体の材質としては、例えば、ガラスや、酸化アルミニウム、シリコン、ニッケル、チタン、白金などを挙げることができる。その中でも特に、大気雰囲気中で600℃以上の高温で焼成する場合は、耐熱性に優れた酸化アルミニウムや白金などを用いることが好ましい。さらに、基体の材質については、その用途に応じて適宜選択することができ、例えば導電体や半導体、絶縁体などを用いることができる。さらに、基体は、例えば金属と絶縁物とを貼り合わせた複合体などであってもよい。
また、コンデンサの用途に適した基体の材質としては、例えば、金、銀、銅、ニッケル、白金、パラジウム、アルミニウムなどの金属や、それらを含む合金、炭素などの導電体を挙げることができる。これらの材質からなる基体の上に複合酸化物膜を形成することで、基体をコンデンサの電極としてそのまま使用することができる。
基体の形状については、特に制限はなく、例えば、板状のものや、箔状のもの、更に表面が平滑でないものなどを挙げることができる。また、コンデンサの用途に適した基体の形状としては、小型化や軽量化の観点及び基体の単位質量当たりの表面積が大きいほど複合酸化物膜の基体に対する割合が増し有利となることから、箔状のものが好ましく、厚みが1〜300μm、より好ましくは3〜100μm、更に好ましくは5〜30μmの箔を用いることができる。
基体として箔を用いる場合には、化学エッチングや電解エッチングなどにより予めエッチングを行い、表面に凹凸を形成することが好ましい。これにより、基体の表面積を増すことができる。同様に、複合酸化物膜の基体に対する割合を増すために、基体として、平均粒径が0.1〜20μm、より好ましくは1〜10μmである微粒子の焼結体を用いることができる。なお、本実施形態では、基体として基板を用い、この基板上に複合酸化物膜を形成する場合を例に挙げて説明する。
複合酸化物膜の膜厚には、特に制限はなく、用途に応じて膜厚を制御すればよい。コンデンサの用途に適した複合酸化物膜の膜厚としては、複合酸化物膜の膜厚が薄いほどコンデンサの容量が大きく、複合酸化物膜の膜厚が厚いほどコンデンサの漏れ電流が少なくなることから、所望の容量や漏れ電流に応じて膜厚を設定すればよい。
塗布工程においては、上述した水溶液中の金属組成の割合を制御して調製された塗布剤をスピンコート法により基板上に塗布する。上述したように、本発明の塗布剤は、基板に対する濡れ性が良好なことから、基板上に均一に成膜することができる。また、このようなスピンコート法で塗布剤を塗布する場合、基板の回転速度や塗布剤の粘度等を制御することにより、塗膜の厚みを容易に調整することができる。
具体的に、塗布剤中の金属化合物濃度は、複合酸化物換算で1〜20質量%になるように調製することが好ましい。この濃度が1質量%未満であると、スピンコート1回当たりの膜厚が薄すぎて、所定の膜厚とするのにスピンコートの回数が多くなる。一方、この濃度が20質量%を超えると、緻密な塗膜を形成することが難しくなる。
なお、本発明では、後述する乾燥、焼成時の欠陥を少なくするため、上記塗布剤は脱気しておくことが好ましい。また、基板との濡れ性を向上させるため、基板表面を洗浄しておくことが好ましく、また、濡れ性を向上させるためのエッチング等を基板表面に行ってもよい。
乾燥工程においては、上述した塗布剤が塗布された基板を100〜300℃の温度範囲で、1分から3時間乾燥させることが好ましく、120〜200℃の温度範囲で、5分から2時間乾燥させることが更に好ましい。これにより、基板上に塗布された塗布剤中に含まれる溶剤を留去することができる。乾燥には、例えば減圧乾燥や、熱風乾燥、凍結乾燥などの方法を用いることができる。また、乾燥時の雰囲気は特に制限されず、大気中又は減圧下で行うことができる。
そして、このような乾燥工程を経ることによって、基板上に均一な塗膜(複合酸化物膜の前駆体)を形成することができる。なお、乾燥温度が高いほど溶剤を短時間で留去できるが、欠陥ができやすくなる。また、乾燥工程で溶剤を完全に留去することが好ましいが、後の焼成工程でも溶剤を留去できるため、残存しても支障はない。
焼成工程においては、上述した塗膜が形成された基板を300〜1500℃の温度範囲で、1分から24時間焼成させることが好ましい。また、焼成時の雰囲気は特に制限されず、大気中又は減圧下で行うことができる。
この焼成工程は、複合酸化物膜の前駆体である塗膜を複合酸化物膜とし、更にその結晶性を向上させるために行われる。また、この焼成工程によって、前駆体を複合酸化物とするときに生じる副生物や、上記乾燥工程で留去せずに残った溶剤等の不純物を、蒸発、昇華、及び/又は熱分解して気体として或いは燃焼させて除去することができる。
また、複合酸化物膜は、炭素などの不純物がない状態で焼成した方が結晶性を高めることができる。したがって、この場合は、比較的低い焼成温度で不純物を完全に除去した後、それよりも高い焼成温度で再度焼成するといった2段階の焼成を行うことが好ましい。具体的には、上述した塗膜が形成された基板を300℃以上600℃未満の温度範囲で、1分から2時間焼成させた後に、600〜1500℃の温度範囲で、1分から24時間焼成させることが好ましい。
そして、このような焼成工程を経ることによって、基板上に結晶性を高めたペロブスカイト型のチタン含有複合酸化物膜を形成することができる。
以上のように、本発明を適用した複合酸化物膜の製造方法では、上述したチタン化合物と、Aサイトの金属元素を含む化合物との水溶液からなる複合酸化物膜形成用塗布剤を用いることによって、ペロブスカイト型チタン含有複合酸化物膜を基体上に均一に成膜することが可能である。また、本発明の複合酸化物膜形成用塗布剤は、保存安定性がよく、大気中での塗布が可能なため扱いやすく、室温での塗布も可能である。
さらに、本発明の製造方法では、複雑で大掛かりな設備を必要とせず、複合酸化物膜中の金属組成の割合も容易に制御することが可能である。具体的に、本発明では、水溶液中に含まれるAサイトの金属元素の含有比率を制御することによって、基体表面に形成されるチタン含有複合酸化物膜中に含まれるAサイトの金属元素の含有比率を容易に制御することができる。例えば、一般式(A1A21−X)TiO(0≦X≦1)で表されるペロブスカイト型チタン含有複合酸化物では、A1原子とA2原子の組成比の違いによって、様々な電気特性を示すことが知られている。本発明の製造方法を用いた場合、水溶液中に含まれるA1原子とA2原子の組成比は、基体表面に形成されるチタン含有複合酸化物膜中に含まれるA1原子とA2原子の組成比とほぼ一致するため、上述した溶液を調製する際に、溶液中に含まれるA1原子とA2原子の含有比率を制御することによって、基体表面に形成されるチタン含有複合酸化物膜中に含まれるA1原子とA2原子の含有比率を容易に制御することが可能である。
なお、ペロブスカイト型チタン含有複合酸化物の結晶構造は、X線回折測定により知ることができ、またペロブスカイト型チタン含有複合酸化物中のA1原子とA2原子の比率(固溶比)Xは、X線回折図のピーク位置から求めることができる。
また、本発明では、得られたチタン含有複合酸化物膜に含まれるTiに対するAサイトの金属元素の組成比が0.98〜1.02であることが好ましく、より好ましくは0.995〜1.015であり、更に好ましくは0.99〜1.01である。
また、本発明の製造方法では、膜厚の制御がしやすく、上記製造工程を繰り返して複合酸化物膜の膜厚をかせぐことも可能である。また、本発明の製造方法では、塗布剤を1回のスピンコートで塗布する方法以外にも、スピンコート1回当たり膜厚を薄くし、塗膜が所定の膜厚となるまでスピンコートを複数回繰り返し、乾燥、焼成を行うことによって、欠陥のない緻密な塗膜を形成することができる。また、スピンコート1回当たり膜厚を薄くし、乾燥、焼成を行い、これを複数回繰り返すことによって、複合酸化物膜を所定の膜厚とすることもできる。この場合も、欠陥のない緻密な複合酸化物膜を形成することができる。
なお、本発明の製造方法では、上述したスピンコート法などの塗布法以外にも、本発明の塗布剤を構成する水溶液中に基体を直接浸漬するディップ法などの湿式の成膜方法を用いてもよい。
以上のように、本発明の製造方法によれば、基体の表面に高い比誘電率を有するペロブスカイト型チタン含有複合酸化物膜が形成された本発明の複合体を得ることができる。また、本発明では、このような複合体を本発明の誘電材料や圧電材料として好適に用いることができる。さらに、本発明では、この誘電材料を一対の電極で挟み込むことによって本発明のコンデンサを構成することでき、この圧電材料を一対の電極で挟み込むことによって本発明の圧電素子を構成することできる。
具体的に、本発明の複合体を含む誘電材料は、基体が導電性を有する材料であれば、コンデンサの誘電体と一方の電極とを構成するものとして、そのまま使用することができる。また、コンデンサの他方の電極(前記一方の電極の対電極)については、例えば、金、銀、銅、ニッケル、白金、パラジウム、アルミニウムなどの金属や、それらを含む合金、炭素などの導電体を使用することができる。そして、これらの電極をコンデンサの外部リードに電気的に接続すればよい。
電極の形成方法については、例えば、電解めっき、無電解めっき、金属ペーストの塗布などの湿式法や、スパッタ法、蒸着法などを用いて、導電体を複合酸化物膜上に形成する方法がある。或いは、導電性高分子や、二酸化マンガン、カーボンペースト、銀ペースト、ニッケルペーストなどを単独で又は2種以上を任意の比率で混合して用いて電極を形成してもよい。
また、このように形成したコンデンサを並列となるように積層することで、容量を大きくすることができる。例えば、本発明の複合体の複合酸化物膜上に導電体を形成し、この導電体を基体として、この上に本発明の複合酸化物膜と導電体とを順次積層することを繰り返し、最後に導電体に外部電極を接続することで、電気的に並列に接続されたコンデンサを得ることができる(例えば図1を参照)。さらに、このように積層されたコンデンサの製造方法としては、例えば、ニッケル箔の上に、スピンコート法などで複合酸化物膜を塗布して乾燥した後、得られた誘電体層にニッケルスパッタなどで内部電極を形成する。この工程繰り返すことにより、誘電体層と内部電極とが順次積層されてなる積層体を形成する。そして、この積層体を所望の大きさに切断し、焼成して得られたコンデンサの側面に外部電極を接続することで、積層型のコンデンサを得ることができる(例えば図1を参照)。
本発明の複合体は、上述したように複合酸化物膜の厚みが薄く且つ均一である。さらに、この複合酸化物膜は、高い比誘電率を有している。したがって、このような複合体(誘電材料)を用いた本発明のコンデンサでは、更なる小型化及び高容量化が可能である。さらに、このようなコンデンサを備えた本発明の電子機器では、更なる小型化及び軽量化が可能である。
一方、本発明の複合体を含む圧電材料も、圧電素子の圧電体と一方の電極とを構成するものとして、そのまま使用することができる。そして、このような複合体(圧電材料)を用いた本発明の圧電素子では、更なる小型化及び電気特性の向上が可能である。さらに、このような圧電素子を備えた本発明の電子機器では、更なる小型化及び軽量化が可能である。
特に、本発明において、複合酸化物膜がペロブスカイト化合物を含むものは、誘電性、圧電性、焦電性などの電気特性に優れており、例えば、積層セラミックスコンデンサを始めとする様々なコンデンサ、誘電体フィルタ、誘電体アンテナ、誘電体共振器、誘電体デュプレクサ、フェイズシフタ、圧電素子、積層圧電アクチュエータなどの電子部品に好適に用いることができる。
図1は、本発明の電子部品であるコンデンサの一例として積層型セラミックコンデンサ1を示す断面図である。
この積層型セラミックコンデンサ1は、図1に示すように、誘電体層2と内部電極3、4が順次積層されてなる積層体5と、この積層体5の側面に取り付けられた外部電極6、7とから構成されている。内部電極3,4はその一端部がそれぞれ積層体5の側面に露出しており、各一端部が外部電極6,7にそれぞれ接続されている。
この積層型セラミックコンデンサ1は、内部電極3,4の何れか一方を形成するTi箔の表面に、誘電体層2としてペロブスカイト型チタン含有複合酸化物膜を本発明の製造方法を用いて作製したものである。また、外部電極6,7は例えば、Ag,Cu,Ni等の焼結体にNiメッキを施したもので構成される。
この積層型セラミックコンデンサ1では、誘電率の高いペロブスカイト型チタン含有複合酸化物を誘電体層2に用いている。また、この積層型セラミックコンデンサ1では、高い誘電率を維持したまま誘電体層2の厚みを薄くすることができる。したがって、この積層型セラミックコンデンサ1では、更なる小型化及び高容量化が可能である。
図2は、本発明の電子機器の一例である携帯電話機を示す平面図である。
図1に示すコンデンサ1は、例えば図2に示すような携帯電話機10の回路基板11に実装されて使用される。したがって、この携帯電話機10では、更なる小型化及び軽量化が可能である。
以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
(実施例1)
実施例1では、先ず、酢酸バリウム(和光純薬株式会社製)8.8gを水10gに溶解させた。更に、トリエタノールアミンを配位したチタン化合物水溶液(松本製薬工業株式会社製オルガチックスTC−400、チタン含有量8.1質量%)20.3gと、イソプロピルアルコール(和光純薬株式会社製)60.9gとを加え、実施例1の複合酸化物膜形成塗布剤を調製した。
次に、この実施例1の塗布剤を、ガラス基板、アルミナ基板、シリコン基板、ニッケル基板、チタン基板、白金基板の上に、それぞれスピンコート法で塗布した後、150℃で1時間乾燥した。そして、このスピンコートから乾燥までの操作を3回繰り返した。そして、得られた基板を目視で観察したところ、何れの基板も表面に均一な塗膜が形成されていた。次に、塗膜が形成された基板のうち、白金基板を大気雰囲気中にて、500℃で1時間焼成した後に、更に900℃で1時間焼成した。
そして、得られた実施例1の試料をX線回折により同定したところ、白金基板の表面に正方晶のペロブスカイト構造であるチタン酸バリウムが生成していることがわかった。このチタン酸バリウムの層厚は、FIB装置により断面加工した試料をTEMで観察したところ、0.18μmであることがわかった。
また、結晶子サイズを以下のようにして測定した。その結果、結晶子サイズは、65nmであった。
装置;:X線回折装置(リガク電機製ローターフレックス)
測定角度:2θ;21°〜94°
測定ステップ:0.02°
解析法:リートベルト解析(RIETAN)
次に、白金基板の複合酸化物膜が形成された面上に、電子線蒸着にて直径2mm、厚さ0.2μmのニッケル膜を成膜し、コンデンサを作製した。そして、このニッケル膜を一方の電極とし、白金基板を他方の電極とし、以下の条件にてこのコンデンサの静電容量を測定した。
装置:LCRメータ(株式会社エヌエフ回路設計ブロック製ZM2353型)
測定周波数:120Hz
振幅:1V
測定温度:25℃
その結果、実施例1のコンデンサの静電容量は、32μF/cmであった。
さらに、実施例1のコンデンサの漏れ電流は、2×10−5Aであった。
参考例2)
参考例2では、先ず、乳酸を配位したチタン化合物水溶液(松本製薬工業株式会社製オルガチックスTC−300、チタン含有量8.1質量%)20.3gに、酢酸バリウム(和光純薬株式会社製)8.8gを溶解させた。その溶液にイソプロピルアルコール(和光純薬株式会社製)70.9gを加え、参考例2の複合酸化物膜形成用塗布剤を調製した。
次に、この参考例2の塗布剤を、ガラス基板、アルミナ基板、シリコン基板、ニッケル基板、チタン基板、白金基板の上に、それぞれスピンコート法で塗布した後、150℃で1時間乾燥した。そして、このスピンコートから乾燥までの操作を3回繰り返した。そして、得られた基板を目視で観察したところ、何れの基板も表面に均一な塗膜が形成されていた。次に、塗膜が形成された基板のうち、白金基板を大気雰囲気中にて、500℃で1時間焼成した後に、更に900℃で1時間焼成した。
そして、得られた参考例2の試料をX線回折により同定したところ、白金基板の表面に正方晶のペロブスカイト構造であるチタン酸バリウムが生成していることがわかった。このチタン酸バリウムの層厚は、FIB装置により断面加工した試料をTEMで観察したところ、0.18μmであることがわかった。また、結晶子サイズは、68nmであった。
そして、実施例1と同様に、コンデンサを作製し、コンデンサの特性を測定した。その結果、参考例2のコンデンサの静電容量は33μF/cm、漏れ電流は3×10−5Aであった。
(実施例3)
実施例3では、先ず、酢酸バリウム(和光純薬株式会社製)8.5gと、酢酸カルシウム1水和物(和光純薬株式会社製)0.2gを水10gに溶解させた。更に、トリエタノールアミンを配位したチタン化合物水溶液(松本製薬工業株式会社製オルガチックスTC−400、チタン含有量8.1質量%)20.3gと、イソプロピルアルコール(和光純薬株式会社製)61.0gを加え、実施例3の複合酸化物膜形成用塗布剤を調製した。
次に、この実施例3の塗布剤を、ガラス基板、アルミナ基板、シリコン基板、ニッケル基板、チタン基板、白金基板の上に、それぞれスピンコート法で塗布した後、150℃で1時間乾燥した。そして、このスピンコートから乾燥までの操作を3回繰り返した。そして、得られた基板を目視で観察したところ、何れの基板も表面に均一な塗膜が形成されていた。次に、塗膜が形成された基板のうち、白金基板を大気雰囲気中にて、500℃で1時間焼成した後に、更に900℃で1時間焼成した。
そして、得られた実施例3の試料をX線回折により同定したところ、白金基板の表面に、バリウムとカルシウムが97:3(モル比)に固溶した正方晶のペロブスカイト構造であるチタン酸バリウムカルシウムが生成していることがわかった。このチタン酸バリウムカルシウムの層厚は、FIB装置により断面加工した試料をTEMで観察したところ、0.18μmであることがわかった。また、結晶子サイズは、52nmであった。
そして、実施例1と同様に、コンデンサを作製し、コンデンサの特性を測定した。その結果、実施例3のコンデンサの静電容量は38μF/cm、漏れ電流は2×10−6Aであった。
(実施例4)
実施例4では、先ず、酢酸バリウム(和光純薬株式会社製)6.6gと酢酸ストロンチウム0.5水和物(和光純薬株式会社製)1.8gを水10gに溶解させた。更に、トリエタノールアミンを配位したチタン化合物水溶液(松本製薬工業株式会社製オルガチックスTC−400、チタン含有量8.1質量%)20.3gと、イソプロピルアルコール(和光純薬株式会社製)61.3gを加え、実施例4の複合酸化物膜形成用塗布剤を調製した。
次に、この実施例4の塗布剤を、ガラス基板、アルミナ基板、シリコン基板、ニッケル基板、チタン基板、白金基板の上に、それぞれスピンコート法で塗布した後、150℃で1時間乾燥した。そして、このスピンコートから乾燥までの操作を3回繰り返した。そして、得られた基板を目視で観察したところ、何れの基板も表面に均一な塗膜が形成されていた。次に、塗膜が形成された基板のうち、白金基板を大気雰囲気中にて、500℃で1時間焼成した後に、更に900℃で1時間焼成した。
そして、得られた実施例4の試料をX線回折により同定したところ、白金基板の表面に、バリウムとストロンチウムが4:1(モル比)に固溶した正方晶のペロブスカイト構造であるチタン酸バリウムストロンチウムが生成していることがわかった。このチタン酸バリウムストロンチウムの層厚は、FIB装置により断面加工した試料をTEMで観察したところ、0.19μmであることがわかった。また、結晶子サイズは、47nmであった。
そして、実施例1と同様に、コンデンサを作製し、コンデンサの特性を測定した。その結果、実施例4のコンデンサの静電容量は180μF/cm、漏れ電流は7×10−9Aであった。
(実施例5)
実施例5では、実施例1の塗布剤が塗布された白金基板を大気雰囲気中にて、1000℃で1時間焼成した以外は、実施例1と同様にして、白金基板の表面に複合酸化物膜を形成した。
そして、得られた実施例5の試料をX線回折により同定したところ、白金基板の表面に、正方晶のペロブスカイト構造であるチタン酸バリウムが生成していることがわかった。このチタン酸バリウムの結晶子サイズは、80nmであった。
そして、実施例1と同様に、コンデンサを作製し、コンデンサの特性を測定した。その結果、実施例5のコンデンサの静電容量は32μF/cm、漏れ電流は3×10−5Aであった。
(比較例1)
比較例1では、先ず、チタンイソプロポキシド(和光純薬株式会社製)11.7gに、バリウムイソプロポキシド20%イソプロパノール溶液(和光純薬株式会社製)33.8gと、イソプロピルアルコール(和光純薬株式会社製)54.5gを加えて複合酸化物膜形成用塗布剤の調整を行ったところ、調製中に塗布剤が白濁した。
次に、この比較例1の塗布剤をできるだけ撹拌して、ガラス基板、アルミナ基板、シリコン基板、ニッケル基板、チタン基板、白金基板の上に、それぞれスピンコート法で塗布した後、150℃で1時間乾燥した。そして、このスピンコートから乾燥までの操作を3回繰り返した。そして、得られた基板を目視で観察したところ、何れの基板にも表面に粒子状のものが観察された。
次に、塗膜が形成された基板のうち、白金基板を大気雰囲気中にて、500℃で1時間焼成した後に、更に900℃で1時間焼成した。そして、得られた比較例1の試料をX線回折により同定したところ、白金基板の表面に炭酸バリウムと酸化チタンとチタン酸バリウムが生成していることがわかった。
(比較例2)
比較例2では、先ず、チタンイソプロポキシド(和光純薬株式会社製)11.7gに、バリウムイソプロポキシド20%イソプロパノール溶液(和光純薬株式会社製)33.8gと、3,5―ヘプタンジオン(和光純薬株式会社製)13.7gと、イソプロピルアルコール(和光純薬株式会社製)40.8gを加え、除湿したグローボックス中で調製したところ、透明な複合酸化物膜形成用塗布剤を得た。
次に、この比較例2の塗布剤を、ガラス基板、アルミナ基板、シリコン基板、ニッケル基板、チタン基板、白金基板の上に、それぞれスピンコート法で塗布した後、150℃で1時間乾燥した。そして、このスピンコートから乾燥までの操作を3回繰り返した。そして、得られた基板を目視で観察したところ、何れの基板も表面に均一な塗膜が形成されていた。
次に、塗膜が形成された基板のうち、白金基板を大気雰囲気中にて、500℃で1時間焼成した後に、更に900℃で1時間焼成したところ、部分的に塗膜の剥離が生じた。
(比較例3)
比較例3では、先ず、酢酸バリウム(和光純薬株式会社製)8.8を水10gに溶解させた。更に、乳酸を配位したチタン化合物水溶液(松本製薬工業株式会社製オルガチックスTC−315、チタン含有量8.1質量%)20.3gと水60.9gとを加え、比較例3の複合酸化物膜形成用塗布剤を調製した。
次に、この比較例3の塗布剤を、ガラス基板、アルミナ基板、シリコン基板、ニッケル基板、チタン基板、白金基板の上に、それぞれスピンコート法で塗布したところ、何れの基板も塗布剤が濡れ広がらず、弾いてしまい、ほとんど塗布できなかった。
(比較例4)
比較例4では、先ず、イソプロピルアルコール(和光純薬株式会社製)60.9gに酢酸バリウム(和光純薬株式会社製)8.8gを加えたところ、酢酸バリウムは溶解しなかった。また、水10gを加えたところ、酢酸バリウムは溶解しなかった。さらに、トリエタノールアミンを配位したチタン化合物水溶液(松本製薬工業株式会社製オルガチックスTC−400、チタン含有量8.1質量%)20.3gを加え、比較例4の複合酸化物膜形成用塗布剤を調製した。
次に、この比較例4の塗布剤を、ガラス基板、アルミナ基板、シリコン基板、ニッケル基板、チタン基板、白金基板の上に、それぞれスピンコート法で塗布した後、150℃で1時間乾燥した。そして、このスピンコートから乾燥までの操作を3回繰り返した。そして、得られた基板を目視で観察したところ、何れの基板にも表面に粒子状のものが観察された。次に、塗膜が形成された基板のうち、白金基板を大気雰囲気中にて、500℃で1時間焼成した後に、更に900℃で1時間焼成した。
そして、得られた比較例4の試料をX線回折により同定したところ、白金基板の表面に炭酸バリウムと酸化チタンとチタン酸バリウムが生成していることがわかった。
図1は、本発明の電子部品一例である積層型セラミックコンデンサを示す断面図である。 図2は、本発明の電子機器の一例である携帯電話機を示す平面図である。
符号の説明
1…積層型セラミックコンデンサ 2…誘電体層 3,4…内部電極 5…積層体 6,7…外部電極 10…携帯電話機 11…回路基板

Claims (17)

  1. 基体に塗布することにより成膜し、これを焼成することにより、一般式ATiO(Aサイトは、Ca,Sr,Ba又はPbの中から選ばれる少なくとも1種又は2種以上の金属元素を表す。)で表されるペロブスカイト型チタン含有複合酸化物膜を形成する複合酸化物膜形成用塗布剤であって、
    前記Aサイトの金属元素を含む化合物として、焼成温度以下で、なお且つ、大気圧下又は減圧下で、蒸発、昇華、熱分解のうちの少なくとも一つの手段で金属の対イオンを除去できる水酸化物又はヒドロキシカルボン酸塩を用い、
    リエタノールアミンを配位したチタン化合物と、前記Aサイトの金属元素を含む化合物とを水に溶解させた後、イソプロピルアルコールを加えた水溶液からなり、なお且つ、この水溶液中の金属化合物濃度が、複合酸化物換算で1〜20質量%になるように調製されてなる複合酸化物膜形成用塗布剤。
  2. 更に、界面活性剤を含む請求項1に記載の複合酸化物膜形成用塗布剤。
  3. 一般式ATiO(Aサイトは、Ca,Sr,Ba又はPbの中から選ばれる少なくとも1種又は2種以上の金属元素を表す。)で表されるペロブスカイト型チタン含有複合酸化物膜の製造方法であって、請求項1又は2に記載の塗布剤を基体上に塗布する塗布工程と、この基体を焼成する焼成工程とを含むペロブスカイト型チタン含有複合酸化物薄膜の製造方法。
  4. 焼成工程の焼成温度が300〜1500℃である請求項3に記載のペロブスカイト型チタン含有複合酸化物薄膜の製造方法。
  5. 焼成工程の焼成時間が1分〜24時間である請求項3又は4に記載のペロブスカイト型チタン含有複合酸化物薄膜の製造方法。
  6. 焼成工程において、焼成温度300℃以上600℃未満で焼成を行った後に、焼成温度600℃以上1500℃以下で焼成を行う請求項3に記載の複合酸化物薄膜の製造方法。
  7. 塗布工程と焼成工程との間に、基体上に塗布された塗布剤を乾燥させる乾燥工程を含む請求項3乃至6の何れか一項に記載のペロブスカイト型チタン含有複合酸化物膜の製造方法。
  8. 乾燥工程の乾燥温度が100℃以上300℃未満である請求項7に記載のペロブスカイト型チタン含有複合酸化物膜の製造方法。
  9. 乾燥工程の乾燥時間が1分〜3時間である請求項8に記載のペロブスカイト型チタン含有複合酸化物薄膜の製造方法。
  10. チタン含有複合酸化物膜に含まれるTiに対するAサイトの金属元素の組成比が0.98〜1.02である請求項3乃至9の何れか一項に記載のペロブスカイト型チタン含有複合酸化物膜の製造方法。
  11. 基体と、この基体上に請求項3乃至10の何れか一項に記載の方法を用いて形成されたペロブスカイト型チタン含有複合酸化物膜とを備える複合体。
  12. 請求項11に記載の複合体を含む誘電材料。
  13. 請求項11に記載の複合体を含む圧電材料。
  14. 請求項12に記載の誘電材料を含むコンデンサ。
  15. 請求項13に記載の圧電材料を含む圧電素子。
  16. 請求項14に記載のコンデンサを含む電子機器。
  17. 請求項15に記載の圧電素子を含む電子機器。
JP2006331835A 2006-12-08 2006-12-08 複合酸化物膜形成用塗布剤 Expired - Fee Related JP5143408B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006331835A JP5143408B2 (ja) 2006-12-08 2006-12-08 複合酸化物膜形成用塗布剤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006331835A JP5143408B2 (ja) 2006-12-08 2006-12-08 複合酸化物膜形成用塗布剤

Publications (2)

Publication Number Publication Date
JP2008143735A JP2008143735A (ja) 2008-06-26
JP5143408B2 true JP5143408B2 (ja) 2013-02-13

Family

ID=39604315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006331835A Expired - Fee Related JP5143408B2 (ja) 2006-12-08 2006-12-08 複合酸化物膜形成用塗布剤

Country Status (1)

Country Link
JP (1) JP5143408B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5573729B2 (ja) 2011-02-25 2014-08-20 株式会社村田製作所 ペロブスカイト型複合酸化物の製造方法
JP2017024961A (ja) * 2015-07-27 2017-02-02 ニッポン高度紙工業株式会社 無機酸化物成形体の製造方法
JP7230579B2 (ja) * 2019-02-21 2023-03-01 三菱マテリアル株式会社 強誘電体膜の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3161471B2 (ja) * 1991-06-04 2001-04-25 三菱マテリアル株式会社 チタン酸バリウム薄膜の製造方法
JP3099568B2 (ja) * 1993-01-20 2000-10-16 株式会社村田製作所 チタン酸鉛薄膜の製造方法
JPH0790594A (ja) * 1993-09-24 1995-04-04 Tokyo Ohka Kogyo Co Ltd チタン系複合酸化物形成用塗布液
JP3152093B2 (ja) * 1995-01-25 2001-04-03 三菱マテリアル株式会社 Ba1−xSrxTiyO3薄膜形成用組成物及びBa1−xSrxTiyO3薄膜の形成方法
JPH08253319A (ja) * 1995-03-15 1996-10-01 Mitsubishi Electric Corp 高誘電体薄膜の形成方法
JP3127849B2 (ja) * 1997-02-07 2001-01-29 日本電気株式会社 塗布法による酸化物薄膜の製造方法
JP3955001B2 (ja) * 2002-09-20 2007-08-08 キヤノン株式会社 圧電体膜形成用組成物、圧電体膜の製造方法
JP4257518B2 (ja) * 2003-12-05 2009-04-22 Jsr株式会社 ペロブスカイト型結晶粒子の製造方法、ペロブスカイト型結晶粒子分散体の製造方法および誘電体膜
JP4815583B2 (ja) * 2005-01-04 2011-11-16 国立大学法人高知大学 無機粒子・酸化チタン複合体層の製造方法
JP2007161502A (ja) * 2005-12-09 2007-06-28 Gifu Univ チタン含有複合酸化物形成用溶液及びその製造方法、チタン含有複合酸化物の製造方法、チタン含有複合酸化物の前駆体、誘電体材料、並びに誘電体材料の製造方法

Also Published As

Publication number Publication date
JP2008143735A (ja) 2008-06-26

Similar Documents

Publication Publication Date Title
Reddy et al. Superior energy storage performance and fatigue resistance in ferroelectric BCZT thin films grown in an oxygen-rich atmosphere
KR100890144B1 (ko) 금속 호일 상의 억셉터 도핑된 티탄산바륨 기재의 박막축전기 및 그의 제조 방법
JP4652406B2 (ja) 複合酸化物膜およびその製造方法、複合酸化物膜を含む誘電材料、圧電材料、コンデンサ、圧電素子並びに電子機器
JP5143408B2 (ja) 複合酸化物膜形成用塗布剤
US20080171140A1 (en) Thin Film Ferroelectric Composites and Method of Making and Using the Same
JP4908244B2 (ja) 複合酸化物膜形成用塗布剤
US8875363B2 (en) Thin film capacitors on metal foils and methods of manufacturing same
JP5383041B2 (ja) 複合酸化物膜およびその製造方法、複合酸化物膜を含む誘電材料、圧電材料、コンデンサ、圧電素子並びに電子機器
US20090168299A1 (en) Method for the production of a coating of a porous, electrically conductive support material with a dielectric, and production of capacitors having high capacity density with the aid of said method
JP5383042B2 (ja) 複合酸化物膜およびその製造方法、複合酸化物膜を含む誘電材料、圧電材料、コンデンサ、圧電素子並びに電子機器
US9679705B2 (en) Method for fabrication of ceramic dielectric films on copper foils
WO2007074874A1 (ja) 複合酸化物膜及びその製造方法、複合体及びその製造方法、誘電材料、圧電材料、コンデンサ、圧電素子並びに電子機器
JP5094415B2 (ja) 複合酸化物膜及びその製造方法、複合体及びその製造方法、誘電材料、圧電材料、コンデンサ並びに電子機器
JP5117042B2 (ja) 複合酸化物膜形成用塗布剤
JP2011195444A (ja) ペロブスカイト型チタン含有複合酸化物膜の製造方法
JP2008156138A (ja) ペロブスカイト型チタン含有複合酸化物膜の製造方法
JP5302692B2 (ja) コンデンサ材料およびその製造方法、ならびにその材料を含むコンデンサ、配線板および電子機器
CN101872680A (zh) 电介质薄膜、薄膜电容器及其制作方法
WO2004026762A1 (ja) 金属酸化物超微粒子分散溶液、及び金属酸化物超微粒子薄膜
Halder et al. Crystallization temperature limit of (Ba, Sr) TiO 3 thin films prepared by a non oxocarbonate phase forming CSD route
KR20190106726A (ko) 세라믹 유전체 및 그 제조 방법, 세라믹 전자 부품 및 전자장치
JP3772726B2 (ja) ニッケル粉末の製造方法、ニッケル粉末、ニッケルペースト、積層セラミック電子部品
JP2008143761A (ja) ペロブスカイト型チタン含有複合酸化物膜の製造方法
JP2010521803A (ja) 多孔質導電性基板材料を誘電体で被膜する方法
Ihlefeld et al. Synthesis and Properties of Barium Titanate Thin Films Deposited on Copper Foil Substrates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5143408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees