JP5137875B2 - Construction management method for buildings using displacement measurement system - Google Patents

Construction management method for buildings using displacement measurement system Download PDF

Info

Publication number
JP5137875B2
JP5137875B2 JP2009043798A JP2009043798A JP5137875B2 JP 5137875 B2 JP5137875 B2 JP 5137875B2 JP 2009043798 A JP2009043798 A JP 2009043798A JP 2009043798 A JP2009043798 A JP 2009043798A JP 5137875 B2 JP5137875 B2 JP 5137875B2
Authority
JP
Japan
Prior art keywords
displacement
ceiling
light beam
light
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009043798A
Other languages
Japanese (ja)
Other versions
JP2010197282A (en
Inventor
巌 大泊
章 西谷
習一 庄子
孝至 谷井
巌 松谷
佳宏 仁田
清 金川
悟 三浦
元一 高橋
康嗣 鈴木
朋彦 畑田
立太 片村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Waseda University
Original Assignee
Kajima Corp
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Waseda University filed Critical Kajima Corp
Priority to JP2009043798A priority Critical patent/JP5137875B2/en
Publication of JP2010197282A publication Critical patent/JP2010197282A/en
Application granted granted Critical
Publication of JP5137875B2 publication Critical patent/JP5137875B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、変位計測システムを用いた建築物の施工管理方法に関し、例えば建物の柱・はりや床等の構造部分の変位を検出する場合に適用して好適なものである。 The present invention relates to a construction management method of building using Displacement measuring system, and more particularly, is suitably applied to a case of detecting a displacement of the pillar-beam or structural part of the floor of a building.

従来、地震等の災害によって建物の構造部分が傾く等の被害が生じたか否かを測定する場合には、図9に示すように、構造物101の天井部分102に対し振動方向に平行に出射したレーザ光103によって、振動方向の変位を計測するレーザ変位計測装置100が知られている。ところが、このレーザ変位計測装置100は、計測できる変位が一方向のみであって、当該一方向と直交する他方向や、鉛直方向の変位を計測することができないだけでなく、当該レーザ変位計測装置100を保持するための固定台104が大型となるため、取り付け場所が制約されるという問題があった。   Conventionally, when measuring whether damage such as the tilting of a structural part of a building has occurred due to a disaster such as an earthquake, it is emitted parallel to the vibration direction with respect to the ceiling part 102 of the structure 101 as shown in FIG. A laser displacement measuring device 100 that measures displacement in the vibration direction by using the laser beam 103 is known. However, the laser displacement measuring apparatus 100 can measure not only the displacement in one direction and the other direction orthogonal to the one direction and the displacement in the vertical direction, but also the laser displacement measuring apparatus. Since the fixed base 104 for holding 100 is large, there is a problem that the mounting location is restricted.

これに対し、例えばレーザ光と撮像手段とを用いて、観測点から見た変位検出対象物の観察軸と垂直平面上との変位、或いは垂直平面の傾きを測定している計測システムが知られている。このような計測システムでは、変位検出対象物に向けて照射したレーザ光の入射部位の光点位置を、カメラ等の撮像手段で撮像し、得られた画像に所定の画像処理を施して変位検出対象物の三方向の変位を計測し得るようになされている(例えば、特許文献1参照)。   On the other hand, for example, a measurement system that uses a laser beam and an imaging means to measure the displacement between the observation axis of the displacement detection object viewed from the observation point and the vertical plane, or the inclination of the vertical plane is known. ing. In such a measurement system, the light spot position of the incident portion of the laser beam irradiated toward the displacement detection target is imaged by an imaging means such as a camera, and the obtained image is subjected to predetermined image processing to detect displacement. The displacement of the object in three directions can be measured (see, for example, Patent Document 1).

特許第2970867号公報Japanese Patent No. 2970867

しかしながら、上記計測システムでは、撮像手段による撮像と、コンピュータを用いた画像処理技術とを組み合わせて計測しているため、その構成が複雑化して大規模になるとともに、コストが増大し、処理負担が大きく高速処理し難いという問題があった。   However, in the above measurement system, measurement is performed by combining imaging by an imaging unit and image processing technology using a computer, so that the configuration becomes complicated and large-scale, the cost increases, and the processing burden increases. There was a problem that it was difficult to process at high speed.

そこで本発明は上記問題点に鑑み、簡易な構成で三方向(水平方向x、y及び鉛直方向z)の変位を計測することができる変位計測装置、及び変位計測システムを提供することを目的とする。   Accordingly, in view of the above problems, the present invention has an object to provide a displacement measuring device and a displacement measuring system capable of measuring displacement in three directions (horizontal direction x, y and vertical direction z) with a simple configuration. To do.

本発明の請求項1に係る発明は、施工中の建築物の床と、前記床に対し所定間隔を隔てて設けられた施工中の建築物の天井と、前記床と前記天井の間に設けた複数の柱とを備える層における、前記天井の前記床に対する相対的な変位を計測する変位計測システムを用いた建築物の施工管理方法であって、前記建築物は前記層を鉛直方向の上方へ積み重ねて形成され、前記層間の一方向に向かって第1光線を出射する第1照射光源と、前記層間の他方向に向かって第2光線を出射し、当該第2光線が前記層間を一往復するように設けられた第2照射光源と、前記第1光線及び前記層間を一往復した第2光線を受光して前記天井の変位を計測する変位検出部とを備える変位計測装置を前記層に複数設け、各層ごとに測定された前記柱の縮み量に基づき補正した長さを有する柱を用いることを特徴する。 The invention according to claim 1 of the present invention provides a floor of a building under construction, a ceiling of a building under construction provided at a predetermined interval with respect to the floor, and provided between the floor and the ceiling. A construction management method for a building using a displacement measuring system for measuring a relative displacement of the ceiling with respect to the floor in a layer comprising a plurality of pillars , wherein the building is vertically above the layer. A first irradiation light source that emits a first light beam in one direction of the interlayer and a second light beam that emits a second light beam in the other direction of the interlayer. A displacement measuring device comprising: a second irradiation light source provided so as to reciprocate; and a displacement detector configured to receive the first light beam and the second light beam that reciprocates once between the layers and measure the displacement of the ceiling. plurality, based on the amount of contraction of said measured pillar for each layer in the It features the use of pillars having a length correct.

本発明の請求項1に係る発明によれば、第1光線及び第2光線の受光位置のずれに基づいて、変位検出対象物の3次元的な変位を同時に計測することができるので、撮像手段による撮像や、コンピュータを用いた画像処理技術等が不要となり、その分だけ構成を簡易にできる。 According to the invention of claim 1 of the present invention, based on the deviation of the light receiving position of the first light beam and second light beam, since a three-dimensional displacement of the displacement detection target can be measured simultaneously, the imaging means Therefore, it is not necessary to take an image by the image processing, an image processing technique using a computer, and the like, and the configuration can be simplified accordingly.

本発明の参考例に係る変位計測装置の全体構成を模式的に示す斜視図である。It is a perspective view which shows typically the whole structure of the displacement measuring device which concerns on the reference example of this invention. 本発明の参考例に係る変位計測装置の評価を行った実験装置を示す斜視図である。It is a perspective view which shows the experimental apparatus which evaluated the displacement measuring device which concerns on the reference example of this invention. 本発明の参考例に係る変位計測装置の実験結果を示すグラフであり、第1照射光源の変位と、受光部の出力との関係を示す図である。It is a graph which shows the experimental result of the displacement measuring device which concerns on the reference example of this invention, and is a figure which shows the relationship between the displacement of a 1st irradiation light source, and the output of a light-receiving part. 本発明の参考例に係る変位計測装置の実験結果を示すグラフであり、周波数0.1Hz、振幅40mmの変位を第1照射光源に加えた場合における変位の実測値と時間との関係を示す図である。It is a graph which shows the experimental result of the displacement measuring device which concerns on the reference example of this invention, and is a figure which shows the relationship between the measured value of displacement, and time when the displacement of frequency 0.1Hz and amplitude 40mm are added to the 1st irradiation light source. is there. 本発明の参考例に係る変位計測装置の使用状態(1)を示す模式図である。It is a schematic diagram which shows the use condition (1) of the displacement measuring device which concerns on the reference example of this invention. 本発明の参考例に係る変位計測装置の使用状態(2)を示す模式図である。It is a schematic diagram which shows the use condition (2) of the displacement measuring device which concerns on the reference example of this invention. 本発明の第実施形態に係る変位計測システムの使用状態(1)を示す模式図である。It is a schematic diagram which shows the use condition (1) of the displacement measuring system which concerns on 1st Embodiment of this invention. 本発明の第実施形態に係る変位計測システムの使用状態(2)を示す模式図である。It is a schematic diagram which shows the use condition (2) of the displacement measuring system which concerns on 1st Embodiment of this invention. 従来例を示す模式図である。It is a schematic diagram which shows a prior art example.

以下、図面を参照して本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(1)参考例
(全体構成)
図1に示す変位計測装置1は、基体としての床2と、当該床2に対向して形成された変位検出対象物としての建物の天井3とで構成される層4間に設置されている。これにより、変位計測装置1は、例えば地震等の災害によって天井3に生じる水平方向H(図中、方向x及びy)及び鉛直方向zへの変位を、第1光線L1及び第2光線L2の受光位置のずれに基づいて検出し得るように構成されている。
(1) Reference example (whole structure)
A displacement measuring apparatus 1 shown in FIG. 1 is installed between layers 4 including a floor 2 as a base and a ceiling 3 of a building as a displacement detection object formed opposite to the floor 2. . Thereby, the displacement measuring apparatus 1 detects the displacement in the horizontal direction H (directions x and y in the figure) and the vertical direction z generated in the ceiling 3 due to a disaster such as an earthquake, for example, by the first light ray L1 and the second light ray L2. It is configured to be able to detect based on the shift of the light receiving position.

この変位計測装置1は、第1光線L1を層4間の一方から他方へ出射する第1照射光源5と、第2光線L2を層4間の他方から一方へ出射する第2照射光源6と、層4間の一方へ出射された前記第2光線L2を層4間の一方から他方へ反射し得るように層4間の一方へ配置された反射体7と、前記第1光線L1と前記第2光線L2とを受光して受光位置を検出し、当該受光位置のずれに基づいて天井3の変位を計測する変位検出部8とから構成されている。尚、第1光線L1及び第2光線L2は、例えば強度変調、周波数変調、パルス幅変調等の変調技術を用いて、それぞれを識別できる状態に光変調されている。   The displacement measuring apparatus 1 includes a first irradiation light source 5 that emits a first light beam L1 from one side of the layer 4 to the other side, and a second irradiation light source 6 that emits a second light beam L2 from the other side of the layer 4 to the other side. A reflector 7 arranged on one side between the layers 4 so that the second light ray L2 emitted to one side between the layers 4 can be reflected from one side between the layers 4 to the other; and the first light ray L1 and the It comprises a displacement detector 8 that receives the second light beam L2, detects the light receiving position, and measures the displacement of the ceiling 3 based on the deviation of the light receiving position. Note that the first light beam L1 and the second light beam L2 are optically modulated in such a manner that they can be distinguished from each other by using a modulation technique such as intensity modulation, frequency modulation, and pulse width modulation.

参考例では、第1照射光源5は、放射状に伝搬する光を発する光源、例えば発光ダイオードで構成され、鉛直下方に向かって第1光線L1を出射するように天井3に設置されている。当該第1照射光源5の鉛直下方には、変位検出部8が設置されている。 In the present reference example , the first irradiation light source 5 is composed of a light source that emits light that propagates radially, such as a light emitting diode, and is installed on the ceiling 3 so as to emit the first light beam L1 vertically downward. A displacement detector 8 is installed vertically below the first irradiation light source 5.

変位検出部8は、床2に設置された基板9と、当該基板9上に設けられた受光部10と、当該受光部10を囲むように立設された円筒状の検出部本体11と、光変調された第1光線L1及び第2光線L2をデコードする処理部(図示しない)と、当該処理部によってデコードされたデータに基づいて受光部10における受光位置の位置座標を算出する算出部(図示しない)とを有する。受光部10は、種々のものを選択することができるが、例えば、光位置センサ(PSD; Position Sensitive Detector)や、四分割フォトダイオードを好適に用いることができる。   The displacement detection unit 8 includes a substrate 9 installed on the floor 2, a light receiving unit 10 provided on the substrate 9, a cylindrical detection unit main body 11 erected so as to surround the light receiving unit 10, A processing unit (not shown) that decodes the light-modulated first light beam L1 and second light beam L2, and a calculation unit that calculates the position coordinates of the light receiving position in the light receiving unit 10 based on the data decoded by the processing unit ( (Not shown). Various light receiving units 10 can be selected. For example, a light position sensor (PSD; Position Sensitive Detector) or a quadrant photodiode can be preferably used.

検出部本体11には、上部に集光部としての集光レンズ12が設けられている。集光レンズ12は、凸レンズからなり、一面で第1光線L1及び第2光線L2を受光すると、当該第1光線L1及び第2光線L2が透過して他面からそれぞれの集光を出射し得るようになされている。また、検出部本体11には、受光部10と集光レンズ12との間に、可視光を吸収し赤外光を透過する赤外線フィルター(図示しない)を設けてもよい。   The detection unit main body 11 is provided with a condensing lens 12 as a condensing unit at the top. The condensing lens 12 is composed of a convex lens. When the first light beam L1 and the second light beam L2 are received on one surface, the first light beam L1 and the second light beam L2 are transmitted and the respective condensed light can be emitted from the other surface. It is made like that. The detection unit main body 11 may be provided with an infrared filter (not shown) that absorbs visible light and transmits infrared light between the light receiving unit 10 and the condenser lens 12.

第2照射光源6は、第2光線L2として直進性を有するレーザ光を出射する可視光半導体レーザ装置からなる。本実施形態では、第2照射光源6は、鉛直上方に向かって第2光線L2を出射するように、床2に設置された変位検出部8の基板9上に取り付けられている。当該第2照射光源6の鉛直上方の天井3には、反射体7が設置されている。当該反射体7は、第2照射光源6から反射体7に向かって出射された第2光線L2を検出部本体11の集光レンズ12に向かって反射し得るように構成されている。
(作用及び効果)
以上の構成において、変位計測装置1は、第1照射光源5及び第2照射光源6からそれぞれ第1光線L1及び第2光線L2を出射する。第1光線L1は第1照射光源5の鉛直方向zの下方に設けられた変位検出部8の集光レンズ12によって受光部10の表面で受光される。一方、第2光線L2は、鉛直方向zの上方に向かって出射された出射光OL2が天井3に到達する。そうすると第2光線L2は、当該天井3に設けられた反射体7で反射され(反射光EL2)、当該反射光EL2が変位検出部8に到達する。当該変位検出部8では、反射光EL2が集光レンズ12を介して受光部10の表面で受光される。
The second irradiation light source 6 is composed of a visible light semiconductor laser device that emits a laser beam having straightness as the second light beam L2. In this embodiment, the 2nd irradiation light source 6 is attached on the board | substrate 9 of the displacement detection part 8 installed in the floor | bed 2 so that the 2nd light ray L2 may be radiate | emitted vertically upward. A reflector 7 is installed on the ceiling 3 directly above the second irradiation light source 6. The reflector 7 is configured to reflect the second light beam L2 emitted from the second irradiation light source 6 toward the reflector 7 toward the condenser lens 12 of the detection unit main body 11.
(Function and effect)
In the above configuration, the displacement measuring apparatus 1 emits the first light beam L1 and the second light beam L2 from the first irradiation light source 5 and the second irradiation light source 6, respectively. The first light beam L1 is received on the surface of the light receiving unit 10 by the condenser lens 12 of the displacement detecting unit 8 provided below the first irradiation light source 5 in the vertical direction z. On the other hand, as for the second light ray L2, the outgoing light OL2 emitted upward in the vertical direction z reaches the ceiling 3. Then, the second light beam L2 is reflected by the reflector 7 provided on the ceiling 3 (reflected light EL2), and the reflected light EL2 reaches the displacement detector 8. In the displacement detection unit 8, the reflected light EL 2 is received by the surface of the light receiving unit 10 through the condenser lens 12.

ここで、予めそれぞれ識別できる状態に光変調された第1光線L1及び第2光線L2を受光部10で受光すると、処理部(図示しない)が第1光線L1及び第2光線L2をデコードすることにより、単一の受光部10でそれぞれ受光位置が同時に検出され得るように構成されている。尚、天井3が床2に対し、変位していない場合において、第1光線L1の受光位置を第1原点、第2光線L2の受光位置を第2原点と呼ぶ。尚、第1原点及び第2原点は、共に受光部10の中心に位置するように設定することとしてもよい。   Here, when the light receiving unit 10 receives the first light beam L1 and the second light beam L2 that have been light-modulated in a state where they can be identified in advance, the processing unit (not shown) decodes the first light beam L1 and the second light beam L2. Thus, each light receiving position can be detected simultaneously by a single light receiving unit 10. When the ceiling 3 is not displaced with respect to the floor 2, the light receiving position of the first light beam L1 is referred to as a first origin, and the light receiving position of the second light beam L2 is referred to as a second origin. The first origin and the second origin may be set so as to be located at the center of the light receiving unit 10.

まず、天井3が水平方向Hへ変位した場合、天井3と共に第1照射光源5の位置も水平方向Hへ変位する。従って、第1照射光源5から出射される第1光線L1の受光位置(第1変位位置)は、第1原点に対しずれることになる。算出部は、この第1変位位置の位置座標を特定し、これにより水平方向Hの変位を算出して、その結果が予め定められたしきい値を超えていた場合、図示しない通知装置へ送出することにより、当該通知装置が音声や画像等によりユーザに対し特定結果を通知し得るようになされている。   First, when the ceiling 3 is displaced in the horizontal direction H, the position of the first irradiation light source 5 is also displaced in the horizontal direction H together with the ceiling 3. Accordingly, the light receiving position (first displacement position) of the first light beam L1 emitted from the first irradiation light source 5 is deviated from the first origin. The calculation unit specifies the position coordinates of the first displacement position, thereby calculating the displacement in the horizontal direction H, and if the result exceeds a predetermined threshold value, sends it to a not-shown notification device. By doing so, the notification device can notify the user of the specific result by voice or image.

ここで、第1照射光源5として、本実施形態では、放射状に伝搬する光を発する光源を用いることとしたことにより、第1光線L1は、鉛直方向zの下方へ向かって四方八方へ広がっていく。従って、変位計測装置1では、天井3の変位が大きい場合、すなわち第1照射光源5の光軸が受光部10に対し大きくずれた場合であっても、第1光線L1をより確実に受光部10に入射させ得る。また、変位検出部8には、集光レンズ12を設けたことにより、拡散した第1光線L1をより確実に受光部10に集光させることができる。さらに、集光レンズ12は、天井3の変位を、縮小して受光部10に第1光線L1を集光させるので、より大きい変位を計測することができる。   Here, as the first irradiation light source 5, in the present embodiment, a light source that emits radially propagating light is used, so that the first light beam L <b> 1 spreads in all directions toward the lower side in the vertical direction z. Go. Therefore, in the displacement measuring apparatus 1, even when the displacement of the ceiling 3 is large, that is, when the optical axis of the first irradiation light source 5 is largely deviated from the light receiving unit 10, the first light ray L1 is more reliably received. 10 can be incident. Further, since the displacement detection unit 8 is provided with the condensing lens 12, the diffused first light beam L1 can be more reliably condensed on the light receiving unit 10. Furthermore, since the condensing lens 12 reduces the displacement of the ceiling 3 and condenses the first light beam L1 on the light receiving unit 10, it is possible to measure a larger displacement.

尚、地震により変位が生じた場合、地震の最中における水平方向変位及び鉛直方向変位の時刻歴、及び、それぞれの最大値を記録することとしてもよい。   In addition, when a displacement arises by an earthquake, it is good also as recording the time history of horizontal direction displacement and vertical direction displacement in the middle of an earthquake, and each maximum value.

図2に示す実験装置20を用いて、水平方向Hの変位に対する受光部10の出力について、確認した。実験装置20は、長さ3mの木製の柱状部材21に対し、一端21aに変位検出部8を固定し、他端21bに第1照射光源5を水平方向Hに移動自在に設けて、構成されている。変位検出部8の受光部10にはPSDを、集光レンズ12には直径50mm(焦点距離f=100)のレンズを用い、第1照射光源5には発光ダイオード(出力0.3W)を用いた。この実験装置20において、第1照射光源5に対しマイクロメータ(図示しない)で変位を与え、第1光線L1を受光部10の表面に投影し、変位に対する出力電圧を測定した。その結果を図3に示す。本図から明らかなように、本実験装置20に係る構成において、水平方向Hの変位に対して受光部10の出力が線形性を有することが確認できた。   Using the experimental apparatus 20 shown in FIG. 2, the output of the light receiving unit 10 with respect to the displacement in the horizontal direction H was confirmed. The experimental apparatus 20 is configured by fixing the displacement detector 8 to one end 21a and providing the first irradiation light source 5 to the other end 21b so as to be movable in the horizontal direction H with respect to a wooden columnar member 21 having a length of 3 m. ing. The light receiving unit 10 of the displacement detection unit 8 is a PSD, the condenser lens 12 is a lens having a diameter of 50 mm (focal length f = 100), and the first irradiation light source 5 is a light emitting diode (output 0.3 W). . In this experimental apparatus 20, the first irradiation light source 5 was displaced with a micrometer (not shown), the first light beam L1 was projected onto the surface of the light receiving unit 10, and the output voltage with respect to the displacement was measured. The results are shown in FIG. As is clear from this figure, it was confirmed that the output of the light receiving unit 10 has linearity with respect to the displacement in the horizontal direction H in the configuration related to the experimental apparatus 20.

また、変位検出部8に振動を与え、高さ8.8mの距離に固定した第1照射光源5から第1光線L1を変位検出部8に向かって出射することにより、動的応答について確認した。振動は、0.1Hzの正弦振動とし、振幅は±40mmとした。また、比較例として、レーザ変位計測装置(LK-G405, KEYWNCE Corp.)により変位検出部8の変位を測定した。尚、サンプリングレートは2万サンプル/秒、分解能は16bitで収録した。図4に示すように、本実施形態に係る変位検出装置による実測値は、水平方向Hの変位測定において、比較例であるレーザ変位計測装置の実測値とほぼ完全に一致し、高い測定精度が得られることが確認できた。   In addition, the dynamic response was confirmed by emitting the first light beam L1 from the first irradiation light source 5 fixed to a distance of 8.8 m to the displacement detection unit 8 by applying vibration to the displacement detection unit 8. The vibration was a sine vibration of 0.1 Hz, and the amplitude was ± 40 mm. As a comparative example, the displacement of the displacement detector 8 was measured with a laser displacement measuring device (LK-G405, KEYWNCE Corp.). The sampling rate was 20,000 samples / second and the resolution was 16 bits. As shown in FIG. 4, the actual measurement value by the displacement detection device according to the present embodiment almost completely coincides with the actual measurement value of the laser displacement measurement device as a comparative example in the displacement measurement in the horizontal direction H, and high measurement accuracy is obtained. It was confirmed that it was obtained.

次に、天井3が鉛直方向zに変位した場合について説明する。変位計測装置1は、第2照射光源6、出射光OL2が反射体7に当たる点(光点)13、及び、反射光EL2の受光位置14を頂点とする第2光線L2の経路で形成される三角形(図1)において、光点13を頂角とする内角をθ、第2照射光源6と受光位置との距離をDとして、三角法を用いることにより、床2と天井3との距離Lを算出することができる。   Next, the case where the ceiling 3 is displaced in the vertical direction z will be described. The displacement measuring device 1 is formed by the second irradiation light source 6, the point (light point) 13 where the emitted light OL2 hits the reflector 7, and the path of the second light ray L2 having the light receiving position 14 of the reflected light EL2 as a vertex. In the triangle (FIG. 1), the interior angle with the light spot 13 as the apex angle is θ, the distance between the second irradiation light source 6 and the light receiving position is D, and the distance L between the floor 2 and the ceiling 3 is obtained by using the trigonometric method. Can be calculated.

すなわち、図5に示すように、天井3が鉛直方向zへ変位した場合、天井3と共に光点13の位置も鉛直方向zへ変位する。この場合の光点の鉛直方向zの変位をΔvとする。そうすると、変位後の天井3aに向かって出射された第2光線L2の反射光EL2の受光位置(第2変位位置)は、変位前の天井3に向かって出射された第2光線L2の反射光EL2の受光位置である第2原点に対しずれる。算出部は、この第2変位位置の位置座標を特定することにより、内角θ’を算出すると共に、この内角θ’から距離Lを算出する。次いで、算出部は、その結果がしきい値を超えていた場合、図示しない通知装置へ送出することにより、当該通知装置が音声や画像等によりユーザに対し特定結果を通知し得るようになされている。   That is, as shown in FIG. 5, when the ceiling 3 is displaced in the vertical direction z, the position of the light spot 13 is also displaced in the vertical direction z together with the ceiling 3. In this case, the displacement of the light spot in the vertical direction z is denoted by Δv. Then, the light receiving position (second displacement position) of the reflected light EL2 of the second light beam L2 emitted toward the ceiling 3a after displacement is the reflected light of the second light beam L2 emitted toward the ceiling 3 before displacement. Deviation from the second origin, which is the light receiving position of EL2. The calculation unit calculates the inner angle θ ′ by specifying the position coordinates of the second displacement position, and calculates the distance L from the inner angle θ ′. Next, when the result exceeds the threshold value, the calculation unit sends it to a notification device (not shown) so that the notification device can notify the user of the specific result by voice or image. Yes.

また、水平方向Hの変位と鉛直方向zの変位とが同時に生じた場合、図6に示すように、本実施形態に係る変位計測装置1では、第1光線L1及び第2光線L2の受光位置のずれに基づいて、天井3の3次元的な変位を同時に計測することができる。計測の結果、水平方向Hの変位ΔHと鉛直方向zの変位ΔVの両者あるいはどちらかがしきい値を超えていた場合、図示しない通知装置へ送出することにより、当該通知装置が音声や画像等によりユーザに対し特定結果を通知し得るようになされている。このように、撮像手段による撮像や、コンピュータを用いた画像処理技術等が不要となり、その分だけ構成を簡易にできる。   Further, when the displacement in the horizontal direction H and the displacement in the vertical direction z occur at the same time, as shown in FIG. 6, in the displacement measuring apparatus 1 according to the present embodiment, the light receiving positions of the first light beam L1 and the second light beam L2. Based on the deviation, the three-dimensional displacement of the ceiling 3 can be measured simultaneously. As a result of the measurement, when either or both of the displacement ΔH in the horizontal direction H and the displacement ΔV in the vertical direction z exceed the threshold value, the notification device sends out to a not-shown notification device, so that the notification device has voice, image, etc. Thus, the specific result can be notified to the user. In this way, imaging by imaging means, image processing technology using a computer, and the like are not required, and the configuration can be simplified correspondingly.

尚、本実施形態では、天井3が床2に対し変形した場合について説明したが、本発明はこれに限らず、床2が鉛直方向zに変位した場合であっても、同様に当該変位を計測し得る。   In the present embodiment, the case where the ceiling 3 is deformed with respect to the floor 2 has been described. However, the present invention is not limited to this, and even if the floor 2 is displaced in the vertical direction z, the displacement is similarly applied. Can be measured.

(2)第実施形態
図7に示す30は、変位計測システムを示し、層4間に変位計測装置1を複数(本図では、2個)配置して構成されている。本図において、層4間には、複数の柱が設けられており、層4は広い床面積を有する。このような層4において、変位計測装置1は、両端に各1個ずつ配置されている。この層4において、天井3が傾いた場合、すなわち、図中時計回転方向へ天井3が傾いた場合、層4の左側では天井3が上方へ変位すると共に、層4の右側では天井3が下方へ変位する。
(2) 30 shown in the first embodiment Figure 7 shows a displacement measurement system, (in the figure, two) multiple displacement measurement apparatus 1 between layers 4 are constructed and arranged to. In this figure, a plurality of pillars are provided between the layers 4, and the layer 4 has a large floor area. In such a layer 4, one displacement measuring device 1 is disposed at each end. In this layer 4, when the ceiling 3 is tilted, that is, when the ceiling 3 is tilted in the clockwise direction in the figure, the ceiling 3 is displaced upward on the left side of the layer 4, and the ceiling 3 is downward on the right side of the layer 4. Displace to

ここで、変位計測装置1は、床2と天井3との距離Lを計測することができるので、各設置箇所における床2と天井3との距離Lを計測することにより、天井3が傾いているか否かを検出し、また、傾きの絶対値、例えば、天井3の傾き角度を計測することができる。このように、変位計測システム30では、層4間に複数の変位計測装置1を配置することにより、天井3の傾きや、曲げ変形など、建物全体の変形を計測することができる。   Here, since the displacement measuring apparatus 1 can measure the distance L between the floor 2 and the ceiling 3, the ceiling 3 is inclined by measuring the distance L between the floor 2 and the ceiling 3 at each installation location. It is possible to detect whether or not there is an absolute value of the inclination, for example, the inclination angle of the ceiling 3. Thus, in the displacement measurement system 30, by disposing a plurality of displacement measurement devices 1 between the layers 4, it is possible to measure deformation of the entire building such as the inclination of the ceiling 3 and bending deformation.

また、本実施形態に係る変位計測システム30は、施工中の建築物35において、床レベルの水平施行管理を行うことができる。すなわち、図8に示すように、層4を鉛直方向zの上方へ積み重ねて形成される建築物35において、施行階が増すにつれ、変化する柱の縮み量を変位計測装置1で各層ごとに計測する。次いで、計測した柱の縮み量に基づき補正した長さを有する柱を用いることにより、床2の水平を保つ施行管理を行うことができる。   Further, the displacement measurement system 30 according to the present embodiment can perform floor level horizontal execution management in the building 35 under construction. That is, as shown in FIG. 8, in the building 35 formed by stacking the layers 4 upward in the vertical direction z, the displacement measuring device 1 measures the contraction amount of the changing columns as the effective floor increases. To do. Next, by using a column having a length corrected based on the measured amount of contraction of the column, enforcement management for maintaining the level of the floor 2 can be performed.

(3)変形例
本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することができる。例えば、上記実施形態では、変位検出対象物としての天井3に第1照射光源5及び反射体7を設置し、基体としての床2に変位検出部8及び第2照射光源6を設置した場合について述べたが、本発明はこれに限らず、天井3に変位検出部8及び第2照射光源6を設置し、床2に第1照射光源5及び反射体7を設置してもよく、この場合であっても変位検出部8及び第2照射光源6自体が天井3と共に水平方向H及び鉛直方向zへ変位することにより受光位置がずれ、当該天井3が変位したことを検出することができる。
(3) Modifications The present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention. For example, in the above-described embodiment, the first irradiation light source 5 and the reflector 7 are installed on the ceiling 3 as the displacement detection object, and the displacement detection unit 8 and the second irradiation light source 6 are installed on the floor 2 as the base. As described above, the present invention is not limited to this, and the displacement detector 8 and the second irradiation light source 6 may be installed on the ceiling 3, and the first irradiation light source 5 and the reflector 7 may be installed on the floor 2. Even when the displacement detector 8 and the second irradiation light source 6 themselves are displaced in the horizontal direction H and the vertical direction z together with the ceiling 3, it is possible to detect that the light receiving position is shifted and the ceiling 3 is displaced.

また、上記した実施形態では、第2光線L2を反射体7で変位検出部8へ向かって反射する場合について説明したが、本発明はこれに限らず、天井3の表面で第2光線L2を反射できれば足り、必ずしも反射体7を天井3とは別体の構成として設ける必要はない。   In the above-described embodiment, the case where the second light beam L2 is reflected by the reflector 7 toward the displacement detection unit 8 has been described. However, the present invention is not limited to this, and the second light beam L2 is reflected on the surface of the ceiling 3. It is only necessary to be able to reflect, and it is not always necessary to provide the reflector 7 as a separate structure from the ceiling 3.

さらに、上記した実施の形態においては、建物において天井3や支柱の床2に対する変位を測定する場合について述べたが、本発明はこれに限らず、変位検出対象物の基体に対する変位を計測したいものであれば、例えば橋や鉄塔等の建造物だけでなく、各種機械に内蔵させて部品の位置ずれ検査等に適用しても良いし、各種実験において対象となる試験体の基体に対する変位を計測するのみならず、試験体外の計測基準点を基体と考えれば、これに対する試験体の変位を計測することも有用な計測機能となる。   Furthermore, in the above-described embodiment, the case where the displacement of the ceiling 3 and the column 2 with respect to the floor 2 of the building is measured has been described. However, the present invention is not limited to this, and the displacement detection target is to be measured with respect to the base. If so, for example, it may be incorporated not only in buildings such as bridges and steel towers but also in various machines and used for inspection of component misalignment, etc., and the displacement of the target specimen under measurement in various experiments is measured. In addition, if the measurement reference point outside the test body is considered as the base body, measuring the displacement of the test body with respect to this is also a useful measurement function.

さらに、上記した実施の形態においては、直進性を有するレーザ光を照射する第2照射光源6を用いた場合について述べたが、本発明はこれに限らず、要は光に直進性を有すれば種々の光を照射する照射光源を用いても良い。   Furthermore, in the above-described embodiment, the case where the second irradiation light source 6 that irradiates laser light having straightness is used has been described. However, the present invention is not limited to this, and the light may have straightness. For example, an irradiation light source that emits various kinds of light may be used.

さらに、上記した実施形態においては、変位検出対象物の基体に対する変位を計測する場合について説明したが、本発明はこれに限らず、変位対象物が基体に対し変位したか否かのみを検出することとしてもよい。   Furthermore, in the above-described embodiment, the case of measuring the displacement of the displacement detection object relative to the base has been described. However, the present invention is not limited to this, and only detects whether the displacement target is displaced relative to the base. It is good as well.

1 変位計測装置
2 床(基体)
3 天井(変位検出対象物)
4 層
5 第1照射光源
6 第2照射光源
7 反射体
8 変位検出部
10 受光部
12 集光部
30 変位計測システム
L1 第1光線
L2 第2光線
1 Displacement measuring device 2 Floor (base)
3 Ceiling (displacement detection object)
4 layer 5 1st irradiation light source 6 2nd irradiation light source 7 Reflector 8 Displacement detection part
10 Receiver
12 Condenser
30 Displacement measurement system
L1 1st ray
L2 Second ray

Claims (1)

施工中の建築物の床と、前記床に対し所定間隔を隔てて設けられた施工中の建築物の天井と、前記床と前記天井の間に設けた複数の柱とを備える層における、前記天井の前記床に対する相対的な変位を計測する変位計測システムを用いた建築物の施工管理方法であって、
前記建築物は前記層を鉛直方向の上方へ積み重ねて形成され、
前記層間の一方向に向かって第1光線を出射する第1照射光源と、
前記層間の他方向に向かって第2光線を出射し、当該第2光線が前記層間を一往復するように設けられた第2照射光源と、
前記第1光線及び前記層間を一往復した第2光線を受光して前記天井の変位を計測する変位検出部と
を備える変位計測装置を
前記層に複数設け
各層ごとに測定された前記柱の縮み量に基づき補正した長さを有する柱を用いることを特徴する変位計測システムを用いた建築物の施工管理方法
In a layer comprising a floor of a building under construction, a ceiling of a building under construction provided at a predetermined interval with respect to the floor, and a plurality of columns provided between the floor and the ceiling , A construction management method for a building using a displacement measurement system that measures relative displacement of the ceiling with respect to the floor,
The building is formed by stacking the layers upward in the vertical direction,
A first irradiation light source that emits a first light beam in one direction between the layers;
A second irradiation light source provided so as to emit a second light beam in the other direction of the interlayer, and the second light beam reciprocates once between the layers;
A plurality of displacement measuring devices provided with a displacement detector that receives the first light beam and the second light beam that reciprocates once between the layers and measures the displacement of the ceiling ,
A construction management method for a building using a displacement measuring system , wherein a column having a length corrected based on the amount of shrinkage of the column measured for each layer is used .
JP2009043798A 2009-02-26 2009-02-26 Construction management method for buildings using displacement measurement system Expired - Fee Related JP5137875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009043798A JP5137875B2 (en) 2009-02-26 2009-02-26 Construction management method for buildings using displacement measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009043798A JP5137875B2 (en) 2009-02-26 2009-02-26 Construction management method for buildings using displacement measurement system

Publications (2)

Publication Number Publication Date
JP2010197282A JP2010197282A (en) 2010-09-09
JP5137875B2 true JP5137875B2 (en) 2013-02-06

Family

ID=42822142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009043798A Expired - Fee Related JP5137875B2 (en) 2009-02-26 2009-02-26 Construction management method for buildings using displacement measurement system

Country Status (1)

Country Link
JP (1) JP5137875B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072324A (en) * 2016-11-17 2018-05-25 重庆交通大学 A kind of landslide depth slide displacement real-time monitor
GB2608860A (en) * 2021-07-15 2023-01-18 Three Smith Group Ltd A damage detection system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5015852B2 (en) * 2008-04-21 2012-08-29 三井住友建設株式会社 Interlaminar displacement measuring device for building and structure provided with the device
JP2011013095A (en) * 2009-07-02 2011-01-20 Waseda Univ Displacement measuring device and displacement measuring method
KR101792067B1 (en) * 2016-05-03 2017-11-01 (주)에코파워텍 A Receiving and distributing panel with multi monitoring and diagnosis function

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110235A (en) * 1993-10-13 1995-04-25 Kajima Corp Measuring system for constructing method for whole building by successively pushing it up
JPH0894358A (en) * 1994-09-26 1996-04-12 Maeda Corp Instrument for measuring perpendicularity and level of multistory building
JP2007064800A (en) * 2005-08-31 2007-03-15 S X L Corp Building diagnosis system
JP5015852B2 (en) * 2008-04-21 2012-08-29 三井住友建設株式会社 Interlaminar displacement measuring device for building and structure provided with the device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072324A (en) * 2016-11-17 2018-05-25 重庆交通大学 A kind of landslide depth slide displacement real-time monitor
GB2608860A (en) * 2021-07-15 2023-01-18 Three Smith Group Ltd A damage detection system
WO2023285801A1 (en) * 2021-07-15 2023-01-19 Three Smith Group Limited A damage detection system

Also Published As

Publication number Publication date
JP2010197282A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
EP2476998B1 (en) Liquid container and inclination detector including the same
JP7242849B2 (en) Method and system for retroreflector mapping
JP5137875B2 (en) Construction management method for buildings using displacement measurement system
CN105352436A (en) Coordinate measuring device
US7385685B2 (en) Position detecting device and inclination sensor device of surveying apparatus using the same
JP2006189389A (en) Optical thickness measuring method and device
US7889326B2 (en) Distance measuring apparatus
US10274840B2 (en) Adaptive groove focusing and leveling device and method
US10481089B2 (en) Optical detection system with tilted sensor
JP5610427B2 (en) Displacement measuring device
JP2010014656A (en) Noncontact side-surface shape measuring apparatus
US20180010904A1 (en) Measurement apparatus
JP5188844B2 (en) Detection apparatus and detection method
JP2011013095A (en) Displacement measuring device and displacement measuring method
JP6199737B2 (en) Displacement measuring device
JP2007240168A (en) Inspection apparatus
JP2006030185A (en) Tilt sensor
JP7454663B2 (en) Optical signal routing devices and systems
JP2010060479A (en) Object detecting device and method for detecting optical axis misalignment
JP6452391B2 (en) Laser measuring apparatus and vibration isolation system
JP5057962B2 (en) Optical displacement measuring instrument
KR101912293B1 (en) Warpage measuring appartus by measuring multi beam reflecting angle
JP2019109069A (en) Displacement measurement method, displacement measurement device, and displacement observation method
JP5330114B2 (en) Displacement tilt sensor
JP5544619B2 (en) Displacement measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121113

R150 Certificate of patent or registration of utility model

Ref document number: 5137875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees