JP5136054B2 - Substrate with film and glass for film formation - Google Patents

Substrate with film and glass for film formation Download PDF

Info

Publication number
JP5136054B2
JP5136054B2 JP2007532069A JP2007532069A JP5136054B2 JP 5136054 B2 JP5136054 B2 JP 5136054B2 JP 2007532069 A JP2007532069 A JP 2007532069A JP 2007532069 A JP2007532069 A JP 2007532069A JP 5136054 B2 JP5136054 B2 JP 5136054B2
Authority
JP
Japan
Prior art keywords
film
glass
substrate
sno
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007532069A
Other languages
Japanese (ja)
Other versions
JPWO2007023708A1 (en
Inventor
研輔 永井
敬 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2007532069A priority Critical patent/JP5136054B2/en
Publication of JPWO2007023708A1 publication Critical patent/JPWO2007023708A1/en
Application granted granted Critical
Publication of JP5136054B2 publication Critical patent/JP5136054B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/261In terms of molecular thickness or light wave length
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent

Description

本発明は、主として液晶表示素子や有機EL等のディスプレィ等の表示装置に適用が可能な軟化点が低いガラスからなる膜が被覆された基体、および該膜を形成するためのガラスに関する。   The present invention relates to a substrate coated with a film made of glass having a low softening point and applicable to display devices such as liquid crystal display elements and displays such as organic EL, and glass for forming the film.

従来、液晶表示素子や有機EL等のディスプレィ用の基体として、形状が自由に変えられること、曲面の表示が可能であること、軽量であること等の理由で、各種のフィルム基体を使用する試みがなされている(例えば、非特許文献1または3参照。)。   Conventionally, as a substrate for a display such as a liquid crystal display element or an organic EL, an attempt to use various film substrates because the shape can be freely changed, a curved surface can be displayed, and it is lightweight. (See, for example, Non-Patent Document 1 or 3.)

しかし、フィルムは、ガラスと比較してガスバリア性に劣るという問題がある。液晶表示素子や有機EL等のディスプレィ用の基体として用いるためには、素子の劣化を防ぐために高いガスバリア性が必要である。特に有機EL用の基板として用いるためには、その基体の水蒸気透過率は、5×10−5グラム/m/日以下という、包装材などとは比較にならないほど厳しい性能が要求される。従来のガス透過性測定装置では、5×10−3グラム/m/日程度しか定量的な評価を行うことができない。これに対し、金属Caの変質を用いた新たなガス透過性測定方法が非特許文献4に提案されている。However, there is a problem that the film is inferior in gas barrier properties as compared with glass. In order to use as a substrate for a display such as a liquid crystal display element or an organic EL, a high gas barrier property is required to prevent the element from deteriorating. In particular, in order to use as a substrate for organic EL, the substrate has a water vapor transmission rate of 5 × 10 −5 g / m 2 / day or less, which is required to be as severe as a packaging material or the like. A conventional gas permeability measuring apparatus can only quantitatively evaluate about 5 × 10 −3 grams / m 2 / day. On the other hand, Non-Patent Document 4 proposes a new gas permeability measurement method using alteration of metallic Ca.

ガスバリア性を有する基体として、フィルム上にある特定の樹脂を設けたもの(例えば、特許文献1参照。)、フィルム上にフッ素化合物から構成される樹脂層を設けたもの(例えば、特許文献3参照。)が開示されている。しかし、これらの基体は必ずしもガスバリア性が十分とは言えない。   A substrate having a gas barrier property provided with a specific resin on a film (see, for example, Patent Document 1), or provided with a resin layer made of a fluorine compound on a film (see, for example, Patent Document 3) .) Is disclosed. However, these substrates do not necessarily have sufficient gas barrier properties.

また、無機化合物膜と無機化合物膜間に挿入された樹脂膜との交互積層からなる多層ガスバリア膜が提案されている(例えば、特許文献5参照。)。しかし、1層目に生じたピンホール等の欠陥が次の層にも影響し、ガスバリア性に大きく影響を与える欠陥密度を軽減することが難しい。加えて、膜のエッジにおいて、サイドからのガスバリア性が十分でないという問題もある。   In addition, a multilayer gas barrier film composed of alternating layers of an inorganic compound film and a resin film inserted between the inorganic compound films has been proposed (see, for example, Patent Document 5). However, defects such as pinholes generated in the first layer also affect the next layer, and it is difficult to reduce the defect density that greatly affects the gas barrier properties. In addition, there is a problem that the gas barrier property from the side is not sufficient at the edge of the film.

他にもフィルム上に窒化酸化シリコン、窒化シリコン等の無機化合物からなる多層膜を設けたものが開示されている(例えば、特許文献6参照。)しかし、数種の無機化合物の多層膜をいくつかの成膜法により形成させる必要があるため、成膜速度が遅く、生産性が悪いという問題がある。   In addition, a film in which a multilayer film made of an inorganic compound such as silicon nitride oxide or silicon nitride is provided on a film is disclosed (see, for example, Patent Document 6). However, several multilayer films of several inorganic compounds are disclosed. Therefore, there is a problem that the film forming speed is slow and the productivity is poor.

また、近年、ブラウン管などの従来の表示装置に替わる新しい表示装置が期待されている。その中で、特に有機ELディスプレィは、印加電圧が10V弱であっても高輝度な発光が実現し、単純な素子構造で発光が可能で、液晶表示素子と比較しても、さらに薄型のディスプレィが実現できるという利点を有する。よって、特定のパターンを発光表示させる広告表示用ディスプレィや低価格の簡易表示ディスプレィ、フルカラーディスプレィとしての応用が期待されている。   In recent years, a new display device replacing a conventional display device such as a cathode ray tube has been expected. Among them, organic EL displays, in particular, can emit light with high brightness even when the applied voltage is less than 10 V, and can emit light with a simple element structure, which is even thinner than liquid crystal display elements. Can be realized. Therefore, it is expected to be applied as an advertisement display display for emitting and displaying a specific pattern, a low-cost simple display display, and a full-color display.

有機EL素子は陽極、正孔注入層、正孔輸送層、発光層、陰極が順次積層された構成からなり、一般的に透明基板上に形成される。この有機EL素子は、有機発光層、陰極などの材料が大気中の水分や酸素などによって劣化するため、輝度劣化、ダークスポットなどの欠陥の発生の問題が指摘されている。よって、素子の劣化を防ぐために高いガスバリア性を持った封止が必要である。特に有機ELディスプレィ用の封止基体として用いるためには、その封止基体内部への水蒸気透過率は、5×10−5グラム/m/日以下という、包装材などとは比較にならないほど厳しい性能が必要である。An organic EL element has a structure in which an anode, a hole injection layer, a hole transport layer, a light emitting layer, and a cathode are sequentially laminated, and is generally formed on a transparent substrate. In this organic EL element, since materials such as an organic light emitting layer and a cathode are deteriorated by moisture or oxygen in the atmosphere, problems such as luminance deterioration and generation of defects such as dark spots have been pointed out. Therefore, in order to prevent deterioration of the element, sealing with a high gas barrier property is necessary. In particular, in order to use as a sealing substrate for an organic EL display, the water vapor transmission rate into the sealing substrate is 5 × 10 −5 g / m 2 / day or less, which is incomparable with a packaging material or the like. Strict performance is required.

透明基板側に光取り出し面が存在するボトムエミッション型の有機ELディスプレィにおいて、水分や酸素による性能劣化を抑制する方法として、メタルやガラスからなる封止キャップにより乾燥剤をデバイス内部に封じ込める方法が開示されている(例えば、特許文献7参照。)。また、その乾燥剤は、フルオロカーボン油に合成ゼオライトなどの脱水剤を含有させた不活性液体が好ましい旨が開示されている(例えば、特許文献8参照。)。しかし、いずれの方法も封止工程が煩雑で、生産性が悪い。また、封止基体が厚いためにディスプレィの厚みが増大してしまうという問題がある。そのため、これらの課題を克服するために、素子中に入った水分を吸収する方法以外に、水分の浸入を防止できるような封止が期待されている。   In a bottom emission type organic EL display with a light extraction surface on the transparent substrate side, a method of encapsulating a desiccant inside a device with a sealing cap made of metal or glass is disclosed as a method of suppressing performance deterioration due to moisture and oxygen (For example, refer to Patent Document 7). Moreover, it is disclosed that the desiccant is preferably an inert liquid containing a dehydrating agent such as synthetic zeolite in a fluorocarbon oil (see, for example, Patent Document 8). However, either method has a complicated sealing process, and the productivity is poor. Moreover, since the sealing substrate is thick, there is a problem that the thickness of the display increases. Therefore, in order to overcome these problems, in addition to a method of absorbing moisture that has entered the element, sealing that can prevent moisture from entering is expected.

上記封止の発明として、透明基板上にある特定の樹脂を設けたもの(例えば、特許文献1参照。)や、透明基板上にフッ素化合物から構成される樹脂層を設けたもの(例えば、特許文献3参照。)が開示されている。しかし、これらの封止は必ずしもガスバリア性が十分とは言えない。   As the invention of the above-mentioned sealing, a resin provided with a specific resin on a transparent substrate (for example, see Patent Document 1) or a resin layer made of a fluorine compound on a transparent substrate (for example, a patent) Reference 3) is disclosed. However, these seals do not necessarily have sufficient gas barrier properties.

また、別な発明として、基板上に特定の無機化合物膜を形成したもの、具体的にはアルミナや窒化珪素からなる膜を形成したものが提案されている。しかし、これらの膜は一般に膜厚が数十nmと小さく、また緻密な膜を形成し難いため、単層ではピンホールの生成を抑制することが困難となる問題がある。   Another invention has been proposed in which a specific inorganic compound film is formed on a substrate, specifically, a film made of alumina or silicon nitride. However, since these films are generally as thin as several tens of nm and it is difficult to form a dense film, there is a problem that it is difficult to suppress the generation of pinholes in a single layer.

この欠点を補うために、無機化合物膜と無機化合物膜間に樹脂膜を挿入し、これらの膜を交互に積層させた多層膜からなる膜も提案されている(例えば、特許文献5参照。)。しかし、無機化合物膜はピンホール等の欠陥が生じやすく、これらのピンホール等が次の層にも影響し、ガスバリア性に大きく影響を与えるため、欠陥密度を軽減することが難しいという問題がある。また、生産性に劣る問題もある。   In order to compensate for this drawback, a film composed of a multilayer film in which a resin film is inserted between the inorganic compound film and the inorganic compound film and these films are alternately laminated has also been proposed (see, for example, Patent Document 5). . However, inorganic compound films are prone to defects such as pinholes, and these pinholes affect the next layer and greatly affect the gas barrier properties, which makes it difficult to reduce the defect density. . There is also a problem of poor productivity.

他にも、窒化酸化シリコン、窒化シリコン等の無機化合物膜を積層した多層膜が開示されている(例えば、特許文献6参照。)。しかし、この多層膜はガスバリア性が十分とは言えない。また、多層膜の形成は工程が煩雑となり、生産性が悪いため、コストの上昇を招きやすい。さらに、これらの無機化合物膜は成膜速度が遅く、生産性が悪いという問題がある。また、多層膜を形成するためには、何層もの層を順に積層する必要がある。有機EL素子の上に多層膜を積層する場合、素子の上表面は、順序よく層が形成されていくので問題は生じにくいが、有機EL素子のサイドの部分に順序よく層を形成することは困難であり、サイド部からのガスバリア性が十分でないという問題もある。   In addition, a multilayer film in which inorganic compound films such as silicon nitride oxide and silicon nitride are stacked is disclosed (see, for example, Patent Document 6). However, it cannot be said that this multilayer film has sufficient gas barrier properties. In addition, the formation of the multilayer film is complicated, and the productivity is poor, so that the cost is likely to increase. Furthermore, these inorganic compound films have a problem that the deposition rate is slow and the productivity is poor. Further, in order to form a multilayer film, it is necessary to sequentially stack several layers. When laminating a multilayer film on an organic EL element, it is difficult to form a layer on the side of the organic EL element. However, it is difficult to form a layer on the side part of the organic EL element. There is also a problem that the gas barrier property from the side portion is not sufficient.

特開2003−335820号公報JP 2003-335820 A 国際公開第03/094256号パンフレットInternational Publication No. 03/094256 Pamphlet 特開2003−340955号公報JP 2003-340955 A 特開2003−340971号公報JP 2003-340971 A 国際公開第00/36665号パンフレットInternational Publication No. 00/36665 Pamphlet 特開2004−119138号公報JP 2004-119138 A 特開平5−182759号公報JP-A-5-182759 特開平5−41281号公報Japanese Patent Laid-Open No. 5-41281 M.Benmalek,H.M.Dunlop,”Inorganic coatings on polymers”,Surface and Coatings Technology 76−77,(1995),pp821−826.M.M. Benmalek, H.M. M.M. Dunlop, “Inorganic coatings on polymers”, Surface and Coatings Technology 76-77, (1995), pp 821-826. Yoji Kawamoto,Shoji Tsuchihashi,“Glass−Forming Regions and Structure of Glasses in the System Ge−S”J. of The American Ceramic Society vol.52,No.11,(1969),pp626−627.Yoji Kawamoto, Shoji Tsuchihashi, “Glass-Forming Regions and Structure of Glasses in the System Ge-S”. of The American Ceramic Society vol. 52, no. 11, (1969), pp 626-627. Andreas Weber, Silke Deutschbein, Armin Plichta,“Thin Glass−Polymer Systems as Flexible Substrates for Displays”,SID 02 Digest,(2002),pp53−55.Andreas Weber, Silke Deutschschbein, Armin Prichta, “Thin Glass-Polymer Systems as Flexible Substrates for Displays”, SID 02 Digest, (2002). G. Nisato,P.C.P Bouten, P.J.Slikkerveer, W.D.Bennet, G.L.Graff, N.Rutherford, L.Wiese, “Evaluating High Performance Diffusison Barriers:the Calcium Test”, Asia Display/IDW ‘01 Proceedings, (2001), pp1435−1438.G. Nisato, P.A. C. P Bouten, P.M. J. et al. Slickkerveer, W.M. D. Bennet, G.M. L. Graff, N.M. Rutherford, L.M. Wise, “Evaluating High Performance Diffusion Barriers: the Calcium Test”, Asia Display / IDW '01 Proceedings, (2001), pp 1435-1438.

本発明は、ガスバリア性が高く、可視光域で高い透過率を有し、かつ単層でも有効なガスバリア性を得られるため生産性が高い膜付き基体と該膜を形成する膜形成用ガラスを提供することを目的とする。さらには、耐候性を有する膜付き基体と該膜を形成する膜形成用ガラスを提供することを目的とする。   The present invention provides a substrate with a film having high gas barrier properties, high transmittance in the visible light range, and effective gas barrier properties even with a single layer, and high productivity, and a film-forming glass for forming the film. The purpose is to provide. Furthermore, it aims at providing the glass substrate for film | membrane which forms a film | membrane base | substrate with a weather resistance, and this film | membrane.

本発明は、下記の内容を提供する。   The present invention provides the following contents.

体の少なくとも片面に、Pを含有するリン酸塩ガラスを材料とする無機質非結晶質膜を有し、
前記リン酸塩ガラスが、さらにフッ化物を含む膜付き基体。
On at least one surface of the base body, it has a inorganic amorphous film to the material phosphate glass containing P 2 O 5,
The film-coated substrate , wherein the phosphate glass further contains a fluoride .

本発明の膜付き基体は、ガラス転移温度が50〜500℃または軟化温度が100〜800℃である無機質非結晶質膜を用いており、かつ可視光域の透過率が高く、さらに高いガスバリア性を有するので、液晶表示素子や有機EL等のディスプレィの基体として有用である。   The substrate with a film of the present invention uses an inorganic amorphous film having a glass transition temperature of 50 to 500 ° C. or a softening temperature of 100 to 800 ° C., has a high visible light transmittance, and has a higher gas barrier property. Therefore, it is useful as a substrate for a display such as a liquid crystal display element or an organic EL.

特に、フツリン酸塩ガラスからなる膜はガスバリア性が高く、可視光域の透過率が高く、さらに優れた耐候性を有しているため有用である。   In particular, a film made of fluorophosphate glass is useful because it has high gas barrier properties, high transmittance in the visible light region, and excellent weather resistance.

本発明の膜付き基体の概略横断面図である。1 is a schematic cross-sectional view of a film-coated substrate of the present invention. 本発明の基体がフィルムである場合の封止基体の概略横断面図である。It is a schematic cross-sectional view of a sealing substrate when the substrate of the present invention is a film. 本発明の基体がガラス基板である場合の封止基体の概略横断面図である。It is a schematic cross-sectional view of a sealing substrate when the substrate of the present invention is a glass substrate. 本発明のGeS膜付きフィルム(ポリカフィルム)の透過率を表す図である。It is a figure showing the transmittance | permeability of the film (polycarbonate film) with a GeS film | membrane of this invention. 本発明のGeS膜付きフィルム(PETフィルム)の透過率を表す図である。It is a figure showing the transmittance | permeability of the film with a GeS film | membrane (PET film) of this invention. 本発明のガスバリア性の評価結果を示す図である。It is a figure which shows the evaluation result of the gas barrier property of this invention. 本発明のP系ガラス膜付きフィルム(ポリカフィルム)の透過率を表す図である。It is a diagram showing the transmittance of P 2 O 5 type glass film with a film of the present invention (polycarbonate film). 本発明のP系ガラス膜付きフィルム(PETフィルム)の透過率を表す図である。It is a diagram showing the transmittance of P 2 O 5 type glass film with a film of the present invention (PET film). 本発明のSnO−SnF−Pガラス膜付きフィルムの透過率を表す図である。Is a diagram illustrating a SnO-SnF 2 -P 2 O 5 transmittance of the glass film with the film of the present invention. 本発明のSnO−SnF−Pガラス膜付きガラス基板の透過率を表す図である。Is a diagram illustrating a SnO-SnF 2 -P 2 O 5 glass film with transmittance of the glass substrate of the present invention. 本発明におけるSnO−SnF−Pガラス膜が付いたフィルムの透過率を表す図である。It is a diagram showing the transmittance of the film with SnO-SnF 2 -P 2 O 5 glass film in the present invention. 本発明におけるSnO−SnF−Pガラス膜のガスバリア性の評価結果を示す図である。Is a graph showing evaluation results of the gas barrier properties of the SnO-SnF 2 -P 2 O 5 glass film in the present invention. 本発明におけるSnO−Pガラス膜ガラス膜が付いたフィルムの透過率(ポリカフィルム)を表す図である。Is a graph showing SnO-P 2 O 5 transmittance of the glass film glass film with film (polycarbonate film) in the present invention. 本発明におけるSnO−Pガラス膜ガラス膜が付いたフィルムの透過率(PETフィルム)を表す図である。It is a diagram showing the transmittance of a film with SnO-P 2 O 5 glass film glass film (PET film) in the present invention.

符号の説明Explanation of symbols

1:基体
2:有機物素子
3:無機質非晶質膜
4:下地膜
10:膜付き基板(封止基体)
1: Substrate 2: Organic element 3: Inorganic amorphous film 4: Underlayer film 10: Substrate with film (sealing substrate)

本発明の膜付き基体に用いられる基体としてはフィルム基板またはガラス基板が例示される。基体がフィルム基板である場合、フィルム基板の材料は特に制限されず、例えば、ポリカーボネート樹脂、PET(ポリエチレンテレフタラート)樹脂、アクリル樹脂等が挙げられる。フィルム基板の厚さは50〜500μm、特に100〜400μmであることが軽量化ならびに優れた可撓性を発揮できる点で好ましい。
基体がガラス基板である場合、ガラスの組成は特に限定されない。また、ガラス基板の厚さも現在生産されているガラス基板をそのまま使用でき、ガラス基板の板厚は0.05〜5mmであることが好ましい。しかし、曲げることができるような形状としてガラス基板を用いるためには、ガラス基板の板厚は0.05〜0.3mmのような薄板を使用することが好ましい。基体の形状は、平面、拡散面、凹面、凸面、台形などの各種の形状が利用できる。
また、基体は400〜700nmの波長全域において透過率が65%以上、つまり400〜700nmの波長域における最低透過率(以下、最低可視光透過率という。)は、65%以上、70%以上、特に75%以上、さらには80%以上、85%以上であることが透明性の点で好ましい。なお、ガラス基板自体はガスバリア性を有することが多いので、基体としてガラス基板を用いるのはガラス基板上に有機物素子などを有する場合、つまり後述する封止基体の場合である。
Examples of the substrate used for the film-coated substrate of the present invention include a film substrate or a glass substrate. When the substrate is a film substrate, the material of the film substrate is not particularly limited, and examples thereof include polycarbonate resin, PET (polyethylene terephthalate) resin, acrylic resin, and the like. The thickness of the film substrate is preferably 50 to 500 [mu] m, particularly 100 to 400 [mu] m, from the viewpoint that weight reduction and excellent flexibility can be exhibited.
When the substrate is a glass substrate, the glass composition is not particularly limited. Moreover, the glass substrate currently produced can also be used as it is for the thickness of a glass substrate, and it is preferable that the plate | board thickness of a glass substrate is 0.05-5 mm. However, in order to use a glass substrate as a shape that can be bent, it is preferable to use a thin plate having a thickness of 0.05 to 0.3 mm. As the shape of the substrate, various shapes such as a flat surface, a diffusion surface, a concave surface, a convex surface, and a trapezoid can be used.
The substrate has a transmittance of 65% or more in the entire wavelength range of 400 to 700 nm, that is, the minimum transmittance in the wavelength range of 400 to 700 nm (hereinafter referred to as the minimum visible light transmittance) is 65% or more, 70% or more, In particular, it is preferably 75% or more, more preferably 80% or more, and 85% or more from the viewpoint of transparency. Since the glass substrate itself often has gas barrier properties, the glass substrate is used as the substrate when it has an organic element on the glass substrate, that is, in the case of a sealing substrate described later.

本発明の膜付き基体とは、基体上に直接無機質非晶質膜を有する場合はもちろん、基体上に有機物素子などを有する場合にその上に無機質非晶質膜を有する場合も含む。
基体上に直接無機質非結晶質膜を有する場合とは、具体的には、図1に示すとおり、基体1上に直接無機質非晶質膜3を有する膜付き基板10が挙げられる。
また、基体上に有機物素子などを有する場合とは、具体的には、図2および3に示すとおり、基体1上に有機物素子2を有し、さらにその上に無機質非晶質膜3を有する膜付き基板10が挙げられる。基体上に有機物素子を有し、さらにその上に無機質非晶質膜を有する膜付き基板を封止基体という。
The substrate with a film of the present invention includes not only a case where an inorganic amorphous film is directly provided on the substrate but also a case where an organic element is provided on the substrate and an inorganic amorphous film is provided thereon.
Specifically, the case of having an inorganic non-crystalline film directly on a substrate includes a film-coated substrate 10 having an inorganic amorphous film 3 directly on the substrate 1, as shown in FIG.
Further, in the case of having an organic element on the substrate, specifically, as shown in FIGS. 2 and 3, the organic element 2 is provided on the substrate 1, and the inorganic amorphous film 3 is further provided thereon. An example of the substrate 10 with a film is given. A substrate with a film having an organic element on a substrate and further having an inorganic amorphous film thereon is called a sealing substrate.

本発明の封止基体を図2および3を用いて説明する。図2は、基体がフィルムである場合の封止基体の概略横断面図であり、図3は、基体がガラス基板である場合の封止基体の概略横断面図である。
図2において、基体1がフィルムである場合、フィルムはガスバリア性が不十分である場合が多いため、下地膜4を形成することが多い。下地膜4もガスバリア性を有することが好ましい。下地膜4の製造方法は特に限定されず、蒸着装置やスパッタ装置などにより成膜することが可能である。ついで、膜4の上に、電極と有機発光層等を有する有機物素子2を形成する。有機物素子2の製造方法も特に限定されず、蒸着装置やスピンコーターなどの成膜装置により成膜することが可能である。その後、無機質非晶質膜3を成膜して、本発明の封止基体10を形成する。その後、封止基体10の上にフィルム等を形成し、有機ELディスプレィを形成する。
The sealing substrate of the present invention will be described with reference to FIGS. FIG. 2 is a schematic cross-sectional view of the sealing substrate when the substrate is a film, and FIG. 3 is a schematic cross-sectional view of the sealing substrate when the substrate is a glass substrate.
In FIG. 2, when the substrate 1 is a film, the base film 4 is often formed because the film often has insufficient gas barrier properties. It is preferable that the base film 4 also has gas barrier properties. The manufacturing method of the base film 4 is not particularly limited, and can be formed by a vapor deposition apparatus, a sputtering apparatus, or the like. Next, an organic element 2 having an electrode and an organic light emitting layer is formed on the film 4. The manufacturing method of the organic element 2 is not particularly limited, and the film can be formed by a film forming apparatus such as a vapor deposition apparatus or a spin coater. Thereafter, the inorganic amorphous film 3 is formed to form the sealing substrate 10 of the present invention. Thereafter, a film or the like is formed on the sealing substrate 10 to form an organic EL display.

図3において、基体1がガラス基板である場合、ガラスはガスバリア性が十分である場合が多いため、フィルム基板のように下地膜4を形成する必要はない。次いで、ガラスの上に電極と有機発光層等を有する有機物素子2を形成する。有機物素子2の製造方法も特に限定されず、蒸着装置やスピンコーターなどの成膜装置により成膜することが可能である。その後、無機質非晶質膜3を成膜して、本発明の封止基体10を形成する。その後、封止基体10の上にフィルム等を形成し、有機ELディスプレィを形成する。   In FIG. 3, when the substrate 1 is a glass substrate, the glass often has sufficient gas barrier properties, and therefore it is not necessary to form the base film 4 unlike a film substrate. Next, an organic element 2 having an electrode and an organic light emitting layer is formed on the glass. The manufacturing method of the organic element 2 is not particularly limited, and the film can be formed by a film forming apparatus such as a vapor deposition apparatus or a spin coater. Thereafter, the inorganic amorphous film 3 is formed to form the sealing substrate 10 of the present invention. Thereafter, a film or the like is formed on the sealing substrate 10 to form an organic EL display.

なお、下地膜4の組成は、特に限定されない。ただし、ガスバリア性や生産性を考慮すると、無機質非晶質膜3と同じ組成の膜を形成することが好ましい。   The composition of the base film 4 is not particularly limited. However, in consideration of gas barrier properties and productivity, it is preferable to form a film having the same composition as the inorganic amorphous film 3.

有機物素子2の1種である有機EL素子は、通常に使用されている素子をそのまま使用できる。具体的には、陽極、正孔注入層、正孔輸送層、発光層、陰極が順次積層された構成である。陽極の材料としては仕事関数の大きい金属、例えば錫ドープ酸化インジウム(以後はITOとする)が例示される。正孔注入層の材料としては電界印加時に陽極もしくは正孔輸送層から正孔を注入することができる注入機能をもつもの、例えば銅フタロシアニン(以後はCuPcとする)が例示される。正孔輸送層の材料としては注入された正孔を移動させることができる輸送機能をもつもの、例えばジフェニルナフチルジアミン(以後はNPDとする)が例示される。発光層の材料としては電子と正孔の再結合の場を提供して、これを発光につなげる発光機能等を有する層を形成できるもの、例えばアルミナキノリン(以後はAlqとする)が例示される。陰極の材料としては仕事関数の小さい金属、例えばマグネシウムが例示される。   As the organic EL element which is one type of the organic element 2, a normally used element can be used as it is. Specifically, an anode, a hole injection layer, a hole transport layer, a light emitting layer, and a cathode are sequentially stacked. Examples of the material for the anode include metals having a high work function, such as tin-doped indium oxide (hereinafter referred to as ITO). Examples of the material for the hole injection layer include those having an injection function capable of injecting holes from the anode or the hole transport layer when an electric field is applied, such as copper phthalocyanine (hereinafter referred to as CuPc). Examples of the material of the hole transport layer include those having a transport function capable of moving injected holes, such as diphenylnaphthyldiamine (hereinafter referred to as NPD). Examples of the material of the light emitting layer include those capable of forming a layer having a light emitting function or the like that provides a field for recombination of electrons and holes and connects this to light emission, such as alumina quinoline (hereinafter referred to as Alq). . Examples of the material for the cathode include metals having a low work function, such as magnesium.

本発明の膜付き基体に用いられる無機質非結晶質膜は、軟化温度が100〜800℃であることが好ましい。800℃超の場合、たとえばSiO膜のような場合では、緻密な膜が得られにくく、ガスバリア性が劣る傾向にあり好ましくない。好ましくは、軟化温度が100〜700℃である。特に好ましくは150〜700℃、150℃〜500℃である。最も好ましくは150〜400℃である。The inorganic amorphous film used for the film-coated substrate of the present invention preferably has a softening temperature of 100 to 800 ° C. When the temperature is higher than 800 ° C., for example, a SiO 2 film is not preferable because a dense film is difficult to obtain and the gas barrier property tends to be inferior. Preferably, the softening temperature is 100 to 700 ° C. Especially preferably, they are 150-700 degreeC and 150 to 500 degreeC. Most preferably, it is 150-400 degreeC.

無機質非結晶質膜は、ガラス転移温度が50〜500℃であることが好ましい。500℃超の場合、たとえばSiO膜のような場合では、緻密な膜が得られにくく、ガスバリア性が劣る傾向にあり好ましくない。ガラス転移温度が50〜400℃、100〜400℃、特に50〜300℃、100〜300℃であることが好ましい。最も好ましくは100〜200℃である。さらに好ましくは、軟化温度およびガラス転移温度の両方が上記範囲にある場合である。なお、ガラス転移温度とは、2次の相転移で、比熱などの特性が不連続となる点を意味する。The inorganic amorphous film preferably has a glass transition temperature of 50 to 500 ° C. When the temperature exceeds 500 ° C., for example, in the case of a SiO 2 film, it is difficult to obtain a dense film, and the gas barrier property tends to be inferior. The glass transition temperature is preferably 50 to 400 ° C, 100 to 400 ° C, particularly 50 to 300 ° C, and 100 to 300 ° C. Most preferably, it is 100-200 degreeC. More preferably, both the softening temperature and the glass transition temperature are in the above range. The glass transition temperature means a point where characteristics such as specific heat are discontinuous due to a secondary phase transition.

本発明の無機質非結晶質膜は、膜構成材料が非晶質になりやすく、結晶質の粒子が形成されないため、ガスバリア性に優れる。膜構成材料が非晶質になりにくく、結晶質の粒子が形成される場合(たとえば、Al膜の場合)は、膜中に粒界が存在しやすく、ピンホールなどの欠陥を生じる原因となるため、ガスバリア性が劣る傾向にあり好ましくない。The inorganic amorphous film of the present invention is excellent in gas barrier properties because the film constituent material is likely to be amorphous and crystalline particles are not formed. When the film constituent material is not easily amorphous and crystalline particles are formed (for example, in the case of an Al 2 O 3 film), grain boundaries are likely to exist in the film, and defects such as pinholes are generated. This is not preferable because the gas barrier property tends to be inferior.

無機質非結晶質膜の材料としては、具体的には、Bを主成分として含有するホウ酸塩ガラス、Pを含有するリン酸塩ガラス、TeOを主成分として含有するテルライト系組成物、Biを主成分として含有する酸化ビスマス系組成物、またはS、SeおよびTeからなる群から選ばれる1種以上の元素を含有するカルコゲナイド系組成物が挙げられる。Specifically, the material of the inorganic amorphous film includes a borate glass containing B 2 O 3 as a main component, a phosphate glass containing P 2 O 5 , and TeO 2 as a main component. Examples thereof include a tellurite-based composition, a bismuth oxide-based composition containing Bi 2 O 3 as a main component, or a chalcogenide-based composition containing one or more elements selected from the group consisting of S, Se, and Te.

前記カルコゲナイド系組成物としては、As、Ge、P、Sb、Si、Sn、In、Ga、Bi、Pb、ZnおよびAgからなる群から選ばれる1種以上の元素と、S、SeおよびTeからなる群から選ばれる1種以上の元素とを組み合わせた組成物が例示される。   The chalcogenide-based composition includes one or more elements selected from the group consisting of As, Ge, P, Sb, Si, Sn, In, Ga, Bi, Pb, Zn, and Ag, and S, Se, and Te. The composition which combined 1 or more types of elements chosen from the group which consists of is illustrated.

前記カルコゲナイド系組成物としては、特に、GeS系組成物であることが非晶質となる組成範囲が広い点で好ましい。GeS系組成物膜中のGeの含有量は5〜40モル%、Sの含有量は60〜95モル%であることが形成される膜の透明性を維持できる点で好ましい。   As the chalcogenide-based composition, a GeS-based composition is particularly preferable in terms of a wide composition range that becomes amorphous. In the GeS composition film, the Ge content is preferably 5 to 40 mol%, and the S content is preferably 60 to 95 mol% from the viewpoint of maintaining the transparency of the formed film.

前記カルコゲナイド系組成物に、ハロゲン元素(Cl、Br、I)を含んでいてもよい。前期ハロゲン元素を含有させることで非晶質膜のガラス転移温度を低下できる点で好ましい。   The chalcogenide-based composition may contain a halogen element (Cl, Br, I). The inclusion of the halogen element in the previous period is preferable in that the glass transition temperature of the amorphous film can be lowered.

無機質非結晶質膜の材料としては、Pを含有するリン酸塩ガラスであることがガスバリア性に優れる点で特に好ましい。リン酸塩ガラスがガスバリア性に優れる理由は、ガラスを構成する原子配列に隙間が少なく、水蒸気分子が拡散しにくいためであると推定している。リン酸塩ガラス中のPの含有量は、5モル%以上、30モル%以上、特に60モル%以上、70モル%以上さらには80モル%以上であることが好ましい。As a material for the inorganic amorphous film, phosphate glass containing P 2 O 5 is particularly preferable in terms of excellent gas barrier properties. The reason why phosphate glass is excellent in gas barrier properties is presumed to be that there are few gaps in the atomic arrangement constituting the glass, and water vapor molecules are difficult to diffuse. The content of P 2 O 5 in the phosphate glass is preferably 5 mol% or more, 30 mol% or more, particularly 60 mol% or more, 70 mol% or more, and more preferably 80 mol% or more.

リン酸塩ガラスは、さらにSnOを含むことが、耐水性に優れるという理由で好ましい。また、上記リン酸塩ガラスはB、ZnO、PbO、TeO、アルカリ金属酸(LiO、NaO、KO等)、アルカリ土類金属酸(MgO、CaO等)、BiO等の化合物をガスバリア性を阻害しない程度に含んでいてもよい。It is preferable that the phosphate glass further contains SnO because of excellent water resistance. The phosphate glass is composed of B 2 O 3 , ZnO, PbO, TeO 2 , alkali metal acids (Li 2 O, Na 2 O, K 2 O, etc.), alkaline earth metal acids (MgO, CaO, etc.), A compound such as BiO 2 may be included to such an extent that the gas barrier property is not inhibited.

前記リン酸塩ガラスとしては、上記リン酸塩ガラスにフッ化物を含有した、フッ化物およびPを含有するフツリン酸塩ガラスからなる膜(以下、フツリン酸塩ガラス膜と略す。)であることが非晶質になりやすく、膜厚が薄い場合(0.1〜0.5μm程度)であってもガスバリア性に優れる点で特に好ましい。The phosphate glass is a film made of fluorophosphate glass containing fluoride and P 2 O 5 containing fluoride in the phosphate glass (hereinafter abbreviated as fluorophosphate glass film). It is particularly preferable in that it is easily amorphous and even when the film thickness is thin (about 0.1 to 0.5 μm), the gas barrier property is excellent.

本発明のフツリン酸塩ガラス膜は、膜構成材料が非晶質になりやすく、結晶質の粒子が形成されにくいため、ガスバリア性に優れる。膜構成材料が非晶質になりにくく、結晶質の粒子が形成される場合(たとえば、Al膜の場合)は、膜中に粒界が存在しやすく、ピンホールなどの欠陥を生じる原因となるため、ガスバリア性が劣る傾向にあり好ましくない。The fluorophosphate glass film of the present invention is excellent in gas barrier properties because the film constituent material is likely to be amorphous and crystalline particles are hardly formed. When the film constituent material is not easily amorphous and crystalline particles are formed (for example, in the case of an Al 2 O 3 film), grain boundaries are likely to exist in the film, and defects such as pinholes are generated. This is not preferable because the gas barrier property tends to be inferior.

フツリン酸塩ガラス膜とは、フッ化物およびPを含有するガラス膜である。具体的には、Pの含有量がガラス膜中に5〜39モル%であることが好ましい。39モル%超では、耐候性が劣る可能性があり、また膜表面に変質層が生じるため、ガスバリア性に劣るという問題が生じる可能性があり好ましくない。また、フッ化物の含有量がガラス膜中に1〜70モル%であることが耐候性に優れ、ガラス化しやすいという理由で好ましい。特に1〜55モル%、さらに30〜55モル%であることが好ましい。フッ化物とは、化合物中にフッ素を含有する化合物であり、具体的には、SnF、ZnF、PbF、フッ化アルカリ金属等が例示される。A fluorophosphate glass film is a glass film containing fluoride and P 2 O 5 . Specifically, the content of P 2 O 5 is preferably 5 to 39 mol% in the glass film. If it exceeds 39 mol%, the weather resistance may be inferior, and a deteriorated layer is formed on the film surface, which may cause a problem of inferior gas barrier properties, which is not preferable. Moreover, it is preferable for the reason that it is excellent in a weather resistance and it is easy to vitrify that content of a fluoride is 1-70 mol% in a glass film. In particular, it is preferably 1 to 55 mol%, more preferably 30 to 55 mol%. The fluoride is a compound containing fluorine in the compound, and specific examples thereof include SnF 2 , ZnF 2 , PbF 2 , and alkali metal fluoride.

フツリン酸塩ガラス膜は、フッ化物およびP以外の成分として、SnO、B、ZnO、PbO、TeO、アルカリ金属酸(LiO、NaO、KO等)、BiO等を含むことができる。特にSnO、ZnO、PbO、Bを含むことで、耐候性の高い膜が形成できる点で好ましい。フツリン酸塩ガラス膜中にSnOを含む場合、SnOの含有量が1〜80モル%、特に15〜60モル%であることが好ましい。The fluorophosphate glass film is composed of SnO, B 2 O 3 , ZnO, PbO, TeO 2 , alkali metal acids (Li 2 O, Na 2 O, K 2 O, etc.) as components other than fluoride and P 2 O 5. , BiO 2 and the like. In particular, SnO, ZnO, PbO, and B 2 O 3 are preferable in that a film having high weather resistance can be formed. When SnO is contained in the fluorophosphate glass film, the SnO content is preferably 1 to 80 mol%, particularly preferably 15 to 60 mol%.

非晶質となる組成範囲が広く低融点である点で、フツリン酸塩ガラス膜中にSnOおよびSnFを含むこと、つまりフツリン酸塩ガラス膜がオキシフッ化スズ−リンガラス膜であることがさらに好ましい。フツリン酸塩ガラス膜中に耐水性を有する材料(例えば、SnO)を含むことにより、耐候性の高い膜が形成でき、かつSnFを含むことにより緻密な膜が形成できるという利点がある。フツリン酸塩ガラス膜中にSnOおよびSnFを含む場合、Pの含有量が5〜39モル%、SnOの含有量が1〜80モル%、およびSnFの含有量が1〜60モル%であることが好ましい。フツリン酸塩ガラスの融点は、800℃以下、特に400℃以下であることが緻密な膜が形成できる点で好ましい。It is further included that the fluorophosphate glass film contains SnO and SnF 2 , that is, the fluorophosphate glass film is a tin oxyfluoride-phosphorus glass film, in that the amorphous composition range is wide and the melting point is low. preferable. By including a water-resistant material (for example, SnO) in the fluorophosphate glass film, there is an advantage that a highly weather-resistant film can be formed and a dense film can be formed by including SnF 2 . If during fluorophosphate glass film containing SnO and SnF 2, P 2 O 5 content is from 5 to 39 mol%, the content of SnO is from 1 to 80 mol%, and the content of SnF 2 from 1 to 60 It is preferable that it is mol%. The melting point of the fluorophosphate glass is preferably 800 ° C. or lower, and particularly preferably 400 ° C. or lower in that a dense film can be formed.

無機質非結晶質膜の膜厚は、0.1〜5μm、特に0.1〜4μm、さらには0.2〜3μm、0.2〜1μmであることが好ましい。0.1μm未満では所望のガスバリア性が得られにくく、ピンホール等が発生しやすくなり好ましくない。また、5μm超では基体を好ましい形状で曲げることが困難となり、曲げた際に膜にクラックが生じる可能性があり好ましくない。なお、膜厚とは、封止基体の場合、有機物素子を覆っている無機質結晶質膜の素子上の膜厚を意味する。   The thickness of the inorganic amorphous film is preferably 0.1 to 5 μm, particularly 0.1 to 4 μm, more preferably 0.2 to 3 μm, and 0.2 to 1 μm. If it is less than 0.1 μm, it is difficult to obtain a desired gas barrier property, and pinholes are likely to be generated, which is not preferable. On the other hand, if it exceeds 5 μm, it is difficult to bend the substrate in a preferable shape, and cracking may occur in the film when it is bent. In the case of a sealing substrate, the film thickness means the film thickness on the element of the inorganic crystalline film covering the organic substance element.

本発明の無機質非結晶質膜は、気相を経由して形成されることが好ましい。「気相を経由して形成する」とは、「原料となる母材を一旦気体にした後に膜として形成する」という意味である。具体的には、無機質非結晶質膜は、真空蒸着法、スパッタ法、CVD法等の方法により、無機質非結晶質膜の材料を用いることで形成できる。特に短時間で大面積の基板に所望の膜厚を有する膜を形成できる点で、真空蒸着法を用いることが好ましい。無機質非結晶質膜の材料としては、Bを主成分として含有するホウ酸塩ガラス、Pを含有するリン酸塩ガラス、TeOを主成分として含有するテルライト系組成物、Biを主成分として含有する酸化ビスマス系組成物、またはS、SeおよびTeからなる群から選ばれる1種以上の元素を含有するカルコゲナイド系組成物が例示される。The inorganic amorphous film of the present invention is preferably formed via a gas phase. “Forming via a gas phase” means “forming a film after the base material used as a raw material is once gasified”. Specifically, the inorganic amorphous film can be formed by using a material for the inorganic amorphous film by a method such as vacuum deposition, sputtering, or CVD. In particular, it is preferable to use a vacuum evaporation method in that a film having a desired film thickness can be formed on a large-area substrate in a short time. As the material of the inorganic amorphous film, borate glass containing B 2 O 3 as a main component, phosphate glass containing P 2 O 5 , tellurite-based composition containing TeO 2 as a main component, Examples thereof include a bismuth oxide-based composition containing Bi 2 O 3 as a main component, or a chalcogenide-based composition containing one or more elements selected from the group consisting of S, Se, and Te.

真空蒸着法で無機質非結晶質膜を形成する場合、温度を上昇させながら原料となる無機質非結晶質膜を形成するためのガラス母材を揮発させ、気相を経由して基体上に膜を形成させる。または、膜のガラスを構成する各々の成分を別々に原料として同時に揮発させて、気相を経由して基体上に堆積させてもよい。上記ガラス母材は、比較的蒸気圧の高い成分から構成されていることが成膜速度を上げることができる点で好ましい。   When forming an inorganic amorphous film by vacuum deposition, the glass base material for forming the inorganic amorphous film as a raw material is volatilized while raising the temperature, and the film is formed on the substrate via the gas phase. Let it form. Or each component which comprises the glass of a film | membrane may volatilize separately as a raw material simultaneously, and you may deposit on a base | substrate via a gaseous phase. The glass base material is preferably composed of a component having a relatively high vapor pressure in that the film forming speed can be increased.

すなわち、比較的蒸気圧の高い物質を無機質非晶質膜中に含むことで、成膜時の成膜速度を上げることができ、成膜後の無機質非晶質膜の組成を操作しやすい点で好ましい。前記比較的蒸気圧の高い物質とは、具体的にはリン酸塩、SnO、SnF等のフッ化物、SnCl等の塩化物、B、アルカリホウ酸塩、NaO、KO、TeO等が例示できる。無機質非晶質膜中に含まれる比較的蒸気圧の高い物質の蒸気圧は、1600℃において1×10−7atm(1×10−2Pa)以上であることが好ましい。例えば、SnFの蒸気圧は、1600℃において249atmである。これに対し、Al、MgOは1600℃において1×10−7atm(1×10−2Pa)未満である。なお、蒸気圧は、熱力学計算ソフト(OUTOKUMPU・RESEARCH・OY社製:HSC Chemistry)により、SnO、SnF、B、KO、TeO、AlおよびMgO等の各化合物の0℃から1600℃までの蒸気圧曲線を計算して求めること、または各化合物の気相と凝縮相との自由エネルギー差から計算して求めることが可能である。That is, by including a substance having a relatively high vapor pressure in the inorganic amorphous film, the film formation speed during film formation can be increased, and the composition of the inorganic amorphous film after film formation is easy to operate. Is preferable. Wherein the relatively high vapor pressure material, particularly phosphate, SnO, fluoride such as SnF 2, chlorides such as SnCl 2, B 2 O 3, alkali borate, Na 2 O, K 2 O, TeO 2 etc. can be illustrated. The vapor pressure of a substance having a relatively high vapor pressure contained in the inorganic amorphous film is preferably 1 × 10 −7 atm (1 × 10 −2 Pa) or more at 1600 ° C. For example, the vapor pressure of SnF 2 is 249 atm at 1600 ° C. On the other hand, Al 2 O 3 and MgO are less than 1 × 10 −7 atm (1 × 10 −2 Pa) at 1600 ° C. The vapor pressure is determined by thermodynamic calculation software (OUTOKUMPU / RESEARCH / OY: HSC Chemistry) such as SnO, SnF 2 , B 2 O 3 , K 2 O, TeO 2 , Al 2 O 3 and MgO. It can be obtained by calculating a vapor pressure curve from 0 ° C. to 1600 ° C. of the compound, or by calculating from a free energy difference between the gas phase and the condensed phase of each compound.

無機質非結晶質膜の材料によっては、数種類の異なる物質が含まれているため、前記異なる物質の蒸気圧によっては、無機質非結晶質膜の材料と、それにより形成される無機質非結晶質膜との組成が若干異なる場合がある。例えば、リン酸塩ガラス中に蒸気圧の低いMgOが含まれている場合、真空蒸着法でリン酸塩ガラス膜を形成しようとすると、MgOが蒸発せず、リン酸塩ガラス膜中にMgOが含まれなくなり、所望の組成のリン酸塩ガラス膜を形成することができない。よって、無機質非結晶質膜を構成する成分のすべてが、上記比較的蒸気圧の高い物質、すなわち上述したように蒸気圧が1600℃において1×10−7(1×10−2Pa)atm以上であることが好ましい。例えばリン酸塩ガラス中に含まれる物質としては、具体的には、SnO、SnF等のフッ化物、B、NaO、KO、TeO等が例示できる。Depending on the material of the inorganic amorphous film, several types of different substances are included. Therefore, depending on the vapor pressure of the different substances, the material of the inorganic amorphous film and the inorganic amorphous film formed thereby The composition may be slightly different. For example, when MgO having a low vapor pressure is contained in the phosphate glass, when the phosphate glass film is formed by the vacuum evaporation method, MgO does not evaporate, and MgO is not contained in the phosphate glass film. It is not included, and a phosphate glass film having a desired composition cannot be formed. Therefore, all of the components constituting the inorganic amorphous film are the substances having a relatively high vapor pressure, that is, as described above, the vapor pressure is 1 × 10 −7 (1 × 10 −2 Pa) atm or more at 1600 ° C. It is preferable that For example, specific examples of substances contained in the phosphate glass include fluorides such as SnO and SnF 2 , B 2 O 3 , Na 2 O, K 2 O, and TeO 2 .

無機質非結晶質膜は、最低可視光透過率が65%以上、特に70%以上であることが、光取り出し面側にも用いることができ、特にトップエミッション型の有機ELディスプレィに用いる場合の明るさを維持できる点で好ましい。より好ましくは80%以上、最も好ましくは90%以上である。   The inorganic amorphous film has a minimum visible light transmittance of 65% or more, particularly 70% or more, and can be used also on the light extraction surface side. It is particularly bright when used for a top emission type organic EL display. It is preferable at the point which can maintain thickness. More preferably, it is 80% or more, and most preferably 90% or more.

本発明の膜付き基体においては、無機質非結晶質膜を基体の片面に設けてもよく、両面に設けてもよい。また、両面に形成する無機質非結晶質膜の構成は、同じであってもよく、異なっていてもよい。また、他の特性を付加させるために、無機質非結晶質膜上に反射防止膜や絶縁膜等、無機質非結晶質膜と基体との間に下地膜等を設けてもよい。ただし、生産性の点では、無機質非結晶質膜単層でガスバリア膜付き基体を形成することが好ましい。本発明の無機質非結晶質膜は、単層でも好ましいガスバリア性を奏することができる点で優れている。   In the substrate with a film of the present invention, the inorganic amorphous film may be provided on one side or both sides of the substrate. Moreover, the structure of the inorganic amorphous film | membrane formed in both surfaces may be the same, and may differ. In order to add other characteristics, a base film or the like may be provided between the inorganic amorphous film and the substrate, such as an antireflection film or an insulating film, on the inorganic amorphous film. However, in terms of productivity, it is preferable to form the substrate with a gas barrier film as a single layer of an inorganic amorphous film. The inorganic amorphous film of the present invention is excellent in that a preferable gas barrier property can be obtained even with a single layer.

本発明の膜付き基体は、最低可視光透過率が65%以上であることが好ましい。特に70%以上であることが、ディスプレィの基体用として用いる場合の透明性を維持できる点で好ましい。さらに75%以上、80%以上、特に90%以上であることが好ましい。
また、本発明の膜付き基体は、絶縁性であることが、フィルムの表面に形成された電子デバイスの動作を阻害しない点で好ましい。
また、無機質非結晶質膜の材料の50℃から350℃までの平均膨張係数は、基体や有機物素子などの表示素子との膨張係数の整合性の点で、基体がフィルム基板である場合、100×10−7〜500×10−7/℃、特に150×10−7〜500×10−7/℃であることが好ましい。また、基体がガラス基板である場合、上記と同様に理由で、20×10−7〜100×10−7/℃であることが好ましい。さらに、基体上の導電膜にエッチングを施す必要性から、化学的耐久性に優れることが好ましい。
The film-coated substrate of the present invention preferably has a minimum visible light transmittance of 65% or more. In particular, it is preferably 70% or more from the standpoint of maintaining transparency when used for a substrate of a display. Further, it is preferably 75% or more, 80% or more, particularly 90% or more.
Moreover, it is preferable that the substrate with a film of the present invention is insulative because it does not hinder the operation of the electronic device formed on the surface of the film.
In addition, the average expansion coefficient of the material of the inorganic amorphous film from 50 ° C. to 350 ° C. is 100 when the substrate is a film substrate in terms of the consistency of the expansion coefficient with a display element such as a substrate or an organic element. × 10 -7 ~500 × 10 -7 / ℃, it is particularly preferably 150 × 10 -7 ~500 × 10 -7 / ℃. Further, if the substrate is a glass substrate, for reasons similar to the above, it is preferably 20 × 10 -7 ~100 × 10 -7 / ℃. Furthermore, it is preferable to be excellent in chemical durability because it is necessary to etch the conductive film on the substrate.

他の特性を付加させるために、無機質非結晶質膜上に反射防止膜や絶縁膜等、無機質非結晶質膜と有機物素子との間に下地膜等を設けてもよい。ただし、生産性の点では、無機質非結晶質膜単層で有機物素子を封止することが好ましい。本発明の封止基体は、単層でも好ましいガスバリア性を持つ無機質非結晶質膜を使用する点で、生産性に優れている。   In order to add other characteristics, a base film or the like may be provided between the inorganic amorphous film and the organic element, such as an antireflection film or an insulating film, on the inorganic amorphous film. However, from the viewpoint of productivity, it is preferable to seal the organic element with a single inorganic amorphous film layer. The sealing substrate of the present invention is excellent in productivity in that an inorganic amorphous film having a gas barrier property which is preferable even in a single layer is used.

本発明の封止基体は、基体としてフィルム基板を用いる場合は、ロール・トゥ・ロール方式を用いて連続で形成されてもよい。本発明の封止基体は、曲げることが可能なディスプレィに適用することも可能である。   The sealing substrate of the present invention may be continuously formed using a roll-to-roll method when a film substrate is used as the substrate. The sealing substrate of the present invention can also be applied to a display that can be bent.

本発明における有機物素子は、有機物からなる素子、言い換えれば稼動させるためにある程度のガスバリア性が必要な素子を意味し、具体的には、有機EL素子、有機メモリ素子、有機センサ素子、有機太陽電池素子などの有機半導体素子を意味する。   The organic element in the present invention means an element made of an organic substance, in other words, an element that requires a certain degree of gas barrier properties for operation, and specifically includes an organic EL element, an organic memory element, an organic sensor element, and an organic solar cell. An organic semiconductor element such as an element is meant.

本発明の封止基体は、透明性が高いため、ガスバリア性を必要とする表示装置に特に有用である。表示装置としては、有機EL(トップエミッション型、ボトムエミッション型)、有機TFTなどの表示装置が例示される。   Since the sealing substrate of the present invention has high transparency, it is particularly useful for display devices that require gas barrier properties. Examples of the display device include display devices such as organic EL (top emission type, bottom emission type) and organic TFT.

本発明の膜付き基体は、有機EL、液晶表示素子、電子ペーパー等のディスプレィ用の基体として有用である。また、太陽電池等の電子デバイスの基体としても有用である。本発明のガスバリア性基体は、フィルム基板を用いる場合、軽量かつ薄型であり、自由な形状に加工でき、ロール・トゥ・ロール方式で製造できるという特質を有する。   The film-coated substrate of the present invention is useful as a substrate for a display such as an organic EL, a liquid crystal display element, and electronic paper. Moreover, it is useful also as a base | substrate of electronic devices, such as a solar cell. When using a film substrate, the gas barrier substrate of the present invention is lightweight and thin, can be processed into a free shape, and can be manufactured by a roll-to-roll method.

以下に、本発明の膜付き基体の例1〜17について詳細に説明する。ただし、本発明は下記実施例に限定されない。   Examples 1 to 17 of the film-coated substrate of the present invention will be described in detail below. However, the present invention is not limited to the following examples.

<ガスバリア膜の形成>
(例1)
真空蒸着装置内に、基板として、ポリカーボネート(ポリカ)フィルムとPETフィルムとをそれぞれ設置する(最低可視光透過率:ポリカフィルム88%、PETフィルム89%。)。フィルムの厚さは、ポリカーボネートフィルム:250μm、PETフィルム:80μmである。
<Formation of gas barrier film>
(Example 1)
In the vacuum deposition apparatus, a polycarbonate (polycarbonate) film and a PET film are respectively installed as substrates (minimum visible light transmittance: 88% polycarbonate film and 89% PET film). The thickness of the film is polycarbonate film: 250 μm and PET film: 80 μm.

蒸着させる材料としてGeSガラス塊(Ge:20モル%、S:80モル%)をTaを材料とするボート型に入れ、30Aの電流をボート型に流して真空蒸着装置内でガラス成分を揮発させ、2種類のフィルム上にGeS膜をそれぞれ形成する。形成されたGeS膜の組成は、材料であるGeSガラス塊と同等である。形成されたGeS膜の膜厚は0.7μmである。形成されたGeS膜のガラス転移温度はDTAの測定により、250℃である。形成されたGeS膜の軟化温度はDTAの測定により、750℃である。また、形成されたGeS膜は回折X線法により測定により、非結晶質である。   A GeS glass lump (Ge: 20 mol%, S: 80 mol%) is placed in a boat type made of Ta as a material to be vapor-deposited, and a glass component is volatilized in a vacuum vapor deposition apparatus by flowing a current of 30A through the boat type. A GeS film is formed on each of the two types of films. The composition of the formed GeS film is the same as that of the GeS glass block as the material. The thickness of the formed GeS film is 0.7 μm. The glass transition temperature of the formed GeS film is 250 ° C. as measured by DTA. The softening temperature of the formed GeS film is 750 ° C. as measured by DTA. Further, the formed GeS film is amorphous as measured by the diffraction X-ray method.

形成されたガスバリア膜は高いバリア性を有している。   The formed gas barrier film has a high barrier property.

形成されたGeS膜付きフィルムの最低可視光透過率を下記の方法で評価し、(1)の結果を図4(ポリカフィルム)および図5(PETフィルム)に示す。   The minimum visible light transmittance of the formed film with a GeS film was evaluated by the following method, and the results of (1) are shown in FIG. 4 (polycarbonate film) and FIG. 5 (PET film).

(1)最低可視光透過率
形成したGeS膜付きフィルムの400〜700nmの波長全域の透過率を、分光光度計(U−3500型自記分光光度計:日立製作所製)を用いて測定する。
(1) Minimum visible light transmittance The transmittance of the formed GeS film-coated film in the entire wavelength range of 400 to 700 nm is measured using a spectrophotometer (U-3500 type self-recording spectrophotometer: manufactured by Hitachi, Ltd.).

図4および図5より、形成されたガスバリア性フィルムは、最低可視光透過率が70%以上という高い透過率を有し、透明性に優れることが分かる。   4 and 5 show that the formed gas barrier film has a high transmittance such that the minimum visible light transmittance is 70% or more, and is excellent in transparency.

(例2)
真空蒸着装置内に、基板として、例1と同様にポリカーボネート(ポリカ)フィルムとPETフィルムとをそれぞれ設置した。
(Example 2)
In the vacuum deposition apparatus, a polycarbonate (polycarbonate) film and a PET film were respectively installed as substrates in the same manner as in Example 1.

蒸着させる材料としてガラス転移温度が310℃、軟化温度が404℃であるSnO−P−MgOガラス塊(P:31.3モル%、SnO:63.8モル%、MgO:4.9モル%)をTaを材料とするボート型に入れ、25Aの電流をボート型に流して真空蒸着装置内でガラス成分を揮発させ、2種類のフィルム上にSnO−Pガラス膜(P:44.0モル%、SnO:56.0モル%。以下、P系ガラス膜という。)をそれぞれ形成した。形成されたP系ガラス膜の膜厚は0.45μmであった。また、形成されたP系ガラス膜は回折X線法により測定により、非結晶質であった。
なお、例10でも後述するが、MgOは蒸気圧が低く、P系ガラス膜中に含まれない。
SnO—P 2 O 5 —MgO glass lump (P 2 O 5 : 31.3 mol%, SnO: 63.8 mol%, MgO: glass transition temperature of 310 ° C. and softening temperature of 404 ° C. as materials to be deposited. 4.9 mol%) is put into a boat type made of Ta, and a glass component is volatilized in a vacuum deposition apparatus by flowing a current of 25 A into the boat type, and SnO—P 2 O 5 glass is formed on two types of films. Films (P 2 O 5 : 44.0 mol%, SnO: 56.0 mol%, hereinafter referred to as P 2 O 5 glass film) were formed. The thickness of the formed P 2 O 5 glass film was 0.45 μm. Further, the formed P 2 O 5 glass film was amorphous as measured by a diffraction X-ray method.
As will be described later in Example 10, MgO has a low vapor pressure and is not contained in the P 2 O 5 glass film.

形成されたP系ガラス膜の最低可視光透過率を例1と同様の方法で評価し、その結果を図7(ポリカフィルム)および図8(PETフィルム)に示す。The minimum visible light transmittance of the formed P 2 O 5 glass film was evaluated by the same method as in Example 1, and the results are shown in FIG. 7 (polycarbonate film) and FIG. 8 (PET film).

図7および図8より、形成されたガスバリア性フィルムは、450〜700nmの波長全域において透過率が65%以上という高い透過率を有し、透明性に優れることが分かる。   7 and 8 that the formed gas barrier film has a high transmittance of 65% or more over the entire wavelength range of 450 to 700 nm, and is excellent in transparency.

(例3)
<ガスバリア膜の評価>
真空蒸着装置内で、ガラス基板上に金属Ca薄膜を直径1cm大の円形に形成した。次に、基板を真空蒸着装置内に留めたまま、上記例2と同様の方法でP系ガラス膜を0.45μmの厚みに形成した。この際、金属Ca薄膜の一部にはP系ガラス膜が形成されないように、マスキングを行った。その後基板を真空蒸着装置より取り出し、常温大気中に放置し、ガスバリア性の評価を行った。
(Example 3)
<Evaluation of gas barrier film>
A metal Ca thin film was formed in a circular shape having a diameter of 1 cm on a glass substrate in a vacuum deposition apparatus. Next, a P 2 O 5 glass film having a thickness of 0.45 μm was formed by the same method as in Example 2 while the substrate was kept in the vacuum deposition apparatus. At this time, masking was performed so that a P 2 O 5 glass film was not formed on a part of the metal Ca thin film. Thereafter, the substrate was taken out from the vacuum deposition apparatus and left in a room temperature atmosphere to evaluate the gas barrier properties.

0.5時間経過時点ではCaに大きな変化は認められなかった(図6(A))。しかし、16.6時間経過後、P系ガラス薄膜が被覆されていない金属Ca薄膜(図6(B)における右半円部)は、大気中の水蒸気と反応して金属光沢が失われた。一方、P系ガラス薄膜で被覆された金属Ca薄膜(図6(B)における左半円部)は、16.6時間経過後も金属光沢を保っていた(図6(B))。このことから、P系ガラス膜が優れたガスバリア性を有することが分かった。No significant change was observed in Ca after 0.5 hours (FIG. 6 (A)). However, after 16.6 hours, the metallic Ca thin film (the right semicircle in FIG. 6B) not coated with the P 2 O 5 glass thin film reacts with water vapor in the atmosphere and loses its metallic luster. It was broken. On the other hand, the metallic Ca thin film (left semicircle portion in FIG. 6B) coated with the P 2 O 5 glass thin film kept the metallic luster even after 16.6 hours had elapsed (FIG. 6B). . From this, it was found that the P 2 O 5 glass film has an excellent gas barrier property.

なお、上記の金属Ca薄膜を利用した評価は、下記の文献に記載されている方法である(G. Nisato,P.C.P Bouten, P.J.Slikkerveer, W.D.Bennet, G.L.Graff, N.Rutherford, L.Wiese, “Evaluating High Performance Diffusison Barriers:the Calcium Test”, Asia Display/IDW ‘01 Proceedings, (2001), pp1435−1438.)。この評価方法は、従来のガス透過性測定装置による水蒸気透過率の検出限界(5×10−3g/m/日程度)を下回る水蒸気透過率を測定するために、新規に開発された評価方法である。よって、例2のP系ガラス膜金属Caは、水蒸気透過率が5×10−3g/m/日以下であることが十分に推測される。The evaluation using the above-mentioned metallic Ca thin film is a method described in the following literature (G. Nisato, PC P Bouten, P. J. Slickkerveer, WD Bennet, G., et al.). L. Graff, N. Rutherford, L. Wiese, “Evaluating High Performance Diffusion Barriers: the Calcium Tests”, Asia Display / IDW '01 Proceedings, p. This evaluation method is a newly developed evaluation for measuring a water vapor transmission rate that is below the detection limit (about 5 × 10 −3 g / m 2 / day) of the water vapor transmission rate by a conventional gas permeability measurement device. Is the method. Therefore, it is sufficiently estimated that the P 2 O 5 glass membrane metal Ca of Example 2 has a water vapor transmission rate of 5 × 10 −3 g / m 2 / day or less.

<ガスバリア膜の形成>
(例4)
真空蒸着装置内に、基板として、ポリカーボネート(ポリカ)フィルムを設置した(最低可視光透過率:ポリカフィルム88%。)。フィルムの厚さは250μmであった。蒸着させる材料としてSnO−SnF−Pガラス塊(P:25モル%、SnO:30モル%、SnF:45モル%、ガラス転移温度:110℃)をTaによって作成されたボート型に入れ、20Aの電流をボート型に流して真空蒸着装置内でガラス成分を揮発させ、フィルム上にSnO−SnF−Pガラス膜を形成した。上記ガラス塊の50℃から300℃までの平均線膨張係数はTMA(装置名:TMA、ブルワー・エイエックスエス社製)の測定により、185×10−7/Kであった。
<Formation of gas barrier film>
(Example 4)
A polycarbonate (polycarbonate) film was installed as a substrate in the vacuum evaporation apparatus (minimum visible light transmittance: 88% polycarbonate film). The thickness of the film was 250 μm. SnO—SnF 2 —P 2 O 5 glass lump (P 2 O 5 : 25 mol%, SnO: 30 mol%, SnF 2 : 45 mol%, glass transition temperature: 110 ° C.) is made of Ta as a material to be deposited. The glass component was volatilized in a vacuum deposition apparatus by applying a current of 20 A to the boat type to form a SnO—SnF 2 —P 2 O 5 glass film on the film. The average linear expansion coefficient from 50 ° C. to 300 ° C. of the glass mass was 185 × 10 −7 / K as measured by TMA (device name: TMA, manufactured by Brewer AXS).

形成されたSnO−SnF−Pガラス膜の膜厚は0.2μmであった。SnO−SnF−Pガラス膜の組成は、P:21モル%、SnO:27モル%、SnF:52モル%であった。なお、SnO−SnF−Pガラス塊のガラス転移温度はDTA(装置名:DTA、ブルワー・エイエックスエス社製)の測定により、110℃であった。The formed SnO—SnF 2 —P 2 O 5 glass film had a thickness of 0.2 μm. The composition of the SnO—SnF 2 —P 2 O 5 glass film was P 2 O 5 : 21 mol%, SnO: 27 mol%, and SnF 2 : 52 mol%. The glass transition temperature of the SnO—SnF 2 —P 2 O 5 glass block was 110 ° C. as measured by DTA (device name: DTA, manufactured by Brewer AXS).

形成されたSnO−SnF−Pガラス膜付きフィルムの400〜700nmの波長全域の透過率を、分光光度計(U−3500型自記分光光度計:日立製作所製)を用いて測定した。結果を図9に示す。The transmittance of the formed SnO—SnF 2 —P 2 O 5 glass film-attached film in the entire wavelength range of 400 to 700 nm was measured using a spectrophotometer (U-3500 type self-recording spectrophotometer: manufactured by Hitachi, Ltd.). . The results are shown in FIG.

(例5)
組成が異なるSnO−SnF−Pガラス塊(P:25モル%、SnO:45モル%、SnF:30モル%、ガラス転移温度:125℃、平均線膨張係数(測定方法は例4と同じ):180×10−7/K)を用いる以外は例4と同様に処理して、SnO−SnF−Pガラス膜を得た。形成されたSnO−SnF−Pガラス膜の膜厚は0.4μmであった。
形成されたSnO−SnF−Pガラス膜付きフィルムの400〜700nmの波長全域の透過率を、分光光度計(U−3500型自記分光光度計:日立製作所製)を用いて測定した。結果を図9に示す。
(Example 5)
SnO—SnF 2 —P 2 O 5 glass ingots with different compositions (P 2 O 5 : 25 mol%, SnO: 45 mol%, SnF 2 : 30 mol%, glass transition temperature: 125 ° C., average linear expansion coefficient (measurement The method was the same as in Example 4): A SnO—SnF 2 —P 2 O 5 glass film was obtained in the same manner as in Example 4 except that 180 × 10 −7 / K) was used. The film thickness of the formed SnO—SnF 2 —P 2 O 5 glass film was 0.4 μm.
The transmittance of the formed SnO—SnF 2 —P 2 O 5 glass film-attached film in the entire wavelength range of 400 to 700 nm was measured using a spectrophotometer (U-3500 type self-recording spectrophotometer: manufactured by Hitachi, Ltd.). . The results are shown in FIG.

(例6)
ポリカフィルムの代わりにガラス基板(最低可視光透過率:86%、板厚2.8mm)を用いる以外は例4と同様に処理して、SnO−SnF−Pガラス膜を得た。形成されたSnO−SnF−Pガラス膜の膜厚は0.4μmであった。
(Example 6)
A SnO—SnF 2 —P 2 O 5 glass film was obtained in the same manner as in Example 4 except that a glass substrate (minimum visible light transmittance: 86%, plate thickness: 2.8 mm) was used instead of the polycarbonate film. . The film thickness of the formed SnO—SnF 2 —P 2 O 5 glass film was 0.4 μm.

形成されたSnO−SnF−Pガラス膜付きガラス基板の400〜700nmの波長全域の透過率を、分光光度計(U−3500型自記分光光度計:日立製作所製)を用いて測定した。結果を図10に示す。The transmittance of the formed glass substrate with SnO—SnF 2 —P 2 O 5 glass film is measured using a spectrophotometer (U-3500 type self-recording spectrophotometer: manufactured by Hitachi, Ltd.) over the entire wavelength range of 400 to 700 nm. did. The results are shown in FIG.

図10により、形成されたガスバリア性基体は、最低可視光透過率が65%以上という高い透過率を有し、透明性に優れることが分かる。
例1,2,4〜6において形成された膜の組成と各種物性を表1に示す。

Figure 0005136054
FIG. 10 shows that the formed gas barrier substrate has a high transmittance such that the minimum visible light transmittance is 65% or more, and is excellent in transparency.
Table 1 shows the composition and various physical properties of the films formed in Examples 1, 2, and 4-6.
Figure 0005136054

<ガスバリア性の評価>
例4〜6で形成されたガスバリア膜は高いガスバリア性を有している。このことを確かめるために、以下の実験を行った。
<Evaluation of gas barrier properties>
The gas barrier films formed in Examples 4 to 6 have high gas barrier properties. In order to confirm this, the following experiment was conducted.

(例7)
例3と同様の評価方法を用いて評価した。
具体的には、真空蒸着装置内で、ガラス基板上にまず金属Caの薄膜を直径1cm大の円形に形成した。次に、基板を真空蒸着装置内に留めたまま、上記例4と同様の方法でSnO−SnF−Pガラス塊(P:25モル%、SnO:30モル%、SnF:45モル%)を用いて、ガラス膜を0.4μmの厚みに形成した。この際、金属Ca薄膜の一部にはガラス膜が形成されないように、マスキングを行った。その後基板を真空蒸着装置より取り出し、大気中に放置した。
(Example 7)
Evaluation was performed using the same evaluation method as in Example 3.
Specifically, a thin film of metal Ca was first formed in a circular shape having a diameter of 1 cm on a glass substrate in a vacuum deposition apparatus. Next, the SnO—SnF 2 —P 2 O 5 glass lump (P 2 O 5 : 25 mol%, SnO: 30 mol%, SnF) was used in the same manner as in Example 4 while the substrate was kept in the vacuum deposition apparatus. 2: with 45 mol%) to form a glass film to a thickness of 0.4 .mu.m. At this time, masking was performed so that a glass film was not formed on a part of the metallic Ca thin film. Thereafter, the substrate was taken out from the vacuum deposition apparatus and left in the atmosphere.

例3と同様の結果となった。0.5時間経過時点ではCaに大きな変化は認められなかったが、16.6時間経過後、ガラス膜が被覆されていない金属Ca薄膜は、大気中の水蒸気と反応して金属光沢が失われた。一方、ガラス膜で被覆された金属Ca薄膜は、16.6時間経過後も金属光沢を保っていた。さらに、実験を継続すると、2184時間経過後も、金属Ca薄膜が金属光沢を保っていた。このことから、例4のSnO−SnF−Pガラス膜が優れたガスバリア性を有することが分かった。Results similar to Example 3 were obtained. Although no significant change in Ca was observed after 0.5 hours, the metallic Ca thin film not covered with the glass film reacted with water vapor in the atmosphere and lost metallic luster after 16.6 hours. It was. On the other hand, the metallic Ca thin film covered with the glass film kept the metallic luster even after 16.6 hours had elapsed. Further, when the experiment was continued, the metallic Ca thin film maintained the metallic luster even after 2184 hours had elapsed. From this, it was found that the SnO—SnF 2 —P 2 O 5 glass film of Example 4 had excellent gas barrier properties.

よって、例4〜6のSnO−SnF−Pガラス膜は、水蒸気透過率が5×10−3グラム/m/日以下であることが十分に推測される。Therefore, it is sufficiently estimated that the SnO—SnF 2 —P 2 O 5 glass films of Examples 4 to 6 have a water vapor transmission rate of 5 × 10 −3 g / m 2 / day or less.

(例8)
大気中で放置した例7とは異なり、60℃90%RHの恒温恒湿槽内でガラス膜を放置した。
具体的には、真空蒸着装置内で、ガラス基板上にまず金属Caの薄膜を直径1cm大の円形に形成した。次に、基板を真空蒸着装置内に留めたまま、上記例4と同様の方法でSnO−SnF−Pガラス塊(P:25モル%、SnO:30モル%、SnF:45モル%)を用いて、ガラス膜を0.4μmの厚みに形成した。この際、金属Ca薄膜の一部にはガラス膜が形成されないように、マスキングを行った。その後基板を真空蒸着装置より取り出し、60℃90%RHの恒温恒湿槽内に静置し、例7と同様の金属Ca薄膜を利用した評価を行った。
(Example 8)
Unlike Example 7 which was left in the atmosphere, the glass film was left in a constant temperature and humidity chamber at 60 ° C. and 90% RH.
Specifically, a thin film of metal Ca was first formed in a circular shape having a diameter of 1 cm on a glass substrate in a vacuum deposition apparatus. Next, the SnO—SnF 2 —P 2 O 5 glass lump (P 2 O 5 : 25 mol%, SnO: 30 mol%, SnF) was used in the same manner as in Example 4 while the substrate was kept in the vacuum deposition apparatus. 2: with 45 mol%) to form a glass film to a thickness of 0.4 .mu.m. At this time, masking was performed so that a glass film was not formed on a part of the metallic Ca thin film. Thereafter, the substrate was taken out from the vacuum vapor deposition apparatus, left in a constant temperature and humidity chamber at 60 ° C. and 90% RH, and evaluation using the same metal Ca thin film as in Example 7 was performed.

24時間経過後、ガラス膜が被覆されていない金属Ca薄膜は、大気中の水蒸気と反応して金属光沢が失われた。一方、ガラス膜で被覆された金属Ca薄膜は、24時間経過後も金属光沢を保っていた。よって、例4〜6のSnO−SnF−Pガラス膜は、水蒸気透過率が5×10−3グラム/m/日以下であることが十分に推測される。
なお、この例8の試験は、例7の加速試験の位置づけである。
After the elapse of 24 hours, the metallic Ca thin film not covered with the glass film reacted with water vapor in the atmosphere and lost its metallic luster. On the other hand, the metallic Ca thin film covered with the glass film kept the metallic luster even after 24 hours. Therefore, it is sufficiently estimated that the SnO—SnF 2 —P 2 O 5 glass films of Examples 4 to 6 have a water vapor transmission rate of 5 × 10 −3 g / m 2 / day or less.
The test in Example 8 is the positioning of the acceleration test in Example 7.

<組成変化>
(例9)
真空蒸着装置内に、基板として、石英基板を設置した。蒸着させる材料としてSnO−SnF−Pガラス塊(P:24.4モル%、SnO:51.4モル%、SnF:24.2モル%)をTaによって作成されたボート型に入れ、20Aの電流をボート型に流して真空蒸着装置内でガラス成分を揮発させ、石英基板上にSnO−SnF−Pガラス膜を形成した。
<Composition change>
(Example 9)
A quartz substrate was installed as a substrate in the vacuum deposition apparatus. SnO-SnF 2 -P 2 O 5 glass gobs as a material to be deposited (P 2 O 5: 24.4 mol%, SnO: 51.4 mol%, SnF 2: 24.2 mol%) was created by Ta placed in a boat-shaped, by passing a current of 20A to boat-shaped evaporating a glass component in a vacuum evaporation apparatus to form a SnO-SnF 2 -P 2 O 5 glass film on a quartz substrate.

上記ガラス膜の組成を湿式分析(試料100グラムを(1+1)塩酸110ミリリットル中に溶かし、溶液中のSn、P、Mgの含有量をICP発光分析により定量し、酸化物のモル%に換算した。Fについては、該溶液を中和した後にフッ素イオン電極により定量し、全量がSnFとなっているとして算出した。)により測定したところ、P:21.1モル%、SnO:45.9モル%、SnF:33モル%であった。Wet analysis of the composition of the glass film (100 grams of sample was dissolved in 110 ml of (1 + 1) hydrochloric acid, and the Sn, P, and Mg contents in the solution were quantified by ICP emission analysis and converted to mol% of oxide. As for F, the solution was neutralized and then quantified with a fluorine ion electrode, and the total amount was calculated to be SnF 2 ), and measured by P 2 O 5 : 21.1 mol%, SnO: They were 45.9 mol% and SnF2: 33 mol%.

(例10)
SnO−SnF−Pガラス塊を用いる代わりにSnO−MgO−Pガラス塊(P:32.6モル%、SnO:66.4モル%、MgO:5.1モル%)を用いる以外は例9と同様に処理して石英基板上にSnO−MgO−Pガラス膜を形成した。
(Example 10)
SnO-MgO-P 2 O 5 glass gobs in place of using SnO-SnF 2 -P 2 O 5 glass block (P 2 O 5: 32.6 mol%, SnO: 66.4 mol%, MgO: 5.1 A SnO—MgO—P 2 O 5 glass film was formed on a quartz substrate by treatment in the same manner as in Example 9 except that (mol%) was used.

上記ガラス膜の組成を、例9と同様に湿式分析で測定したところ、P:45.8モル%、SnO:58.2モル%、MgO:0モル%であった。The composition of the glass film was measured by wet analysis in the same manner as in Example 9. As a result, it was P 2 O 5 : 45.8 mol%, SnO: 58.2 mol%, and MgO: 0 mol%.

上記のとおり、MgOを含む膜を真空蒸着法で形成しようとしても、MgOの蒸気圧が低く、ガラス膜中にMgOは含まれず、材料としては好ましくない。これに対し、SnFは、蒸気圧が高いため、原料であるガラス塊とほぼ同様の量が膜中に含まれており好ましい。As described above, even if a film containing MgO is formed by a vacuum deposition method, the vapor pressure of MgO is low, and the glass film does not contain MgO, which is not preferable as a material. On the other hand, SnF 2 has a high vapor pressure, and therefore, the same amount as that of the glass lump as a raw material is contained in the film, which is preferable.

<耐候性>
例4〜6で形成されたガスバリア膜は高い耐候性を有している。このことを確かめるために、以下の実験を行った。
<Weather resistance>
The gas barrier films formed in Examples 4 to 6 have high weather resistance. In order to confirm this, the following experiment was conducted.

(例11)
例4、5で形成されたSnO−SnF−Pガラス膜付き基体を大気雰囲気下に静置しておいたところ、624時間後もガラス膜の状態に変化は見られなかった。
(Example 11)
When the substrate with SnO—SnF 2 —P 2 O 5 glass film formed in Examples 4 and 5 was allowed to stand in an air atmosphere, no change was observed in the state of the glass film even after 624 hours.

例6で形成されたSnO−SnF−Pガラス膜付き基体を大気雰囲気下に静置しておいたところ、2100時間後もガラス膜の状態に変化は見られなかった。When the substrate with SnO—SnF 2 —P 2 O 5 glass film formed in Example 6 was allowed to stand in an air atmosphere, no change was observed in the state of the glass film even after 2100 hours.

上記実験により、例4〜6で形成されたSnO−SnF−Pガラス膜は高い耐候性を有していると考えられる。From the above experiment, it is considered that the SnO—SnF 2 —P 2 O 5 glass film formed in Examples 4 to 6 has high weather resistance.

<変質層の生成>
(例12)
500℃で溶解し、作成したフツリン酸塩ガラス(P:25モル%、SnO:30モル%、SnF:45モル%)を大気雰囲気下に静置しておいたところ、1週間後であっても表面に変質層が生じなかった。
<Generation of altered layer>
(Example 12)
When the fluorophosphate glass (P 2 O 5 : 25 mol%, SnO: 30 mol%, SnF 2 : 45 mol%) prepared by melting at 500 ° C. was allowed to stand in an air atmosphere for one week Even after this, no deteriorated layer was formed on the surface.

(例13)
500℃で溶解し、作成したフツリン酸塩ガラス(P:45モル%、SnO:35モル%、SnF:20モル%)を大気雰囲気下に静置しておいたところ、吸湿し、1週間後には表面に変質層が生じたが、実用上問題はなかった。
(Example 13)
When the fluorophosphate glass (P 2 O 5 : 45 mol%, SnO: 35 mol%, SnF 2 : 20 mol%) prepared by melting at 500 ° C. was allowed to stand in an air atmosphere, it absorbed moisture. After one week, an altered layer was formed on the surface, but there was no practical problem.

(例14)
500℃で溶解し、作成したフツリン酸塩ガラス(P:40モル%、SnO:50モル%、SnF:10モル%)を大気雰囲気下に静置しておいたところ、吸湿し、1週間後には表面に変質層が生じたが、実用上問題はなかった。
(Example 14)
When the fluorophosphate glass (P 2 O 5 : 40 mol%, SnO: 50 mol%, SnF 2 : 10 mol%) prepared by melting at 500 ° C. was allowed to stand in an air atmosphere, it absorbs moisture. After one week, an altered layer was formed on the surface, but there was no practical problem.

(例15)
500℃で溶解し、作成したフツリン酸塩ガラス(P:45モル%、SnF:55モル%)を大気雰囲気下に静置しておいたところ、吸湿し、1週間後には表面に変質層が生じたが、実用上問題はなかった。
(Example 15)
When the prepared fluorophosphate glass (P 2 O 5 : 45 mol%, SnF 2 : 55 mol%) was melted at 500 ° C. and allowed to stand in an air atmosphere, it absorbed moisture and after 1 week the surface However, there was no problem in practical use.

例12〜15の結果より、Pが25モル%、つまり5〜39モル%の範囲内であると、表面に変質層が生じず、ガラス膜が大気中の水蒸気によって劣化しないため、優れたガスバリア性がより長期間発揮されるという点で好ましい。From the results of Examples 12 to 15, when P 2 O 5 is in the range of 25 mol%, that is, in the range of 5 to 39 mol%, the altered layer is not generated on the surface, and the glass film is not deteriorated by water vapor in the atmosphere. It is preferable in that excellent gas barrier properties are exhibited for a longer period of time.

(例16)SnO−SnF−P膜を用いた封止基体
(1)SnO−SnF−P膜の形成
真空蒸着装置内に、基板として、ポリカーボネート(ポリカ)フィルム(最低可視光透過率:88%。)を設置する。フィルムの厚さは、250μmである。
In (Example 16) SnO-SnF 2 -P 2 O 5 film sealing substrate using (1) SnO-SnF 2 -P 2 O 5 film formed by the vacuum deposition equipment, and as a substrate, polycarbonate (polycarbonate) film ( Minimum visible light transmittance: 88%). The thickness of the film is 250 μm.

蒸着させる材料としてSnO−SnF−Pガラス母材(P:24.4モル%、SnO:51.4モル%、SnF:24.2モル%、軟化温度:200℃、ガラス転移温度:110℃)をTaによって作成されたボート型に入れ、20Aの電流をボート型に流して真空蒸着装置内でガラス成分を揮発させ、フィルム上にSnO−SnF−P膜を形成した。上記ガラス母材の50℃から300℃までの平均線膨張係数はTMA(装置名:TMA、ブルワー・エイエックスエス社製)の測定により、185×10−7/℃であった。SnO—SnF 2 —P 2 O 5 glass base material (P 2 O 5 : 24.4 mol%, SnO: 51.4 mol%, SnF 2 : 24.2 mol%, softening temperature: 200 ° C. , Glass transition temperature: 110 ° C.) is put into a boat type made of Ta, and a glass component is volatilized in a vacuum deposition apparatus by applying a current of 20 A to the boat type, and SnO—SnF 2 —P 2 O is deposited on the film. Five films were formed. The average linear expansion coefficient from 50 ° C. to 300 ° C. of the glass base material was 185 × 10 −7 / ° C. as measured by TMA (device name: TMA, manufactured by Brewer AXS).

形成されたSnO−SnF−P膜の膜厚は0.2μmであった。なお、SnO−SnF−Pガラス母材のガラス転移温度はDTA(装置名:DTA、ブルワー・エイエックスエス社製)の測定により、110℃であった。膜の軟化温度は母材と同等であった。The film thickness of the formed SnO—SnF 2 —P 2 O 5 film was 0.2 μm. The glass transition temperature of the SnO—SnF 2 —P 2 O 5 glass base material was 110 ° C. as measured by DTA (device name: DTA, manufactured by Brewer AXS). The softening temperature of the film was the same as that of the base material.

(2)最低可視光透過率
形成したSnO−SnF−Pガラス膜付きフィルムの400〜700nmの波長全域の透過率を、分光光度計(U−3500型自記分光光度計:日立製作所製)を用いて測定した。結果を図11に示す。図11より、形成されたガスバリア性フィルムは、400〜700nmの波長全域において最低可視光透過率が70%以上という高い透過率を有し、透明性に優れることが分かる。
(2) Minimum visible light transmittance The transmittance of the formed SnO—SnF 2 —P 2 O 5 glass film-attached film in the entire wavelength range of 400 to 700 nm is measured with a spectrophotometer (U-3500 type self-recording spectrophotometer: Hitachi, Ltd.) ). The results are shown in FIG. FIG. 11 shows that the formed gas barrier film has a high transmittance such that the minimum visible light transmittance is 70% or more in the entire wavelength range of 400 to 700 nm, and is excellent in transparency.

(3)組成分析
ポリカフィルムの代わりに石英ガラス基板を用いる以外は上記と同様に処理して、SnO−SnF−Pガラス膜を得た。このSnO−SnF−Pガラス膜の組成を、湿式分析(試料100グラムを(1+1)塩酸110ミリリットル中に溶かし、溶液中のSn、P、の含有量をICP発光分析により定量し、酸化物のモル%に換算した。Fについては、該溶液を中和した後にフッ素イオン電極により定量し、全量がSnFとなっているとして算出した。)により測定したところ、P:21.1モル%、SnO:45.9モル%、SnF:33モル%であった。
(3) except for using a quartz glass substrate instead of the composition analysis polycarbonate film was treated in the same manner as described above, to obtain a SnO-SnF 2 -P 2 O 5 glass film. The composition of this SnO—SnF 2 —P 2 O 5 glass film was analyzed by wet analysis (100 g of a sample was dissolved in 110 ml of (1 + 1) hydrochloric acid, and the contents of Sn and P in the solution were determined by ICP emission analysis. for the .F in terms of mole percent on the oxide, where quantitated by fluoride ion electrode after neutralization of the solution, the total amount was measured by computed.) as has a SnF 2, P 2 O 5 : 21.1 mol%, SnO: 45.9 mol%, SnF 2: 33 was mole%.

(4)ガスバリア性の評価(1)
真空蒸着装置内で、ガラス基板(旭硝子製:PD200)上にまず金属Caの薄膜を直径1cm大の円形に形成した。使用したガラス基板の厚みは2.8mmであった。次に、基板を真空蒸着装置内に留めたまま、上記(1)と同様の方法でSnO−SnF−Pガラス母材(P:24.4モル%、SnO:51.4モル%、SnF:24.2モル%)を用いて、SnO−SnF−P膜を金属Ca薄膜上に0.4μmの厚みに形成し、膜付きガラス基板を得た。この際、金属Ca薄膜の一部にはSnO−SnF−P膜が形成されないように、マスキングを行った。その後膜付きガラス基板を真空蒸着装置より取り出し、大気中に放置した。
(4) Evaluation of gas barrier properties (1)
In a vacuum deposition apparatus, a thin film of metal Ca was first formed in a circular shape having a diameter of 1 cm on a glass substrate (manufactured by Asahi Glass: PD200). The glass substrate used had a thickness of 2.8 mm. Next, the SnO—SnF 2 —P 2 O 5 glass base material (P 2 O 5 : 24.4 mol%, SnO: 51) is used in the same manner as in the above (1) while the substrate is kept in the vacuum deposition apparatus. .4 mol%, SnF 2 : 24.2 mol%) was used to form a SnO—SnF 2 —P 2 O 5 film on the metal Ca thin film to a thickness of 0.4 μm to obtain a glass substrate with a film. . At this time, masking was performed so that the SnO—SnF 2 —P 2 O 5 film was not formed on a part of the metal Ca thin film. Thereafter, the glass substrate with a film was taken out from the vacuum deposition apparatus and left in the air.

0.5時間経過時点ではCaに大きな変化は認められなかった(図12(A))。しかし、16.6時間経過後、ガラス膜が被覆されていない金属Ca薄膜(図12(B)における右半円部)は、大気中の水蒸気と反応して金属光沢が失われた。一方、ガラス膜で被覆された金属Ca薄膜(図12(B)における左半円部)は、16.6時間経過後も金属光沢を保っていた(図12(B))。さらに、実験を継続すると、2184時間経過後も、図12(B)と同様に金属Ca薄膜が金属光沢を保っていた。このことから、SnO−SnF−Pガラス膜が優れたガスバリア性を有することが分かった。No significant change was observed in Ca after 0.5 hours (FIG. 12 (A)). However, after 16.6 hours had elapsed, the metallic Ca thin film (the right semicircle in FIG. 12B) that was not covered with the glass film reacted with water vapor in the atmosphere and lost its metallic luster. On the other hand, the metallic Ca thin film coated with the glass film (the left semicircle in FIG. 12B) maintained the metallic luster even after 16.6 hours had elapsed (FIG. 12B). Further, when the experiment was continued, the metal Ca thin film maintained a metallic luster as in FIG. 12B even after 2184 hours had elapsed. From this, it was found that the SnO—SnF 2 —P 2 O 5 glass film has an excellent gas barrier property.

なお、上記の金属Ca薄膜を利用した評価は、(例3)に挙げた文献に記載されている方法である。   In addition, evaluation using said metal Ca thin film is the method described in the literature given in (Example 3).

(5)ガスバリア性の評価(2)
(4)と同様に作成した膜付きガラス基板を真空蒸着装置より取り出した後、60℃90RH%の恒温恒湿槽内に静置し、(4)と同様の金属Ca薄膜を利用した評価を行った。
(5) Evaluation of gas barrier properties (2)
After taking out the film-coated glass substrate prepared in the same manner as in (4) from the vacuum deposition apparatus, it was allowed to stand in a constant temperature and humidity chamber at 60 ° C. and 90 RH%, and evaluation using the same metallic Ca thin film as in (4) went.

24時間経過後、ガラス膜が被覆されていない金属Ca薄膜は、大気中の水蒸気と反応して金属光沢が失われた。一方、ガラス膜で被覆された金属Ca薄膜は、24時間経過後も金属光沢を保っていた。なお、この試験は、上記の加速試験の位置づけである。   After the elapse of 24 hours, the metallic Ca thin film not covered with the glass film reacted with water vapor in the atmosphere and lost its metallic luster. On the other hand, the metallic Ca thin film covered with the glass film kept the metallic luster even after 24 hours. This test is the positioning of the above acceleration test.

(6)耐候性
上記で形成されたSnO−SnF−Pガラス膜付き基体を大気雰囲気下に静置しておいたところ、2100時間後もガラス膜の状態に変化は見られなかった。これより形成されたSnO−SnF−Pガラス膜は優れた耐候性を有していることが分かる。
(6) Weather resistance When the substrate with SnO—SnF 2 —P 2 O 5 glass film formed as described above was left standing in an air atmosphere, no change was observed in the state of the glass film even after 2100 hours. It was. SnO-SnF 2 -P 2 O 5 glass film formed from this it is found to have excellent weatherability.

(7)封止基体の形成
(1)で形成したSnO−SnF−P膜付きフィルムの上に、陽極としてITO、正孔注入層としてCuPc、正孔輸送層としてNPD、発光層としてAlq、陰極としてマグネシウム層を順次積層した有機EL素子を形成し、その上に、(1)と同様の方法でSnO−SnF−P膜を0.4μm形成し、封止基体を得る。
形成した封止基体は、透明性、ガスバリア性および耐候性に優れることが確認される。
(7) Formation of sealing substrate On the film with SnO—SnF 2 —P 2 O 5 film formed in (1), ITO as an anode, CuPc as a hole injection layer, NPD as a hole transport layer, light emitting layer An organic EL element in which an Alq as a cathode and a magnesium layer as a cathode are sequentially laminated is formed, and a SnO—SnF 2 —P 2 O 5 film is formed thereon by 0.4 μm by the same method as in (1). Get.
It is confirmed that the formed sealing substrate is excellent in transparency, gas barrier properties and weather resistance.

(例17)SnO−P膜を用いた封止基体
(1)SnO−P膜の形成
真空蒸着装置内に、基板として、ポリカーボネート(ポリカ)フィルムとPETフィルムと石英ガラス基板をそれぞれ設置する(最低可視光透過率:ポリカフィルム88%、PETフィルム89%。)。フィルムの厚さは、ポリカーボネートフィルム:250μm、PETフィルム:80μmである。
(Example 17) Sealing substrate using SnO-P 2 O 5 film (1) Formation of SnO-P 2 O 5 film A polycarbonate (polycarbonate) film, a PET film and a quartz glass substrate as substrates in a vacuum deposition apparatus (Minimum visible light transmittance: polycarbonate film 88%, PET film 89%). The thickness of the film is polycarbonate film: 250 μm and PET film: 80 μm.

蒸着させる材料としてガラス転移温度が310℃、軟化温度が404℃であるSnO−P−MgOガラス母材(P:31.3モル%、SnO:63.8モル%、MgO:4.9モル%)をTaを材料とするボート型に入れ、25Aの電流をボート型に流して真空蒸着装置内でガラス成分を揮発させ、2種類のフィルム上にSnO−Pガラス膜をそれぞれ形成した。形成されたP系ガラス膜の膜厚はそれぞれ0.45μmであった。また、形成されたP系ガラス膜は回折X線法の測定により、非結晶質であった。軟化温度は100〜800℃の範囲内であった。SnO—P 2 O 5 —MgO glass base material having a glass transition temperature of 310 ° C. and a softening temperature of 404 ° C. as a material to be deposited (P 2 O 5 : 31.3 mol%, SnO: 63.8 mol%, MgO) : 4.9 mol%) is put into a boat type made of Ta, and a glass component is volatilized in a vacuum vapor deposition apparatus by applying a current of 25 A to the boat type, and SnO-P 2 O 5 is deposited on two types of films. Glass films were formed respectively. The film thickness of the formed P 2 O 5 glass film was 0.45 μm. Further, the formed P 2 O 5 -based glass film was amorphous as measured by a diffraction X-ray method. The softening temperature was in the range of 100 to 800 ° C.

(2)最低可視光透過率
例16の(2)におけるSnO−SnF−P膜のかわりに、例17の(1)で形成したSnO−P膜を用いる以外は同様に処理して、SnO−P膜付きフィルムの400〜700nmの波長全域における透過率を測定した。結果を図13(ポリカフィルム)および図14(PETフィルム)に示す。
(2) instead of the SnO-SnF 2 -P 2 O 5 film in (2) of the minimum visible light transmittance example 16, similarly except for using SnO-P 2 O 5 film formed in (1) of Example 17 The transmittance of the film with SnO—P 2 O 5 film was measured over the entire wavelength range of 400 to 700 nm. The results are shown in FIG. 13 (polycarbonate film) and FIG. 14 (PET film).

図13および図14より、形成されたSnO−SnF−P膜付きフィルムは、400〜700nmの波長全域において最低可視光透過率が65%以上という高い透過率を有し、透明性に優れることが分かる。From FIG. 13 and FIG. 14, the formed film with SnO—SnF 2 —P 2 O 5 film has a high transmittance such that the minimum visible light transmittance is 65% or more in the entire wavelength range of 400 to 700 nm, and is transparent. It is understood that it is excellent.

(3)組成分析
例16の(3)におけるSnO−SnF−P膜のかわりに、例17の(1)で形成したSnO−P膜を用いる以外は同様に処理して、SnO−P膜の組成を評価した。その結果、SnO−P膜の組成は、P:44.0モル%、SnO:56.0モル%、MgO:0モル%であった。
(3) Composition analysis In the same manner as in Example 16 (3), except that the SnO—SnF 2 —P 2 O 5 film was used instead of the SnO—P 2 O 5 film formed in Example 17 (1). Then, the composition of the SnO—P 2 O 5 film was evaluated. As a result, the composition of the SnO—P 2 O 5 film was P 2 O 5 : 44.0 mol%, SnO: 56.0 mol%, and MgO: 0 mol%.

上記のとおり、MgOを含む膜を真空蒸着法で形成しようとしても、MgOの蒸気圧が低く、ガラス膜中にMgO含まれず材料としては好ましくない。これに対し、例16に例示されるSnFは、蒸気圧が高いため、原料であるガラス母材とほぼ同様の量が膜中に含まれており好ましい。As described above, even if a film containing MgO is formed by a vacuum deposition method, the vapor pressure of MgO is low and the glass film does not contain MgO, which is not preferable as a material. On the other hand, SnF 2 exemplified in Example 16 is preferable because it has a high vapor pressure and therefore contains almost the same amount as the raw material glass base material.

(4)ガスバリア性の評価
例16(4)と同様の方法で評価した。具体的には、真空蒸着装置内で、ガラス基板(旭硝子製:PD200)上にまず金属Caの薄膜を直径1cm大の円形に形成した。使用したガラス基板の厚みは2.8mmであった。次に、基板を真空蒸着装置内に留めたまま、上記例2の(1)と同様の方法でSnO−P−MgOガラス母材(P:31.3モル%、SnO:63.8モル%、MgO:4.9モル%)を用いて、SnO−P膜を金属Ca薄膜上に0.4μmの厚みに形成し、膜付きガラス基板を得た。この際、金属Ca薄膜の一部にはSnO−P膜が形成されないように、マスキングを行った。その後膜付きガラス基板を真空蒸着装置より取り出し、大気中に放置した。
(4) Evaluation of gas barrier property It evaluated by the method similar to Example 16 (4). Specifically, a thin film of metal Ca was first formed in a circular shape having a diameter of 1 cm on a glass substrate (manufactured by Asahi Glass: PD200) in a vacuum deposition apparatus. The glass substrate used had a thickness of 2.8 mm. Next, the SnO—P 2 O 5 —MgO glass base material (P 2 O 5 : 31.3 mol%, SnO) was used in the same manner as in Example 1 (1) while the substrate was kept in the vacuum deposition apparatus. : 63.8 mol%, MgO: with 4.9 mole%), a SnO-P 2 O 5 film is formed to a thickness of 0.4μm on the metal Ca thin film to obtain a film-coated glass substrate. At this time, masking was performed so that the SnO—P 2 O 5 film was not formed on a part of the metal Ca thin film. Thereafter, the glass substrate with a film was taken out from the vacuum deposition apparatus and left in the air.

例16と同様の結果となった。0.5時間経過時点ではCaに大きな変化は認められなかったが、16.6時間経過後、ガラス膜が被覆されていない金属Ca薄膜は、大気中の水蒸気と反応して金属光沢が失われた。一方、SnO−P膜で被覆された金属Ca薄膜は、16.6時間経過後も金属光沢を保っていた。さらに、実験を継続すると、2184時間経過後も、図12(B)と同様に金属Ca薄膜が金属光沢を保っていた。このことから、SnO−Pガラス膜が優れたガスバリア性を有することが分かった。Results similar to Example 16 were obtained. Although no significant change in Ca was observed after 0.5 hours, the metallic Ca thin film not covered with the glass film reacted with water vapor in the atmosphere and lost metallic luster after 16.6 hours. It was. On the other hand, the metallic Ca thin film covered with the SnO—P 2 O 5 film kept the metallic luster even after 16.6 hours had elapsed. Further, when the experiment was continued, the metal Ca thin film maintained a metallic luster as in FIG. 12B even after 2184 hours had elapsed. From this, it was found that the SnO—P 2 O 5 glass film has an excellent gas barrier property.

これより、例16の(4)と同様、SnO−P膜は、水蒸気透過率が5×10−3g/m/日以下であることが十分に推測される。From this, it is sufficiently estimated that the SnO—P 2 O 5 film has a water vapor transmission rate of 5 × 10 −3 g / m 2 / day or less, as in Example 16 (4).

(5)封止基体の形成
例17の(1)で形成したSnO−P膜付きフィルムの上に、陽極としてITO、正孔注入層としてCuPc、正孔輸送層としてNPD、発光層としてAlq、陰極としてマグネシウム層を順次積層した有機EL素子を形成し、その上に、例17の(1)と同様の方法でSnO−P膜を0.4μm形成し、封止基体を得る。
形成した封止基体は、透明性およびガスバリア性に優れることが確認される。
(5) Formation of sealing substrate On the film with SnO-P 2 O 5 film formed in (1) of Example 17, ITO as the anode, CuPc as the hole injection layer, NPD as the hole transport layer, and light emitting layer An organic EL element in which an Alq as a cathode and a magnesium layer as a cathode are sequentially stacked is formed, and a SnO—P 2 O 5 film is formed in a thickness of 0.4 μm on the organic EL element by the same method as in Example 17 (1). Get.
It is confirmed that the formed sealing substrate is excellent in transparency and gas barrier properties.

本発明のガスバリア膜付き基体は、ガスバリア性が高いので、液晶表示素子や有機EL等のディスプレィの基体として有用である。

なお、2005年8月25日に出願された日本特許出願2005−244332号および、2005年9月12日に出願された日本特許出願2005−263774号のそれぞれの明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として取り入れるものである。
Since the substrate with a gas barrier film of the present invention has high gas barrier properties, it is useful as a substrate for a display such as a liquid crystal display element or an organic EL.

The specification, claims, and drawings of Japanese Patent Application No. 2005-244332 filed on August 25, 2005 and Japanese Patent Application No. 2005-263774 filed on September 12, 2005 are as follows. And the entire contents of the abstract are hereby incorporated by reference into the present specification.

Claims (17)

基体の少なくとも片面に、Pを含有するリン酸塩ガラスを材料とする無機質非結晶質膜を有し、
前記リン酸塩ガラスが、さらにフッ化物を含む膜付き基体。
On at least one surface of the substrate, it has a inorganic amorphous film to the material phosphate glass containing P 2 O 5,
The film-coated substrate , wherein the phosphate glass further contains a fluoride .
前記フッ化物の含有量が、無機質非結晶質膜中において1〜70モル%である請求項に記載の膜付き基体。The substrate with a film according to claim 1 , wherein the content of the fluoride is 1 to 70 mol% in the inorganic amorphous film. 前記フッ化物はSnFである請求項またはに記載の膜付き基体。The fluoride film-substrate according to claim 1 or 2 which is SnF 2. 前記Pの含有量が、無機質非結晶質膜中において5〜39モル%である請求項1〜3のいずれか1項に記載の膜付き基体。4. The film-coated substrate according to claim 1, wherein the content of P 2 O 5 is 5 to 39 mol% in the inorganic amorphous film. 前記リン酸塩ガラスは、さらにSnOを含む請求項1〜のいずれか1項に記載の膜付き基体。The film-coated substrate according to any one of claims 1 to 4 , wherein the phosphate glass further contains SnO. 前記SnOの含有量が、無機質非結晶質膜中において1〜80モル%である請求項に記載の膜付き基体。The film-coated substrate according to claim 5 , wherein the SnO content is 1 to 80 mol% in the inorganic amorphous film. 前記無機質非結晶質膜の軟化温度が100〜800℃である請求項1〜のいずれか1項に記載の膜付き基体。The film-coated substrate according to any one of claims 1 to 6 , wherein the inorganic amorphous film has a softening temperature of 100 to 800 ° C. 前記無機質非結晶質膜のガラス転移温度が50〜500℃である請求項1〜のいずれか1項に記載の膜付き基体。The film-coated substrate according to any one of claims 1 to 7 , wherein the inorganic amorphous film has a glass transition temperature of 50 to 500 ° C. 前記無機質非結晶質膜は、気相を経由して形成される請求項1〜のいずれか1項に記載の膜付き基体。The inorganic amorphous film, film-coated substrate according to any one of claims 1 to 8 formed via the vapor phase. 前記無機質非結晶質膜を構成するすべての成分の1600℃における蒸気圧が、1×10−2Pa以上である請求項1〜のいずれか1項に記載の膜付き基体。The film-coated substrate according to any one of claims 1 to 9 , wherein a vapor pressure at 1600 ° C of all components constituting the inorganic amorphous film is 1 × 10 -2 Pa or more. 400〜700nmの波長域における最低透過率が65%以上である請求項1〜10のいずれか1項に記載の膜付き基体。The substrate with a film according to any one of claims 1 to 10 , wherein a minimum transmittance in a wavelength region of 400 to 700 nm is 65% or more. 前記無機質非結晶質膜の膜厚が0.1〜5μmである請求項1〜11のいずれか1項に記載の膜付き基体。The film-coated substrate according to any one of claims 1 to 11 , wherein the inorganic amorphous film has a thickness of 0.1 to 5 µm. 前記無機質非結晶質膜がガスバリア性を有する請求項1〜1のいずれか1項に記載の膜付き基体。The substrate with a film according to any one of claims 1 to 12 , wherein the inorganic amorphous film has a gas barrier property. 請求項1〜13のいずれか1項に記載の膜付き基体を用いた有機ELディスプレィ。Organic EL Display using a membrane with substrate of any one of claims 1 to 13. およびフッ化物を含有するリン酸塩ガラスからなる、請求項1に記載の無機質非結晶質膜の膜形成用ガラス。The glass for forming an inorganic amorphous film according to claim 1, comprising a phosphate glass containing P 2 O 5 and a fluoride . 前記フッ化物はSnFである請求項1に記載の膜形成用ガラス。The fluoride glass film formation of claim 1 5 is SnF 2. 前記リン酸塩ガラスは、さらにSnOを含む請求項15または16に記載の膜形成用ガラス。The glass for forming a film according to claim 15 or 16 , wherein the phosphate glass further contains SnO.
JP2007532069A 2005-08-25 2006-08-14 Substrate with film and glass for film formation Expired - Fee Related JP5136054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007532069A JP5136054B2 (en) 2005-08-25 2006-08-14 Substrate with film and glass for film formation

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005244332 2005-08-25
JP2005244332 2005-08-25
JP2005263774 2005-09-12
JP2005263774 2005-09-12
PCT/JP2006/316027 WO2007023708A1 (en) 2005-08-25 2006-08-14 Base with film and glass for film formation
JP2007532069A JP5136054B2 (en) 2005-08-25 2006-08-14 Substrate with film and glass for film formation

Publications (2)

Publication Number Publication Date
JPWO2007023708A1 JPWO2007023708A1 (en) 2009-02-26
JP5136054B2 true JP5136054B2 (en) 2013-02-06

Family

ID=37771458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007532069A Expired - Fee Related JP5136054B2 (en) 2005-08-25 2006-08-14 Substrate with film and glass for film formation

Country Status (7)

Country Link
US (1) US7923115B2 (en)
EP (2) EP1925444A4 (en)
JP (1) JP5136054B2 (en)
KR (1) KR101296415B1 (en)
CN (1) CN101247950B (en)
TW (1) TWI429538B (en)
WO (1) WO2007023708A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829147B2 (en) * 2005-08-18 2010-11-09 Corning Incorporated Hermetically sealing a device without a heat treating step and the resulting hermetically sealed device
US20080206589A1 (en) * 2007-02-28 2008-08-28 Bruce Gardiner Aitken Low tempertature sintering using Sn2+ containing inorganic materials to hermetically seal a device
US7722929B2 (en) * 2005-08-18 2010-05-25 Corning Incorporated Sealing technique for decreasing the time it takes to hermetically seal a device and the resulting hermetically sealed device
US20070040501A1 (en) 2005-08-18 2007-02-22 Aitken Bruce G Method for inhibiting oxygen and moisture degradation of a device and the resulting device
US8115326B2 (en) 2006-11-30 2012-02-14 Corning Incorporated Flexible substrates having a thin-film barrier
JP5150295B2 (en) * 2008-02-12 2013-02-20 ローム株式会社 Flexible substrate and manufacturing method thereof
JP2011126026A (en) * 2009-12-15 2011-06-30 Koito Mfg Co Ltd Translucent resin member
JP5053412B2 (en) * 2010-05-10 2012-10-17 古河電気工業株式会社 Glass substrate and organic electroluminescence device
EP2717299B1 (en) * 2011-05-26 2016-07-27 Shindengen Electric Manufacturing Co., Ltd. Glass composition for semiconductor junction protection, production method for semiconductor device, and semiconductor device
KR101347541B1 (en) 2012-03-02 2014-01-06 삼성디스플레이 주식회사 Method for preparing organic light emitting device
KR101333138B1 (en) * 2012-03-05 2013-11-26 삼성디스플레이 주식회사 Method for preparing organic light emitting device, substrate for transiting of an inorganic film and organic light emitting device
US8754434B1 (en) * 2013-01-28 2014-06-17 Corning Incorporated Flexible hermetic thin film with light extraction layer
KR20150012540A (en) * 2013-07-25 2015-02-04 삼성디스플레이 주식회사 Method for manufacturing organic luminescence emitting display device
KR102096053B1 (en) * 2013-07-25 2020-04-02 삼성디스플레이 주식회사 Method for manufacturing organic luminescence emitting display device
KR101705406B1 (en) * 2014-09-11 2017-02-10 경희대학교 산학협력단 Organic light emitting diode using p-type oxide semiconductor comprising gallium, and method of manufacturing the same
JP6568600B2 (en) * 2016-01-08 2019-08-28 Yejガラス株式会社 Tin fluoride glass frit and manufacturing method thereof
WO2018106263A1 (en) * 2016-12-09 2018-06-14 Bemis Company, Inc. Packaging films with alternating individual layers of glass and plastic
CN110156326B (en) * 2018-02-11 2021-11-26 天津理工大学 Fluorescent glass ceramic based on low-melting-point glass powder and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136288A (en) * 1975-05-21 1976-11-25 Nippon Telegr & Teleph Corp <Ntt> Photo etching using non-crystalline carchogenide glass thin film
JPS5727941A (en) * 1980-06-17 1982-02-15 Corning Glass Works Tin-phosphorus oxyfluoride glass
JPS6049936A (en) * 1983-08-31 1985-03-19 東洋インキ製造株式会社 Manufacture of composite film
JP2001261374A (en) * 2000-03-15 2001-09-26 Asahi Glass Co Ltd Method of forming phosphate glass layer
WO2004017137A1 (en) * 2002-07-22 2004-02-26 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP2005119148A (en) * 2003-10-16 2005-05-12 Sumitomo Bakelite Co Ltd Gas-barrier substrate, substrate for display device, and display device
JP4617933B2 (en) * 2004-03-25 2011-01-26 旭硝子株式会社 Film coated with glass with low softening point

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607388A (en) * 1967-03-18 1971-09-21 Tokyo Shibaura Electric Co Method of preparing photoconductive layers on substrates
US5043369A (en) * 1988-10-17 1991-08-27 Corning Incorporated Glass/glass-ceramic-plastic alloy articles
JPH0541281A (en) 1991-08-02 1993-02-19 Denki Kagaku Kogyo Kk Electroluminescence device
JPH05182759A (en) 1991-12-26 1993-07-23 Pioneer Video Corp Organic el element
US5607789A (en) * 1995-01-23 1997-03-04 Duracell Inc. Light transparent multilayer moisture barrier for electrochemical cell tester and cell employing same
EP1145338B1 (en) 1998-12-16 2012-12-05 Samsung Display Co., Ltd. Environmental barrier material for organic light emitting device and method of making
JP4148794B2 (en) 2002-02-25 2008-09-10 住友ベークライト株式会社 Deposition film resin and gas barrier plastic film using the same
US20030203210A1 (en) 2002-04-30 2003-10-30 Vitex Systems, Inc. Barrier coatings and methods of making same
JP2003340971A (en) 2002-05-24 2003-12-02 Dainippon Printing Co Ltd Gas barrier plastic film
JP2003340955A (en) 2002-05-24 2003-12-02 Dainippon Printing Co Ltd Gas barrier film
JP4185341B2 (en) 2002-09-25 2008-11-26 パイオニア株式会社 Multilayer barrier film structure, organic electroluminescence display panel, and manufacturing method
JP2005263774A (en) 2004-02-18 2005-09-29 Daiso Co Ltd Photoaffinity-labeled sphingomyelin analogue and method for producing the same
JP2005244332A (en) 2004-02-24 2005-09-08 Seiko Epson Corp Presentation support apparatus and program thereof
US20070040501A1 (en) * 2005-08-18 2007-02-22 Aitken Bruce G Method for inhibiting oxygen and moisture degradation of a device and the resulting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136288A (en) * 1975-05-21 1976-11-25 Nippon Telegr & Teleph Corp <Ntt> Photo etching using non-crystalline carchogenide glass thin film
JPS5727941A (en) * 1980-06-17 1982-02-15 Corning Glass Works Tin-phosphorus oxyfluoride glass
JPS6049936A (en) * 1983-08-31 1985-03-19 東洋インキ製造株式会社 Manufacture of composite film
JP2001261374A (en) * 2000-03-15 2001-09-26 Asahi Glass Co Ltd Method of forming phosphate glass layer
WO2004017137A1 (en) * 2002-07-22 2004-02-26 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP2005119148A (en) * 2003-10-16 2005-05-12 Sumitomo Bakelite Co Ltd Gas-barrier substrate, substrate for display device, and display device
JP4617933B2 (en) * 2004-03-25 2011-01-26 旭硝子株式会社 Film coated with glass with low softening point

Also Published As

Publication number Publication date
EP2180078B1 (en) 2013-12-11
KR101296415B1 (en) 2013-08-13
CN101247950B (en) 2013-01-23
EP1925444A1 (en) 2008-05-28
TWI429538B (en) 2014-03-11
WO2007023708A1 (en) 2007-03-01
CN101247950A (en) 2008-08-20
EP2180078A1 (en) 2010-04-28
EP1925444A4 (en) 2009-08-05
US20080226900A1 (en) 2008-09-18
KR20080038169A (en) 2008-05-02
JPWO2007023708A1 (en) 2009-02-26
TW200722287A (en) 2007-06-16
US7923115B2 (en) 2011-04-12

Similar Documents

Publication Publication Date Title
JP5136054B2 (en) Substrate with film and glass for film formation
US8754434B1 (en) Flexible hermetic thin film with light extraction layer
KR101265862B1 (en) Sealing technique and hermetically sealed device
EP1892775B1 (en) Tin phosphate barrier film and method
JP2008240150A (en) Hermetic sealing using tin-containing inorganic material with low sintering temperature
KR20080045217A (en) Method for inhibiting oxygen and moisture degradation of a device and the resulting device
EP2668034A2 (en) An inorganic multilayer stack and methods and compositions relating thereto
EP2055148A1 (en) Llt barrier layer for top emission display device, method and apparatus
US20060006798A1 (en) Passivation layer
US10084144B2 (en) Substrate for device having an organic light-emitting diode
JP2004001296A (en) Film with laminated film, manufacturing method thereof and film type indication element
CA2505014A1 (en) Hermetic encapsulation of organic electro-optical elements
JP4617933B2 (en) Film coated with glass with low softening point
KR20150007864A (en) Organic light-emitting display apparatus and method for manufacturing the same
US6566805B1 (en) Organic electro-luminescent device with first and second composite layers
US8299706B2 (en) Hermetic encapsulation of organic, electro-optical elements
US9349989B2 (en) Organic luminescence emitting display device and method of manufacturing the same
KR20150007868A (en) Organic light emitting display device and method of manufacturing the same
US8067886B2 (en) Composite optical destructive electrode for high contrast electroluminescent devices
KR100942038B1 (en) Organic electro-optical elements and process for producing organic electro-optical elements
CN101123302B (en) Dual-side luminescent type organic LED and its making method
KR102093392B1 (en) Organic light-emitting display apparatus and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees