JP5131804B2 - フラッシュメモリ素子の製造方法 - Google Patents

フラッシュメモリ素子の製造方法 Download PDF

Info

Publication number
JP5131804B2
JP5131804B2 JP2006143931A JP2006143931A JP5131804B2 JP 5131804 B2 JP5131804 B2 JP 5131804B2 JP 2006143931 A JP2006143931 A JP 2006143931A JP 2006143931 A JP2006143931 A JP 2006143931A JP 5131804 B2 JP5131804 B2 JP 5131804B2
Authority
JP
Japan
Prior art keywords
film
gas
etching
etching process
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006143931A
Other languages
English (en)
Other versions
JP2007081367A (ja
Inventor
載 憲 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
SK Hynix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Hynix Inc filed Critical SK Hynix Inc
Publication of JP2007081367A publication Critical patent/JP2007081367A/ja
Application granted granted Critical
Publication of JP5131804B2 publication Critical patent/JP5131804B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)

Description

本発明は、半導体素子の製造方法に係り、特に、フラッシュメモリ素子の製造方法に関する。
一般に、フラッシュメモリ素子の素子分離膜およびフローティングゲートは、マスク工程によって形成している。ところが、フラッシュメモリ素子が小型化するにつれて、素子分離膜用マスクとフローティングゲート用マスク間のオーバーレイマージンが減少している。このようなオーバーレイマージン減少は、隣り合うフローティングゲートの間にゲートショートフェール(gate short fail)を発生させる原因となっている。また、オーバーレイマージン減少は、素子分離膜とフローティングゲートの上部に形成される誘電体膜があまり近く形成される場合があって、たとえ直接的な接触ではなくても、素子駆動によるストレスによってサイクリング欠陥(cyclingfail)を誘発させるおそれがある。
また、70nm以下のNANDフラッシュメモリ素子を実現するに当り、セルパターンのサイズが小さくなるにつれて、セル電流に影響を及ぼすフローティングゲート形成領域の幅も小さくなって、適正水準のセル電流を維持させるのに難しさを伴っている。
このような側面を補完するために、制限された面積の下で2次元的にフローティングゲートの形成領域幅を増加させる場合、増加した幅だけ、素子分離膜が形成されるトレンチの幅が小さくなる。これにより、トレンチギャップフィル工程の際にギャップフィルマージンが小さくなって素子分離膜内にボイドの発生を誘発させるという問題がある。
そこで、本発明は、かかる問題点を解決するためのもので、その目的は、限られた面積の下で素子分離膜のギャップフィルマージン減少なしにフローティングゲートの形成領域を増加させることが可能なフラッシュメモリ素子の製造方法を提供することにある。
また、本発明の他の目的は、素子分離膜用マスクとフローティングゲートのマスク間のオーバーレイマージンが減少することを防止することが可能なフラッシュメモリ素子の製造方法を提供することにある。
上記目的を達成するために、本発明の代表的なフラッシュメモリ素子の製造方法は、半導体基板に素子分離膜用トレンチを形成する段階と、前記トレンチ内に、前記半導体基板上に一部が突出した素子分離膜を形成する段階と、前記突出した素子分離膜の上端部および側壁に窒化膜スペーサを形成する段階と、前記窒化膜スペーサをマスクとしたエッチング工程によって前記半導体基板にリセスを形成する段階と、前記窒化膜スペーサを除去する段階と、前記リセスの形成された半導体基板上にトンネル酸化膜を形成する段階と、前記トンネル酸化膜上にフローティングゲートを形成し、これにより前記フローティングゲートは前記リセスによって前記半導体基板との接触面が増加する段階とを含むことを特徴とする。
また、本発明の他のフラッシュメモリ素子の製造方法は、半導体基板上に酸化膜、窒化膜、アモルファスカーボン膜、SiON膜およびO−BARC膜を積層してハードマスク層を形成する段階と、前記O−BARC膜上にフォトレジストパターンを形成し、前記O−BARC膜、前記SiO膜、前記アモルファスカーボン膜、前記窒化膜および前記酸化膜を順次エッチングしてパターニングする段階と、前記エッチング工程によって露出した前記半導体基板をエッチングして素子分離用トレンチを形成する段階と、前記パターニングされたアモルファスカーボン膜を除去する段階と、前記トレンチ内に素子分離膜を形成する段階と、前記パターニングされた窒化膜を除去し、これにより前記素子分離膜が突出する段階と、前記突出した素子分離膜の側壁に窒化膜スペーサを形成する段階と、前記窒化膜スペーサをマスクとしたエッチング工程によって前記半導体基板にリセスを形成する段階と、前記窒化膜スペーサを除去する段階と、前記リセスの形成された半導体基板上にトンネル酸化膜を形成する段階と、前記トンネル酸化膜上にフローティングゲートを形成し、これにより前記フローティングゲートは前記リセスによって前記半導体基板との接触面が増加する段階とを含む、ことを特徴とする。
本発明によれば、セルフアライン方式で均一なリセスを形成することにより、限られた面積の下でフローティングゲート形成領域の幅を増大させることができ、セルフアライン方式でフローティングゲートを形成することにより、素子分離膜とのオーバーレイマージンを考慮しなくもよいため、70nm以下のフラッシュメモリ素子を容易に実現させることができる。
以下に添付図面を参照しながら、本発明の好適な実施例を詳細に説明する。ところが、これらの実施例は様々な形に変形できるが、本発明の範囲を限定するものではない。これらの実施例は、当該技術分野における通常の知識を有する者に本発明の範疇をより完全に知らせるために提供されるものである。なお、ある膜が他の膜または半導体基板の「上」にある、または接触している、と記載される場合、前記ある膜は前記他の膜または半導体基板に直接接触して存在することも、その間に第3の膜が介在されることも含む。
図1〜図17は、本発明に係るフラッシュメモリ素子の製造方法を説明するための断面図である。
図1を参照すると、半導体基板10上に、酸化膜12、第1窒化膜14、アモルファスカーボン膜(amorphous carbon film)16、SiON膜18およびO−BARC膜20を積層してハードマスク層100を形成する。次いで、前記ハードマスク層100のO−BARC膜20上に、素子分離膜が形成されるべき領域が開放されたフォトレジストパターン22を形成する。
前記において、酸化膜12は、第1窒化膜14によって半導体基板10に加えられるストレスを防止し得る厚さ、例えば70〜90Åの厚さを有し、別途の工程によって形成するパッド酸化膜、あるいはフラッシュメモリ素子の工程の中でもしきい値電圧イオン注入工程の際に適用するスクリーン酸化膜である。第1窒化膜14は、1500Å以上の厚さ、好ましくは1500〜1700Åの厚さに形成する。ここで、数値で限定した第1窒化膜14の厚さは、後で形成されるフローティングゲート用ポリシリコン層が化学的機械的研磨工程の後に700Å以上の厚さに残すのに適切な厚さであって、工程条件および実現しようとする素子によって異なる。アモルファスカーボン膜16、SiON膜18およびO−BARC膜20は、工程条件および実現しようとする素子に応じて適切な厚さを設定することができるため、本発明では、厚さを数値で限定しない。フォトレジストパターン22は、KrF用レジストを用いて形成する。
図2を参照すると、前記フォトレジストパターン22をエッチングマスクとしてO−BARC膜20およびSiON膜18をエッチングする。
前記において、O−BARCK膜20およびSiON膜18は、フォトレジストパターン22の形成の際にマスク焦点深度(Depth of Focus;DOF)マージンのために使用される膜である。
前記O−BARC膜20のエッチング工程は、CFガス、CHFガスおよびOガスの混合ガスを用いて行う。前記SiO膜18のエッチング工程は、CFガスおよびCHFガスの混合ガスを用いて行う。このようなエッチングガスを用いてO−BARC膜20およびSiO膜18をエッチングする間、フォトレジストパターン22も一定の厚さ除去される。
図3を参照すると、前記フォトレジストパターン22をエッチングマスクとして前記アモルファスカーボン膜16をエッチングする。
前記において、アモルファスカーボン膜18のエッチング工程は、COガスとNガスの混合ガス、またはNHガスとOガスの混合ガスを用いて行う。このようなエッチングガスを用いてアモルファスカーボン膜18をエッチングする間、フォトレジストパターン22も相当部分除去されて一部のみが残る。
図4を参照すると、前記一部残っているフォトレジストパターン22、O−BARC膜20、SiON膜18およびアモルファスカーボン膜16をエッチングマスクとして前記第1窒化膜14および酸化膜12をエッチングする。
前記において、第1窒化膜14のエッチング工程は、CFガス、CHFガス、OガスおよびArガスの混合ガスを用いて行う。このようなガスを用いて第1窒化膜14をエッチングする間、アモルファスカーボン膜16上のフォトレジストパターン22、O−BARC膜20およびSiON膜18は自然に除去される。第1窒化膜14のエッチングにより露出する酸化膜12は、上述したように、窒化膜による半導体基板10のストレスを防止し得るだけの薄い厚さに形成されるため、別途の酸化膜除去工程によって除去しなくても、第1窒化膜14除去工程の際に除去でき、完全に除去されなくても、後続の工程に大きい影響を及ぼさない。
図5を参照すると、前記アモルファスカーボン膜16をエッチングマスクとして前記半導体基板10を一定の深さエッチングして素子分離膜用トレンチ24を形成する。
前記において、半導体基板10のエッチング工程は、トレンチエッチングプロファイル(trench etch profile)の傾斜角(slope angle)が86°以下に維持されるようにHBrガスおよびOガスの混合ガスを用いて行う。このようにトレンチ24が傾いたエッチングプロファイル形状に形成されるので、トレンチの埋め込み工程の際にトレンチの内部にボイドが発生することを防止することができる。このようなガスを用いてトレンチ24を形成する工程の間、アモルファスカーボン膜16も一定の厚さ除去される。
図6を参照すると、前記トレンチ24形成工程の後に残る前記アモルファスカーボン膜16を除去する。
前記において、アモルファスカーボンの物性がフォトレジストストリップ(PR strip)工程によって容易に除去されるため、アモルファスカーボン膜16は、フォトレジストストリップ工程によって除去する。
図1〜図6を参照して説明したように、トレンチ24を形成するためにハードマスク層100として酸化膜12、第1窒化膜14、アモルファスカーボン膜16、SiO膜18およびO−BARC膜20を使用する。あるパターンを形成するとき、フォトレジストパターンを使用することが一般的であるが、素子の高集積化および小型化に伴って微細パターンの形成が求められ、フォトレジストパターンのみでは不可能であってフォトレジストパターンと共にいろいろな構造のハードマスク層を適用している。
本発明で適用するハードマスク層100は、次のような特性を持っている。まず、アモルファスカーボン膜16は、第1窒化膜14のエッチングの際にハードマスクの役割をして良好なパターン形状の第1窒化膜14パターンを得ることができ、半導体製造工程で一般化されたフォトレジストストリップ工程によって除去され易いという物性を持っているため、除去工程を容易に行うことができる。
SiO膜18およびO−BARC膜20は、フォトレジストパターン22形成の際にマスク焦点深度マージンを向上させる役割をして良好なパターン形状のフォトレジストパターン22を形成することができ、順次行われる工程過程中にフォトレジストパターン22と共に自然に除去されるため、別途の除去工程を排除することができる。しかも、前述したエッチングスキーム(etch scheme)によってO−BARC膜20から第1窒化膜14まで同一のエッチング装備でインシチュによってエッチングを行うことができる。
図7を参照すると、前記トレンチ24が形成された結果物上に、トレンチ24が埋め込まれるように絶縁膜26を形成する。絶縁膜26は、トレンチ24の内部にボイドが発生することを抑制するために、高密度プラズマ酸化膜で形成する。また、絶縁膜26は、トレンチ24が傾いたエッチングプロファイル形状に形成されているため、ボイド発生なしに良好に形成される。
図8を参照すると、第1窒化膜14が露出するまで化学的機械的研磨(CMP)工程によって絶縁膜26を研磨し、トレンチ24内にのみ孤立状の素子分離膜26Aを形成する。
図9を参照すると、露出した第1窒化膜14を第1窒化膜エッチング工程によって除去する。
前記において、第1窒化膜エッチング工程は、NHF+HFおよびHPOから構成されたウェット化学(wet chemical)溶液を用いて行う。酸化膜12は、第1窒化膜エッチング工程中にエッチング損失を被るが、半導体基板10をエッチング損傷(etchdamage)から保護する役割をする。第1窒化膜14の除去によって第1窒化膜14の高さだけ素子分離膜26Aが半導体基板10上に突出する。
図10を参照すると、突出した素子分離膜26Aを含んだ前記結果物の全面にわたって第2窒化膜28を形成する。第2窒化膜28は、蒸着特性上、突出した素子分離膜26Aの間の溝部分より突出した素子分離膜26Aの上端部にさらに厚く形成される。
図11を参照すると、スペーサエッチング工程によって前記第2窒化膜28およびその下部の酸化膜12をエッチングし、突出した素子分離膜26Aの側壁に窒化膜スペーサ28Aを形成する。
前記において、スペーサエッチング工程は、半導体基板10のエッチング損失(etch loss)を最小化し、窒化膜スペーサ28Aを均一に形成するために、半導体基板10を構成するシリコン(Si)に対して窒化物(nitride)および酸化物(oxide)のエッチング選択比が大きいエッチング剤、例えばCFガス、CHFガス、OガスおよびArガスの混合ガスを用いて酸化物エッチング(oxideetch)装備で行う。突出した素子分離膜26Aの上端部の第2窒化膜28は、他の部分より厚く形成され、スペーサエッチング工程完了の後にも残存し、これにより素子分離膜26Aのエッチング損失が発生しない。
図12を参照すると、前記窒化膜スペーサ28Aをエッチングマスクとしたセルフアラインエッチング工程を行って半導体基板10の活性領域の中心にリセス(recess)30を形成する。
前記において、セルフアラインエッチング工程は、エッチングマスクの役割をするスペーサ窒化膜28Aの形状を最大限元状態に維持しながらリセス30の深さおよび幅が全体ウェーハにわたって均一となるようにするため、半導体基板10を構成するシリコン(Si)に対して窒化物および酸化物のエッチング選択比が小さいエッチング剤、例えばClガスおよびHBrガスの混合ガスを用いてポリシリコンエッチング(polysilicon etch)装備で行う。
一方、セルフアラインエッチング工程中に発生したポリマー(polymer)を除去し、エッチング損傷したリセス30部分の半導体基板10の表面を回復させるために、セルフアラインエッチング工程後にPET(postetch treatment)工程を行うことができる。
通常、ドライエッチングを行うと、エッチングガスとエッチングされた膜間の反応によって様々な反応物が生成されるが、この際、生成される前記反応物のうちポリマー性残留物(residue)は、前記PET工程によって除去しなければならない。
前述したようなエッチング工程済みのシリコン基板には、シリコンの表面格子に損傷が加えられているが、前記エッチング工程済みのシリコン基板上にPET工程を行うと、前記損傷した部分を酸化または除去することにより、シリコン基板の表面を回復させることができる。
図11および図12を参照して説明したように、スペーサエッチング工程およびセルフアライン工程によって活性領域にリセス30を形成するので、制限された面積の下で素子分離膜26Aのギャップフィルマージンの減少なしにフローティングゲートの形成領域を増加させることができる。このような工程によって形成されるリセス30は、活性領域の中心に位置しながらウェーハ全体にわたって均一な深さおよび均一な幅を持つ。このようなウェーハ全体にわたって均一なリセス30を形成することは重要であるが、その理由は後述する。
図13を参照すると、窒化膜スペーサ28Aおよび素子分離膜26Aの上端に残留する第2窒化膜28を第2窒化膜エッチング工程によって除去する。
前記において、第2窒化膜エッチング工程は、NHF+HFおよびHPOから構成されたウェット化学溶液を用いて行う。酸化膜12は、第1窒化膜エッチング工程の際に一定の厚さエッチング損失され、第2窒化膜エッチング工程の際にさらにエッチング損失されながら自然に除去される。酸化膜12は、第2窒化膜エッチング工程中に完全に除去されなかったとしても、通常、エッチング工程の後に行われる後洗浄工程、または蒸着工程の前に行われる前洗浄工程などによって除去されるのに問題がない。
図14を参照すると、前記リセス30の形成された半導体基板10上にトンネル酸化膜32を形成する。
図15を参照すると、トンネル酸化膜32の形成された結果物上に、ポリシリコン膜34を形成する。ポリシリコン膜34は、リセス30部分だけでなく、突出した素子分離膜26Aが十分覆われる厚さに形成する。
図16を参照すると、化学的機械的研磨(CMP)工程を行ってポリシリコン膜34を素子分離膜26Aの上部が十分露出するまで研磨し、突出した素子分離膜26Aの間に孤立状のフローティングゲート膜34Fを形成する。
前記において、孤立状のフローティングゲート膜34Fは、700Å以上の厚さに形成されるようにしなければならないが、この厚さは、前述した第1窒化膜14の厚さに依存する。すなわち、ポリシリコン膜34は、孤立状に作るために化学的機械的研磨工程を十分行わなければならず、これにより形成される孤立状のフローティングゲート34Fは、その厚さが700Å以上となるようにするために、前述したように第1窒化膜14の厚さを少なくとも1500Å以上となるようにすることが好ましい。
図17を参照すると、孤立状のフローティングゲート34Fの間の素子分離膜26Aの突出部分を酸化膜エッチング工程によって除去し、これにより素子分離膜26Aが完成されると共に、表面積が増加した突出構造のフローティングゲート34Fが完成される。この後、図示してはいないが、誘電体膜およびコントロールゲートなど素子の構成要素を形成してフラッシュメモリ素子を製造する。
前記において、酸化膜エッチング工程は、素子分離膜26Aがウェーハ全体にわたって均一に除去されるようにして、ウェーハ全体にわたって均一な厚さのEFH(effective field oxide height)を確保し得るようにウェットエッチング方法を適用することが好ましい。酸化膜エッチング工程の際にEFHの厚さをトンネル酸化膜32から150Å以上の高さを保つようにして、素子の反復駆動テストの際に発生しうるサイクリングテスト欠陥(cyclingtest fail)を防止することができる。酸化膜エッチング工程は、HO+HFおよびNHOH+HO+HOのウェット化学溶液を用いて行い、あるいは工程の短縮のためにフローティングゲート34Fの形成後、誘電体膜形成工程の前に行われる前洗浄(preclean)の際に前記ウェット化学溶液を用いて行うことができる。
図15〜図17を参照して説明したように、フローティングゲート34Fは、マスク工程なしにセルフアライン方式で形成されるので、素子分離膜26Aとのオーバーレイマージンを考慮しなくてもよく、リセス30により半導体基板10との接触面が増加してセルパターンのサイズが小さくなっても、適正水準のセル電流を確保することができる。フローティングゲート34Fがリセス30上に形成されるため、もしリセス30がウェーハの位置に応じて不均一に形成される場合、フローティングゲート34Fの特性が変わるという問題が発生するおそれがある。このため、図11および図12を参照して説明した工程によってリセス30をウェーハ全体にわたって均一に形成する。
上述した本発明は、具体的な実施例によって詳細に述べられたが、本発明の技術的思想の範疇内において、各種変形例または変更例に想到し得るのは、本発明の技術分野における通常の知識を有する者には明白なことであり、それらの変形例または変更例も本発明の特許請求の範囲に属する。
本発明に係るフラッシュメモリ素子の製造方法を説明するための断面図である。 本発明に係るフラッシュメモリ素子の製造方法を説明するための断面図である。 本発明に係るフラッシュメモリ素子の製造方法を説明するための断面図である。 本発明に係るフラッシュメモリ素子の製造方法を説明するための断面図である。 本発明に係るフラッシュメモリ素子の製造方法を説明するための断面図である。 本発明に係るフラッシュメモリ素子の製造方法を説明するための断面図である。 本発明に係るフラッシュメモリ素子の製造方法を説明するための断面図である。 本発明に係るフラッシュメモリ素子の製造方法を説明するための断面図である。 本発明に係るフラッシュメモリ素子の製造方法を説明するための断面図である。 本発明に係るフラッシュメモリ素子の製造方法を説明するための断面図である。 本発明に係るフラッシュメモリ素子の製造方法を説明するための断面図である。 本発明に係るフラッシュメモリ素子の製造方法を説明するための断面図である。 本発明に係るフラッシュメモリ素子の製造方法を説明するための断面図である。 本発明に係るフラッシュメモリ素子の製造方法を説明するための断面図である。 本発明に係るフラッシュメモリ素子の製造方法を説明するための断面図である。 本発明に係るフラッシュメモリ素子の製造方法を説明するための断面図である。 本発明に係るフラッシュメモリ素子の製造方法を説明するための断面図である。
符号の説明
10 半導体基板
12 酸化膜
14 第1窒化膜
16 アモルファスカーボン膜
18 SiON膜
20 O−BAR膜
22 フォトレジストパターン
24 トレンチ
26 絶縁膜
26A 素子分離膜
28 第2窒化膜
28A 窒化膜スペーサ
30 リセス
32 トンネル酸化膜
34 ポリシリコン膜
34F フローティングゲート

Claims (21)

  1. 半導体基板に素子分離膜用トレンチを形成する段階と、
    前記トレンチ内に、前記半導体基板上に一部が突出した素子分離膜を形成する段階と、
    前記突出した素子分離膜の上端部および側壁に窒化膜スペーサを形成する段階と、
    前記窒化膜スペーサをマスクとしたエッチング工程によって前記半導体基板にリセスを形成する段階と、
    前記窒化膜スペーサを除去する段階と、
    前記リセスの形成された半導体基板上にトンネル酸化膜を形成する段階と、
    前記トンネル酸化膜上にフローティングゲートを形成し、これにより前記フローティングゲートは前記リセスによって前記半導体基板との接触面が増加する段階とを含むことを特徴とする、フラッシュメモリ素子の製造方法。
  2. 半導体基板上に、酸化膜、窒化膜、アモルファスカーボン膜、SiON膜およびO−BARC膜を積層してハードマスク層を形成する段階と、
    前記O−BARC膜上にフォトレジストパターンを形成し、前記O−BARC膜、前記SiO膜、前記アモルファスカーボン膜、前記窒化膜および前記酸化膜を順次エッチングしてパターニングする段階と、
    前記エッチング工程によって露出した前記半導体基板をエッチングして素子分離用トレンチを形成する段階と、
    前記パターニングされたアモルファスカーボン膜を除去する段階と、
    前記トレンチ内に素子分離膜を形成する段階と、
    前記パターニングされた窒化膜を除去し、これにより前記素子分離膜が突出する段階と、前記突出した素子分離膜の側壁に窒化膜スペーサを形成する段階と、
    前記窒化膜スペーサをマスクとしたエッチング工程によって前記半導体基板にリセスを形成する段階と、
    前記窒化膜スペーサを除去する段階と、
    前記リセスの形成された半導体基板上にトンネル酸化膜を形成する段階と、
    前記トンネル酸化膜上にフローティングゲートを形成し、これにより前記フローティングゲートは前記リセスによって前記半導体基板との接触面が増加する段階とを含む、フラッシュメモリ素子の製造方法。
  3. 前記酸化膜は、しきい値電圧イオン注入用スクリーン酸化膜であることを特徴とする、請求項1または2に記載のフラッシュメモリ素子の製造方法。
  4. 前記O−BARC膜のエッチング工程は、前記フォトレジストパターンをエッチングマスクとしてCF4ガス、CHF3ガスおよびO2ガスの混合ガスを用いて行い、前記エッチング工程中に前記フォトレジストパターンも一定の厚さ除去されることを特徴とする、請求項2に記載のフラッシュメモリ素子の製造方法。
  5. 前記SiON膜のエッチング工程は、前記フォトレジストパターンをエッチングマスクとしてCF4ガスおよびCHF3ガスの混合ガスを用いて行い、前記エッチング工程中に前記フォトレジストパターンも一定の厚さ除去されることを特徴とする、請求項2に記載のフラッシュメモリ素子の製造方法。
  6. 前記アモルファスカーボン膜のエッチング工程は、前記フォトレジストパターンをエッチングマスクとしてCOガスとN2ガスの混合ガス、またはNH3ガスとO2ガスの混合ガスを用いて行い、前記エッチング工程中に前記フォトレジストパターンも一定の厚さ除去されることを特徴とする、請求項2に記載のフラッシュメモリ素子の製造方法。
  7. 前記窒化膜のエッチング工程は前記パターニングされたアモルファスカーボン膜をエッチングマスクとしてCF4ガス、CHF3ガス、O2ガスおよびArガスの混合ガスを用いて行い、前記エッチング工程中に、前記パターニングされたアモルファスカーボン膜上の前記フォトレジストパターン、前記パターニングされたO−BARC膜、前記パターニングされたSiON膜および前記窒化膜のエッチングによって露出する前記酸化膜は除去されることを特徴とする、請求項2に記載のフラッシュメモリ素子の製造方法。
  8. 前記トレンチは、前記パターニングされたアモルファスカーボン膜をエッチングマスクとしたエッチング工程によって形成することを特徴とする、請求項2に記載のフラッシュメモリ素子の製造方法。
  9. 前記トレンチは、トレンチエッチングプロファイルの傾斜角が86°以下に維持されるように、HBrガスおよびO2ガスの混合ガスを用いたエッチング工程によって形成することを特徴とする、請求項1、2、8のいずれか1項に記載のフラッシュメモリ素子の製造方法。
  10. 前記パターニングされたアモルファスカーボン膜は、フォトレジストストリップ工程によって除去することを特徴とする、請求項2に記載のフラッシュメモリ素子の製造方法。
  11. 前記O−BARC膜、前記SiON膜、前記アモルファスカーボン膜および前記窒化膜を順次エッチングする工程は、同一のエッチング装備でインシチュで行うことを特徴とする、請求項2に記載のフラッシュメモリ素子の製造方法。
  12. 前記パターニングされた窒化膜は、NH3F+HFおよびH3PO4から構成されたウェット化学溶液を用いて除去することを特徴とする、請求項2に記載のフラッシュメモリ素子の製造方法。
  13. 前記窒化膜スペーサは、前記突出した素子分離膜を含んだ前記結果物の全面にわたって窒化膜を形成した後、スペーサエッチング工程を行って形成することを特徴とする、請求項1または2に記載のフラッシュメモリ素子の製造方法。
  14. 前記スペーサエッチング工程は、CF4ガス、CHF3ガス、O2ガスおよびArガスの混合ガスを用いて酸化物エッチング装備で行うことを特徴とする、請求項13に記載のフラッシュメモリ素子の製造方法。
  15. 前記リセスは、前記窒化物スペーサをエッチングマスクとしたセルフアラインエッチング工程を行って前記半導体基板の活性領域の中心に形成することを特徴とする、請求項1または2に記載のフラッシュメモリ素子の製造方法。
  16. 前記セルフアラインエッチング工程は、Cl2ガスおよびHBrガスの混合ガスを用いてポリシリコンエッチング装備で行うことを特徴とする、請求項15に記載のフラッシュメモリ素子の製造方法。
  17. 前記リセスを形成するエッチング工程の後にPET工程をさらに含むことを特徴とする、請求項1または2に記載のフラッシュメモリ素子の製造方法。
  18. 前記窒化膜スペーサは、NH3F+HFおよびH3PO4から構成されたウェット化学溶液を用いて除去することを特徴とする、請求項1または2に記載のフラッシュメモリ素子の製造方法。
  19. 前記フローティングゲートは、前記トンネル酸化膜が形成された結果物上にポリシリコン膜を形成した後、化学的機械的研磨工程によって前記ポリシリコン膜を前記素子分離膜の上部が十分露出するまで研磨することを特徴とする、請求項1または2に記載のフラッシュメモリ素子の製造方法。
  20. 前記フローティングゲート形成の後に前記素子分離膜の突出部分を除去する段階をさらに含むことを特徴とする、請求項1または2に記載のフラッシュメモリ素子の製造方法。
  21. 前記素子分離膜の突出部分除去工程は、H2O+HFおよびNH4OH+H2O2+H2Oのウェット化学溶液を用いて行うことを特徴とする、請求項20に記載のフラッシュメモリ素子の製造方法。
JP2006143931A 2005-09-15 2006-05-24 フラッシュメモリ素子の製造方法 Expired - Fee Related JP5131804B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2005-0086189 2005-09-15
KR1020050086189A KR100632651B1 (ko) 2005-09-15 2005-09-15 플래쉬 메모리소자의 제조방법

Publications (2)

Publication Number Publication Date
JP2007081367A JP2007081367A (ja) 2007-03-29
JP5131804B2 true JP5131804B2 (ja) 2013-01-30

Family

ID=37635524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143931A Expired - Fee Related JP5131804B2 (ja) 2005-09-15 2006-05-24 フラッシュメモリ素子の製造方法

Country Status (3)

Country Link
US (1) US7601589B2 (ja)
JP (1) JP5131804B2 (ja)
KR (1) KR100632651B1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100672164B1 (ko) * 2005-12-20 2007-01-19 주식회사 하이닉스반도체 플래시 메모리 소자의 제조 방법
US7588982B2 (en) * 2006-08-29 2009-09-15 Micron Technology, Inc. Methods of forming semiconductor constructions and flash memory cells
US7718546B2 (en) * 2007-06-27 2010-05-18 Sandisk 3D Llc Method for fabricating a 3-D integrated circuit using a hard mask of silicon-oxynitride on amorphous carbon
KR101344019B1 (ko) * 2007-11-01 2013-12-24 삼성전자주식회사 이온 주입 방법
JP2009206394A (ja) * 2008-02-29 2009-09-10 Nippon Zeon Co Ltd 炭素系ハードマスクの形成方法
US8252653B2 (en) * 2008-10-21 2012-08-28 Applied Materials, Inc. Method of forming a non-volatile memory having a silicon nitride charge trap layer
US8198671B2 (en) * 2009-04-22 2012-06-12 Applied Materials, Inc. Modification of charge trap silicon nitride with oxygen plasma
CN108962742B (zh) * 2017-05-25 2021-05-28 中芯国际集成电路制造(上海)有限公司 半导体结构的制造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775274A (en) * 1970-06-30 1973-11-27 Hughes Aircraft Co Electrolytic anticompromise process
JPS5846645A (ja) * 1981-09-14 1983-03-18 Toshiba Corp 半導体装置の製造方法
JP2710194B2 (ja) * 1993-09-24 1998-02-10 日本電気株式会社 不揮発性半導体記憶素子とその製造方法
US5496750A (en) * 1994-09-19 1996-03-05 Texas Instruments Incorporated Elevated source/drain junction metal oxide semiconductor field-effect transistor using blanket silicon deposition
US5605603A (en) * 1995-03-29 1997-02-25 International Business Machines Corporation Deep trench process
JP3381117B2 (ja) * 1995-05-29 2003-02-24 ソニー株式会社 半導体装置の製造方法
US5963816A (en) * 1997-12-01 1999-10-05 Advanced Micro Devices, Inc. Method for making shallow trench marks
TW405265B (en) * 1999-01-30 2000-09-11 United Microelectronics Corp Flash memory structure and its manufacture method
US6284637B1 (en) * 1999-03-29 2001-09-04 Chartered Semiconductor Manufacturing Ltd. Method to fabricate a floating gate with a sloping sidewall for a flash memory
US6461923B1 (en) * 1999-08-18 2002-10-08 Advanced Micro Devices, Inc. Sidewall spacer etch process for improved silicide formation
KR20010053905A (ko) 1999-12-02 2001-07-02 윤종용 비휘발성 플래쉬 메모리 장치의 형성 방법
US6500274B2 (en) * 2001-01-16 2002-12-31 Taiwan Semiconductor Manufacturing Company, Ltd Apparatus and method for wet cleaning wafers without ammonia vapor damage
JP2002270685A (ja) * 2001-03-08 2002-09-20 Mitsubishi Electric Corp 半導体装置の製造方法
KR100426484B1 (ko) * 2001-12-22 2004-04-14 주식회사 하이닉스반도체 플래쉬 메모리 셀 및 그의 제조방법
US7419875B2 (en) * 2002-12-06 2008-09-02 Nxp B.V. Shallow trench isolation in floating gate devices
KR100958619B1 (ko) * 2002-12-31 2010-05-20 동부일렉트로닉스 주식회사 엔드 타입 플래시 메모리셀 제조방법
US7078351B2 (en) * 2003-02-10 2006-07-18 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist intensive patterning and processing
US7141851B2 (en) * 2003-08-22 2006-11-28 Samsung Electronics Co., Ltd. Transistors having a recessed channel region
US6825526B1 (en) * 2004-01-16 2004-11-30 Advanced Micro Devices, Inc. Structure for increasing drive current in a memory array and related method
KR100611140B1 (ko) * 2004-12-28 2006-08-09 삼성전자주식회사 트랜지스터의 게이트, 이의 제조 방법 및 게이트 구조를포함하는 불휘발성 메모리 장치, 이의 제조 방법.
US7390746B2 (en) * 2005-03-15 2008-06-24 Micron Technology, Inc. Multiple deposition for integration of spacers in pitch multiplication process

Also Published As

Publication number Publication date
US20070059884A1 (en) 2007-03-15
JP2007081367A (ja) 2007-03-29
US7601589B2 (en) 2009-10-13
KR100632651B1 (ko) 2006-10-11

Similar Documents

Publication Publication Date Title
KR100532503B1 (ko) 쉘로우 트렌치 소자 분리막의 형성 방법
KR100781033B1 (ko) 반도체 소자의 제조방법
US7297593B2 (en) Method of manufacturing a floating gate of a flash memory device
JP5131804B2 (ja) フラッシュメモリ素子の製造方法
US10381358B2 (en) Semiconductor device and manufacturing method thereof
US20070232019A1 (en) Method for forming isolation structure in nonvolatile memory device
JP2005026647A (ja) フラッシュメモリ素子のフローティングゲート形成方法
US20060276001A1 (en) Method for manufacturing a semiconductor device having a STI structure
WO2006046301A1 (ja) 半導体装置および半導体装置の製造方法
KR100655289B1 (ko) 플래시 메모리 제조 방법
US7595252B2 (en) Method of manufacturing a semiconductor memory device
JP2008010817A (ja) ナンドフラッシュメモリ素子の製造方法
KR100645195B1 (ko) 플래쉬 메모리 소자의 제조방법
US20060154439A1 (en) Method of fabricating semiconductor device
KR100493065B1 (ko) 트렌치 게이트형 트랜지스터를 구비하는 반도체 소자 및그 제조 방법
US7468298B2 (en) Method of manufacturing flash memory device
KR101085620B1 (ko) 불휘발성 메모리 소자의 게이트 패턴 형성방법
KR100898674B1 (ko) 반도체 소자의 제조 방법
KR100554834B1 (ko) 플래쉬 메모리 소자의 제조 방법
KR100673154B1 (ko) 플래쉬 메모리 소자의 소자 분리막 형성 방법
KR20060074177A (ko) 플래시 메모리 소자의 제조 방법
KR100823694B1 (ko) 불휘발성 메모리 장치의 플로팅 게이트 구조물의 형성 방법
KR100709468B1 (ko) 플래시 메모리 소자의 플로팅 게이트 형성방법
KR20060066874A (ko) 플래쉬 메모리 소자의 제조방법
KR20050002413A (ko) 플래시 메모리 소자의 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees