JP5130080B2 - Phosphate-treated electrogalvanized steel sheet - Google Patents

Phosphate-treated electrogalvanized steel sheet Download PDF

Info

Publication number
JP5130080B2
JP5130080B2 JP2008050887A JP2008050887A JP5130080B2 JP 5130080 B2 JP5130080 B2 JP 5130080B2 JP 2008050887 A JP2008050887 A JP 2008050887A JP 2008050887 A JP2008050887 A JP 2008050887A JP 5130080 B2 JP5130080 B2 JP 5130080B2
Authority
JP
Japan
Prior art keywords
steel sheet
phosphate
electrogalvanized
value
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008050887A
Other languages
Japanese (ja)
Other versions
JP2009209383A (en
Inventor
正敏 岩井
彰士 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008050887A priority Critical patent/JP5130080B2/en
Priority to TW098104344A priority patent/TWI391528B/en
Priority to CN2009100073849A priority patent/CN101691665B/en
Priority to KR1020090016944A priority patent/KR101073169B1/en
Publication of JP2009209383A publication Critical patent/JP2009209383A/en
Application granted granted Critical
Publication of JP5130080B2 publication Critical patent/JP5130080B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B3/00Audible signalling systems; Audible personal calling systems
    • G08B3/10Audible signalling systems; Audible personal calling systems using electric transmission; using electromagnetic transmission
    • G08B3/1008Personal calling arrangements or devices, i.e. paging systems
    • G08B3/1016Personal calling arrangements or devices, i.e. paging systems using wireless transmission
    • G08B3/1025Paging receivers with audible signalling details
    • G08B3/1033Paging receivers with audible signalling details with voice message alert
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B5/00Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied
    • G08B5/22Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied using electric transmission; using electromagnetic transmission

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

本発明は、色調が明るいリン酸塩処理電気亜鉛めっき鋼板に関するものである。本発明の電気亜鉛めっき鋼板は、リン酸塩処理後の明度(L値)が高く、例えば、家庭用電気製品、配電盤、電話交換機パネル、自動車部品、建材等の素材として好適に使用できる。   The present invention relates to a phosphate-treated electrogalvanized steel sheet having a bright color tone. The electrogalvanized steel sheet of the present invention has a high lightness (L value) after phosphate treatment, and can be suitably used as a material for household electrical products, switchboards, telephone switchboard panels, automobile parts, building materials, and the like.

リン酸亜鉛皮膜を有する電気亜鉛めっき鋼板(以下、「リン酸塩処理鋼板」と略称することがある。)は、上述の家庭用電気製品等に用いられる場合、白色塗料で塗装されることが多い。しかし、リン酸塩処理鋼板が黒ずんでいる(明度が低い)と、白色塗料を厚く塗布しなければならず、塗料量及びそのコストが増大する。そのためユーザーからは、明度の高いリン酸塩処理鋼板が要求されている。その要求はますます厳しくなっており、現在では、明度(L値)が70.00以上のリン酸塩処理が求められている。そこでリン酸塩処理鋼板の明度を高める技術が、これまで提案されている。   An electrogalvanized steel sheet having a zinc phosphate coating (hereinafter sometimes abbreviated as “phosphate-treated steel sheet”) may be coated with a white paint when used in the above-mentioned household electrical appliances. Many. However, if the phosphatized steel sheet is dark (low brightness), the white paint must be applied thickly, increasing the amount of paint and its cost. For this reason, users have demanded a phosphate-treated steel sheet with high brightness. The demand has become increasingly severe, and at present, a phosphate treatment having a lightness (L value) of 70.00 or more is required. Therefore, techniques for increasing the brightness of the phosphate-treated steel sheet have been proposed so far.

例えば特許文献1は、リン酸亜鉛皮膜の明度に悪影響を及ぼすNi量を適切に調整する技術を開示している。詳しくは特許文献1の技術では、リン酸亜鉛皮膜中のNi量とZn量との比、リン酸亜鉛付着量、及び亜鉛めっき中のNi量を調整することによって、リン酸塩処理鋼板の明度を高く保っている。   For example, Patent Document 1 discloses a technique for appropriately adjusting the amount of Ni that adversely affects the brightness of a zinc phosphate coating. Specifically, in the technique of Patent Document 1, the brightness of the phosphate-treated steel sheet is adjusted by adjusting the ratio of the amount of Ni and the amount of Zn in the zinc phosphate coating, the amount of zinc phosphate attached, and the amount of Ni in the galvanizing. Is kept high.

一方、特許文献2及び3は、リン酸塩処理鋼板ではなく、クロメート処理またはノンクロメート処理鋼板の明度を改善する技術を開示している。詳しくは、これらの技術は、電気亜鉛めっき層の各結晶面の配向指数(特許文献2でのパラメータ)又は配向率(特許文献3でのパラメータ)を適切に制御することによって、亜鉛めっき層自体の明度を向上させている。
特開平11−61430号公報 特開平10−18078号公報 特開2002−256480号公報
On the other hand, Patent Documents 2 and 3 disclose techniques for improving the lightness of a chromate-treated or non-chromated steel plate, not a phosphate-treated steel plate. In detail, these techniques are such that the zinc plating layer itself is appropriately controlled by appropriately controlling the orientation index (parameter in Patent Document 2) or the orientation ratio (parameter in Patent Document 3) of each crystal plane of the electrogalvanized layer. The brightness is improved.
Japanese Patent Laid-Open No. 11-61430 JP-A-10-18078 JP 2002-256480 A

本発明の目的は、高い明度(特にL値が70.00以上)のリン酸塩処理電気亜鉛めっき鋼板を提供することにある。   An object of the present invention is to provide a phosphate-treated electrogalvanized steel sheet having high brightness (particularly L value of 70.00 or more).

上記課題を解決し得た本発明に係る色調が明るいリン酸塩処理電気亜鉛めっき鋼板は、電気亜鉛めっき層の上にリン酸亜鉛皮膜を有し、前記電気亜鉛めっき層の結晶面(00・2)、(10・0)及び(10・1)の配向指数Ico(hk・l)が、下記式(1)〜(3)の要件を満たすところに要旨を有している。
4.0≦Ico(00・2) ・・・ (1)
0<Ico(10・0)≦0.020 ・・・ (2)
0<Ico(10・1)≦0.20 ・・・ (3)
〔上記式中、
co(hk・l)は、結晶面(00・2)、(10・0)、(10・1)、(10・2)、(10・3)及び(11・0)におけるWillsonの6面配向指数であり、
前記電気亜鉛めっき層の各結晶面(hk・l)のX線回折ピーク強度値(cps)をI(hk・l)とし、標準亜鉛粉末の各結晶面(hk・l)のX線回折ピーク強度値(cps)をIs(hk・l)とした場合に下記式(4)〜(6)から計算される。
co(hk・l)=i(hk・l)/is(hk・l) ・・・ (4)
i(hk・l)=I(hk・l)/{I(00・2)+I(10・0)+I(10・1)+I(10・2)+I(10・3)+I(11・0)} ・・・ (5)
s(hk・l)=Is(hk・l)/{Is(00・2)+Is(10・0)+Is(10・1)+Is(10・2)+Is(10・3)+Is(11・0)} ・・・ (6)〕
The phosphate-treated electrogalvanized steel sheet having a bright color tone according to the present invention that has solved the above problems has a zinc phosphate coating on the electrogalvanized layer, and the crystal plane (00 · 2), the orientation index I co (hk · l) of (10 · 0) and (10 · 1) has a gist where the requirements of the following formulas (1) to (3) are satisfied.
4.0 ≦ I co (00 · 2) (1)
0 <I co (10.0) ≦ 0.020 (2)
0 <I co (10 · 1) ≦ 0.20 (3)
[In the above formula,
I co (hk · l) is Willson's 6 in crystal planes (00 · 2), (10 · 0), (10 · 1), (10 · 2), (10 · 3), and (11.0). The plane orientation index,
The X-ray diffraction peak intensity value (cps) of each crystal plane (hk · l) of the electrogalvanized layer is I (hk · l), and the X-ray diffraction peak of each crystal plane (hk · l) of the standard zinc powder. When the intensity value (cps) is I s (hk · l), it is calculated from the following formulas (4) to (6).
I co (hk · l) = i (hk · l) / i s (hk · l) (4)
i (hk · l) = I (hk · l) / {I (00 · 2) + I (10 · 0) + I (10 · 1) + I (10 · 2) + I (10 · 3) + I (11.0) )} (5)
i s (hk · l) = I s (hk · l) / {I s (00 · 2) + I s (10 · 0) + I s (10 · 1) + I s (10 · 2) + I s (10 · 3) + I s (11.0)} (6)]

本発明の好ましい実施形態において、上記リン酸塩処理電気亜鉛めっき鋼板の明度(L値)は70.00以上である。   In a preferred embodiment of the present invention, the lightness (L value) of the phosphating electrogalvanized steel sheet is 70.00 or more.

本発明によれば、下地である電気亜鉛めっき層の結晶面の配向指数が適切に制御されているため、リン酸塩処理後の明度を高く維持することができる。その結果、ユーザーの厳しい要求を満たすことができる明度の高いリン酸塩処理電気亜鉛めっき鋼板を提供することができた。   According to the present invention, since the orientation index of the crystal plane of the electrogalvanized layer as a base is appropriately controlled, the brightness after the phosphate treatment can be maintained high. As a result, it was possible to provide a phosphatized electrogalvanized steel sheet with high brightness that can meet the strict requirements of users.

本発明者は、電気亜鉛めっき層(下地めっき層)の上にリン酸亜鉛皮膜を有するリン酸塩処理電気亜鉛めっき鋼板の明度を高めるため、下地めっき層の結晶配向指数に着目して検討をしてきた。前述した特許文献2や特許文献3のようなクロメート処理鋼板やノンクロメート処理鋼板では、下地めっき層の結晶配向性と処理鋼板の明度との関係について詳しく研究されているが、リン酸塩処理鋼板では、これまで、結晶配向指数と明度との関係について全く言及されていなかったからである。   In order to increase the brightness of a phosphate-treated electrogalvanized steel sheet having a zinc phosphate coating on the electrogalvanized layer (undercoat layer), the present inventor has examined the crystal orientation index of the undercoat layer. I have done it. In the chromate-treated steel sheets and non-chromate-treated steel sheets as in Patent Document 2 and Patent Document 3 described above, the relationship between the crystal orientation of the undercoat layer and the brightness of the treated steel sheet has been studied in detail. This is because the relationship between the crystal orientation index and the brightness has never been mentioned so far.

特に、リン酸亜鉛皮膜は、前述した特許文献1にも詳しく記載しているが、ホパイト結晶と呼ばれる直径が約数μm程度のリン酸亜鉛結晶を主成分として含有する。そのため、リン酸塩処理後の鋼板の色調は、下地めっき層の色調による影響を受けず、リン酸亜鉛結晶の光学的特性に強く依存する。よって、リン酸塩処理鋼板の明度を高めるためには、下地の亜鉛めっき層ではなく、その上のリン酸亜鉛皮膜の明度を向上させる必要がある。この点で、特許文献2や特許文献3に記載されているように、下地である亜鉛めっき層自体の明度を高めることによって処理後の明度を向上させたクロメート処理鋼板やノンクロメート処理鋼板とは相違している。これらのクロメート処理鋼板やノンクロメート処理鋼板は、非結晶の透明薄膜皮膜を有しており、下地めっき層の色調がそのまま処理後の鋼板の色調に反映されるからである。従って、本発明で対象とするリン酸塩処理鋼板の明度を高めるためには、クロメート処理鋼板などの技術をそのまま転用することはできない。   In particular, the zinc phosphate coating is described in detail in Patent Document 1 described above, but contains zinc phosphate crystals called “hope crystals” having a diameter of about several μm as a main component. Therefore, the color tone of the steel sheet after the phosphate treatment is not affected by the color tone of the base plating layer and strongly depends on the optical properties of the zinc phosphate crystal. Therefore, in order to increase the lightness of the phosphate-treated steel sheet, it is necessary to improve the lightness of the zinc phosphate coating on the underlying galvanized layer, not the underlying galvanized layer. In this regard, as described in Patent Document 2 and Patent Document 3, the chromate-treated steel sheet and the non-chromate-treated steel sheet that have improved the brightness after treatment by increasing the brightness of the galvanized layer itself that is the base. It is different. This is because these chromate-treated steel plates and non-chromate-treated steel plates have an amorphous transparent thin film, and the color tone of the underlying plating layer is directly reflected in the color tone of the steel plate after treatment. Therefore, in order to increase the brightness of the phosphate-treated steel sheet that is the subject of the present invention, the technology such as the chromate-treated steel sheet cannot be used as it is.

本発明者が検討した結果、リン酸亜鉛皮膜の明度は、下地である電気亜鉛めっき層の特定結晶面の結晶構造と密接な関係を有しており、電気亜鉛めっき層の結晶面(00・2)、(10・0)及び(10・1)の配向指数Ico(hk・l)の全てを適切に制御すれば、リン酸塩処理後の明度が高く維持されることを見出し、本発明を完成した。 As a result of the study by the present inventors, the brightness of the zinc phosphate film has a close relationship with the crystal structure of the specific crystal plane of the electrogalvanized layer as the base, and the crystal plane (00 · 2), if all the orientation indices I co (hk · l) of (10 · 0) and (10 · 1) are appropriately controlled, the brightness after phosphating is found to be maintained high. Completed the invention.

すなわち、本発明のリン酸塩処理電気亜鉛めっき鋼板は、電気亜鉛めっき層の上にリン酸亜鉛皮膜を有しており、前記電気亜鉛めっき層の結晶面(00・2)、(10・0)及び(10・1)の配向指数Ico(hk・l)が、下記式(1)〜(3)の要件を満たすところに特徴がある。
4.0≦Ico(00・2) ・・・ (1)
0<Ico(10・0)≦0.020 ・・・ (2)
0<Ico(10・1)≦0.20 ・・・ (3)
That is, the phosphate-treated electrogalvanized steel sheet of the present invention has a zinc phosphate coating on the electrogalvanized layer, and the crystal plane (00/2), (10.0) of the electrogalvanized layer. ) And (10 · 1) are characterized in that the orientation index I co (hk · l) satisfies the requirements of the following formulas (1) to (3).
4.0 ≦ I co (00 · 2) (1)
0 <I co (10.0) ≦ 0.020 (2)
0 <I co (10 · 1) ≦ 0.20 (3)

上記式中、Ico(hk・l)は、結晶面(00・2)、(10・0)、(10・1)、(10・2)、(10・3)及び(11・0)におけるWillsonの6面配向指数である。そしてIco(hk・l)は、電気亜鉛めっき層の各結晶面(hk・l)のX線回折ピーク強度値(cps)をI(hk・l)とし、標準亜鉛粉末の各結晶面(hk・l)のX線回折ピーク強度値(cps)をIs(hk・l)とした場合に、下記式(4)〜(6)から計算される。
co(hk・l)=i(hk・l)/is(hk・l) ・・・ (4)
i(hk・l)=I(hk・l)/{I(00・2)+I(10・0)+I(10・1)+I(10・2)+I(10・3)+I(11・0)} ・・・ (5)
s(hk・l)=Is(hk・l)/{Is(00・2)+Is(10・0)+Is(10・1)+Is(10・2)+Is(10・3)+Is(11・0)} ・・・ (6)
In the above formula, I co (hk · l) is the crystal plane (00 · 2), (10 · 0), (10 · 1), (10 · 2), (10 · 3) and (11.0) It is Willson's 6-plane orientation index. I co (hk · l) is defined as the X-ray diffraction peak intensity value (cps) of each crystal plane (hk · l) of the electrogalvanized layer and I (hk · l). When the X-ray diffraction peak intensity value (cps) of hk · l) is I s (hk · l), it is calculated from the following formulas (4) to (6).
I co (hk · l) = i (hk · l) / i s (hk · l) (4)
i (hk · l) = I (hk · l) / {I (00 · 2) + I (10 · 0) + I (10 · 1) + I (10 · 2) + I (10 · 3) + I (11.0) )} (5)
i s (hk · l) = I s (hk · l) / {I s (00 · 2) + I s (10 · 0) + I s (10 · 1) + I s (10 · 2) + I s (10 · 3) + I s (11.0)} (6)

例えばIco(00・2)は、式(4)〜(6)の(hk・l)に(00・2)を代入することによって、即ち下記のようにして計算することができる。
co(00・2)=i(00・2)/is(00・2)
i(00・2)=I(00・2)/{I(00・2)+I(10・0)+I(10・1)+I(10・2)+I(10・3)+I(11・0)}
s(00・2)=Is(00・2)/{Is(00・2)+Is(10・0)+Is(10・1)+Is(10・2)+Is(10・3)+Is(11・0)}
For example, I co (00 · 2) can be calculated by substituting (00 · 2) for (hk · l) in equations (4) to (6), that is, as follows.
I co (00 · 2) = i (00 · 2) / i s (00 · 2)
i (00 · 2) = I (00 · 2) / {I (00 · 2) + I (10 · 0) + I (10 · 1) + I (10 · 2) + I (10 · 3) + I (11.0) )}
i s (00 · 2) = I s (00 · 2) / {I s (00 · 2) + I s (10 · 0) + I s (10 · 1) + I s (10 · 2) + I s (10 · 3) + I s (11.0)}

なおIco及びIsの添え字である「co」及び「s」は、それぞれ「結晶配向(crystal orientation)」及び「標準(standard)」を表す。 Note that “co” and “s”, which are subscripts of I co and I s , represent “crystal orientation” and “standard”, respectively.

電気亜鉛めっき層のX線回折ピーク強度値I(hk・l)は、下記実施例に示す条件でX線回折を行うことよって求められる。また標準亜鉛粉末のX線回折ピーク強度値Is(hk・l)のデータは、ASTM(及びJCPD)に記載されており、それを下記表1に転記する。本発明では、この表1に記載するIs(hk・l)の値を、上述の計算に用いることとする。従って、X線回折によって求められるI(hk・l)の値、及び下記表1のIs(hk・l)の値から、上記Ico(hk・l)の値を計算することができる。 The X-ray diffraction peak intensity value I (hk · l) of the electrogalvanized layer is determined by performing X-ray diffraction under the conditions shown in the following examples. Further, the data of the X-ray diffraction peak intensity value I s (hk · l) of the standard zinc powder is described in ASTM (and JCPD), and is transferred to Table 1 below. In the present invention, the value of I s (hk · l) described in Table 1 is used for the above calculation. Therefore, the value of I co (hk · l) can be calculated from the value of I (hk · l) obtained by X-ray diffraction and the value of I s (hk · l) in Table 1 below.

Figure 0005130080
Figure 0005130080

なお表1に記載の「指数面角度(deg)」とは、亜鉛六方晶の基底面と各ミラー指数面(結晶面)とのなす角度を意味する。そして六方晶の場合に、両結晶面のなす角度(deg)は、下記のようにして算出することができる。即ち
・格子定数:a,c
・結晶面(ミラー指数面):(h11・l1)と(h22・l2
・両結晶面のなす角度:φ
とし、
・X=h1×h2+k1×k2+[1/2×(h1×k2+h2×k1)]+[3/4×(a/c)2×(l1×l2)]
・Y=h1 2+k1 2+(h1×k1)+[3/4×(a/c)2×(l1 2)]
・Z=h2 2+k2 2+(h2×k2)+[3/4×(a/c)2×(l2 2)]
とすると、
・cosφ=X/(Y×Z)1/2
の関係式から、両結晶面のなす角度φ(deg)が算出される。この両結晶面のなす角度φの値は、必ず0〜90°の範囲に入る。
The “exponential plane angle (deg)” shown in Table 1 means the angle formed between the basal plane of zinc hexagonal crystal and each mirror index plane (crystal plane). In the case of hexagonal crystal, the angle (deg) formed by both crystal faces can be calculated as follows.・ Lattice constant: a, c
Crystal plane (Miller index plane): (h 1 k 1 · l 1 ) and (h 2 k 2 · l 2 )
・ An angle between both crystal planes: φ
age,
X = h 1 × h 2 + k 1 × k 2 + [1/2 × (h 1 × k 2 + h 2 × k 1 )] + [3/4 × (a / c) 2 × (l 1 × l 2 )]
Y = h 1 2 + k 1 2 + (h 1 × k 1 ) + [3/4 × (a / c) 2 × (l 1 2 )]
Z = h 2 2 + k 2 2 + (h 2 × k 2 ) + [3/4 × (a / c) 2 × (l 2 2 )]
Then,
・ Cosφ = X / (Y × Z) 1/2
From the relational expression, the angle φ (deg) formed by both crystal faces is calculated. The value of the angle φ formed by both crystal planes always falls within the range of 0 to 90 °.

本発明者らは、電気亜鉛めっき層の上記6面の配向指数に着目し、リン酸塩処理前の電気亜鉛めっき鋼板(めっきまま)での明度(L値)、さらにリン酸塩処理後の電気亜鉛めっき鋼板(リン酸塩処理鋼板)の明度(L値)を、それぞれ測定した。上記6面の配向指数のうち本発明で特定する面の配向指数と、めっきまま及びリン酸塩処理後の明度(L値)との関係を示すグラフを、図1〜3に示す。これらのグラフは、いずれも後述する実施例の表2に示すデータに基づいて作成したものである。   The present inventors pay attention to the orientation index of the six surfaces of the electrogalvanized layer, and the brightness (L value) in the electrogalvanized steel sheet (as plated) before the phosphate treatment, and further after the phosphate treatment The brightness (L value) of the electrogalvanized steel sheet (phosphate-treated steel sheet) was measured. The graph which shows the relationship between the orientation index of the surface specified by this invention among the orientation indexes of said 6 surface, and the brightness (L value) after a plating and a phosphate process is shown to FIGS. These graphs are created based on the data shown in Table 2 of Examples described later.

図1は、電気亜鉛めっき層のIco(00・2)と、めっきまま又はリン酸亜鉛処理後の鋼板の明度(L値)との関係を示すグラフである。図1(b)は、図1(a)の一部を拡大したグラフである。 FIG. 1 is a graph showing the relationship between I co (00 · 2) of the electrogalvanized layer and the lightness (L value) of the steel sheet as plated or after zinc phosphate treatment. FIG. 1B is an enlarged graph of a part of FIG.

同様に、図2は電気亜鉛めっき層のIco(10・0)との関係を示すグラフ、図3は電気亜鉛めっき層のIco(10・1)との関係を示すグラフである。 Similarly, FIG. 2 is a graph showing the relationship with I co (10 · 0) of the electrogalvanized layer, and FIG. 3 is a graph showing the relationship with I co (10 · 1) of the electrogalvanized layer.

これらの図1〜図3に示すように、この実験で用いた電気亜鉛めっき鋼板はいずれも、めっきままの状態(図中、○)では明度(L値)が高く、これらの値と配向指数との間には相関が見られなかった。即ち電気亜鉛めっき層の前記6面の配向指数に応じて、めっきままの明度(L値)が増加したり、減少したりするという関係は見られなかった。   As shown in FIGS. 1 to 3, all of the electrogalvanized steel sheets used in this experiment have high brightness (L value) in the as-plated state (◯ in the figure). There was no correlation. That is, no relationship was observed in which the lightness (L value) as plated increased or decreased according to the orientation index of the six surfaces of the electrogalvanized layer.

ところが、リン酸塩処理後(図中、●)の明度(L値)は、めっきままの場合と異なっており、図1〜図3に示すように、リン酸電気亜鉛めっき層の(00・2)、(10・0)及び(10・1)面の配向指数に強く影響を受けることが分かった。詳しくはIco(00・2)が4.0未満である場合、Ico(10・0)が0.020を超える場合、及びIco(10・1)が0.20を超える場合はいずれも、リン酸塩処理後の明度が低下し、L値が70.00未満となっている。即ち配向指数が上記式(1)〜(3)の要件を外れると、リン酸塩処理鋼板で70.00以上の明度(L値)を達成することができない。 However, the brightness (L value) after the phosphate treatment (in the figure, ●) is different from that of the as-plated state, and as shown in FIGS. 2) It was found that the orientation index of (10 · 0) and (10 · 1) planes was strongly influenced. Specifically, when I co (00 · 2) is less than 4.0, I co (10 · 0) exceeds 0.020, and I co (10 · 1) exceeds 0.20. However, the brightness after the phosphate treatment is lowered, and the L value is less than 70.00. In other words, when the orientation index deviates from the requirements of the above formulas (1) to (3), a lightness (L value) of 70.00 or more cannot be achieved with the phosphate-treated steel sheet.

一方、図1〜3に示すように、配向指数が上記式(1)〜(3)の要件を単独で満たす場合であっても、リン酸塩処理後の明度(L値)が70.00未満となる場合がある。例えば図1では、Ico(00・2)が4.0以上であっても、L値が70.00未満となっている例が存在する。これは、リン酸塩処理鋼板の明度(L値)を70.00以上にするためには、上記式(1)〜(3)の要件を1つのみ、または2つのみを満たすだけでは不充分であって、これらの3要件を全て満たす必要があることを示している。図1を参照すると、Ico(00・2)が4.0以上であっても、L値が70.00未満となっている例は、式(2)及び/又は(3)の要件を満たさないため、リン酸塩処理鋼板の明度(L値)が70.00未満となっている。 On the other hand, as shown in FIGS. 1 to 3, even when the orientation index satisfies the requirements of the above formulas (1) to (3) alone, the lightness (L value) after the phosphate treatment is 70.00. May be less. For example, in FIG. 1, there is an example in which the L value is less than 70.00 even if I co (00 · 2) is 4.0 or more. In order to make the lightness (L value) of the phosphate-treated steel sheet 70.00 or more, it is not necessary to satisfy only one or two of the requirements of the above formulas (1) to (3). It is sufficient to show that all three of these requirements need to be met. Referring to FIG. 1, even if I co (00 · 2) is 4.0 or more, an example in which the L value is less than 70.00 satisfies the requirements of the expressions (2) and / or (3). Since it does not satisfy, the lightness (L value) of the phosphate-treated steel sheet is less than 70.00.

また、上記式(2)及び(3)に示すようにIco(10・0)及びIco(10・1)は0であってはならない。これらが0になると、リン酸塩処理後の明度(L値)が再び低下する(図2のIco(10・0)=0のデータを参照)。 Further, as shown in the above formulas (2) and (3), I co (10 · 0) and I co (10 · 1) must not be 0. When these become 0, the lightness (L value) after the phosphate treatment decreases again (see data of I co (10 · 0) = 0 in FIG. 2).

これらの現象は、上記式(1)〜(3)の要件の1つでも満たさない電気亜鉛めっき層の結晶構造は、その上に形成されるリン酸亜鉛皮膜の結晶構造に悪影響を及ぼし、リン酸亜鉛皮膜の明度を低下させるためであると推定される。一方、上記式(1)〜(3)の全ての要件を満たす電気亜鉛めっき層の結晶構造は、その上に形成されるリン酸亜鉛結晶のサイズ、形状及び向きに好影響を及ぼし、その結果、リン酸亜鉛皮膜が入射光を反射し易くなると考えられる。   In these phenomena, the crystal structure of the electrogalvanized layer that does not satisfy even one of the requirements of the above formulas (1) to (3) adversely affects the crystal structure of the zinc phosphate film formed on the electrogalvanized layer. This is presumed to reduce the brightness of the zinc acid film. On the other hand, the crystal structure of the electrogalvanized layer satisfying all the requirements of the above formulas (1) to (3) has a positive effect on the size, shape and orientation of the zinc phosphate crystal formed thereon, and as a result. It is considered that the zinc phosphate coating easily reflects incident light.

一方、本発明で規定しない結晶面の配向指数、すなわち、Ico(10・2)、Ico(10・3)及びIco(11・0)とリン酸塩処理鋼板の明度(L値)との間には、後記する実施例に示すように、相関が見られなかった。 On the other hand, the orientation index of the crystal plane not defined in the present invention, that is, I co (10 · 2), I co (10 · 3) and I co ( 11.0 ) and the lightness (L value) of the phosphated steel sheet As shown in the examples described later, no correlation was found between

以上の基礎実験に基づき、本発明者は、結晶面(00・2)、(10・0)、(10・1)、(10・2)、(10・3)及び(11・0)におけるWillsonの6面配向指数Ico(hk・l)の中でも、Ico(00・2)、Ico(10・0)及びIco(10・1)に着目することにし、これら3つの配向指数を制御することによってリン酸亜鉛皮膜の明度(即ち、リン酸塩処理後の明度)を特に70.00以上に高めることに成功した。本発明において、Ico(00・2)は好ましくは4.5以上であり、Ico(10・0)は好ましくは0.015以下であり、Ico(10・1)は好ましくは0.15以下である。 Based on the above basic experiment, the present inventor has found that in the crystal planes (00 · 2), (10.0), (10.1), (10.2), (10.3) and (11.0). Among Willson's six-plane orientation indices I co (hk · l), I will focus on I co (00 · 2), I co (10 · 0) and I co (10 · 1). In particular, the brightness of the zinc phosphate film (that is, the brightness after the phosphate treatment) was successfully increased to 70.00 or more by controlling the above. In the present invention, I co (00 · 2) is preferably 4.5 or more, I co (10 · 0) is preferably 0.015 or less, and I co (10 · 1) is preferably 0.00. 15 or less.

次に、本発明に係るリン酸塩処理鋼板の製造方法について説明する。   Next, the manufacturing method of the phosphate processing steel plate which concerns on this invention is demonstrated.

電気亜鉛めっきが施される原板について、本発明では特に限定されないが、亜鉛めっき原板としては、一般に板厚が1mm程度の軟鋼(例えばAlキルド鋼、Tiキルド鋼)などが用いられる。また高張力鋼板等の冷延鋼板、及び酸洗にて黒皮を除去した熱延鋼板などを使用することができる。まためっきを施す前に、常法に従って原板を脱脂することが好ましい。   Although it does not specifically limit in the present invention about the original plate to which electrogalvanization is performed, as a galvanization original plate, generally mild steel (for example, Al killed steel, Ti killed steel), etc. whose plate thickness is about 1 mm is used. Moreover, a cold-rolled steel plate such as a high-tensile steel plate, a hot-rolled steel plate from which black skin has been removed by pickling, and the like can be used. Moreover, it is preferable to degrease the original plate according to a conventional method before plating.

次に電気亜鉛めっき条件について説明する。上記式(1)〜(3)の要件を満たすように電気亜鉛めっき層の結晶構造又は配向を制御するためには、めっき液に添加する支持電解質(導電性補助剤)を、適切に選択することが重要である。例えば、従来よく使用されているNa2SO4では、後記する実施例で実証したように、めっき層の構造制御が困難であった。よって本発明のリン酸塩処理鋼板を製造するための支持電解質としては、Al2(SO43、(NH42SO4、KCl及びNaClが好ましく、Al2(SO43がより好ましい。 Next, electrogalvanizing conditions will be described. In order to control the crystal structure or orientation of the electrogalvanized layer so as to satisfy the requirements of the above formulas (1) to (3), a supporting electrolyte (conductive auxiliary agent) added to the plating solution is appropriately selected. This is very important. For example, in the case of Na 2 SO 4 that has been used frequently in the past, it was difficult to control the structure of the plating layer as demonstrated in the examples described later. Therefore, as the supporting electrolyte for producing the phosphate-treated steel sheet of the present invention, Al 2 (SO 4 ) 3 , (NH 4 ) 2 SO 4 , KCl and NaCl are preferable, and Al 2 (SO 4 ) 3 is more preferable. preferable.

また、めっき液の温度及びめっき液中のNi濃度も重要である。具体的には、めっき液の温度を40〜50℃程度、めっき液中のNi濃度を130〜250ppm程度の範囲内に制御すれば、上記式(1)〜(3)の要件を満たす電気亜鉛めっき層が得られやすいことが分かった(後記する実施例を参照)。   Also, the temperature of the plating solution and the Ni concentration in the plating solution are important. Specifically, if the temperature of the plating solution is controlled within the range of about 40 to 50 ° C. and the Ni concentration in the plating solution is controlled within the range of about 130 to 250 ppm, the electrolytic zinc that satisfies the requirements of the above formulas (1) to (3) It turned out that a plating layer is easy to be obtained (refer the Example mentioned later).

更に、デキストリン、デキストラン及びアミロペクチンなどの高分子有機物などが、めっき液中に混入することは避けるべきである。これらの高分子有機物が混入すると、電気亜鉛めっき層の結晶配向がコントロールしにくくなる。   Furthermore, it should be avoided that high molecular organic substances such as dextrin, dextran and amylopectin are mixed in the plating solution. When these high molecular organic substances are mixed, it becomes difficult to control the crystal orientation of the electrogalvanized layer.

めっき液としては、酸性浴(例えば硫酸塩浴、塩化物浴)を使用できる。めっき液のpHは、めっき層の結晶配向、電流効率、及びめっきヤケ現象などを考慮すると、好ましくは0.5以上、好ましくは4以下(より好ましくは1未満)である。   As the plating solution, an acidic bath (for example, a sulfate bath or a chloride bath) can be used. The pH of the plating solution is preferably 0.5 or more, preferably 4 or less (more preferably less than 1) in consideration of the crystal orientation of the plating layer, current efficiency, plating burn phenomenon, and the like.

電気亜鉛めっき層の結晶配向を制御するためには、上述の支持電解質、高分子有機物及びめっき液のpHが重要であって、これら以外のめっき条件は、他の問題(めっきヤケ等)を考慮して適宜選択することができる。例えばめっきに使用するセルとしては、縦型又は横型のいずれでも良い。また電気めっきの通電方法も、特に規定されず、公知の方法、例えば直流(定電流)めっき法又はパルスめっき法を採用することができる。相対流速は、例えば0.3〜5m/秒である。なお「相対流速」とは、めっき液の流れ方向及びめっき原板の通板方向を考慮しためっき液の流速と、通板速度との差である。   In order to control the crystal orientation of the electrogalvanized layer, the pH of the above-mentioned supporting electrolyte, polymer organic material, and plating solution is important. Other plating conditions include other problems (such as plating burn). And can be selected as appropriate. For example, the cell used for plating may be either a vertical type or a horizontal type. Also, the energization method of electroplating is not particularly defined, and a known method such as a direct current (constant current) plating method or a pulse plating method can be employed. The relative flow velocity is, for example, 0.3 to 5 m / sec. The “relative flow velocity” is the difference between the plating solution flow rate and the plate passing speed in consideration of the flow direction of the plating solution and the plate passing direction of the plating original plate.

めっき浴中の電流密度は、亜鉛めっきの付着速度を良好に確保するために、好ましくは30A/dm2以上、より好ましくは50A/dm2以上である。一方、電流密度があまりに高くなりすぎると、Znイオンの供給が間に合わなくなり、めっき外観が黒っぽく変色する「めっきヤケ」現象が生じる。そこで電流密度は、200A/dm2以下にすることが好ましい。 The current density in the plating bath, in order to better ensure the deposition rate of the zinc plating, preferably 30A / dm 2 or more, more preferably 50A / dm 2 or more. On the other hand, if the current density becomes too high, the supply of Zn ions will not be in time, resulting in a “plating burn” phenomenon in which the plating appearance changes to black. Therefore, the current density is preferably 200 A / dm 2 or less.

電気亜鉛めっき付着量は、好ましくは1g/m2以上(より好ましくは3g/m2以上)、好ましくは100g/m2以下(より好ましくは60g/m2以下、さらに好ましくは40g/m2以下)である。電気亜鉛めっき付着量が少なすぎると、リン酸塩処理鋼板の耐食性が不充分である。逆に付着量が多すぎると、亜鉛めっきの製造コストが増大する。電気亜鉛めっきは、原板の片面だけに施しても良く、その両面に施しても良い。 The amount of electrogalvanized coating is preferably 1 g / m 2 or more (more preferably 3 g / m 2 or more), preferably 100 g / m 2 or less (more preferably 60 g / m 2 or less, more preferably 40 g / m 2 or less. ). If the amount of electrogalvanized coating is too small, the corrosion resistance of the phosphate-treated steel sheet is insufficient. On the other hand, when the amount of adhesion is too large, the manufacturing cost of galvanization increases. Electrogalvanization may be performed only on one side of the original plate or on both sides.

上記のように電気亜鉛めっきを行なった後、リン酸亜鉛処理を施す。リン酸亜鉛処理液としては、Znイオン、Niイオン、リン酸イオン及び硝酸イオン等を含む市販の処理液を使用できる(例えば日本パーカライジング株式会社製「パルボンド−3312」等)。またリン酸亜鉛処理液に、アルカリ土類金属、Fe、Co、Mn、Mg、Cr及びSb等を微量で添加しても良く、またグルコン酸ソーダ及びポリエーテルなどの有機物を添加しても良い。そのためリン酸亜鉛皮膜は、これらに由来する不純物を含んでいても良い。リン酸亜鉛化成処理は、電気亜鉛めっき鋼板を処理液に浸漬して行っても良く、また処理液をスプレーして行っても良い。   After electrogalvanizing as described above, zinc phosphate treatment is performed. As the zinc phosphate treatment solution, a commercially available treatment solution containing Zn ions, Ni ions, phosphate ions, nitrate ions and the like can be used (for example, “Palbond-3312” manufactured by Nippon Parkerizing Co., Ltd.). In addition, alkaline earth metals, Fe, Co, Mn, Mg, Cr, Sb, etc. may be added in small amounts to the zinc phosphate treatment solution, and organic substances such as sodium gluconate and polyether may be added. . Therefore, the zinc phosphate coating may contain impurities derived from these. The zinc phosphate chemical conversion treatment may be performed by immersing the electrogalvanized steel sheet in the treatment liquid or by spraying the treatment liquid.

リン酸亜鉛付着量は、好ましくは0.8g/m2以上(より好ましくは1.0g/m2以上)、好ましくは3.0g/m2以下(より好ましくは2.5g/m2以下)である。リン酸亜鉛付着量が多すぎると、リン酸亜鉛皮膜の耐剥離性および色調(特に明度)が低下する。一方、付着量が少なすぎると、リン酸亜鉛皮膜と塗膜との密着性が低下する傾向がある。 The zinc phosphate adhesion amount is preferably 0.8 g / m 2 or more (more preferably 1.0 g / m 2 or more), preferably 3.0 g / m 2 or less (more preferably 2.5 g / m 2 or less). It is. When there is too much zinc phosphate adhesion amount, the peeling resistance and color tone (especially lightness) of a zinc phosphate film will fall. On the other hand, when there is too little adhesion amount, there exists a tendency for the adhesiveness of a zinc phosphate membrane | film | coat and a coating film to fall.

リン酸塩処理鋼板のIco(00・2)、Ico(10・0)及びIco(10・0)は、リン酸亜鉛皮膜を除去した後、電気亜鉛めっき層をX線回折することによって求めることができる。詳しくは、まず重クロム酸アンモニウム20質量部、25質量%のアンモニア水490質量部、及び蒸留水を490質量部含有する溶解液を作製する。次いでこの溶解液を室温で調整した後、リン酸塩処理鋼板を15分程度浸漬することによって、リン酸亜鉛皮膜を除去することができる。そしてリン酸亜鉛皮膜を除去した後、下記実施例で示す条件でX線回折を行うことよって、電気亜鉛めっき層の配向指数を算出することができる。 I co phosphating steel (00 · 2), I co (10 · 0) and I co (10 · 0), after removal of the zinc phosphate coating, to X-ray diffraction electro-galvanized layer Can be obtained. Specifically, first, a solution containing 20 parts by mass of ammonium dichromate, 490 parts by mass of 25% by mass of ammonia water, and 490 parts by mass of distilled water is prepared. Subsequently, after adjusting this solution at room temperature, the zinc phosphate coating can be removed by immersing the phosphate-treated steel sheet for about 15 minutes. And after removing a zinc phosphate membrane | film | coat, the orientation index | exponent of an electrogalvanization layer is computable by performing X-ray diffraction on the conditions shown in the following Example.

本発明のリン酸塩処理鋼板の明度(L値)は、好ましくは70.00以上、より好ましくは71以上である。本発明における明度(L値)は、下記実施例で示す測定法によって測定される値である。   The lightness (L value) of the phosphate-treated steel sheet of the present invention is preferably 70.00 or more, more preferably 71 or more. The lightness (L value) in the present invention is a value measured by the measuring method shown in the following examples.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and appropriate modifications are made within a range that can meet the above and the following purposes. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実験例1
〈めっき原板〉
Alキルド冷延鋼板を、めっき原板として用いた。これを脱脂・酸洗してから、下記条件で電気亜鉛めっきを施した。
Experimental example 1
<Plating original plate>
An Al killed cold-rolled steel plate was used as a plating original plate. This was degreased and pickled, and then electrogalvanized under the following conditions.

〈電気亜鉛めっきの条件〉
(1)めっき液(硫酸塩浴)組成
ZnSO4・7H2O:350g/L
Al2(SO43:170g/L
2SO4:20g/L
NiSO4・6H2O:0〜0.9g/L
FeSO4・7H2O:9g/L
Fe2(SO43・9.5H2O:1.8g/L
Na2MoO4・2H2O:0.03g/L
40質量%のCr2(SO43溶液:0.9g/L
(2)電流密度:50A/dm2
(3)めっき液の温度:20〜60℃
(4)めっき液の相対流速:1.5m/秒
(5)電極(陽極):IrOx電極
(6)めっき浴のpH:1未満
(7)亜鉛めっき付着量:20g/m2
(8)亜鉛めっき面積:300mm×180mm
<Conditions for electrogalvanizing>
(1) Plating solution (sulfate bath) composition ZnSO 4 .7H 2 O: 350 g / L
Al 2 (SO 4 ) 3 : 170 g / L
H 2 SO 4 : 20 g / L
NiSO 4 .6H 2 O: 0 to 0.9 g / L
FeSO 4 .7H 2 O: 9 g / L
Fe 2 (SO 4 ) 3 · 9.5H 2 O: 1.8 g / L
Na 2 MoO 4 .2H 2 O: 0.03 g / L
40% by mass of Cr 2 (SO 4 ) 3 solution: 0.9 g / L
(2) Current density: 50 A / dm 2
(3) Temperature of plating solution: 20 to 60 ° C
(4) Relative flow rate of plating solution: 1.5 m / sec (5) Electrode (anode): IrO x electrode (6) pH of plating bath: less than 1 (7) Amount of zinc plating: 20 g / m 2
(8) Zinc plating area: 300mm x 180mm

〈X線回折の条件〉
上述のようにして作製した電気亜鉛めっき鋼鈑(めっきまま)について、下記条件のX線回折によって電気亜鉛めっき層の配向指数を算出した。
(1)装置:リガク社製 回転対陰極型X線回折装置
(2)ターゲット:Cu(平板モノクロ結晶による単色比;Cu−Kα線)
(3)管電圧:40kV
(4)管電流:300mA
(5)測定角:2θ 30°〜80°
(6)走査速度:2°/分
(7)サンプリング角度:0.02°
(8)発散スリット:1°
(9)散乱スリット:1°
(10)受光スリット:0.15mm
(11)試料面内回転:100rpm
<Conditions for X-ray diffraction>
For the electrogalvanized steel sheet (as plated) produced as described above, the orientation index of the electrogalvanized layer was calculated by X-ray diffraction under the following conditions.
(1) Apparatus: Rigaku Co., Ltd., rotating anti-cathode X-ray diffractometer (2) Target: Cu (monochromatic ratio by flat monochrome crystal; Cu-Kα ray)
(3) Tube voltage: 40 kV
(4) Tube current: 300 mA
(5) Measurement angle: 2θ 30 ° -80 °
(6) Scanning speed: 2 ° / min (7) Sampling angle: 0.02 °
(8) Divergence slit: 1 °
(9) Scattering slit: 1 °
(10) Light receiving slit: 0.15 mm
(11) In-sample rotation: 100 rpm

〈リン酸亜鉛処理〉
上述のようにして作製した電気亜鉛めっき鋼鈑を、水道水で洗浄し、日本パーカライジング株式会社製のリン酸亜鉛処理液(パルボンド3312)に60℃で5秒間浸漬した後、再び水洗し、乾燥することによってリン酸塩処理鋼板を作製した。
(1)TA(Total Acid):17〜20ポイント
(2)FA(Free Acid):2.0〜2.5ポイント
(3)リン酸亜鉛付着量:1.8〜2.2g/m2
<Zinc phosphate treatment>
The electrogalvanized steel sheet produced as described above was washed with tap water, immersed in a zinc phosphate treatment solution (Palbond 3312) manufactured by Nippon Parkerizing Co., Ltd. for 5 seconds at 60 ° C., washed again with water, and dried. As a result, a phosphate-treated steel sheet was produced.
(1) TA (Total Acid): 17 to 20 points (2) FA (Free Acid): 2.0 to 2.5 points (3) Zinc phosphate adhesion amount: 1.8 to 2.2 g / m 2

〈明度(L値)の測定条件〉
上述のようにして作製した電気亜鉛めっき鋼板(めっきまま)及びリン酸塩処理鋼板(リン酸亜鉛処理後)の明度(L値)を、色差計(SZS−Σ90:日本電色製)を用いてJIS−Z−8722の0°−d法に基づいて測定した。この0°−d法は、光トラップを用いることにより正反射光成分は逃し正反射光以外の拡散反射光成分のみを積分球により集め、その積分強度にて白色度を評価するものである。
<Lightness (L value) measurement conditions>
Using a color difference meter (SZS-Σ90: manufactured by Nippon Denshoku), the brightness (L value) of the electrogalvanized steel sheet (as plated) and phosphate-treated steel sheet (after zinc phosphate treatment) produced as described above was used. And measured based on the 0 ° -d method of JIS-Z-8722. In this 0 ° -d method, by using an optical trap, the specular reflected light component escapes and only the diffuse reflected light component other than the specular reflected light is collected by an integrating sphere, and the whiteness is evaluated by the integrated intensity.

表2に、製造条件(めっき液温及びめっき液中のNi濃度)と、上述のようにして測定した電気亜鉛めっき層の配向指数、めっきまま及びリン酸亜鉛処理後の明度(L値)及びリン酸亜鉛付着量を記載する。また表2に示す電気亜鉛めっき層の配向指数と、めっきまま又はリン酸亜鉛処理後の明度(L値)との関係を示すグラフを、図1〜3に示す。   Table 2 shows the manufacturing conditions (plating solution temperature and Ni concentration in the plating solution), the orientation index of the electrogalvanized layer measured as described above, the as-plated and lightness (L value) after zinc phosphate treatment, and The zinc phosphate adhesion amount is described. Moreover, the graph which shows the relationship between the orientation index | exponent of the electrogalvanized layer shown in Table 2, and the lightness (L value) after a plating or zinc phosphate process is shown to FIGS.

Figure 0005130080
Figure 0005130080

表2及び図1〜3から示されるように、上記式(1)〜(3)を満たすように電気亜鉛めっき層の配向指数を制御すれば、リン酸塩処理鋼板の明度(L値)を70.00以上にすることができる。また支持電解質としてAl2(SO43を用い、めっき液の温度を40〜50℃、めっき液中のNi濃度を130〜250ppmに制御すれば、上記式(1)〜(3)を満たすように配向指数を制御することができる。 As shown in Table 2 and FIGS. 1 to 3, if the orientation index of the electrogalvanized layer is controlled so as to satisfy the above formulas (1) to (3), the lightness (L value) of the phosphate-treated steel sheet It can be 70.00 or more. If Al 2 (SO 4 ) 3 is used as the supporting electrolyte, the temperature of the plating solution is controlled to 40 to 50 ° C., and the Ni concentration in the plating solution is controlled to 130 to 250 ppm, the above formulas (1) to (3) are satisfied. Thus, the orientation index can be controlled.

参考例1(比較例)
支持電解質としてAl2(SO43の代わりにNa2SO4を80g/Lで使用したこと以外は、実施例1と同じ条件でリン酸塩処理鋼板を作製した。表3に、これらの製造条件(めっき液温及びめっき液中のNi濃度)と、上述のようにして測定した電気亜鉛めっき層の配向指数(Ico(00・2)、Ico(10・0)及びIco(10・1))、リン酸亜鉛処理後の明度(L値)及びリン酸亜鉛付着量を記載する。
Reference Example 1 (Comparative Example)
A phosphate-treated steel sheet was produced under the same conditions as in Example 1 except that Na 2 SO 4 was used at 80 g / L instead of Al 2 (SO 4 ) 3 as the supporting electrolyte. Table 3 shows these manufacturing conditions (plating solution temperature and Ni concentration in the plating solution) and the orientation index (I co (00 · 2), I co (10 · 0) and I co (10 · 1)), brightness (L value) after zinc phosphate treatment, and zinc phosphate adhesion amount are described.

Figure 0005130080
Figure 0005130080

表3に示すように、支持電解質としてNa2SO4を用いると、めっき液温及びめっき液中のNi濃度を適切な範囲に調整しても、上記式(1)〜(3)の要件を満たすように電気亜鉛めっき層の配向指数を制御することは困難であり、リン酸塩処理鋼板の明度は、いずれも70.00未満と低下した。 As shown in Table 3, when Na 2 SO 4 is used as the supporting electrolyte, the requirements of the above formulas (1) to (3) are satisfied even if the plating solution temperature and the Ni concentration in the plating solution are adjusted to appropriate ranges. It was difficult to control the orientation index of the electrogalvanized layer so as to satisfy, and the brightness of the phosphatized steel sheet decreased to less than 70.00.

電気亜鉛めっき層のIco(00・2)と、めっきまま又はリン酸亜鉛処理後の鋼板の明度(L値)との関係を示すグラフである。図1(b)は、図1(a)の一部を拡大したグラフである。It is a graph which shows the relationship between Ico (00 * 2) of an electrogalvanized layer, and the lightness (L value) of the steel plate as-plated or after a zinc phosphate process. FIG. 1B is an enlarged graph of a part of FIG. 電気亜鉛めっき層のIco(10・0)と、めっきまま又はリン酸亜鉛処理後の鋼板の明度(L値)との関係を示すグラフである。図2(b)は、図2(a)の一部を拡大したグラフである。And I co electro galvanized layer (10, 0) is a graph showing the relationship between the lightness (L value) of the steel sheet after plating remains or zinc phosphate treatment. FIG. 2B is an enlarged graph of a part of FIG. 電気亜鉛めっき層のIco(10・1)と、めっきまま又はリン酸亜鉛処理後の鋼板の明度(L値)との関係を示すグラフである。図3(b)は、図3(a)の一部を拡大したグラフである。It is a graph which shows the relationship between Ico (10 * 1) of an electrogalvanization layer, and the brightness (L value) of the steel plate after plating or a zinc phosphate process. FIG. 3B is an enlarged graph of a part of FIG.

Claims (2)

電気亜鉛めっき層の上にリン酸亜鉛皮膜を有し、
前記電気亜鉛めっき層の結晶面(00・2)、(10・0)及び(10・1)の配向指数Ico(hk・l)が、下記式(1)〜(3)の要件を満たすことを特徴とする色調が明るいリン酸塩処理電気亜鉛めっき鋼板。
4.0≦Ico(00・2) ・・・ (1)
0<Ico(10・0)≦0.020 ・・・ (2)
0<Ico(10・1)≦0.20 ・・・ (3)
〔上記式中、
co(hk・l)は、結晶面(00・2)、(10・0)、(10・1)、(10・2)、(10・3)及び(11・0)におけるWillsonの6面配向指数であり、
前記電気亜鉛めっき層の各結晶面(hk・l)のX線回折ピーク強度値(cps)をI(hk・l)とし、標準亜鉛粉末の各結晶面(hk・l)のX線回折ピーク強度値(cps)をIs(hk・l)とした場合に下記式(4)〜(6)から計算される。
co(hk・l)=i(hk・l)/is(hk・l) ・・・ (4)
i(hk・l)=I(hk・l)/{I(00・2)+I(10・0)+I(10・1)+I(10・2)+I(10・3)+I(11・0)} ・・・ (5)
s(hk・l)=Is(hk・l)/{Is(00・2)+Is(10・0)+Is(10・1)+Is(10・2)+Is(10・3)+Is(11・0)} ・・・ (6)〕
A zinc phosphate coating on the electrogalvanized layer;
The orientation indices I co (hk · l) of the crystal planes (00 · 2), (10 · 0) and (10 · 1) of the electrogalvanized layer satisfy the requirements of the following formulas (1) to (3). A phosphatized electrogalvanized steel sheet with a bright color, characterized by that.
4.0 ≦ I co (00 · 2) (1)
0 <I co (10.0) ≦ 0.020 (2)
0 <I co (10 · 1) ≦ 0.20 (3)
[In the above formula,
I co (hk · l) is Willson's 6 in crystal planes (00 · 2), (10 · 0), (10 · 1), (10 · 2), (10 · 3), and (11.0). The plane orientation index,
The X-ray diffraction peak intensity value (cps) of each crystal plane (hk · l) of the electrogalvanized layer is I (hk · l), and the X-ray diffraction peak of each crystal plane (hk · l) of the standard zinc powder. When the intensity value (cps) is I s (hk · l), it is calculated from the following formulas (4) to (6).
I co (hk · l) = i (hk · l) / i s (hk · l) (4)
i (hk · l) = I (hk · l) / {I (00 · 2) + I (10 · 0) + I (10 · 1) + I (10 · 2) + I (10 · 3) + I (11.0) )} (5)
i s (hk · l) = I s (hk · l) / {I s (00 · 2) + I s (10 · 0) + I s (10 · 1) + I s (10 · 2) + I s (10 · 3) + I s (11.0)} (6)]
明度(L値)が70.00以上である請求項1に記載のリン酸塩処理電気亜鉛めっき鋼板。   The phosphating electrogalvanized steel sheet according to claim 1, wherein the lightness (L value) is 70.00 or more.
JP2008050887A 2008-02-29 2008-02-29 Phosphate-treated electrogalvanized steel sheet Expired - Fee Related JP5130080B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008050887A JP5130080B2 (en) 2008-02-29 2008-02-29 Phosphate-treated electrogalvanized steel sheet
TW098104344A TWI391528B (en) 2008-02-29 2009-02-11 Phosphate-treated electrogalvanized steel sheet
CN2009100073849A CN101691665B (en) 2008-02-29 2009-02-17 Phosphate-treated electrogalvanized steel sheet
KR1020090016944A KR101073169B1 (en) 2008-02-29 2009-02-27 Phosphate-treated electrogalvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008050887A JP5130080B2 (en) 2008-02-29 2008-02-29 Phosphate-treated electrogalvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2009209383A JP2009209383A (en) 2009-09-17
JP5130080B2 true JP5130080B2 (en) 2013-01-30

Family

ID=41182825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008050887A Expired - Fee Related JP5130080B2 (en) 2008-02-29 2008-02-29 Phosphate-treated electrogalvanized steel sheet

Country Status (4)

Country Link
JP (1) JP5130080B2 (en)
KR (1) KR101073169B1 (en)
CN (1) CN101691665B (en)
TW (1) TWI391528B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396773B (en) * 2010-07-08 2013-05-21 Nippon Steel & Sumitomo Metal Corp Hot-dipped galvanized steel sheet
WO2012004889A1 (en) 2010-07-09 2012-01-12 新日本製鐵株式会社 Hot-dip zinc-coated steel sheet
CN107208298B (en) 2015-02-06 2020-06-19 日本制铁株式会社 Sn-plated steel sheet, chemical conversion-treated steel sheet, and methods for producing these
RU2624566C1 (en) * 2016-02-15 2017-07-04 Федеральное государственное унитарное предприятие федеральный научно-производственный центр "Производственное объединение "Старт" им. М.В. Проценко" (ФГУП ФНПЦ "ПО "Старт" им. М.В. Проценко") Method of phosphatory of magnetic-aluminium alloys of type permalloy (versions)
EP3495280B1 (en) * 2017-12-08 2021-04-07 MULTIVAC Marking & Inspection GmbH & Co. KG Labeller with presser module

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104673A (en) * 1988-10-13 1990-04-17 Sumitomo Metal Ind Ltd Chromated galvanized steel material having light color tone
JP2626151B2 (en) * 1990-04-12 1997-07-02 日本鋼管株式会社 Method for producing electrogalvanized steel sheet with excellent brightness and gloss
JP3297814B2 (en) * 1992-08-14 2002-07-02 ソニー株式会社 Adaptive noise reduction type speech input device
JP3363033B2 (en) * 1996-06-28 2003-01-07 株式会社神戸製鋼所 Electro-galvanized steel sheet
JP2831975B2 (en) * 1996-06-28 1998-12-02 株式会社神戸製鋼所 Electro-galvanized steel sheet
TW448244B (en) 1996-06-28 2001-08-01 Kobe Steel Ltd An electrogalvanized steel sheet with light tone
JP3095718B2 (en) * 1997-08-06 2000-10-10 株式会社神戸製鋼所 Zinc phosphate treated steel sheet with excellent color tone and coating adhesion
JP3354142B2 (en) * 2001-02-28 2002-12-09 川崎製鉄株式会社 Electro-galvanized steel sheet with bright color and excellent conductivity
JP4492254B2 (en) * 2004-08-20 2010-06-30 Jfeスチール株式会社 Phosphate-treated galvanized steel sheet with excellent corrosion resistance and blackening resistance

Also Published As

Publication number Publication date
CN101691665B (en) 2011-08-17
TWI391528B (en) 2013-04-01
KR20090093883A (en) 2009-09-02
JP2009209383A (en) 2009-09-17
KR101073169B1 (en) 2011-10-12
TW200949012A (en) 2009-12-01
CN101691665A (en) 2010-04-07

Similar Documents

Publication Publication Date Title
TWI630284B (en) Passivation of micro-discontinuous chromium deposited from a trivalent electrolyte
JP4344222B2 (en) Chemical conversion metal plate
JP5130080B2 (en) Phosphate-treated electrogalvanized steel sheet
JP5334499B2 (en) Surface-treated metal plate with excellent paint adhesion and method for producing the same
TWI287050B (en) Phosphate treated zinc-coated steel sheet
JP4862445B2 (en) Method for producing electrogalvanized steel sheet
JP5812041B2 (en) Method for producing zinc-based electroplated steel sheet
JP2009079263A (en) Surface-treated galvanized metallic material, and method for producing the same
JP2000355790A (en) Electrogalvanized steel sheet having excellent white rust resistance and its production
JP2013185199A (en) Zinc-based electroplated steel sheet and method for manufacturing the same
JP2002285346A (en) Zinc phosphate treated galvanized steel sheet having excellent corrosion resistance and color tone
JP4661627B2 (en) Surface-treated zinc-based plated metal material and method for producing the same
JP2006336089A (en) Highly corrosion resistant surface-treated steel, and coated steel
JP7400766B2 (en) Zinc-based electroplated steel sheet and its manufacturing method
JP3499544B2 (en) Electrical Zn-plated steel sheet with excellent white rust resistance and method for producing the same
JP6733846B1 (en) Surface-treated steel sheet and method for producing surface-treated steel sheet
JPH07246679A (en) Resin coated aluminum-containing metal composite material excellent in conductivity and production thereof
JP2011236471A (en) Composite electrogalvanized steel sheet, and method for producing the same
JP2001059198A (en) Zn-Co PLATED METALLIC SHEET EXCELLENT IN CORROSION RESISTANCE AND ITS PRODUCTION
JP6197772B2 (en) Method for producing zinc-based electroplated steel sheet having excellent fingerprint resistance and whiteness
JPH01176551A (en) Highly corrosion resistant organic composite plated steel plate
JP3398100B2 (en) Electrogalvanized steel sheet with excellent white rust resistance and blackening resistance
Galeotti Electrodeposition of Zn-Cr alloy coatings for corrosion protection
Zhong et al. Selective brush plating a tin-zinc alloy for sacrificial corrosion protection
JPWO2008105052A1 (en) Composition and treatment liquid for surface treatment of metal material, surface treatment metal material, painted metal material, and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5130080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees