JP5129064B2 - 工作機械の数値制御装置 - Google Patents

工作機械の数値制御装置 Download PDF

Info

Publication number
JP5129064B2
JP5129064B2 JP2008216514A JP2008216514A JP5129064B2 JP 5129064 B2 JP5129064 B2 JP 5129064B2 JP 2008216514 A JP2008216514 A JP 2008216514A JP 2008216514 A JP2008216514 A JP 2008216514A JP 5129064 B2 JP5129064 B2 JP 5129064B2
Authority
JP
Japan
Prior art keywords
distribution
pulse
movement
primary
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008216514A
Other languages
English (en)
Other versions
JP2010055161A (ja
Inventor
信孝 西橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Koki KK
Original Assignee
Shin Nippon Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Koki KK filed Critical Shin Nippon Koki KK
Priority to JP2008216514A priority Critical patent/JP5129064B2/ja
Priority to PCT/JP2009/062192 priority patent/WO2010024041A1/ja
Priority to EP09809696.9A priority patent/EP2328052A4/en
Priority to US13/060,443 priority patent/US8478439B2/en
Publication of JP2010055161A publication Critical patent/JP2010055161A/ja
Application granted granted Critical
Publication of JP5129064B2 publication Critical patent/JP5129064B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • G05B19/4141Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller characterised by a controller or microprocessor per axis
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • G05B19/4103Digital interpolation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34167Coarse fine, macro microinterpolation, preprocessor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50013Two spindles on same line, one for workpiece, other for tool, second tool on slide
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50052Orienting workpiece relative to tool

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Numerical Control (AREA)

Description

本発明は、工作機械の数値制御装置に関するものである。
従来、工作機械の一例として、クランクシャフトを旋削するための旋削装置が知られている(例えば、特許文献1参照)。
この特許文献1に開示された旋削装置は、ワークとしてのクランクシャフトを支持しながら当該クランクシャフトのメインジャーナルの軸であるC軸回りに回転させるワーク移動装置と、切削加工のための工具を前記C軸に直交するX軸方向へ直線移動させるとともに前記C軸に平行なα軸を中心として揺動させる工具移動装置とを備えている。そして、この旋削装置では、ワーク移動装置によりクランクシャフトを前記C軸回りに回転させるとともに、工具移動装置による工具の前記X軸方向への直線移動と前記α軸を中心とした揺動とをNC制御することによって、クランクシャフトのメインジャーナルから偏心したピンジャーナルを偏心回転させながらその偏心回転に追従するように前記工具を移動させて前記ピンジャーナルの旋削加工を行うようになっている。
特開2003−266202号公報
ところで、上記のような旋削装置を含め、一般的な工作機械では、ワーク及び工具の移動方向が異なる移動方向を含む場合に加工誤差が生じ、それに起因してワークの加工精度が低下するという問題点がある。
前記加工誤差の1つの要因としては、ワーク及び工具を複数の異なる移動方向に互いに異なる加減速時定数で移動させる場合に生じる各移動方向間での位相誤差が挙げられる。これは、各移動方向で異なる加減速時定数が設定されることによってその各移動方向間で加減速にかかる時間に差が生じ、その結果、各移動方向間で位相誤差が生じるものである。
また、前記加工誤差の別の要因としては、例えば所定位置で移動方向を変化させるとともに移動速度を急激に変化させる移動指令が出されている場合に、前記所定位置においてワーク及び工具が移動指令のパスよりも実際には内側を通るといういわゆる内回り誤差が挙げられる。
具体的には、工作機械では、移動指令によって指示される各移動方向への移動量を所定の算出サイクル毎に均等に第1次分配することによって第1次分配パルスを算出し、その後、各算出サイクル毎の第1次分配パルスをその対応する算出サイクル以降の分配区間に第2次分配し、かつ、各算出サイクル毎に積算することによって算出した第2次分配パルスに従ってワーク及び工具を移動させる制御が一般的に行われている。このような制御により、移動指令ではワーク及び工具の移動速度が急激に変化する場合でも、前記第2次分配によってその移動速度の急激な変化が緩和されて工作機械に与えられるショックが和らげられる。しかし、その一方で、前記第2次分配によって移動速度の変化(加減速)が緩やかにされた分、移動指令に従った移動位置に対して第2次分配パルスに従った移動位置には遅れが生じる。これにより、前記所定位置に達する前に変化後の移動方向への移動が始まり、前記内回り誤差が生じる。
本発明は、上記の課題を解決するためになされたものであり、その目的は、ワーク及び工具の移動方向が異なる移動方向を含む場合においてワークの加工精度を向上することが可能な工作機械の数値制御装置を提供することである。
上記目的を達成するために、本発明による工作機械の数値制御装置は、ワークを少なくとも1つの移動方向に移動させるワーク移動装置と、前記ワークを加工するための工具を少なくとも1つの移動方向に移動させる工具移動装置とを備え、前記ワークの移動方向及び前記工具の移動方向が互いに異なる第1移動方向と第2移動方向とを含むとともに、その第1移動方向への移動の加減速時定数と第2移動方向への移動の加減速時定数とが互いに異なる値に設定される工作機械に設けられ、前記ワーク移動装置と前記工具移動装置のうち少なくとも一方の駆動を制御するための工作機械の数値制御装置であって、前記ワーク及び前記工具の少なくとも一方の移動指令に含まれる前記第1移動方向への移動量及び前記第2移動方向への移動量をそれぞれ所定の算出サイクル毎に分配した第1次分配パルスを算出する第1次分配パルス算出部と、前記第1次分配パルス算出部によって算出された前記所定の算出サイクル毎の前記第1次分配パルスを、対応する算出サイクルを跨ぎ、かつ、対応する移動方向の前記加減速時定数を区間幅とする分配区間の範囲内において前記対応する算出サイクルの前後に分配した後、前記算出サイクル毎に積算した第2次分配パルスを前記第1移動方向と前記第2移動方向のそれぞれについて算出する第2次分配パルス算出部と、前記第2次分配パルス算出部によって算出された前記第2次分配パルスに基づいて前記工具移動装置及び前記ワーク移動装置の少なくとも一方を駆動させる駆動制御部とを備えている。
この工作機械の数値制御装置では、第2次分配パルス算出部が、所定の算出サイクル毎の第1次分配パルスを、対応する算出サイクルを跨ぎ、かつ、対応する移動方向の加減速時定数を区間幅とする分配区間の範囲内において前記対応する算出サイクルの前後に分配した後、算出サイクル毎に積算した第2次分配パルスを第1移動方向と第2移動方向のそれぞれについて算出するので、第1次分配パルスを前記対応する算出サイクル以降の分配区間のみに分配して第2次分配パルスを求める場合に比べて、第1移動方向と第2移動方向のそれぞれにおいて、移動開始から一定速度まで加速した時点で、第2次分配パルスに従って移動した場合の位置に相当する第2次分配位置を、前記最初の算出サイクルから前記一定速度で等速で移動した場合の位置、すなわち第1次分配パルスに従って移動した場合の位置に相当する第1次分配位置に近づけることができる。換言すれば、各移動方向への移動が全て一定速度に達した時点では、互いに位相誤差のない第1移動方向の第1次分配位置と第2移動方向の第1次分配位置にそれぞれ対応する移動方向の第2次分配位置を近づけることができ、その時点で両移動方向の第2次分配位置間の誤差を低減することができる。その結果、ワークの加工誤差を低減することができるので、この工作機械の数値制御装置では、ワーク及び工具の移動方向が異なる移動方向を含む場合においてワークの加工精度を向上させることができる。
上記工作機械の数値制御装置において、前記第2次分配パルス算出部は、前記第2次分配パルスの算出を、前記分配区間の始点から前記対応する算出サイクルまでの範囲における前記第1次分配パルスの分配量と、前記対応する算出サイクルから前記分配区間の終点までの範囲における前記第1次分配パルスの分配量とが均等化するように前記分配区間の位置を調整しながら行うことが好ましい。
このように構成すれば、第1移動方向と第2移動方向のそれぞれにおいて、少なくとも等速移動指令のもとでは、移動開始から一定速度まで加速した時点で、前記第2次分配位置を前記第1次分配位置に一致させることができ、前記一定速度まで加速した時点で両移動方向の第2次分配位置間の誤差を完全に解消することができる。また、それ以外の移動指令、例えば速度変化を伴う移動指令のもとでは、移動開始から一定速度まで加速した時点で、上記第1次分配パルスを対応する算出サイクルを跨ぐ分配区間においてその対応する算出サイクルの前後に分配するがその前後の第1次分配パルスの分配量が均等でない場合に比べて、前記第2次分配位置を前記第1次分配位置により近づけることができ、前記一定速度まで加速した時点で両移動方向の第2次分配位置間の誤差をより小さくすることができる。従って、本構成では、工作機械によるワークの加工精度をより向上させることができる。
また、本発明による工作機械の数値制御装置は、ワークを少なくとも1つの移動方向に移動させるワーク移動装置と、前記ワークを加工するための工具を少なくとも1つの移動方向に移動させる工具移動装置とを備え、前記ワークの移動方向及び前記工具の移動方向が互いに異なる第1移動方向と第2移動方向とを含む工作機械に設けられ、前記ワーク移動装置と前記工具移動装置のうち少なくとも一方の駆動を制御するための工作機械の数値制御装置であって、前記ワーク及び前記工具の少なくとも一方の移動指令に含まれる前記第1移動方向への移動量及び前記第2移動方向への移動量をそれぞれ所定の算出サイクル毎に分配した第1次分配パルスを算出する第1次分配パルス算出部と、前記第1次分配パルス算出部によって算出された前記所定の算出サイクル毎の前記第1次分配パルスを、対応する算出サイクルを跨ぎ、かつ、対応する移動方向の加減速時定数を区間幅とする分配区間の範囲内にそれぞれ分配した後、前記算出サイクル毎に積算した第2次分配パルスを前記第1移動方向と前記第2移動方向のそれぞれについて算出するとともに、その第2次分配パルスの算出を、前記分配区間の始点から前記対応する算出サイクルまでの範囲における前記第1次分配パルスの分配量と、前記対応する算出サイクルから前記分配区間の終点までの範囲における前記第1次分配パルスの分配量とが均等化するように前記分配区間の位置を調整しながら行う第2次分配パルス算出部と、前記第1次分配パルスに従って移動した場合の前記算出サイクル毎の位置に相当する第1次分配位置と、前記第2次分配パルスに従って移動した場合の前記算出サイクル毎の位置に相当する第2次分配位置との差である分配誤差を前記第1移動方向と前記第2移動方向のそれぞれについて算出するとともに、その算出した分配誤差に基づいて前記第2次分配位置を補正し、その補正した結果から前記算出サイクル毎の移動量である第3次分配パルスを前記第1移動方向と前記第2移動方向のそれぞれについて算出する第3次分配パルス算出部と、前記第3次分配パルス算出部によって算出された前記第3次分配パルスに基づいて前記ワーク移動装置及び前記工具移動装置の少なくとも一方を駆動させる駆動制御部とを備えている。
この工作機械の数値制御装置では、第2次分配パルス算出部が、前記分配区間の始点から前記対応する算出サイクルまでの範囲における第1次分配パルスの分配量と、前記対応する算出サイクルから分配区間の終点までの範囲における第1次分配パルスの分配量とが均等化するように分配区間の位置を調整しながら第2次分配パルスの算出を行うため、第1次分配位置に対する第2次分配位置の位相の遅れをなくすことができ、第1次分配位置と第2次分配位置との差である分配誤差に、位相の遅れの影響が除去された実際の分配誤差のみが含まれるようにすることができる。これにより、分配誤差に基づいて第2次分配位置を補正した結果から算出される第3次分配パルスに従った移動では、前記実際の分配誤差に起因する内回り誤差を解消することができる。
従来の第1次分配パルスを対応する算出サイクル以降の分配区間のみに第2次分配して第2次分配パルスを算出するような構成では、その第2次分配の仕方に起因して第1次分配パルスに従って移動した場合の第1次分配位置に対して第2次分配パルスに従って移動した場合の第2次分配位置に位相の遅れが生じる。このため、この構成では、第1次分配位置と第2次分配位置との差の中に、実際の分配誤差と、前記位相の遅れとが混ざって含まれ、それらを分けることができない。これにより、第1次分配位置と第2次分配位置との差である分配誤差に基づいて第2次分配位置を補正し、その補正した結果に基づいて第3次分配パルスを求めたとしても、前記実際の分配誤差に起因して発生する内回り誤差の要素のみを排除した第3次分配パルスを求めることができない。
これに対して、本発明による工作機械の数値制御装置では、上記したような第2次分配の仕方によって、第1次分配位置に対する第2次分配位置の前記位相の遅れをなくすことができ、第1次分配位置と第2次分配位置との差である分配誤差に前記位相の遅れが含まれず、前記実際の分配誤差のみが含まれるようにすることができる。このため、この分配誤差に基づいて第2次分配位置を補正した結果では、前記位相の遅れによる誤差の影響を排除しつつ、前記実際の分配誤差の分を補正することが可能であるので、その補正後の結果から求めた第3次分配パルスでは、前記実際の分配誤差に起因して発生する内回り誤差の要素を有効に排除することができる。その結果、第3次分配パルスに従った移動では、内回り誤差を解消することができる。従って、この工作機械の数値制御装置では、ワーク及び工具の移動方向が異なる移動方向を含む場合においてワークの加工精度を向上させることができる。
この場合において、前記第3次分配パルス算出部は、前記第1次分配パルスに基づいて前記第1次分配位置を算出するとともに、前記第2次分配パルスに基づいて前記第2次分配位置を算出し、それら算出した両分配位置の差を算出することによって前記分配誤差を算出する分配誤差算出部と、前記分配誤差算出部によって算出された前記分配誤差についてその変化の小さい緩変化部分はそのまま用いるとともに、変化の大きい急変化部分はその変化が緩やかになるように調整することによって誤差補正パルスを算出する誤差補正パルス算出部と、前記分配誤差算出部によって算出された前記第2次分配位置から前記誤差補正パルス算出部によって算出された前記誤差補正パルスを差し引いて第3次分配位置を算出し、その算出した第3次分配位置から前記第3次分配パルスを算出する分配誤差補正部とを含むことが好ましい。
このように構成すれば、第2次分配パルスから前記位相の遅れの要素を排除した第3次分配パルスを算出することが可能な第3次分配パルス算出部の具体的な構造を構成することができる。さらに、この構成では、第1次分配位置と第2次分配位置との差である分配誤差に、前記位相の遅れが含まれず、前記実際の分配誤差のみが含まれるので、前記位相の遅れに邪魔されずに、分配誤差のうち前記緩変化部分と前記急変化部分との判別が可能となる。前記急変化部分は、移動指令において急激な加減速が指示されている部分を第2次分配によって加減速を緩和させた効果が含まれる部分である。このため、誤差補正パルス算出部による誤差補正パルスの算出時に、分配誤差のうち急変化部分の変化が緩やかになるように調整して誤差補正パルスを求めることにより、第2次分配位置からその誤差補正パルスを差し引いて第3次分配位置を算出し、その第3次分配位置から求めた第3次分配パルスでは、前記第2次分配による移動指令の急激な加減速の緩和効果を有効に維持することができる。一方、前記緩変化部分は、第1次分配パルスを第2次分配することによって生じる意図しない分配誤差を示す部分であり、この緩変化部分はそのまま用いて誤差補正パルスを求めることにより、第2次分配位置からその誤差補正パルスを差し引いて第3次分配位置を算出し、その第3次分配位置から求めた第3次分配パルスでは、前記意図しない分配誤差の影響を排除することができる。
さらにこの場合において、前記第1次分配パルス算出部は、前記移動指令に基づいて、前記分配誤差算出部によって算出される前記分配誤差のうち前記緩変化部分に該当する算出サイクルと前記急変化部分に該当する算出サイクルとを予め判別し、前記誤差補正パルス算出部は、前記第1次分配パルス算出部による判別結果に基づいて、前記分配誤差算出部によって算出された前記分配誤差のうち前記緩変化部分と前記急変化部分とを判断してもよい。
このように構成すれば、誤差補正パルス算出部において前記分配誤差のうち緩変化部分と急変化部分とを判断するための具体的な構成を得ることができる。
この場合において、前記第1次分配パルス算出部は、前記移動指令が複数の直線移動を連続して実行させるものである場合に、前記第1次分配パルスが前記各直線移動の始点又は終点を含む場合にはその第1次分配パルスに対応する前記算出サイクルを前記緩変化部分に該当する算出サイクルと判別する一方、前記第1次分配パルスが前記各直線移動の始点及び終点のどちらも含まない場合にはその第1次分配パルスに対応する前記算出サイクルを前記急変化部分に該当する算出サイクルと判別してもよい。
このように構成すれば、第1次分配パルスが前記各直線移動の始点又は終点を含む場合には、その第1次分配パルスに対応する算出サイクルでは、分配誤差がそのまま第2次分配位置から差し引かれて第3次分配位置が求められる一方、第1次分配パルスが前記各直線移動の始点及び終点のどちらも含まない場合には、その第1次分配パルスに対応する算出サイクルでは、分配誤差の変化が緩やかなるように調整された値が第2次分配位置から差し引かれて第3次分配位置が求められる。従って、その各第3次分配位置から求めた第3次分配パルスに従った移動の軌跡では、前記移動指令の各直線移動の各終点の位置が維持される一方、その各終点間に位置する各直線移動の中間部分には、第1次分配パルスの変化を第2次分配によって緩やかな変化に変える効果が反映されて前記各終点間を滑らかに曲線で繋いだ軌跡となる。その結果、移動指令の複数の直線移動を連続して行う動きを滑らかな曲線的な動きに補正することができる。
以上説明したように、本発明によれば、ワーク及び工具の移動方向が異なる移動方向を含む場合においてワークの加工精度を向上することができる。
以下、本発明の実施形態を図面を参照して説明する。
(第1実施形態)
図1は、本発明の第1実施形態による数値制御装置4を適用した工作機械2の概略的な平面図である。図2は、本発明の第1実施形態による数値制御装置4の構成を説明するためのブロック図である。図3は、第1次分配パルスを説明するための図であり、図4は、第2次分配パルス、第1次分配位置及び第2次分配位置の相互間の関係を示す図である。まず、図1〜図4を参照して、本発明の第1実施形態による工作機械2の数値制御装置4の構成について説明する。
この第1実施形態による数値制御装置4は、図1に示すような工作機械2に設けられている。この工作機械2は、円筒形状のワークWの外周面に螺旋溝を形成する大型旋盤であって、ワークWをその軸心を通るC軸回りに回転させるワーク移動装置6と、ワークWを切削加工するための工具としてのバイト8をワークWの軸心に平行なZ軸方向と、そのZ軸方向に直交するX軸方向とにそれぞれ移動させる工具移動装置10とを備えている。なお、C軸回り、Z軸方向及びX軸方向は、本発明の移動方向の概念に含まれるものである。
ワーク移動装置6は、チャック6aでワークWの端部を保持し、その状態でワークWをC軸回りに回転させるようになっている。また、工具移動装置10は、バイト8を保持する刃物台10aを有しており、この刃物台10aをX軸方向及びZ軸方向に移動させることによりバイト8をX軸方向及びZ軸方向に移動させるようになっている。ワーク移動装置6及び工具移動装置10は、駆動源としての図略のサーボモータをそれぞれ有しており、このサーボモータの駆動制御によりワークWのC軸回りの回転もしくはバイト8のX軸方向及びZ軸方向への移動がNC制御されるようになっている。
そして、ワーク移動装置6は、寸法が大きくかつ大重量のワークWを回転させるため、そのC軸回りの回転の加減速時定数は比較的大きな値に設定される。これに対して、工具移動装置10では、バイト8及び刃物台10aの寸法及び重量が比較的小さいため、そのX軸方向及びZ軸方向への移動の加減速時定数は、前記ワーク移動装置6におけるC軸回りの加減速時定数よりも小さい値に設定可能である。なお、X軸方向及びZ軸方向の加減速時定数をC軸回りの加減速時定数と同じ大きな値に設定することも可能であるが、この場合には、内回り誤差が増大するという不都合が生じる。このため、この第1実施形態では、X軸方向及びZ軸方向への移動の加減速時定数は、C軸回りの加減速時定数よりも小さい値に設定される。ただし、X軸方向及びZ軸方向への移動の加減速時定数をC軸回りの加減速時定数よりも小さい値に設定すると、X軸方向及びZ軸方向のバイト8の位相に対してC軸回りのワークWの位相が遅れ、それらの間に位相誤差が生じる。しかし、この第1実施形態では、後述するようにこの位相誤差が数値制御装置4の数値制御により解消可能となっている。
この第1実施形態による数値制御装置4は、上記のような構成の工作機械2において、ワーク移動装置6と工具移動装置10の駆動を制御するものである。この数値制御装置4は、図2に示すように、NCプログラム記憶部12と、時定数記憶部14と、NCプログラム読み取り部16と、第1次分配パルス算出部18と、データ記憶部19と、第2次分配パルス算出部20と、駆動制御部22とを有する。
NCプログラム記憶部12は、ワーク移動装置6及び工具移動装置10に対する移動指令としてのNCプログラムが記憶される部分である。このNCプログラム記憶部12に記憶されるNCプログラムには、送り速度(前記各移動方向への移動速度の合成速度)及び前記各移動方向への移動量の指令が含まれる。
時定数記憶部14は、前記C軸回りの加減速時定数、前記X軸方向の加減速時定数及び前記Z軸方向の加減速時定数と、後述する算出サイクルの時間長さとを記憶する部分である。
NCプログラム読み取り部16は、工作機械2の使用者によるNCプログラムの入力を受け付けるとともに、その入力されたNCプログラムを前記NCプログラム記憶部12に記憶させて管理する。さらに、このNCプログラム読み取り部16は、NCプログラム記憶部12に記憶させたNCプログラムを随時読み取るとともに、解析し、その内容に応じて第1次分配パルス算出部18、第2次分配パルス算出部20及び駆動制御部22を適宜起動させる。
第1次分配パルス算出部18は、NCプログラム読み取り部16が読み取って解析したNCプログラムが指示する送り速度に基づいて、そのNCプログラムに含まれるワークWのC軸回りの回転量と、バイト8のZ軸方向への移動量及びX軸方向への移動量をそれぞれ所定の算出サイクル毎に均等に分配した第1次分配パルスを算出するものである。換言すれば、この第1次分配パルス算出部18が算出する第1次分配パルスは、NCプログラムが指示する送り速度を満たすような等速度でC軸回りのワークWの回転とZ軸方向及びX軸方向へのバイト8の移動とがそれぞれ行われるものとして、NCプログラムに含まれる各移動方向への移動量を所定の算出サイクル毎に均等に分配し、その各算出サイクル毎の微小な移動量として表すものとなる。
具体的には、NCプログラムがワークWのC軸回りの回転とバイト8のZ軸方向への移動とを指示し、バイト8のX軸方向への移動を指示していない場合において、各算出サイクルt,t,t,・・・毎(例えば1msec毎)のC軸回りの第1次分配パルスΔC及びZ軸方向の第1次分配パルスΔZは、図3に示すように、それぞれ一定の値となる。
データ記憶部19は、第1次分配パルス算出部18によって算出された各算出サイクル毎のC軸回りの第1次分配パルス、Z軸方向の第1次分配パルス及びX軸方向の第1次分配パルスを記憶する部分である。
第2次分配パルス算出部20は、第1次分配パルス算出部18によって算出された前記C軸回りの第1次分配パルス、前記Z軸方向の第1次分配パルス及び前記X軸方向の第1次分配パルスをそれぞれ第2次分配した後、各算出サイクル毎に積算することにより、C軸回り、Z軸方向及びX軸方向のそれぞれについて第2次分配パルスを算出するものである。この第2次分配パルス算出部20は、第1次分配パルス算出部18によって算出された後、データ記憶部19に記憶された第1次分配パルスを読み取って第2次分配を行う。
具体的には、第2次分配パルス算出部20が、図3に示したC軸回りの第1次分配パルスΔC及びZ軸方向の第1次分配パルスΔZを第2次分配する場合には、第2次分配パルス算出部20は、前記各算出サイクルt,t,t,・・・毎のC軸回りの第1次分配パルスΔC及びZ軸方向の第1次分配パルスΔZを、その対応する各算出サイクルt,t,t,・・・を跨ぎ、かつ、対応する移動方向の加減速時定数を区間幅とする分配区間の範囲内にそれぞれ均等に分配する。この際、第2次分配パルス算出部20は、C軸回りの第1次分配パルスΔCの分配を、分配区間の始点から対応する算出サイクルまでの範囲におけるC軸回りの第1次分配パルスΔCの分配量と、対応する算出サイクルから分配区間の終点までの範囲におけるC軸回りの第1次分配パルスΔCの分配量とが等しくなるように分配区間の位置を調整しながら行うとともに、Z軸方向の第1次分配パルスΔZの分配を、分配区間の始点から対応する算出サイクルまでの範囲におけるZ軸方向の第1次分配パルスΔZの分配量と、対応する算出サイクルから分配区間の終点までの範囲におけるZ軸方向の第1次分配パルスΔZの分配量とが等しくなるように分配区間の位置を調整しながら行う。
例えば、各算出サイクルt,t,t,・・・がそれぞれ1msec毎に設定されており、C軸回りの加減速時定数が500msecで、Z軸方向の加減速時定数が10msecに設定されている場合には、算出サイクルtのC軸回りの第1次分配パルスΔCの分配区間は[t−250,t+249]の範囲に設定され、その範囲内に算出サイクルtの第1次分配パルスΔCが更に微小な移動量として均等に分配される。また、算出サイクルtのZ軸方向の第1次分配パルスΔZの分配区間は[t−5,t+4]の範囲に設定され、その範囲内に算出サイクルtの第1次分配パルスΔZが更に微小な移動量として均等に分配される。換言すると、算出サイクルtのC軸回りの第1次分配パルスΔCの分配区間の中央点がその算出サイクルtに一致するようになっているとともに、算出サイクルtのZ軸方向の第1次分配パルスΔZの分配区間の中央点がその算出サイクルtに一致するようになっている。そして、算出サイクルt以降のC軸回りの第1次分配パルスΔC及びZ軸方向の第1次分配パルスΔZも上記と同様にして徐々に分配区間を後にずらしながら分配されるようになっている。
そして、第2次分配パルス算出部20は、上記のように各分配区間に分配したC軸回りの第1次分配パルスΔC及びZ軸方向の第1次分配パルスΔZを1msecの算出サイクル毎にそれぞれ積算する。これにより、図4に示すような第2次分配パルスΔC,ΔZが得られるようになっている。
C軸回りの回転の開始から一定速度まで加速する期間、すなわちC軸回りの回転開始からそのC軸回りの加減速時定数(500msec)に対応する期間において、C軸回りの第2次分配パルスΔCに従って移動した場合の移動量(回転量)は、前記各算出サイクルt,t,t,・・・のうち最初の算出サイクルtから前記第2次分配パルスΔCにおいて前記一定速度に達する時点までの期間に図3のC軸回りの第1次分配パルスΔCに従って移動した場合の移動量(回転量)に等しくなる。また、Z軸方向の移動の開始から一定速度まで加速する期間、すなわちZ軸方向の移動開始からそのZ軸方向の加減速時定数(10msec)に対応する期間において、Z軸方向の第2次分配パルスΔZに従って移動した場合の移動量は、前記各算出サイクルt,t,t,・・・のうち最初の算出サイクルtから前記第2次分配パルスΔZにおいて前記一定速度に達する時点までの期間において図3のZ軸方向の第1次分配パルスΔZに従って移動した場合の移動量に等しくなる。換言すれば、C軸回りの回転が前記一定速度に達した時点において、そのC軸回りの位相が、前記最初の算出サイクルtからC軸回りの回転を前記一定速度で行った場合の位相と等しくなるとともに、Z軸方向の移動が前記一定速度に達した時点において、そのZ軸方向の位相が、前記最初の算出サイクルtからZ軸方向の移動を前記一定速度で行った場合の位相と等しくなる。
そして、図4に示すように、C軸回りの第2次分配パルスΔCに従って回転した場合のC軸回りの位置を表す第2次分配位置は、C軸回りの回転が一定速度に達した区間において、C軸回りの第1次分配パルスΔCに従って回転した場合のC軸回りの位置を表す第1次分配位置と一致する。また、Z軸方向の第2次分配パルスΔZに従って移動した場合のZ軸方向の位置を表す第2次分配位置は、Z軸方向の移動が一定速度に達した区間において、Z軸回りの第1次分配パルスΔZに従って移動した場合のZ軸方向の位置を表す第1次分配位置と一致する。このことは、一定速度に達するまでの期間が長い、すなわち加減速時定数が大きいC軸回りの回転が一定速度に達すると、そのC軸回りの回転の位相及びZ軸方向への移動の位相が共にNCプログラムが指示する位相に一致することを意味し、それによってC軸回りとZ軸方向との相互間の位相誤差が解消されるようになっている。
駆動制御部22は、第2次分配パルス算出部20によって算出された前記各移動方向の第2次分配パルスに基づいてワーク移動装置6及び工具移動装置10を駆動させるものである。具体的には、駆動制御部22は、第2次分配パルス算出部20によって算出されたC軸回りの第2次分配パルスをワーク移動装置6のサーボモータ6bへ出力するとともに、Z軸方向及びX軸方向の第2次分配パルスを工具移動装置10のサーボモータ10bへ出力する。ワーク移動装置6のサーボモータ6bは、駆動制御部22から出力された各算出サイクル毎のC軸回りの第2次分配パルスに従って駆動し、その第2次分配パルスに従った各算出サイクル毎の回転量でワークWを回転させるようになっている。また、工具移動装置10のサーボモータ10bは、駆動制御部22から出力された各算出サイクル毎のZ軸方向及びX軸方向の第2次分配パルスに従って駆動し、その第2次分配パルスに従った各算出サイクル毎の移動量で刃物台10aとともにバイト8をZ軸方向及びX軸方向にそれぞれ移動させるようになっている。
図5は、ワークWに螺旋溝の形成を行う際のこの第1実施形態の数値制御装置4による工作機械2の制御プロセスを示すフローチャートである。図6は、数値制御装置4における数値制御のプロセスを示すフローチャートである。次に、図1〜図6を参照して、この第1実施形態の数値制御装置4による工作機械2の制御プロセスについて説明する。
まず、前段階として、工作機械2の調整者により数値制御装置4に算出サイクルの時間長さ、C軸回りの加減速時定数、X軸方向の加減速時定数及びZ軸方向の加減速時定数等のパラメータが入力されて設定されている。これら数値制御装置4に入力された各値は、時定数記憶部14に記憶されて管理される。
この状態で、工作機械2の使用者がNCプログラムを数値制御装置4に入力する(ステップS1)。この数値制御装置4に入力されるNCプログラムには、送り速度と、C軸回り、X軸方向及びZ軸方向の各方向への移動量とが含まれ、このNCプログラムは、NCプログラム記憶部12に記憶されて管理される。
次に、ワークWのC軸回りの0度位置(原点)が設定される(ステップS3)。この際、ワークWに形成されたキー溝を基準として、後述する螺旋溝の形成開始点でC軸回りの回転角度が0度となるように前記0度位置が設定される。
次に、NCプログラムに基づいた数値制御装置4によるワーク移動装置6及び工具移動装置10の制御により螺旋溝の形成動作の初期位置へワークWが回転するとともに、バイト8が移動する(ステップS5)。前記初期位置は、実際にバイト8がワークWに接触して螺旋溝を形成し始める形成開始点よりも手前の位置で、かつ、形成すべき螺旋溝の延長線上の位置となっている。詳細には、この初期位置は、C軸回りでは、ワークWがこの初期位置から回転を開始して前記形成開始点の回転角度に達する時点でその回転速度が螺旋溝の形成動作中の一定速度まで加速できるような十分な回転角度を確保可能な位置に設定される。なお、初期位置から形成開始点までのC軸回りの回転角度が前記一定速度まで回転を加速させるのに足りなければ、360度余分に回転できるように前記初期位置を設定してもよい。また、Z軸方向では、前記初期位置は、バイト8がこの初期位置から移動を開始して前記形成開始点に達する時点でそのZ軸方向への移動速度が螺旋溝の形成動作中の一定速度まで加速できるような十分な移動距離を確保可能な位置に設定される。
前記ステップS5から引き続いて、数値制御装置4によるワーク移動装置6及び工具移動装置10の制御により前記初期位置から前記形成開始点へワークWが回転するとともにバイト8が移動し、その後、連続してワークWの外周面にバイト8による切削加工により螺旋溝が形成される(ステップS7)。
この際、数値制御装置4では、図6のフローチャートに従った数値制御が行われる。まず、データ記憶部19が有する十分な容量の第1次分配パルスバッファ及び第2次分配パルスバッファ(図示せず)をゼロクリアするとともに、データ記憶部19が有する図略の算出サイクルカウンタnを各移動方向の加減速時定数のうち最大のもの(本実施形態では、C軸回りの加減速時定数)の1/2の値に初期セットする(ステップS21)。前記算出サイクルカウンタnを最大時定数の1/2にセットするのは、前記各移動方向における分配区間の中央点が算出サイクルnに一致するように分配区間の位置を調整するためである。
次に、第1次分配パルス算出部18がNCプログラムで設定された各値に基づいて算出サイクルnの第1次分配パルスを各移動方向毎に算出し、その算出した各移動方向毎の第1次分配パルスを第1次分配パルスバッファbuf1[i][axis](ただし、i=0,1,2,3,・・・、axis:C軸回り、X軸方向、Z軸方向のそれぞれに対応する制御軸番号0,1,2)のうち各移動方向毎の算出サイクルnに該当する箇所buf1[n][axis]にそれぞれ記憶させる(ステップS23)。
その後、第2次分配パルス算出部20がデータ記憶部19の第1次分配パルスバッファに記憶された各移動方向毎の算出サイクルnの第1次分配パルスを読み取り、その第1次分配パルスを各移動方向毎の分配区間に均等に第2次分配するとともに、その第2次分配した各値を第2次分配パルスバッファbuf2[i][axis](ただし、i=0,1,2,3,・・・、axis:C軸回り、X軸方向、Z軸方向のそれぞれに対応する制御軸番号0,1,2)のうち各移動方向毎の分配区間に該当する箇所に加算する(ステップS25)。
具体的には、各移動方向の加減速時定数をT[axis]とすると、各移動方向毎の算出サイクルnの第1次分配パルスを第2次分配した値は、buf1[n][axis]/T[axis]となり、この値を前記第2次分配パルスバッファのうち各移動方向毎の前記分配区間に対応する箇所buf2[n−T[axis]/2][axis],・・・,buf2[n][axis],buf2[n+1][axis],buf2[n+2][axis],・・・,buf2[n+T[axis]/2−1][axis]の値にそれぞれ加算する。この分配区間buf2[n−T[axis]/2][axis],・・・,buf2[n][axis],buf2[n+1][axis],buf2[n+2][axis],・・・,buf2[n+T[axis]/2−1][axis]は、算出サイクルnに対応するbuf2[n]を跨ぎ、かつ、対応する移動方向の加減速時定数T[axis]を区間幅とするものであり、算出サイクルnに対応するbuf2[n]を中心としてその前後で均等な範囲となっている。そして、全ての移動方向の分配区間の中央が現算出サイクルnに対応するbuf2[n]に揃うようになっている。
次に、算出サイクルカウンタnをn+1にカウントアップする(ステップS27)。
その後、全ての算出サイクルの第1次分配パルスを第2次分配したか否かが判断される(ステップS29)。この際、全ての算出サイクルの第1次分配パルスの第2次分配がまだ終了していないと判断された場合には、前記ステップS23以降のプロセスが繰り返し行われ、分配区間が徐々に後にずらされながら、上記と同様に第2次分配された値が第2次分配パルスバッファに加算されていく。一方、ステップS29において全ての算出サイクルの第1次分配パルスの第2次分配が終了したと判断された場合には、第2次分配パルスバッファに積算された各値を第2次分配パルスとし、駆動制御部22がその各サイクル毎の第2次分配パルスを順次ワーク移動装置6のサーボモータ6b及び工具移動装置10のサーボモータ10bに出力する(ステップS31)。これにより、各移動方向毎の第2次分配パルスに従ってワーク移動装置6及び工具移動装置10が駆動してワークWが回転するとともにバイト8が移動し、ワークWに対する螺旋溝の形成が行われる。
そして、図5に戻って、螺旋溝の形成が終了する位置まで来ると、ワークWのC軸回りの回転速度が維持されながら、バイト8がワークWから離れるバイト8の逃げ動作が行われる(ステップS9)。このバイト8の逃げ動作は、バイト8がワークWから離れるまでの第1逃げ動作と、その第1逃げ動作の後、バイト8が停止位置側へ向かってX軸方向にのみ逃げる第2逃げ動作とからなる。
第1逃げ動作は、ワークWのC軸回りの回転速度とバイト8のZ軸方向の移動速度とが前記螺旋溝の形成中と同じ速度に維持され、かつ、バイト8がX軸方向へ最高速度で移動するような条件で行われる。また、第2逃げ動作では、ワークWのC軸回りの回転速度が前記螺旋溝の形成中と同じ速度に維持されるとともに、バイト8のZ軸方向への移動を停止させた状態で、バイト8をX軸方向においてワークWから離間させる。このようにバイト8がワークWから離れるまではワークWのC軸回りの回転速度とバイト8のZ軸方向への移動速度とを螺旋溝の形成中と同じ速度に維持し、バイト8がワークWから離れた時点で第2逃げ動作によりバイト8のZ軸方向への移動を停止させてバイト8をX軸方向へのみ逃がすことによって、螺旋溝の最終部分がその螺旋溝の延長線上に延びるとともに溝の深さが徐々に浅くなるように形成される。これにより、バイト8がまだワークWに接触している時点でバイト8のZ軸方向の移動を停止させるような場合と異なり、螺旋溝の最終部分でその螺旋溝の延長線上から外れた方向に延びる傷がバイト8によってワークWの外周面に付けられるのが防止される。
次に、螺旋溝の形成が終了であるか否かの判断が行われる(ステップS11)。この際、螺旋溝の形成が終了であると判断された場合には、ワークWのC軸回りの回転速度を維持した状態でバイト8を停止位置へ移動させ、バイト8がワークWから十分に離れてからワーク移動装置6の駆動を停止させてワークWの回転を停止させるとともに、前記停止位置にバイト8が達した時点で工具移動装置10の駆動を停止させてバイト8の移動を停止させる(ステップS13)。一方、螺旋溝の形成が終了ではない、すなわち、螺旋溝をより深く形成するために前記螺旋溝の形成動作を繰り返し行うと判断された場合には、前回よりも螺旋溝が深くなるようにバイト8のX軸方向の位置を前回の初期位置よりもワークWの径方向内側に少しずらした初期位置を求め、ワークWのC軸回りの回転速度を維持しながらその初期位置へバイト8を移動させるとともに、前記ステップS5以降の処理を繰り返し行う(ステップS15)。
以上のようにして、ワークWに対する螺旋溝の形成時の数値制御装置4による工作機械2の制御が行われる。
以上説明したように、この第1実施形態による数値制御装置4では、第2次分配パルス算出部20が、分配区間の始点から対応する算出サイクルまでの範囲における第1次分配パルスの分配量と、その対応する算出サイクルから分配区間の終点までの範囲における第1次分配パルスの分配量とが等しくなるように分配区間の位置を調整しながら第2次分配パルスの算出を行うので、C軸回りの第2次分配位置は、C軸回りの回転が一定速度に達した時点で、前記最初の算出サイクルtからその一定速度で等速でC軸回りの回転を行った場合の位置、すなわちC軸回りの第1次分配位置と等しくなるとともに、Z軸方向の第2次分配位置は、Z軸方向の移動が一定速度に達した時点で、前記最初の算出サイクルtからその一定速度で等速でZ軸方向の移動を行った場合の位置、すなわちZ軸方向の第1次分配位置と等しくなる。換言すれば、Z軸方向の移動が一定速度に達した後にC軸回りの回転が一定速度に達した時点では、互いに位相誤差のないC軸回りの第1次分配位置とZ軸方向の第1次分配位置にC軸回りの第2次分配位置とZ軸方向の第2次分配位置をそれぞれ一致させることができ、その時点でC軸回りの第2次分配位置とZ軸方向の第2次分配位置との間の誤差を解消することができる。
一方、図7に示す比較例のように、第1次分配パルスを対応する算出サイクル以降の分配区間のみに第2次分配する構成では、C軸回りの第2次分配位置がC軸回りの第1次分配位置に対して位相の遅れを生じるとともに、Z軸方向の第2次分配位置がZ軸方向の第1次分配位置に対して位相の遅れを生じる。そして、C軸回りとZ軸方向の加減速時定数の差に起因して、C軸回りの第1次分配位置に対するC軸回りの第2次分配位置の位相の遅れの大きさと、Z軸方向の第1次分配位置に対するZ軸方向の第2次分配位置の位相の遅れの大きさが異なる。すなわち、C軸回りの第1次分配位置に対するC軸回りの第2次分配位置の位相の遅れの大きさが、Z軸方向の第1次分配位置に対するZ軸方向の第2次分配位置の位相の遅れの大きさに比べて大きくなる。このことに起因してC軸回りの第2次分配位置とZ軸方向の第2次分配位置との間で誤差が生じ、ワークWの加工誤差が増大する。これに対して、この第1実施形態では、上記したようにC軸回りの回転が一定速度に達した時点で、互いに位相誤差のないC軸回りの第1次分配位置とZ軸方向の第1次分配位置にC軸回りの第2次分配位置とZ軸方向の第2次分配位置をそれぞれ一致させることができ、その時点で、前記比較例で発生するようなC軸回りの第2次分配位置とZ軸方向の第2次分配位置との間の誤差をなくすことができる。その結果、ワークWの加工誤差を低減することができ、工作機械2によるワークWの加工精度を向上することができる。
(第2実施形態)
図8は、本発明の第2実施形態による数値制御装置34を適用した工作機械32の概略的な斜視図である。図9は、本発明の第2実施形態による数値制御装置34の構成を説明するためのブロック図である。次に、図8及び図9を参照して、本発明の第2実施形態による工作機械32の数値制御装置34の構成について説明する。
この第2実施形態による数値制御装置34は、例えば図8に示すような工作機械32に設けられる。この工作機械32は、ワークWを水平面上のX軸方向に移動させるワーク移動装置36と、水平面上において前記X軸方向に直交するY軸方向に、ワークWを切削するための工具38を移動させる工具移動装置40とを備えている。なお、X軸方向とY軸方向は、本発明の第1移動方向と第2移動方向の概念に含まれるものである。
ワーク移動装置36は、設置面上に固定されるベッド36aと、前記X軸方向に移動可能にベッド36a上に設置されるテーブル36bと、そのテーブル36bをX軸方向に移動させるための駆動源としての図略のサーボモータとを備えている。このワーク移動装置36では、サーボモータの駆動制御によってテーブル36b及びそのテーブル36b上に載置されるワークWのX軸方向への移動がNC制御されるようになっている。
また、この工作機械32では、前記ベッド36aを幅方向に挟んで一対のコラム41,41が立設されており、そのコラム41,41にクロスレール43が上下方向に案内されるように設けられている。工具移動装置40は、このクロスレール43に取り付けられている。この工具移動装置40は、クロスレール43に前記Y軸方向に移動可能に支持される主軸装置40aと、その主軸装置40aをY軸方向に移動させるための駆動源としての図略のサーボモータとを備えている。主軸装置40aは、工具38を保持するとともにその工具38をテーブル36bの上面に対して垂直な軸回りに回転させるようになっている。そして、工具移動装置40では、主軸装置40a及びその主軸装置40aによって回転させられる工具38のY軸方向への移動がサーボモータの駆動制御によってNC制御されるようになっている。この工具移動装置40による工具38のY軸方向への移動と前記ワーク移動装置36によるワークWのX軸方向への移動とが同時制御されることによって、工具38が回転しながらワークWに所定形状の切削加工を行うようになっている。そして、この工作機械32では、ワーク移動装置36によるワークWのX軸方向への移動の加減速時定数と、工具移動装置40による工具38のY軸方向への移動の加減速時定数とは等しい値に設定されている。
この第2実施形態による数値制御装置34は、上記のような工作機械32において、ワーク移動装置36及び工具移動装置40の駆動を制御するものであり、上記第1実施形態と異なり、ワークWのX軸方向への移動と工具38のY軸方向への移動とを制御する。そして、この数値制御装置34は、図9に示すように、第3次分配パルス算出部44を有する。
第3次分配パルス算出部44は、第1次分配パルス算出部18によって算出された第1次分配パルスに従って移動した場合のX軸方向及びY軸方向の各算出サイクル毎の第1次分配位置と、第2次分配パルス算出部20によって算出された第2次分配パルスに従って移動した場合のX軸方向及びY軸方向の各算出サイクル毎の第2次分配位置との差に相当する分配誤差をX軸方向とY軸方向のそれぞれについて算出するとともに、X軸方向及びY軸方向の第2次分配位置をその分配誤差に基づいてそれぞれ補正し、その補正した結果から各算出サイクル毎の移動量である第3次分配パルスをX軸方向とY軸方向のそれぞれについて算出するものである。
具体的には、第3次分配パルス算出部44は、分配誤差算出部46と、誤差補正パルス算出部48と、分配誤差補正部50とを有する。
分配誤差算出部46は、第1次分配パルスに従って移動した場合のX軸方向及びY軸方向の各算出サイクル毎の第1次分配位置を算出するとともに、第2次分配パルスに従って移動した場合のX軸方向及びY軸方向の各算出サイクル毎の第2次分配位置を算出し、それら算出した両分配位置の差を算出することによって分配誤差をX軸方向とY軸方向のそれぞれについて算出する。
誤差補正パルス算出部48は、分配誤差算出部46によって算出されたX軸方向及びY軸方向の分配誤差についてその変化の小さい緩変化部分はそのまま用いるとともに、変化の大きい急変化部分はその変化が緩やかになるように調整することによって誤差補正パルスをX軸方向とY軸方向のそれぞれについて算出する。
分配誤差補正部50は、分配誤差算出部46によって算出されたX軸方向及びY軸方向の第2次分配位置から誤差補正パルス算出部48によって算出されたX軸方向及びY軸方向の誤差補正パルスを差し引いて第3次分配位置をX軸方向とY軸方向のそれぞれについて算出し、その算出した第3次分配位置から各算出サイクル毎の移動量である第3次分配パルスをX軸方向とY軸方向のそれぞれについて算出する。
そして、この第2実施形態では、駆動制御部22は、第3次分配パルス算出部44の分配誤差補正部50によって算出されたX軸方向の第3次分配パルスに基づいてワーク移動装置36を駆動させるとともにY軸方向の第3次分配パルスに基づいて工具移動装置40を駆動させる。具体的には、駆動制御部22は、前記分配誤差補正部50によって算出されたX軸方向の各算出サイクル毎の第3次分配パルスをワーク移動装置36のサーボモータ36cに出力するとともにY軸方向の各算出サイクル毎の第3次分配パルスを工具移動装置40のサーボモータ40cに出力する。これにより、ワーク移動装置36は、受け取った第3次分配パルスに従った各算出サイクル毎の移動量でテーブル36bとともにワークWをX軸方向へ移動させ、工具移動装置40は、受け取った第3次分配パルスに従った各算出サイクル毎の移動量で主軸装置40aとともに工具38をY軸方向へ移動させるようになっている。
この第2実施形態による数値制御装置34の上記以外の基本的な構成は、上記第1実施形態による数値制御装置4と同様である。
図10は、第2実施形態の数値制御装置34における数値制御のプロセスを示すフローチャートである。次に、この第2実施形態の数値制御装置34による数値制御のプロセスについて説明する。なお、ここでは、ワーク移動装置36によるワークWのX軸方向への移動と工具移動装置40による工具38のY軸方向への移動とを同時に行うことにより、図11に示すような円形を描く切削加工をワークWに行う場合を例にとって説明する。
この第2実施形態の数値制御装置34による数値制御では、ステップS21〜S29までの処理を上記第1実施形態と同様に行う。ただし、第1次分配パルスバッファbuf1[i][axis]及び第2次分配パルスバッファbuf2[i][axis]において、制御軸番号axisは、X軸方向、Y軸方向に対応する0,1となる。この第2実施形態では、第1次分配パルス算出部18によって算出されるX軸方向の第1次分配パルスは、図11(a)に示すような曲線となり、第2次分配パルス算出部20によって算出されるX軸方向の第2次分配パルスは、図11(b)に示すような曲線となる。また、第1次分配パルス算出部18によって算出されるY軸方向の第1次分配パルスは、図13(a)に示すような曲線となり、第2次分配パルス算出部20によって算出されるY軸方向の第2次分配パルスは、図13(b)に示すような曲線となる。
そして、ステップS29の第2次分配が終了したか否かの判断において、全ての算出サイクルの第1次分配パルスの第2次分配が終了したと判断された場合には、第3次分配パルス算出部44の分配誤差算出部46が、第1次分配パルスに従って移動した場合の第1次分配位置を算出するとともに第2次分配パルスに従って移動した場合の第2次分配位置を算出し、それら算出した両分配位置の差である分配誤差を算出する(ステップS41)。
具体的には、分配誤差算出部46は、各軸方向について、各算出サイクルでの第1次分配パルスの終点位置に相当する第1次分配位置をそれぞれ算出する。この第1次分配位置は、データ記憶部19の第1次分配パルスバッファに記憶された第1次分配パルスbuf1[0][axis],buf1[1][axis],buf1[2][axis],・・・を積算することによって算出され、buf1[0][axis],buf1[0][axis]+buf1[1][axis],buf1[0][axis]+buf1[1][axis]+buf1[2][axis],・・・となる。
また、分配誤差算出部46は、各軸方向について、各サイクルでの第2次分配パルスの終点位置に相当する第2次分配位置をそれぞれ算出する。この第2次分配位置は、データ記憶部19の第2次分配パルスバッファに加算されて記憶された各サイクル毎の値を積算することによって算出され、buf2[0][axis],buf2[0][axis]+buf2[1][axis],buf2[0][axis]+buf2[1][axis]+buf2[2][axis],・・・となる。
そして、分配誤差算出部46は、各サイクル毎に第2次分配位置から第1次分配位置を差し引くことによって各サイクル毎の分配誤差を各軸方向のそれぞれについて算出する。このようにして算出されるX軸方向の分配誤差は、図12(d)に示すような曲線となり、Y軸方向の分配誤差は、図13(d)に示すような曲線となる。なお、図12(d)は、図12(a)〜(c)に比べて縦軸を拡大して示されており、図13(d)は、図13(a)〜(c)に比べて縦軸を拡大して示されている。ただし、図12(d)と図13(d)の縦軸の拡大率は等しくなっている。
このような第2実施形態の技術と比較して、各算出サイクル毎の第1次分配パルスを対応する算出サイクル以降の分配区間のみに第2次分配した比較例による技術では、図14と図15に示すように、X軸方向とY軸方向のどちらにおいても第1次分配位置と第2次分配位置との差が大きく、算出されるX軸方向及びY軸方向の分配誤差が上記第2実施形態の場合に比べてかなり大きなものとなる。これは、第1次分配パルスをその対応する算出サイクル以降の分配区間のみに分配するという比較例の第2次分配の仕方に起因して第1次分配位置に対して第2次分配位置に遅れ(位相の遅れ)が生じ、その位相の遅れが分配誤差に含まれるためである。そして、この分配誤差には、前記位相の遅れと実際の分配誤差とが混ざって含まれ、それらを分けることができなくなっている。
これに対して、本実施形態の方法によって算出されたX軸方向及びY軸方向の第2次分配位置では、移動速度が一定の等速に達した時点で前記位相の遅れが解消される。このため、分配誤差算出部46によって算出される分配誤差には、前記位相の遅れが含まれず、その分配誤差には、位相の遅れの影響が除去された実際の分配誤差のみが含まれる。
次に、前記誤差補正パルス算出部48が、分配誤差算出部46によって算出された分配誤差のうちその変化の小さい緩変化部分はそのまま用いるとともに、変化の大きい急変化部分はその変化が緩やかになるように調整して各軸方向毎の誤差補正パルスを求める(ステップS43)。
この際、誤差補正パルス算出部48は、所定の判定方法により前記分配誤差のうち緩変化部分と急変化部分とを判断する。具体的には、誤差補正パルス算出部48は、分配誤差算出部46によって算出された分配誤差の変化率に基づいて、その分配誤差の変化率が所定の閾値を超えた算出サイクルに該当する部分を急変化部分と判定し、それ以外の部分を緩変化部分と判定する。急変化部分は、NCプログラムにおいて急激な加減速が指示されている部分を第2次分配によって緩和させた効果が含まれる部分であり、緩変化部分は、第1次分配パルスを第2次分配することによって生じる意図しない分配誤差を示す部分である。図14及び図15に示すような比較例の第2次分配によって得られる分配誤差では、上記したように前記位相の遅れが含まれていることに起因して、このような急変化部分と緩変化部分との判別を行うことが困難であるが、本実施形態では、分配誤差に前記位相の遅れが含まれないので、急変化部分と緩変化部分の判別が可能となっている。
そして、誤差補正パルス算出部48は、急変化部分の始点と終点の値を用いてそれらの値の間に比例配分することによって急変化部分の変化を緩やかにする補正を行う。このようにして、図12(e)に示すようなX軸方向の誤差補正パルスと、図13(e)に示すようなY軸方向の誤差補正パルスとが求められる。なお、図12(e)及び図13(e)は、図12(d)及び図13(d)と同じ拡大率で図12(a)〜(c)、図13(a)〜(c)対して縦軸を拡大して示されている。前記急変化部分の変化を緩やかにする補正を行うのは、後に第2次分配位置から誤差補正パルスを差し引いて求める第3次分配位置及びその第3次分配位置から求める第3次分配パルスに、上記した第2次分配による急激な加減速の緩和効果を残すためである。
次に、分配誤差補正部50が、分配誤差算出部46によって算出された各サイクル毎の第2次分配位置から誤差補正パルス算出部48によって求められた対応するサイクルの誤差補正パルスを差し引いて各軸方向毎に第3次分配位置を算出し、その算出した第3次分配位置から各サイクル毎の移動量としての第3次分配パルスを各軸方向のそれぞれについて算出する(ステップS45)。
そして、駆動制御部22が、各サイクル毎の第3次分配パルスを順次ワーク移動装置36のサーボモータ36c及び工具移動装置40のサーボモータ40cに出力する(ステップS47)。これにより、各軸方向毎の第3次分配パルスに従ってワーク移動装置36及び工具移動装置40が駆動してワークWがX軸方向に移動するとともに工具38がY軸方向に移動し、ワークWに対する円形の切削加工が行われる。
この際の円形の軌跡は、図16に示すような形状となる。この図16からも判るように、NCプログラムの軌跡に対するこの第2実施形態による加工の軌跡の誤差は、始点及び終点の近傍における加減速時にのみわずかに発生し、その他の部分では、全く発生しない。これに対して、前記比較例による加工の軌跡では、始点から移動開始した直後にNCプログラムの軌跡に対して内回り誤差が発生し、その後、その内回り誤差が一定に維持されるとともに、終点の近傍になってその内回り誤差が解消されるようになっている。この比較例との比較から、この第2実施形態による技術が内回り誤差の解消に有効であることが判る。
以上説明したように、この第2実施形態による数値制御装置34では、第2次分配パルス算出部20が、分配区間の始点から対応する算出サイクルまでの範囲における第1次分配パルスの分配量と、前記対応する算出サイクルから分配区間の終点までの範囲における第1次分配パルスの分配量とが互いに等しくなるように分配区間の位置を調整しながら第2次分配パルスの算出を行うことに起因して、上記第1実施形態と同様、X軸方向の移動速度及びY軸方向の移動速度が一定速度の等速に達した時点でX軸方向及びY軸方向のそれぞれにおいて第1次分配位置に第2次分配位置を一致させることができる。これにより、第1次分配位置と第2次分配位置との差である分配誤差に第1次分配位置に対する第2次分配位置の位相の遅れが含まれるのを抑制することができ、その分配誤差として前記位相の遅れの影響が除去された実際の分配誤差のみを得ることができる。その結果、この分配誤差に基づいて第2次分配位置を補正して求める第3次分配位置では、前記位相の遅れによる誤差の影響を排除しつつ、前記実際の分配誤差の分を選択的に補正することができるので、その補正後の第3次分配位置から求める第3次分配パルスでは、前記実際の分配誤差に起因する内回り誤差の影響を有効に排除することができる。その結果、X軸方向及びY軸方向の第3次分配パルスに従った移動では、NCプログラムの加工パスに対する内回り誤差を抑制することができる。このため、ワークWの加工誤差を低減することができ、ワークWの加工精度を向上することができる。
また、第2実施形態では、第1次分配位置と第2次分配位置との差である分配誤差において、前記位相の遅れによる誤差が排除されて、実際の分配誤差のみが現れているので、その分配誤差のうち前記緩変化部分と前記急変化部分との判別が可能となる。前記急変化部分は、NCプログラムにおいて急激な加減速が指示されている部分を第2次分配によって緩和させた効果が含まれる部分である。このため、誤差補正パルス算出部48による誤差補正パルスの算出時に、分配誤差のうち急変化部分の変化が緩やかになるように調整して誤差補正パルスを求めることにより、第2次分配位置からその誤差補正パルスを差し引いて第3次分配位置を算出し、その第3次分配位置から求めた第3次分配パルスでは、前記第2次分配による急激な加減速の緩和効果を有効に維持することができる。一方、前記緩変化部分は、第1次分配パルスを第2次分配することによって生じる意図しない分配誤差を示す部分であり、この緩変化部分はそのまま用いて誤差補正パルスを求めることにより、第2次分配位置からその誤差補正パルスを差し引いて第3次分配位置を算出し、その第3次分配位置から求めた第3次分配パルスでは、前記意図しない分配誤差の影響を排除することができる。
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均一の意味及び範囲内でのすべての変更が含まれる。
例えば、本発明は、上記各実施形態で例示した工作機械2,32以外の種々の工作機械に適用可能である。また、本発明は、工具の移動とワークの移動との間の関係にのみ適用されるものではなく、工具自体の複数の移動方向間の関係や、ワーク自体の複数の移動方向間の関係、その他の異なる移動方向間の関係について適用することが可能である。
また、第2次分配パルス算出部20は、第1次分配パルスを第2次分配することによって算出した第2次分配パルスを改めて第1次分配パルスとして扱い、再度第2次分配して第2次分配パルスを算出する再帰機能を持っていてもよい。
また、第2次分配パルス算出部20が用いる第2次分配方法は、上記実施形態のように第1次分配パルスを分配区間の範囲内に均等に分配する均等型の方法に限らない。例えば、図17(a)は、均等型の第2次分配方法を図示したものであるが、これ以外にも図17(b)に示すような三角型、図17(c)に示すようなベル型、図17(d)に示すような台形型等、分配区間の範囲内において算出サイクルを境に前側の分配量(図中のAの部分の面積)と、後側の分配量(図中のBの部分の面積)とが等しくなるような種々の第2次分配方法を採用してもよい。
また、分配誤差の緩変化部分と急変化部分の判定方法としては、上記実施形態で示したもの以外に、例えば、第1次分配パルスの変化量が所定の閾値を超えた算出サイクルを判別し、その算出サイクルを中心としてその前後に広がり、かつ、対応する加減速時定数を区間幅とする部分を急変化部分とし、それ以外の部分を緩変化部分とする判定方法を用いてもよい。
また、上記第1実施形態の構成において、第1次分配パルスの第2次分配の際に、その第1次分配パルスに対応する算出サイクルを跨ぎ、かつ、対応する移動方向の加減速時定数を区間幅とする分配区間の範囲内においてその対応する算出サイクルの前後に第1次分配パルスを分配すれば、必ずしも分配区間の始点から算出サイクルまでの範囲における第1次分配パルスの分配量と、その算出サイクルから分配区間の終点までの範囲における第1次分配パルスの分配量とが均等になっていなくてもよい。
また、上記第2実施形態の構成において、第1次分配パルスの第2次分配の際に、分配区間の始点から対応する算出サイクルまでの範囲における第1次分配パルスの分配量と、その対応する算出サイクルから分配区間の終点までの範囲における第1次分配パルスの分配量とが完全に均等となっていなくてもよく、それらがほぼ均等になっていればよい。
また、NCプログラムが複数の微小な直線移動を連続して実行させるものである場合には、第1次分配パルス算出部18は、第1次分配パルスが前記各直線移動の始点又は終点を含む場合にその第1次分配パルスに対応する算出サイクルを前記緩変化部分に該当する算出サイクルと判別する一方、第1次分配パルスが前記各直線移動の始点及び終点のどちらも含まない場合にはその第1次分配パルスに対応する算出サイクルを前記急変化部分に該当する算出サイクルと判別するようにしてもよい。
具体的には、図18に示す変形例のように、NCプログラムが上記第2実施形態で示した円形の軌跡を所定のピッチ角で直線分割した軌跡を描くことを指示するものである場合には、分配誤差算出部46によって算出される分配誤差は、大きく見ると図19(a)に示すように上記第2実施形態による分配誤差(図13(d)参照)と似ているが、拡大してみると図19(b)に示すように分配誤差に細かい凹凸が存在する。なお、図19では、Y軸方向の分配誤差のみを示している。分配誤差にこのような凹凸が存在するのは、複数の微小な直線移動を連続して行う場合には、第1次分配パルスが階段状になるため、その第1次分配パルスの階段状の変化を第2次分配によって緩やかな変化に変えたことによる。
そして、この変形例では、第1次分配パルス算出部18が、NCプログラムの指示する軌跡が微小な直線移動を連続して行うものであるか否かについて判断する。そして、NCプログラムの軌跡が微小な直線移動を連続して行うものであると判断した場合には、第1次分配パルス算出部18は、第1次分配パルスを算出する際にNCプログラムの各直線移動の終点を含む第1次分配パルスの算出サイクルに緩変化部分に該当する算出サイクルとしての情報を付加し、それ以外の第1次分配パルスの算出サイクルにはそのような情報を付加しない。そして、後に誤差補正パルス算出部48が分配誤差から誤差補正パルスを求める際、上記第2実施形態で説明した分配誤差全体での急変化部分の変化を緩やかにする処理(前記ステップS43)を同様に行いながら、前記算出サイクルに付加された情報に基づいて前記各直線移動における分配誤差の緩変化部分と急変化部分とを判断し、その各直線移動における分配誤差の緩変化部分をそのまま用いるとともに急変化部分の変化は緩やかになるように調整して誤差補正パルスを求める。これにより、その誤差補正パルスは、図19(b)に示すように、分配誤差全体における急変化部分の変化が緩やかになるように補正されるとともに、分配誤差のうち前記各直線移動の終点に対応する点を通り、それら各点を滑らかに繋ぐように補正された曲線となる。
そして、この誤差補正パルスを上記第2実施形態と同様に第2次分配位置から差し引いて第3次分配位置を求め、その第3次分配位置から第3次分配パルスを求めると、その第3次分配パルスに従った移動は、前記各直線移動の終点を通り、各直線移動の中間部分では第2次分配による緩和効果を継承した滑らかな動きとなる。この動きは、結果的に、前記NCプログラムの各直線移動の各終点を滑らかに結ぶように曲線補間した場合と同じ動きとなる。
以上のように、この変形例では、第1次分配パルスが前記各直線移動の終点を含む場合には、その第1次分配パルスに対応する算出サイクルでは、分配誤差がそのまま第2次分配位置から差し引かれて第3次分配位置が求められる一方、第1次分配パルスが前記各直線移動の終点を含まない場合には、その第1次分配パルスに対応する算出サイクルでは、分配誤差の変化が緩やかになるように調整された値が第2次分配位置から差し引かれて第3次分配位置が求められる。従って、その各第3次分配位置から求めた第3次分配パルスに従った移動の軌跡では、前記NCプログラムの各終点の位置が維持される一方、その各終点間に位置する各直線移動の中間部分には、第1次分配パルスの階段状の変化を第2次分配によって緩やかな変化に変えた効果が継承されて前記各終点間を滑らかに曲線で繋いだ軌跡となる。その結果、NCプログラムの複数の微小な直線移動を連続して行う動きを滑らかな曲線的な動きに補正することができる。
本発明の第1実施形態による数値制御装置を適用した工作機械の概略的な平面図である。 本発明の第1実施形態による数値制御装置の構成を説明するためのブロック図である。 第1実施形態における第1次分配パルスを説明するための図である。 第1実施形態における第2次分配パルス、第1次分配位置及び第2次分配位置の相互間の関係を示す図である。 ワークに螺旋溝の形成を行う際の第1実施形態の数値制御装置による工作機械の制御プロセスを示すフローチャートである。 第1実施形態の数値制御装置における数値制御のプロセスを示すフローチャートである。 第1実施形態の比較例による第2次分配パルス、第1次分配位置及び第2次分配位置の相互間の関係を示す図である。 本発明の第2実施形態による数値制御装置を適用した工作機械の概略的な斜視図である。 本発明の第2実施形態による数値制御装置の構成を説明するためのブロック図である。 第2実施形態の数値制御装置における数値制御のプロセスを示すフローチャートである。 第2実施形態によるNCプログラムの加工の軌跡を示す図である。 第2実施形態におけるX軸方向の第1次分配パルス、第2次分配パルス、第1次分配位置、第2次分配位置、分配誤差、誤差補正パルス及び第3次分配パルスを説明するための図である。 第2実施形態におけるY軸方向の第1次分配パルス、第2次分配パルス、第1次分配位置、第2次分配位置、分配誤差、誤差補正パルス及び第3次分配パルスを説明するための図である。 比較例におけるX軸方向の第1次分配パルス、第2次分配パルス、第1次分配位置、第2次分配位置及び分配誤差を説明するための図である。 比較例におけるY軸方向の第1次分配パルス、第2次分配パルス、第1次分配位置、第2次分配位置及び分配誤差を説明するための図である。 第2実施形態による加工の軌跡と比較例による加工の軌跡とを示した図である。 種々の第2次分配方法を示した図である。 第2実施形態の変形例によるNCプログラムの加工の軌跡を示す図である。 第2実施形態の変形例によるY軸方向の分配誤差を示した図である。
符号の説明
2、32 工作機械
4、34 数値制御装置
6、36 ワーク移動装置
8 バイト(工具)
10、40 工具移動装置
18 第1次分配パルス算出部
20 第2次分配パルス算出部
22 駆動制御部
38 工具
44 第3次分配パルス算出部
46 分配誤差算出部
48 誤差補正パルス算出部
50 分配誤差補正部
W ワーク

Claims (6)

  1. ワークを少なくとも1つの移動方向に移動させるワーク移動装置と、前記ワークを加工するための工具を少なくとも1つの移動方向に移動させる工具移動装置とを備え、前記ワークの移動方向及び前記工具の移動方向が互いに異なる第1移動方向と第2移動方向とを含むとともに、その第1移動方向への移動の加減速時定数と第2移動方向への移動の加減速時定数とが互いに異なる値に設定される工作機械に設けられ、前記ワーク移動装置と前記工具移動装置のうち少なくとも一方の駆動を制御するための工作機械の数値制御装置であって、
    前記ワーク及び前記工具の少なくとも一方の移動指令に含まれる前記第1移動方向への移動量及び前記第2移動方向への移動量をそれぞれ所定の算出サイクル毎に分配した第1次分配パルスを算出する第1次分配パルス算出部と、
    前記第1次分配パルス算出部によって算出された前記所定の算出サイクル毎の前記第1次分配パルスを、対応する算出サイクルを跨ぎ、かつ、対応する移動方向の前記加減速時定数を区間幅とする分配区間の範囲内において前記対応する算出サイクルの前後に分配した後、前記算出サイクル毎に積算した第2次分配パルスを前記第1移動方向と前記第2移動方向のそれぞれについて算出する第2次分配パルス算出部と、
    前記第2次分配パルス算出部によって算出された前記第2次分配パルスに基づいて前記工具移動装置及び前記ワーク移動装置の少なくとも一方を駆動させる駆動制御部とを備えた、工作機械の数値制御装置。
  2. 前記第2次分配パルス算出部は、前記第2次分配パルスの算出を、前記分配区間の始点から前記対応する算出サイクルまでの範囲における前記第1次分配パルスの分配量と、前記対応する算出サイクルから前記分配区間の終点までの範囲における前記第1次分配パルスの分配量とが均等化するように前記分配区間の位置を調整しながら行う、請求項1に記載の工作機械の数値制御装置。
  3. ワークを少なくとも1つの移動方向に移動させるワーク移動装置と、前記ワークを加工するための工具を少なくとも1つの移動方向に移動させる工具移動装置とを備え、前記ワークの移動方向及び前記工具の移動方向が互いに異なる第1移動方向と第2移動方向とを含む工作機械に設けられ、前記ワーク移動装置と前記工具移動装置のうち少なくとも一方の駆動を制御するための工作機械の数値制御装置であって、
    前記ワーク及び前記工具の少なくとも一方の移動指令に含まれる前記第1移動方向への移動量及び前記第2移動方向への移動量をそれぞれ所定の算出サイクル毎に分配した第1次分配パルスを算出する第1次分配パルス算出部と、
    前記第1次分配パルス算出部によって算出された前記所定の算出サイクル毎の前記第1次分配パルスを、対応する算出サイクルを跨ぎ、かつ、対応する移動方向の加減速時定数を区間幅とする分配区間の範囲内にそれぞれ分配した後、前記算出サイクル毎に積算した第2次分配パルスを前記第1移動方向と前記第2移動方向のそれぞれについて算出するとともに、その第2次分配パルスの算出を、前記分配区間の始点から前記対応する算出サイクルまでの範囲における前記第1次分配パルスの分配量と、前記対応する算出サイクルから前記分配区間の終点までの範囲における前記第1次分配パルスの分配量とが均等化するように前記分配区間の位置を調整しながら行う第2次分配パルス算出部と、
    前記第1次分配パルスに従って移動した場合の前記算出サイクル毎の位置に相当する第1次分配位置と、前記第2次分配パルスに従って移動した場合の前記算出サイクル毎の位置に相当する第2次分配位置との差である分配誤差を前記第1移動方向と前記第2移動方向のそれぞれについて算出するとともに、その算出した分配誤差に基づいて前記第2次分配位置を補正し、その補正した結果から前記算出サイクル毎の移動量である第3次分配パルスを前記第1移動方向と前記第2移動方向のそれぞれについて算出する第3次分配パルス算出部と、
    前記第3次分配パルス算出部によって算出された前記第3次分配パルスに基づいて前記ワーク移動装置及び前記工具移動装置の少なくとも一方を駆動させる駆動制御部とを備えた、工作機械の数値制御装置。
  4. 前記第3次分配パルス算出部は、前記第1次分配パルスに基づいて前記第1次分配位置を算出するとともに、前記第2次分配パルスに基づいて前記第2次分配位置を算出し、それら算出した両分配位置の差を算出することによって前記分配誤差を算出する分配誤差算出部と、前記分配誤差算出部によって算出された前記分配誤差についてその変化の小さい緩変化部分はそのまま用いるとともに、変化の大きい急変化部分はその変化が緩やかになるように調整することによって誤差補正パルスを算出する誤差補正パルス算出部と、前記分配誤差算出部によって算出された前記第2次分配位置から前記誤差補正パルス算出部によって算出された前記誤差補正パルスを差し引いて第3次分配位置を算出し、その算出した第3次分配位置から前記第3次分配パルスを算出する分配誤差補正部とを含む、請求項3に記載の工作機械の数値制御装置。
  5. 前記第1次分配パルス算出部は、前記移動指令に基づいて、前記分配誤差算出部によって算出される前記分配誤差のうち前記緩変化部分に該当する算出サイクルと前記急変化部分に該当する算出サイクルとを予め判別し、
    前記誤差補正パルス算出部は、前記第1次分配パルス算出部による判別結果に基づいて、前記分配誤差算出部によって算出された前記分配誤差のうち前記緩変化部分と前記急変化部分とを判断する、請求項4に記載の工作機械の数値制御装置。
  6. 前記第1次分配パルス算出部は、前記移動指令が複数の直線移動を連続して実行させるものである場合に、前記第1次分配パルスが前記各直線移動の始点又は終点を含む場合にはその第1次分配パルスに対応する前記算出サイクルを前記緩変化部分に該当する算出サイクルと判別する一方、前記第1次分配パルスが前記各直線移動の始点及び終点のどちらも含まない場合にはその第1次分配パルスに対応する前記算出サイクルを前記急変化部分に該当する算出サイクルと判別する、請求項5に記載の工作機械の数値制御装置。
JP2008216514A 2008-08-26 2008-08-26 工作機械の数値制御装置 Expired - Fee Related JP5129064B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008216514A JP5129064B2 (ja) 2008-08-26 2008-08-26 工作機械の数値制御装置
PCT/JP2009/062192 WO2010024041A1 (ja) 2008-08-26 2009-07-03 工作機械の数値制御装置
EP09809696.9A EP2328052A4 (en) 2008-08-26 2009-07-03 NUMERICAL CONTROL FOR TOOL MACHINE
US13/060,443 US8478439B2 (en) 2008-08-26 2009-07-03 Numerical control device for tool machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008216514A JP5129064B2 (ja) 2008-08-26 2008-08-26 工作機械の数値制御装置

Publications (2)

Publication Number Publication Date
JP2010055161A JP2010055161A (ja) 2010-03-11
JP5129064B2 true JP5129064B2 (ja) 2013-01-23

Family

ID=41721215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008216514A Expired - Fee Related JP5129064B2 (ja) 2008-08-26 2008-08-26 工作機械の数値制御装置

Country Status (4)

Country Link
US (1) US8478439B2 (ja)
EP (1) EP2328052A4 (ja)
JP (1) JP5129064B2 (ja)
WO (1) WO2010024041A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8478438B2 (en) * 2008-09-16 2013-07-02 Shin Nippon Koki Co., Ltd. Numerical control device
JP5152434B2 (ja) * 2010-04-27 2013-02-27 三菱電機株式会社 数値制御装置
JP5331068B2 (ja) 2010-07-29 2013-10-30 新日本工機株式会社 数値制御装置
JP5896789B2 (ja) * 2012-03-07 2016-03-30 キヤノン株式会社 ロボット制御装置、ロボット装置、ロボット制御方法、プログラム及び記録媒体
CN108375957B (zh) * 2017-01-31 2021-03-26 兄弟工业株式会社 数值控制装置和控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199338A (ja) * 1986-02-27 1987-09-03 Fanuc Ltd 工具衝突自動防止方法
JPH0732979B2 (ja) * 1987-06-17 1995-04-12 ファナック株式会社 加減速制御装置
US5077507A (en) * 1989-06-29 1991-12-31 Mitsubishi Denki K.K. Servo control apparatus
JP2935713B2 (ja) * 1989-08-22 1999-08-16 ファナック株式会社 数値制御装置
JPH03157704A (ja) * 1989-11-16 1991-07-05 Fanuc Ltd 機械位置変動の位置補正方式
JP2897333B2 (ja) * 1990-04-11 1999-05-31 ブラザー工業株式会社 サーボ制御装置
JPH04172506A (ja) * 1990-11-07 1992-06-19 Hitachi Seiko Ltd 位置制御方法
JP3036143B2 (ja) * 1991-09-02 2000-04-24 三菱電機株式会社 数値制御装置
JP3244326B2 (ja) * 1993-02-25 2002-01-07 ファナック株式会社 数値制御装置
JPH0895643A (ja) * 1994-09-26 1996-04-12 Fanuc Ltd サーボモータのフィードフォワード制御方法
JP3459516B2 (ja) * 1996-07-10 2003-10-20 ファナック株式会社 数値制御装置による重畳制御方法
JP3618558B2 (ja) * 1998-09-11 2005-02-09 三菱電機株式会社 移動速度指令生成方法および装置
JP2003266202A (ja) * 2002-03-20 2003-09-24 Komatsu Machinery Corp クランクシャフトの旋削加工装置及びその旋削加工方法

Also Published As

Publication number Publication date
EP2328052A1 (en) 2011-06-01
US8478439B2 (en) 2013-07-02
EP2328052A4 (en) 2014-01-15
WO2010024041A1 (ja) 2010-03-04
US20110153057A1 (en) 2011-06-23
JP2010055161A (ja) 2010-03-11

Similar Documents

Publication Publication Date Title
JP5129064B2 (ja) 工作機械の数値制御装置
JP5152443B1 (ja) 数値制御装置
CN1636172B (zh) 轨迹控制方法
WO2016067372A1 (ja) 数値制御装置
US10137555B2 (en) Workpiece machining method
JP5431987B2 (ja) 工作機械の制御装置
JP2018062056A (ja) 歯車加工装置及び歯車加工方法
JP2018180633A (ja) 揺動切削を行う工作機械の制御装置
JP2017001103A (ja) 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
JP5204934B1 (ja) 切削抵抗解析装置およびこれを備えた切削加工装置、切削抵抗解析プログラム
JP6396354B2 (ja) 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
JP4620148B2 (ja) サーボモータ制御装置
JP5860072B2 (ja) ねじ切り中のびびりの発生を抑制する機能を備えた数値制御装置
JP6001633B2 (ja) 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
JP2018180990A (ja) 揺動切削を行う工作機械の制御装置
JP2010262467A (ja) 工作機械の制御装置
JP4115925B2 (ja) 工作機械の制御方法及びその制御装置
JP6893792B2 (ja) 工作機械および振動抑制方法
JP4709588B2 (ja) ネジ切削加工制御方法及びその装置
JP5336217B2 (ja) 補正装置及び数値制御装置
JP6374469B2 (ja) 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
JP4510722B2 (ja) ロストモーション補正機能を有する位置制御装置
JP7230996B2 (ja) 歯車加工装置及び歯車加工方法
JP5494378B2 (ja) ねじ切り制御方法及びその装置
JP2020078831A (ja) 歯車加工方法及び歯車加工装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5129064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees