JP5122905B2 - Static pressure gas bearing - Google Patents

Static pressure gas bearing Download PDF

Info

Publication number
JP5122905B2
JP5122905B2 JP2007265601A JP2007265601A JP5122905B2 JP 5122905 B2 JP5122905 B2 JP 5122905B2 JP 2007265601 A JP2007265601 A JP 2007265601A JP 2007265601 A JP2007265601 A JP 2007265601A JP 5122905 B2 JP5122905 B2 JP 5122905B2
Authority
JP
Japan
Prior art keywords
bearing
slot
groove
aperture
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007265601A
Other languages
Japanese (ja)
Other versions
JP2009092196A (en
Inventor
持 武井
俊宏 田中
晋一 十合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIYA SEIKI CO., LTD.
Original Assignee
DAIYA SEIKI CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIYA SEIKI CO., LTD. filed Critical DAIYA SEIKI CO., LTD.
Priority to JP2007265601A priority Critical patent/JP5122905B2/en
Publication of JP2009092196A publication Critical patent/JP2009092196A/en
Application granted granted Critical
Publication of JP5122905B2 publication Critical patent/JP5122905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

本発明は静圧気体軸受に関する。   The present invention relates to a static pressure gas bearing.

一般に、高圧気体を絞りを介して軸受隙間に供給し、その気体が有する静圧によって軸に加わる負荷を支持する静圧気体軸受は、既に数多く実用化されている。特に、電子記憶媒体に用いる記録ディスクの検査用、精密加工用のスピンドルの軸受に用いられるものなど、高剛性、高精度を必要とする静圧気体軸受にあっては、軸受隙間を小さくし、それに相応して絞りの気体抵抗を大きくすることが求められている。そのため、軸受面の真円度、円筒度、真直度等を高い精度で確保することが要求されることから、静圧気体軸受の製造には高度の加工技術が必要とされる。   In general, many hydrostatic gas bearings that supply a high pressure gas to a bearing gap through a throttle and support a load applied to the shaft by the static pressure of the gas have already been put into practical use. Especially for static pressure gas bearings that require high rigidity and high accuracy, such as those used for spindles for inspection of recording disks used in electronic storage media and precision processing, the bearing clearance is reduced, Accordingly, it is required to increase the gas resistance of the throttle accordingly. For this reason, since it is required to ensure the roundness, cylindricity, straightness and the like of the bearing surface with high accuracy, high-level processing technology is required for manufacturing a static pressure gas bearing.

従来の静圧気体軸受の具体例若しくは改良例はたとえば以下の特許文献1に記載されている。また、静圧気体軸受の他の従来例としては、以下の特許文献2に示す構造が知られている。この特許文献2に記載された静圧気体軸受では、軸受部材の軸受面に円周方向に連続する環状の細溝13を形成し、この細溝13の内部に複数の絞りを構成する給気孔14が開口するように構成してなる構造が記載されている。
特許第3779186号公報 特公昭58−14927号公報
Specific examples or improvements of conventional static pressure gas bearings are described in, for example, Patent Document 1 below. Moreover, the structure shown in the following patent document 2 is known as another conventional example of a static pressure gas bearing. In the hydrostatic gas bearing described in Patent Document 2, an annular narrow groove 13 that is continuous in the circumferential direction is formed on the bearing surface of the bearing member, and an air supply hole that forms a plurality of throttles inside the narrow groove 13. A structure in which 14 is opened is described.
Japanese Patent No. 3779186 Japanese Patent Publication No.58-14927

前述の特許文献2では円周方向に連続する細溝を形成することで、10μm以下の小さな軸受隙間でも負荷容量を確保できるようにしているが、さらに高い軸受精度が要求される場合には、上記細溝を介した気体の流通によって充分な軸受反力が得られなくなり、軸受剛性を確保することが難しくなるという問題点がある。特許文献2では軸受反力を失わないために細溝の幅や深さをある程度の範囲に限定しているが、これでも充分な軸受反力を得ることはできない。   In the above-mentioned Patent Document 2, it is possible to secure a load capacity even with a small bearing gap of 10 μm or less by forming a narrow groove continuous in the circumferential direction, but when higher bearing accuracy is required, There is a problem that sufficient bearing reaction force cannot be obtained due to the gas flow through the narrow groove, and it is difficult to ensure the bearing rigidity. In Patent Document 2, the width and depth of the narrow groove are limited to a certain range in order not to lose the bearing reaction force. However, even with this, a sufficient bearing reaction force cannot be obtained.

また、静圧気体軸受において軸受精度を高めるためには軸受隙間を小さくし、それに相応して絞りの気体抵抗を大きくすることが求められるが、当該気体抵抗を大きくするには、たとえば長方形平行隙間で構成されるスロット絞りの場合、スロット隙間を数μmと極めて小さくする必要がある。しかしながら、軸受面の真円度、円筒度、真直度等を高い精度で確保するには軸受面の高精度加工を要し、この高精度加工たとえば内面研削加工を行うと、絞りの開口縁にバリやカエリが発生して目詰まりを生じ、絞りの開口がふさがれて通気性を失ってしまうという問題点がある。   In order to increase the bearing accuracy in a static pressure gas bearing, it is required to reduce the bearing gap and increase the gas resistance of the throttle accordingly. To increase the gas resistance, for example, a rectangular parallel gap In the case of the slot diaphragm constituted by the above, it is necessary to make the slot gap as small as several μm. However, high precision machining of the bearing surface is necessary to ensure the roundness, cylindricity, straightness, etc. of the bearing surface with high precision. There is a problem that burrs and burrs are generated and clogging occurs, and the aperture of the diaphragm is blocked and air permeability is lost.

そこで、本発明は上記問題点を解決するものであり、その課題は、軸受精度を高めることができるとともに、絞り開口の目詰まりを防止できる静圧気体軸受を提供することにある。   Therefore, the present invention solves the above problems, and an object of the present invention is to provide a static pressure gas bearing capable of improving bearing accuracy and preventing clogging of the aperture opening.

斯かる実情に鑑み、本発明の静圧気体軸受は、回転体と、該回転体との間に軸受隙間を介して対向する軸受面を備えた軸受体とを具備し、前記軸受隙間に加圧した気体を、前記軸受面にそれぞれ開口し前記回転体の回転軸線周りの円周方向に複数設けられ前記円周方向に沿って延在するスロット絞りを通して導くことにより、前記回転体を回転可能に支持する静圧気体軸受において、前記軸受面の前記スロット絞りの開口縁において、前記開口縁のうちの少なくとも片側の幅方向縁部がそれぞれ面取り状若しくは丸め状に形成されることにより前記円周方向に沿って延長した形状を有するとともに前記円周方向に不連続に構成された複数の凹溝が前記スロット絞りに直接連通するように設けられ、前記凹溝の前記円周方向の両端部は、いずれも前記スロット絞りの前記円周方向の開口範囲内において前記スロット絞りの端部よりそれぞれ内側に配置されることを特徴とする。 In view of such circumstances, the hydrostatic gas bearing of the present invention includes a rotating body and a bearing body provided with a bearing surface facing the rotating body via a bearing gap, and adds to the bearing gap. The rotating body can be rotated by guiding the compressed gas through a slot diaphragm that is provided in the circumferential direction around the rotation axis of the rotating body and extends along the circumferential direction. in the externally pressurized gas bearing for supporting, in the opening edge of the slot aperture of the bearing surface, at least Rukoto widthwise edges of the one side are formed on the respective chamfered or rounded shape of the opening edge, the circular wherein the circumferentially discontinuously configured plurality of concave grooves provided so as to communicate directly to the aperture the slot, the circumferential both end portions of the groove and having a shape extending along a circumferential direction Izu Also characterized Rukoto respectively disposed on the inner side from the end portion of the diaphragm said slot in said circumferential direction of the opening range of the throttle the slot.

本発明によれば、軸受面に開口するスロット絞りの開口縁のうちの少なくとも片側の幅方向縁部おいてスロット絞りに直接連通するように面取り状若しくは丸め状の凹が形成されることにより、実質的に開口幅が広くなってスロット絞りの開口縁にバリやカエリが発生しても目詰まりが生じにくくなるとともに、凹スロット絞りの開口縁を面取り状に構成してなる場合には凹の断面形状が略三角形状とされて断面輪郭がテーパ状とされ、凹スロット絞りの開口縁を丸め状に構成してなる場合には凹の断面輪郭が凸曲線状とされるため、スロット絞りの開口縁のうち凹が設けられている縁部分にはバリやカエリが発生しにくくなる。さらに、スロット絞りに連通する凹を大きく形成するとスロット絞りの出口側の付加容積が増大し圧縮性流体である気体の圧力で軸支する静圧気体軸受ではニューマティックハンマー現象を生じやすくなるが、凹スロット絞りの開口縁を面取り状若しくは丸め状に構成したものとすることで、スロット絞りの開口幅を増大させて目詰まりを防止しても付加容積の増大を抑制することができる。したがって、高精度でしかも安定した静圧気体軸受を高い歩留まりで製造できる。また、複数の凹が円周方向に不連続に構成されることにより、軸受反力の低下による軸受剛性の悪化をも防止できる。 According to the present invention, the beveled or rounded shaped concave groove is formed to communicate directly to the aperture Oite slot least widthwise edge of one side of the opening edge of the stop slots opening into the bearing surface a result, the burrs are also clogging is unlikely to occur occurred in the opening edge of the substantially opening width wider slot aperture, if the concave groove is configured to opening edge of the aperture slots chamfered cross-sectional shape of the concave groove is substantially triangular in cross-sectional profile is tapered, convex curvilinear cross-sectional profile of the concave groove when the concave grooves are configured to form rounded opening edge of the aperture slots since that is, burrs are hardly generated in the edge portion of the concave groove of the opening edge of the stop slots are provided. Furthermore, it becomes liable to occur Pneumatic hammer phenomenon by hydrostatic gas bearing for rotatably supporting a pressure of a gas when a concave groove larger forming additional volume of the outlet side of the throttle slot is a compressed fluid increases in communication with the aperture slot , with that constitute the opening edge of the slot aperture concave groove so as to be a chamfer or rounded shape, it is also possible to prevent clogging by increasing the aperture width of the stop slot to suppress an increase in the additional volume . Therefore, a highly accurate and stable hydrostatic gas bearing can be manufactured with a high yield. Further, since the plurality of concave grooves are configured discontinuously in the circumferential direction, it can also prevent deterioration of bearing rigidity due to a decrease in bearing reaction forces.

本発明において、前記凹は前記スロット絞り毎にそれぞれ形成されていることが好ましい。凹スロット絞り毎にそれぞれ形成されていることにより、複数のスロット絞り間の気体の流れを抑制することができるため、軸受反力の低下を防止できる。 In the present invention, it is preferable that the concave grooves are formed respectively in each aperture said slot. By concave grooves are formed in each aperture slot, it is possible to suppress the flow of gas between the diaphragm plurality of slots, it is possible to prevent deterioration of bearing reaction force.

本発明において、前記凹は前記スロット絞りの幅方向縁部に形成され、前記円周方向(スロット絞りの長さ方向に沿って延長した形状を有す。このようにスロット絞りの開口縁に沿って凹溝を形成することにより、スロット絞りによる高剛性の軸受を構成できるとともに、スロット絞りの延長形状の開口範囲の広い範囲に亘り目詰まりをさらに低減することができるので、スロット絞りの高剛性の利点を確実に維持することができる。 In the present invention, before Ki凹groove is formed in the widthwise edges of the diaphragm the slot, that having a said circumferential direction (slot aperture in the longitudinal direction) extended shape along. By forming the groove along the opening edge of the slot diaphragm in this way, it is possible to configure a highly rigid bearing by the slot diaphragm and further reduce clogging over a wide range of the opening area of the extended shape of the slot diaphragm. Therefore, the advantage of the high rigidity of the slot diaphragm can be reliably maintained.

本発明では、前記凹溝の前記円周方向の両端部は、いずれも前記スロット絞りの前記円周方向の開口範囲内において前記スロット絞りの端部よりそれぞれ内側に配置される。これによれば、高剛性を得るために複数のスロット絞りを円周方向に極めて隣接して形成した場合でも、複数の凹溝間の円周方向の間隔を確保することができるため、凹溝間の通気性が高まることによる軸受反力の低下を抑制できる。特に、凹溝がスロット絞り毎に形成されている場合には、各スロット絞りの開口範囲内の円周方向位置に凹溝の両端部が配置されるので、複数のスロット絞り間の気体の流通性を確実に低下させることができる。 In the present invention, both end portions of the concave groove in the circumferential direction are respectively disposed on the inner side of the end portion of the slot stop within the circumferential opening range of the slot stop . According to this, even when a plurality of slot diaphragms are formed extremely adjacent to each other in the circumferential direction in order to obtain high rigidity, it is possible to ensure a circumferential interval between the plurality of grooves. It is possible to suppress a decrease in bearing reaction force due to an increase in air permeability. In particular, when a groove is formed for each slot stop, both ends of the groove are arranged at circumferential positions within the opening range of each slot stop. Can be reliably reduced.

特に、前記凹溝は各スロット絞りの前記円周方向の開口範囲内にそれぞれ配置され、その両端部が前記凹溝の両端部より長さ方向の内側に配置されていることが望ましい。これによれば、隣接するスロット絞りを近接させて形成しても、隣接する凹溝間の間隔を確保することができるので、円周方向の気体の流通性を抑制することができる。   In particular, it is desirable that the concave groove is disposed in the circumferential opening range of each slot stop, and that both end portions thereof are disposed on the inner side in the length direction from both end portions of the concave groove. According to this, even if adjacent slot diaphragms are formed close to each other, the space between adjacent concave grooves can be ensured, so that gas circulation in the circumferential direction can be suppressed.

以下、本発明の実施の形態を図示例と共に説明する。図1は本実施形態の静圧気体軸受の軸受構造を模式的に示す概略断面図、図2は図1のII−II線に沿った断面矢視図である。本実施形態の軸受構造は、回転体1の外周面1aに対向する内周面(円筒内面)で構成される第1軸受面2aを有する第1軸受部材2と、同様に回転体1の外周面1aに対向する内周面(円筒内面)で構成される第2軸受面3aを有する第2軸受部材3とが軸線方向に直接当接され、図示しないボルトその他の別部材を用いて固定されることによって構成される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view schematically showing a bearing structure of a hydrostatic gas bearing of the present embodiment, and FIG. 2 is a cross-sectional view taken along the line II-II in FIG. The bearing structure of the present embodiment includes a first bearing member 2 having a first bearing surface 2a configured by an inner peripheral surface (cylindrical inner surface) facing the outer peripheral surface 1a of the rotating body 1, and the outer periphery of the rotating body 1 as well. A second bearing member 3 having a second bearing surface 3a composed of an inner peripheral surface (cylindrical inner surface) facing the surface 1a is directly abutted in the axial direction, and is fixed using a bolt or another member not shown. It is composed by doing.

第1軸受部材2と第2軸受部材3の相互に当接する両端面の少なくともいずれか一方の面、図示例では第1軸受部材2の端面上には、半径方向に伸びる複数のスロット溝2bが軸線周りに放射状に形成され、これらのスロット溝2bによってスロット絞りAが構成される。また、第1軸受部材2と第2軸受部材3の相互に当接する両端面の少なくともいずれか一方の面、図示例では第1軸受部材2と第2軸受部材3の両端面上には、上記スロット溝2bに連通する環状凹溝2c、3cが形成され、これらの環状凹溝2c、3cによって圧力室Bが構成される。圧力室Bは図示しない給気経路に連通し、複数のスロット絞りAに給気を行うように構成されている。   A plurality of slot grooves 2b extending in the radial direction are formed on at least one of both end surfaces of the first bearing member 2 and the second bearing member 3 that are in contact with each other, in the illustrated example, on the end surface of the first bearing member 2. A slot stop A is formed by these slot grooves 2b formed radially around the axis. Further, at least one of both end surfaces of the first bearing member 2 and the second bearing member 3 that are in contact with each other, in the illustrated example, on both end surfaces of the first bearing member 2 and the second bearing member 3, Annular grooves 2c and 3c communicating with the slot groove 2b are formed, and a pressure chamber B is constituted by these annular grooves 2c and 3c. The pressure chamber B communicates with an air supply path (not shown) and is configured to supply air to the plurality of slot throttles A.

スロット絞りAの開口縁の少なくとも一部、図示例では第1軸受部材2によって構成される開口縁部分には、本発明の凹である凹溝2dが形成されている。この凹溝2dは、上記開口縁部分を面取り状に構成してなる。図示例では面取り角は45度で、面取り幅はCで示される。 At least a portion of the opening edge of the slot aperture A, in the illustrated example the opening edge portion constituted by the first bearing member 2, the groove 2d is concave groove of the present invention is formed. The concave groove 2d is formed by chamfering the opening edge portion. In the illustrated example, the chamfer angle is 45 degrees and the chamfer width is indicated by C.

図3は軸受面の展開図を示す。ここで、図示上下方向が円周方向であり、複数のスロット絞りAが円周方向に形成されることで、各スロット絞りAに対応する軸受領域Bが円周方向に順次配列しているものと考えることができる。この場合、各軸受領域B内にスロット絞りAが存在するとともに、各スロット絞りAの開口縁に上記凹溝2dが形成されているのがわかる。   FIG. 3 shows a developed view of the bearing surface. Here, the vertical direction in the figure is the circumferential direction, and a plurality of slot diaphragms A are formed in the circumferential direction, so that the bearing regions B corresponding to the slot diaphragms A are sequentially arranged in the circumferential direction. Can be considered. In this case, it can be seen that there is a slot stop A in each bearing region B, and the groove 2d is formed at the opening edge of each slot stop A.

図示例の場合、各凹溝2dは、スロット絞りAの開口範囲に連通し、しかも、軸受領域Bよりスロット絞りAの長さ方向の内側に限定されるように形成されている。この理由は以下のとおりである。すなわち、凹溝2dは通常スロット絞りAのスロット間隙Hs(図1参照)より大きな溝幅を有するので、凹溝2dが仮に円周方向に連続する環状溝である場合には、スロット絞りAより供給される気体圧力が円周方向に逃げ、回転体1の軸心位置が偏った際に充分な軸受反力が得られなくなる。これは、複数の凹溝2dが円周方向に不連続になることで防止されるが、この場合でも隣接する凹溝2dの端部同士が接近していると軸受反力が低下する虞がある。したがって、凹溝2dの端部を軸受領域Bの境界より長さ方向の内側に離間して設定することで、軸受反力の低下を抑制できる。図示例の場合には、軸受領域B内のスロット絞りAの両端部の位置よりも凹溝2dの両端部の位置の方が軸受領域Bの境界位置より離間した位置にあるように構成されている。   In the case of the illustrated example, each concave groove 2d communicates with the opening range of the slot diaphragm A, and is formed so as to be limited to the inner side in the length direction of the slot diaphragm A from the bearing region B. The reason for this is as follows. That is, since the concave groove 2d has a larger groove width than the slot gap Hs of the normal slot diaphragm A (see FIG. 1), if the concave groove 2d is an annular groove continuous in the circumferential direction, When the supplied gas pressure escapes in the circumferential direction and the axial center position of the rotating body 1 is biased, a sufficient bearing reaction force cannot be obtained. This is prevented by the discontinuity of the plurality of concave grooves 2d in the circumferential direction. Even in this case, if the end portions of the adjacent concave grooves 2d are close to each other, the bearing reaction force may be reduced. is there. Therefore, by setting the end of the concave groove 2d so as to be separated from the boundary of the bearing region B inward in the length direction, it is possible to suppress a decrease in bearing reaction force. In the case of the illustrated example, the positions of both end portions of the concave groove 2d are located farther from the boundary position of the bearing region B than the positions of both end portions of the slot diaphragm A in the bearing region B. Yes.

上記のように、本実施形態では、複数のスロット絞りAの開口縁部分に凹溝2dを形成している。凹溝2dの溝幅は基本的にスロット絞りAの開口幅が数μm(1〜10μm)程度であるのに対して、後述するように10〜130μm程度の大きさとすることが可能である。したがって、凹溝2dが形成されることで実質的な絞りの開口幅を大幅に増大させることができるため、絞りの開口縁にバリやカエリなどが多少生じても、絞りの開口が閉塞されるといった事態を回避することができる。   As described above, in the present embodiment, the recessed grooves 2d are formed in the opening edge portions of the plurality of slot diaphragms A. The groove width of the concave groove 2d is basically about 10 μm to 130 μm as will be described later, while the opening width of the slot stop A is about several μm (1 to 10 μm). Therefore, the formation of the concave groove 2d can substantially increase the aperture width of the diaphragm, so that the aperture of the diaphragm is closed even if some burrs or burrs occur on the aperture edge of the diaphragm. Such a situation can be avoided.

また、本実施形態では、第1軸受部材2の開口縁を面取り状に構成することで凹溝2dが形成されているので、実質的な開口縁が第2軸受部材3の開口縁から離間するだけでなく、当該開口縁の角部の角度φ(図6参照)がより小さくなるので、バリやカエリそのものが発生しにくくなる。なお、この利点は、開口縁を丸め状に構成して凹溝を形成する場合には上記角度φをほとんど0とすることができるため、さらに高まる。   Further, in the present embodiment, since the groove 2 d is formed by forming the opening edge of the first bearing member 2 in a chamfered shape, the substantial opening edge is separated from the opening edge of the second bearing member 3. In addition, since the angle φ (see FIG. 6) of the corner of the opening edge becomes smaller, burrs and burrs are less likely to occur. Note that this advantage is further enhanced when the opening edge is formed in a round shape to form the groove, since the angle φ can be almost zero.

凹溝2dの容積、すなわち、幅Cや長さLgで決定される、凹溝2dの形成による付加容積は、特に圧縮性気体である気体を用いる静圧気体軸受では遅れ要素となり、安定性を低下させる。この安定性の低下は、「ニューマティックハンマー現象」と呼ばれる自励振動となって現れる。すなわち、上記のようにスロット絞りAの目詰まりを防止する観点からは凹溝2dの幅は大きいほどよいが、大きくなりすぎると付加容積が増大し、安定性が低下する。したがって、凹溝2dの寸法には一定の制約が存在する。以下、当該制約について説明する。   The volume of the concave groove 2d, that is, the additional volume determined by the formation of the concave groove 2d, which is determined by the width C and the length Lg, becomes a lag element particularly in a hydrostatic gas bearing using a gas which is a compressible gas, and stability is increased. Reduce. This decrease in stability appears as self-excited vibration called “pneumatic hammer phenomenon”. That is, from the viewpoint of preventing the clogging of the slot stop A as described above, it is better that the width of the concave groove 2d is larger. Therefore, there are certain restrictions on the size of the concave groove 2d. Hereinafter, the restriction will be described.

図5は回転体1の軸芯位置が第1軸受部材2及び第2軸受部材3よりなる軸受体に対して偏った位置にあるときの様子を模式的に示すもので、回転体1に対する軸受体の偏芯方向を軸受領域B間の境界位置と一致させて当該位置を円周方向の角度θの原点として示したものである。以下の説明では、回転体1の軸径D、軸受長さL(図1参照)、半径隙間Cr(図2参照)、偏芯率ε(=δe/Cr:δeは偏心量)、スロット数2n、スロット隙間Hs(図3参照)、スロット長さLs(図1参照)の一列給気ラジアル軸受とし、給気圧力はPs、周囲圧はPaとする。   FIG. 5 schematically shows a state where the axial center position of the rotating body 1 is deviated from the bearing body formed by the first bearing member 2 and the second bearing member 3. The eccentric direction of the body is made coincident with the boundary position between the bearing regions B, and the position is shown as the origin of the angle θ in the circumferential direction. In the following description, the shaft diameter D of the rotating body 1, the bearing length L (see FIG. 1), the radial gap Cr (see FIG. 2), the eccentricity ε (= δe / Cr: δe is the amount of eccentricity), the number of slots 2n, a single row air supply radial bearing with slot clearance Hs (see FIG. 3) and slot length Ls (see FIG. 1), supply air pressure is Ps, and ambient pressure is Pa.

本実施形態の作用の解析を行うに当たり、以下の仮定を行う。すなわち、1)軸受隙間内の流れは、図3中の矢印に示すように軸方向一次元流れであるとする。2)一般の気体軸受解析に用いる仮定を行う。軸受の対称性を考慮し、軸受の円周方向1/2部分を取り上げ、図5に示すように最大隙間位置をθ=0とし、時計方向に座標θをとり、スロット絞りに番号1、2、3、・・・を付す。そして、これらに対応させて図3に示すように軸受面を円周方向の領域1、2、3、・・・に分割する。また、凹溝2dの長さLgは領域幅B=πD/2nより僅かに短く、形成比χ=Lg/Bを0.8〜0.9程度とする。これによって図示のように凹溝2dは円周方向に不連続溝となる。   In analyzing the operation of this embodiment, the following assumptions are made. That is, 1) It is assumed that the flow in the bearing gap is a one-dimensional flow in the axial direction as indicated by an arrow in FIG. 2) Make assumptions used for general gas bearing analysis. Taking into account the symmetry of the bearing, the circumferential half of the bearing is taken up, the maximum gap position is set to θ = 0, the coordinate θ is taken in the clockwise direction, as shown in FIG. 3, ... are attached. And corresponding to these, as shown in FIG. 3, a bearing surface is divided | segmented into the area | region 1, 2, 3, ... of the circumferential direction. The length Lg of the concave groove 2d is slightly shorter than the region width B = πD / 2n, and the formation ratio χ = Lg / B is about 0.8 to 0.9. Accordingly, as shown in the figure, the concave groove 2d becomes a discontinuous groove in the circumferential direction.

上記のように設定すると、k(k=1、2、3、・・・、n)番目のスロット絞りを通して軸受隙間内に流入する気体の質量流量Minは、スロット出口の圧力をPokとすれば、

Figure 0005122905
となる。ここで、μは気体の粘性係数、Rは気体常数、Tは絶対温度である。 If set as described above, the mass flow rate Min of the gas flowing into the bearing gap through the k th (k = 1, 2, 3,..., N) throttling will be determined if the slot outlet pressure is Pok. ,
Figure 0005122905
It becomes. Here, μ is a viscosity coefficient of gas, R is a gas constant, and T is an absolute temperature.

一方、領域kを通って軸受から流出する気体の質量流量Mokは、領域kの平均軸受隙間をHkとすると次式で与えられる。

Figure 0005122905
ここで、L2=L/2である。 On the other hand, the mass flow rate Mok of the gas flowing out of the bearing through the region k is given by the following equation where the average bearing clearance in the region k is Hk.
Figure 0005122905
Here, L 2 = L / 2.

領域kの平均軸受隙間Hkは、領域両側端の軸受隙間の3乗平均として次式で求められる。

Figure 0005122905
The average bearing clearance Hk in the region k is obtained by the following equation as the cube average of the bearing clearances at both ends of the region.
Figure 0005122905

流れの連続性から流入流量が流出流量に等しいと置くことにより、k番目のスロット出口の圧力Pokは次式で与えられる。

Figure 0005122905
ここで、Rin=χHs/Ls、Rok=2Hk/L2である。 By assuming that the inflow rate is equal to the outflow rate due to flow continuity, the pressure Pok at the kth slot outlet is given by:
Figure 0005122905
Here, Rin = χHs 3 / Ls and Rok = 2Hk 3 / L 2 .

軸方向の圧力分布を図4に示すように軸線方向に見て直線的に変化するものと仮定すると、k番目の領域が軸に加える力Fkは次式で与えられる。
Fk=LB(Pok-Pa)/2
Assuming that the axial pressure distribution changes linearly when viewed in the axial direction as shown in FIG. 4, the force Fk applied to the shaft by the kth region is given by the following equation.
Fk = LB (Pok-Pa) / 2

Fの偏心方向の成分Fwkはその余弦成分とし、上向きを正とすると次式で与えられる。
Fwk=-Fkcos{(π/n)(2k-1)/2}
The component Fwk in the eccentric direction of F is the cosine component, and the upward direction is given by the following equation.
Fwk = -Fkcos {(π / n) (2k-1) / 2}

これから、偏心に対する軸受反力、すなわち、負荷容量Wは次式で与えられる。

Figure 0005122905
From this, the bearing reaction force against the eccentricity, that is, the load capacity W is given by the following equation.
Figure 0005122905

以上の計算では隙間内の気体の流れを軸方向1次元流れとして行ったが、実際には領域間の圧力差によって円周方向流れが発生するため、有効負荷容量は小さくなる。そこで、修正係数Cwを導入し、有効負荷容量Weを次式で算出する。
We=CwW
ここで、修正係数Cwの値は軸受の長さと直径の比L/Dと偏心率εとによって異なる。L/D=0.8〜1.0の場合、Cw=0.8程度とする。
In the above calculation, the gas flow in the gap is performed as a one-dimensional flow in the axial direction. However, since the circumferential flow is actually generated due to the pressure difference between the regions, the effective load capacity becomes small. Therefore, the correction coefficient Cw is introduced, and the effective load capacity We is calculated by the following equation.
We = CwW
Here, the value of the correction coefficient Cw differs depending on the ratio L / D of the length and diameter of the bearing and the eccentricity ε. In the case of L / D = 0.8 to 1.0, Cw = about 0.8.

次に、凹溝2dにより生じる領域当たりの凹溝容積Vpのニューマティックハンマー現象に関する安定性に及ぼす影響を検討する。どれか一つの領域が不安定になっただけでも軸受全体が不安定になることから、安定性は各領域に対して判別する必要がある。   Next, the influence of the concave groove volume Vp per region generated by the concave groove 2d on the stability related to the pneumatic hammer phenomenon will be examined. Even if any one region becomes unstable, the entire bearing becomes unstable. Therefore, the stability needs to be determined for each region.

ニューマティックハンマーの安定条件は次式で与えられる。
s/q>(θ-ψ)/(α+β)…(I)
ここで、

Figure 0005122905
Figure 0005122905
Figure 0005122905
Figure 0005122905
Figure 0005122905
Figure 0005122905
である。ただし、Mは領域一つ当たりの軸受隙間内に含まれる気体の質量で、次式で与えられる。
M=LBHkPok/2RT+VpPok/RT The stability condition of the pneumatic hammer is given by the following equation.
s / q> (θ-ψ) / (α + β) (I)
here,
Figure 0005122905
Figure 0005122905
Figure 0005122905
Figure 0005122905
Figure 0005122905
Figure 0005122905
It is. However, M is the mass of the gas contained in the bearing gap per region, and is given by the following equation.
M = LBHkPok / 2RT + VpPok / RT

また、Vpは凹溝2d一つの容積で本実施形態では図6及び図7に示すように次式で与えられる。
Vp=C2χB/2
Further, Vp is a volume of one concave groove 2d and is given by the following equation as shown in FIGS.
Vp = C 2 χB / 2

上記の式(I)をCの値を変えながら計算し、安定か否かを求めた。D=34mm、L=34mm、Cr=10μm、Hs=10μm、Ls=8mm、Ps=6.033kgf/cm、ε=0.2、χ=0.9としたときには、C=0.132mmまでは安定であったが、C=0.133mm以上で不安定になった。 The above formula (I) was calculated while changing the value of C to determine whether it was stable or not. When D = 34 mm, L = 34 mm, Cr = 10 μm, Hs = 10 μm, Ls = 8 mm, Ps = 6.033 kgf / cm 2 , ε = 0.2, χ = 0.9, C = 0.132 mm Was stable, but became unstable when C = 0.133 mm or more.

また、D=34mm、L=34mm、Cr=10μm、Hs=10μm、Ls=8mm、Ps=6.033kgf/cm、ε=0.2、χ=0.8としたときには、C=0.125mmまでは安定であったが、0.122mm以上では不安定となった。したがって、本実施形態では、χが0.8〜0.9の範囲で凹溝2dを形成した場合、凹溝2dの面取り幅Cを0.12mm(120μm)以下とすれば、安定性が確保できることがわかる。 When D = 34 mm, L = 34 mm, Cr = 10 μm, Hs = 10 μm, Ls = 8 mm, Ps = 6.033 kgf / cm 2 , ε = 0.2 and χ = 0.8, C = 0. It was stable up to 125 mm, but became unstable above 0.122 mm. Therefore, in this embodiment, when the groove 2d is formed in the range of χ of 0.8 to 0.9, stability is ensured if the chamfer width C of the groove 2d is 0.12 mm (120 μm) or less. I understand that I can do it.

上記と同様にして計算した結果を流量及び負荷容量とともにまとめて図8に示す。この図に示すように、面取幅であるCは0.12〜0.13mm程度の領域を境にして安定状態と不安定状態とが分かれるが、0.12〜0.13mm(120〜130μm)はスロット絞りAのスロット間隙Hs=10μmに比べると非常に大きく、バリや塵埃等による目詰まりの防止に大きく貢献できることがわかる。本実施形態ではスロット絞りAの開口縁に面取り状の凹溝2dを設けることで、ニューマティックハンマー現象による不安定性を回避しても充分すぎるほどの開口幅を得ることができるので、目詰まりに対する効果は極めて大きい。   The results calculated in the same manner as above are shown together with the flow rate and load capacity in FIG. As shown in this figure, C, which is a chamfer width, is divided into a stable state and an unstable state with an area of about 0.12 to 0.13 mm as a boundary, but 0.12 to 0.13 mm (120 to 130 μm). ) Is much larger than the slot gap Hs of the slot stop A = 10 μm, and it can be seen that it can greatly contribute to the prevention of clogging due to burrs, dust and the like. In the present embodiment, by providing the chamfered concave groove 2d at the opening edge of the slot stop A, an opening width that is too large can be obtained even if the instability due to the pneumatic hammer phenomenon is avoided. The effect is extremely large.

なお、形成比χの値が0.8〜0.9の範囲で増加しても気体の流量や負荷容量はほとんど変化せず、安定した値を示しているので、χの値は軸受性能に対して実質的にほとんど影響を与えないことがわかる。   In addition, even if the formation ratio χ increases within the range of 0.8 to 0.9, the gas flow rate and load capacity hardly change and show stable values. It can be seen that there is virtually no effect on it.

本実施形態において軸受体を製造するには、最初に第1軸受部材2と第2軸受部材3を形成し、その後、図1に示すように組み立てた状態で、内面研削加工等により第1軸受面2aと第2軸受面3aとを一体に加工する。これによって軸受体の軸受面を高精度に形成することができる。この場合に、上記実施形態のように第1軸受部材2にのみ凹溝2dが形成されているときには、主として、第1軸受部材2側から第2軸受部材3側へ向かう方向に加工を行うことで、バリやカエリの発生を抑制することができる。たとえば、第1軸受部材2から第2軸受部材に向かう方向にエンドミル等の工具を移動させる際に削り代を大きくとり、逆方向に戻す際に削り代をなくすか小さくとることで、上記効果を得ることができる。   In order to manufacture the bearing body in the present embodiment, the first bearing member 2 and the second bearing member 3 are first formed, and then assembled as shown in FIG. The surface 2a and the second bearing surface 3a are processed integrally. As a result, the bearing surface of the bearing body can be formed with high accuracy. In this case, when the concave groove 2d is formed only in the first bearing member 2 as in the above embodiment, the processing is mainly performed in the direction from the first bearing member 2 side to the second bearing member 3 side. Thus, generation of burrs and burrs can be suppressed. For example, when the tool such as an end mill is moved in the direction from the first bearing member 2 toward the second bearing member, the machining allowance is increased, and when the tool is returned in the opposite direction, the machining allowance is eliminated or reduced. Can be obtained.

図9は、上記実施形態の凹溝2dとは異なる断面形状或いは平面形状を有する凹溝2e〜2hを示す拡大部分断面図(a)〜(d)である。図9(a)はスロット絞りAの開口縁を丸め状にカットしてなる凹溝2eを示すものである。このようにすると、バリやカエリによるスロット絞りAの目詰まりが防止されるとともに、少なくとも凹溝2eが形成された側の開口縁のバリやカエリがほとんど発生しなくなる。   FIG. 9 is enlarged partial cross-sectional views (a) to (d) showing the recessed grooves 2e to 2h having a cross-sectional shape or a planar shape different from the recessed groove 2d of the above embodiment. FIG. 9A shows a concave groove 2e obtained by cutting the opening edge of the slot stop A into a round shape. In this way, clogging of the slot stop A due to burrs and burrs is prevented, and at least burrs and burrs on the opening edge on the side where the concave grooves 2e are formed hardly occur.

図9(b)は面取り状に加工した凹溝2fである点では上記実施形態と同様であるが、面取りの角度φが上記実施形態よりさらに小さく(30度以下)されている。したがって、凹溝2fの側の縁部にバリやカエリ等がさらに発生しにくくなるように構成されている。また、図9(c)はスロット絞りAの軸線方向両側の開口縁にそれぞれ凹溝2gと3gを共に形成してなる場合を示す。この場合、各凹溝の断面形状は上記実施形態のものとされているが、図9(a)又は(b)に示すように任意に構成できる。   FIG. 9B is the same as the above embodiment in that the groove 2f is processed into a chamfered shape, but the chamfering angle φ is further smaller than the above embodiment (30 degrees or less). Therefore, it is configured such that burrs, burrs, and the like are more unlikely to occur at the edge on the concave groove 2f side. FIG. 9 (c) shows a case in which the concave grooves 2g and 3g are formed on the opening edges on both sides in the axial direction of the slot stop A, respectively. In this case, the cross-sectional shape of each concave groove is that of the above-described embodiment, but can be arbitrarily configured as shown in FIG. 9 (a) or (b).

図9(d)は、上記実施形態とは異なる凹溝2hの形成態様を示す展開図である。この例では、スロット絞りAが各領域内に形成されている点では上記実施形態と同様であるが、凹溝2hがスロット絞りAごとに形成されているのではなく、隣接する二つのスロット絞りA、Aに亘って一つの凹溝2hが形成されている点で異なる。このような凹溝2hであっても、円周方向に見て不連続に形成されている点では上記実施形態と同様であり、隣接する二つの領域間の気体の流通性が多少増加してしまうものの、基本的に同様の作用効果を奏する。   FIG. 9D is a development view showing a formation mode of the recessed groove 2h different from the above embodiment. In this example, the slot stop A is formed in each region in the same manner as in the above embodiment, but the recessed groove 2h is not formed for each slot stop A, but two adjacent slot stops. A and A differ in that one concave groove 2h is formed. Even in such a concave groove 2h, it is the same as the above embodiment in that it is formed discontinuously when viewed in the circumferential direction, and the gas flowability between two adjacent regions is somewhat increased. However, basically the same effect is obtained.

尚、本発明の静圧気体軸受は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The hydrostatic gas bearing of the present invention is not limited to the above-described illustrated examples, and it is needless to say that various changes can be made without departing from the gist of the present invention.

実施形態の静圧気体軸受の縦断面図。The longitudinal cross-sectional view of the static pressure gas bearing of embodiment. 図1のII−II線矢視図。II-II arrow directional view of FIG. 軸受面の展開図。FIG. 軸方向の仮定的圧力分布。A hypothetical pressure distribution in the axial direction. 解析に用いるパラメータを説明するための偏心状態を示す断面図。Sectional drawing which shows the eccentric state for demonstrating the parameter used for an analysis. 凹溝の形状寸法を示す拡大部分断面図。 The expanded partial sectional view which shows the shape dimension of a ditch | groove . 凹溝による付加容積の形状寸法を示す説明斜視図。 The explanatory perspective view which shows the shape dimension of the additional volume by a ditch | groove . 凹溝の許容面取幅と深さの関係を気体の流量及び負荷容量と共に示すグラフ。 The graph which shows the relationship between the allowable chamfering width and depth of a ditch | groove with the flow volume and load capacity of gas. 凹溝の他の断面形状及び平面形状例を示す拡大部分断面図(a)−(c)及び平面展開図。 The expanded partial sectional view (a)-(c) which shows the other cross-sectional shape and planar shape example of a ditch | groove , and a plane expanded view.

符号の説明Explanation of symbols

1…回転体、2…第1軸受部材、2b…スロット溝、2d…凹溝、3…第2軸受部材、A…スロット絞り、B…円周方向の軸受領域、φ…角度、χ…形成比


DESCRIPTION OF SYMBOLS 1 ... Rotating body, 2 ... 1st bearing member, 2b ... Slot groove, 2d ... Recessed groove , 3 ... 2nd bearing member, A ... Slot restriction | limiting, B ... Circumferential bearing area | region, (phi) ... Angle, (chi) ... formation ratio


Claims (4)

回転体と、該回転体との間に軸受隙間を介して対向する軸受面を備えた軸受体とを具備し、前記軸受隙間に加圧した気体を、前記軸受面にそれぞれ開口し前記回転体の回転軸線周りの円周方向に複数設けられ前記円周方向に沿って延在するスロット絞りを通して導くことにより、前記回転体を回転可能に支持する静圧気体軸受において、
前記軸受面の前記スロット絞りの開口縁において、前記開口縁のうちの少なくとも片側の幅方向縁部がそれぞれ面取り状若しくは丸め状に形成されることにより前記円周方向に沿って延長した形状を有するとともに前記円周方向に不連続に構成された複数の凹溝が前記スロット絞りに直接連通するように設けられ、
前記凹溝の前記円周方向の両端部は、いずれも前記スロット絞りの前記円周方向の開口範囲内において前記スロット絞りの端部よりそれぞれ内側に配置されることを特徴とする静圧気体軸受。
A rotating body and a bearing body provided with a bearing surface opposed to the rotating body via a bearing gap, and the pressurized gas in the bearing gap is opened to the bearing surface, respectively. In a hydrostatic gas bearing that supports the rotating body rotatably by being guided through a slot diaphragm that is provided in a plurality in the circumferential direction around the rotation axis of and extends along the circumferential direction .
In an opening edge of the slot aperture of the bearing surface, at least Rukoto widthwise edges of the one side are formed on the respective chamfered or rounded shape of the opening edge, a shape extending along the circumferential direction wherein the circumferentially discontinuously configured plurality of concave grooves provided so as to communicate directly to the aperture said slot and having,
Said end portions in the circumferential direction are both the slot aperture of the circumferential in the opening range is disposed inside each of the end portions of the diaphragm the slot externally pressurized gas bearing, characterized in Rukoto of the groove .
前記凹は前記スロット絞り毎にそれぞれ形成されていることを特徴とする請求項1に記載の静圧気体軸受。 Hydrostatic gas bearing according to claim 1 wherein the concave groove is characterized by being formed respectively in each aperture said slot. 前記凹溝は、前記スロット絞りの両側の前記幅方向縁部にそれぞれ形成されることを特徴とする請求項1又は2に記載の静圧気体軸受。 The groove, the slot aperture of each side according to claim 1 or 2 in serial mounting of the externally pressurized gas bearing, characterized in that the respectively formed widthwise edges. 前記軸受体は、前記回転体に対する第1軸受面を備えた第1軸受部材と、前記回転体に対する第2軸受面を備えた第2軸受部材とを有し、前記第1軸受部材の端面と前記第2軸受部材の端面が前記回転軸線の方向に当接し、前記第1軸受部材と前記第2軸受部材の相互に当接する両端面の間に前記スロット絞りが構成されていることを特徴とする請求項1乃至3のいずれか一項に記載の静圧気体軸受。 The bearing body includes a first bearing member having a first bearing surface for the rotating body, and a second bearing member having a second bearing surface for the rotating body, and an end surface of the first bearing member; An end surface of the second bearing member abuts in the direction of the rotation axis, and the slot diaphragm is formed between both end surfaces of the first bearing member and the second bearing member that abut against each other. The hydrostatic gas bearing according to any one of claims 1 to 3 .
JP2007265601A 2007-10-11 2007-10-11 Static pressure gas bearing Active JP5122905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007265601A JP5122905B2 (en) 2007-10-11 2007-10-11 Static pressure gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007265601A JP5122905B2 (en) 2007-10-11 2007-10-11 Static pressure gas bearing

Publications (2)

Publication Number Publication Date
JP2009092196A JP2009092196A (en) 2009-04-30
JP5122905B2 true JP5122905B2 (en) 2013-01-16

Family

ID=40664371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007265601A Active JP5122905B2 (en) 2007-10-11 2007-10-11 Static pressure gas bearing

Country Status (1)

Country Link
JP (1) JP5122905B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719616B (en) * 2009-12-28 2013-07-10 苏州工业园区泰格电子科技有限公司 Electric brush component

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937141A (en) * 2012-11-06 2013-02-20 中国计量学院 Low-vibration static pressure gas bearing
JP6146348B2 (en) * 2014-03-17 2017-06-14 スターライト工業株式会社 Hydrostatic fluid bearing
CN111412219A (en) * 2019-01-04 2020-07-14 东北林业大学 Ultra-precise dynamic and static pressure gas bearing device
JP6909514B2 (en) * 2019-11-18 2021-07-28 ピースダイヤモンド工業株式会社 Non-contact sliding fluid bearing and its forming method
CN114770777B (en) * 2022-04-24 2024-04-09 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) Swing mechanism with gas fluid sealing structure and multi-wire saw

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929526B1 (en) * 1967-11-07 1974-08-05
JPS6124817A (en) * 1984-07-13 1986-02-03 Disco Abrasive Sys Ltd Static pressure gas bearing device
JP3194588B2 (en) * 1991-01-30 2001-07-30 豊田工機株式会社 Hydrostatic gas bearing
JP2002174240A (en) * 2000-12-08 2002-06-21 Ntn Corp Hydrostatic gas bearing
JP2002310155A (en) * 2001-04-17 2002-10-23 Teruyuki Maeda Hydrostatic bearing, and method for manufacturing radial orifice used in the bearing
JP3779186B2 (en) * 2001-08-30 2006-05-24 株式会社千葉精密 Static pressure gas bearing
JP4170730B2 (en) * 2002-11-05 2008-10-22 新明和工業株式会社 Hydrostatic bearing and air spindle motor using the same
JP3104039U (en) * 2004-03-16 2004-09-02 濱名鐵工株式会社 Air bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719616B (en) * 2009-12-28 2013-07-10 苏州工业园区泰格电子科技有限公司 Electric brush component

Also Published As

Publication number Publication date
JP2009092196A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5122905B2 (en) Static pressure gas bearing
JP5917030B2 (en) Rolling bearing
KR101277463B1 (en) Multi-thickness film layer bearing cartridge and housing
US7648280B2 (en) Weight reduction for journal air bearing
US5688105A (en) Brush seal for turbo-engines
EP2686587B1 (en) Tapered channel macro/micro feature for mechanical face seals
JPH10231841A (en) Sliding bearing
EP3032123B1 (en) Tilting pad type journal bearing
US6439773B1 (en) Externally pressurized gas bearing spindle assembly
JP6696579B2 (en) Bearing structure and supercharger
JP2009063118A (en) Rolling bearing
JP5241115B2 (en) Needle roller bearing
JPWO2018061671A1 (en) Bearing structure and supercharger
US8382376B2 (en) Split-type sliding bearing for crankshaft in internal combustion engine
CN113958561B (en) Throttle for air-float part and air-float piston comprising same
US20080212907A1 (en) Hydrodynamic bearing, and hydrodynamic bearing-type rotary device and recording and reproducing apparatus equipped with same
JP6644603B2 (en) Washers
JP6138979B2 (en) Rolling bearing
US11719124B2 (en) Turbocharger
JP2001116046A (en) Dynamic pressure bearing device
US10371198B2 (en) Quad foil journal air bearing
JP4989751B2 (en) Double suction pump
JP6708031B2 (en) Rotating machinery and radial foil bearings
JP5076475B2 (en) Seal ring and sealing structure
WO2022118665A1 (en) Spindle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5122905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250