JP3194588B2 - Hydrostatic gas bearing - Google Patents

Hydrostatic gas bearing

Info

Publication number
JP3194588B2
JP3194588B2 JP00945991A JP945991A JP3194588B2 JP 3194588 B2 JP3194588 B2 JP 3194588B2 JP 00945991 A JP00945991 A JP 00945991A JP 945991 A JP945991 A JP 945991A JP 3194588 B2 JP3194588 B2 JP 3194588B2
Authority
JP
Japan
Prior art keywords
bearing
pressure
rotating shaft
movable
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00945991A
Other languages
Japanese (ja)
Other versions
JPH04244623A (en
Inventor
晋一 十合
邦彦 海野
和彦 杉田
和久 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP00945991A priority Critical patent/JP3194588B2/en
Publication of JPH04244623A publication Critical patent/JPH04244623A/en
Application granted granted Critical
Publication of JP3194588B2 publication Critical patent/JP3194588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、回転軸をスラスト方向
に静圧支持する静圧気体軸受に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrostatic gas bearing for supporting a rotary shaft in a thrust direction by static pressure.

【0002】[0002]

【従来の技術】一般に静圧気体軸受は軸受剛性が低い問
題があるが、軸受剛性を向上させたスラスト静圧気体軸
受として図3に示すものが公知である。このスラスト静
圧気体軸受は、回転軸1のフランジ部2を挟むように微
小な軸受隙間3,4を存して対向するスラスト軸受面を
もつ可動ブッシュ5を回転軸1の軸方向に移動可能に設
け、この可動ブッシュ5の軸方向両端をケーシング6と
の間に微小な隙間7,8を存して対向させた構成となっ
ている。
2. Description of the Related Art Generally, a static pressure gas bearing has a problem of low bearing stiffness, but a thrust static pressure gas bearing having improved bearing stiffness is known as shown in FIG. In this thrust hydrostatic gas bearing, a movable bush 5 having opposing thrust bearing surfaces can be moved in the axial direction of the rotating shaft 1 so as to sandwich the flange portion 2 of the rotating shaft 1 with minute bearing gaps 3 and 4 therebetween. , And both ends of the movable bush 5 in the axial direction are opposed to the casing 6 with small gaps 7 and 8 therebetween.

【0003】上記した構成の静圧気体軸受においては、
回転軸1が変位した場合に可動ブッシュ5との一方の軸
受隙間3もしくは4が減少するため、可動ブッシュ5と
ケーシング6との隙間7もしくは8の圧力が上昇して可
動ブッシュ5を回転軸1の変位方向と反対方向に変位さ
せる抗力を発生させることにより、軸受剛性を高めんと
するものである。
[0003] In the above-described hydrostatic gas bearing,
When the rotating shaft 1 is displaced, one of the bearing gaps 3 and 4 with the movable bush 5 is reduced, so that the pressure in the gap 7 or 8 between the movable bush 5 and the casing 6 increases, and the movable bush 5 is moved to the rotating shaft 1. By generating a drag force displacing in the direction opposite to the displacement direction, the bearing rigidity is enhanced.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た構成の静圧気体軸受においては、可動ブッシュ5が回
転軸1のフランジ部2を挟む両面対向式のスラスト軸受
であるため、回転テーブル等に用いる場合にはその剛性
が材料の弾性変形により著しく低下する問題がある。
However, in the hydrostatic gas bearing having the above-described structure, the movable bush 5 is a double-sided opposed thrust bearing that sandwiches the flange portion 2 of the rotating shaft 1 and is therefore used for a rotary table or the like. In this case, there is a problem that the rigidity is significantly reduced due to elastic deformation of the material.

【0005】しかも両面対向式であるため、回転軸1の
フランジ部2と可動ブッシュ5および可動ブッシュ5と
ケーシング6との隙間が通常で20〜40μと狭いこと
とあいまって静圧気体軸受の加工および組付けが難しい
という問題があった。
In addition, since the gap between the flange portion 2 of the rotary shaft 1 and the movable bush 5 and the gap between the movable bush 5 and the casing 6 are usually as narrow as 20 to 40 μm because of the both-side facing type, machining of the hydrostatic gas bearing is performed. There was a problem that assembly was difficult.

【0006】[0006]

【課題を解決するための手段】 本発明は、上記した従
来の問題点に鑑みてなされたもので、回転軸をスラスト
方向に静圧支持する静圧気体軸受において、軸受本体と
前記回転軸に設けたフランジ部との間に可動ブッシュを
回転軸の軸線方向に移動可能に設け、この可動ブッシュ
と前記軸受本体との間に圧力室を形成し、前記可動ブッ
シュと前記回転軸のフランジ部との間にスラスト静圧気
体軸受の軸受隙間を形成し、前記回転軸に負荷が作用し
て前記軸受隙間が狭められるときに前記圧力室内の圧力
を上昇させるために前記圧力室を第1絞りを介して気体
供給源に接続し、前記軸受隙間に所定の静圧力を生じさ
せるように前記軸受隙間を第2絞りを介して前記圧力室
に連通し、前記可動ブッシュを通常は回転軸の軸線方向
の所定位置に保持するとともに、前記圧力室内の圧力が
上昇して前記可動ブッシュが前記負荷に逆らう方向に変
位するとき、弾性変形して前記可動ブッシュの変位を許
容するばね部材を設けたものである。また、本発明は、
好適には請求項2に記載されるように、軸受隙間が減少
する方向の回転軸の変位量が、前記圧力室内の圧力上昇
が負荷作用方向に逆行して前記可動ブッシュを移動する
変位量と前記圧力室内の圧力上昇に伴う軸受隙間の増加
量との和と等しくなるように前記ばね部材のばね力を選
定したものである。
The present invention SUMMARY OF] has been made in view of the conventional problems described above, in the hydrostatic gas bearing for hydrostatic supporting the rotary shaft in the thrust direction, the rotary shaft and the shaft bearing main body A movable bush is provided between the movable bush and the bearing body so as to be movable in the axial direction of the rotating shaft, and a pressure chamber is formed between the movable bush and the bearing body. A bearing gap of the thrust static pressure gas bearing is formed between the bearing and a load acting on the rotating shaft.
The pressure in the pressure chamber when the bearing gap is narrowed
The pressure chamber is connected to a gas supply source through a first throttle to raise the pressure, and a predetermined static pressure is generated in the bearing gap.
The bearing gap communicates with the pressure chamber via a second throttle so as to allow the movable bush to be held at a predetermined position in the axial direction of the rotating shaft, and the pressure in the pressure chamber is reduced.
Rises and the movable bush changes in the direction against the load.
When it moves, it elastically deforms to allow the displacement of the movable bush.
A spring member is provided. Also, the present invention
Preferably, the bearing clearance is reduced as described in claim 2
The displacement of the rotating shaft in the direction of
Moves the movable bush in a direction opposite to the load acting direction.
Increase in bearing clearance due to displacement and pressure increase in the pressure chamber
The spring force of the spring member is selected to be equal to the sum of
It is specified.

【0007】[0007]

【作用】 上記の構成によると、回転軸に力が加わって
軸方向に変位すると、回転軸のフランジ部と可動ブッシ
ュの軸受隙間が減少し、これによって第1絞りと第2絞
りとの間に設けられた圧力室の圧力が上昇する。この圧
力上昇により可動ブッシュがばね部材に抗して逆方向に
変位すると同時に、軸受隙間に供給される気体圧力が上
昇して軸受隙間を増大するように作用する。その結果、
軸受隙間を減少する方向に作用したときの回転軸の軸方
向変位は、逆方向への可動ブッシュの変位及び軸受隙間
の増大により減少される。 好適には、ばね部材のばね力
を請求項2に記載の発明のように選定することにより、
回転軸の変位に対して、逆に回転軸は、可動ブッシュの
逆方向における変位分と軸受隙間の増加分との総和だけ
変位されることになり、回転軸は変位前の通常位置へ復
帰され、無限剛性が達成される。
According to the above configuration, when a force is applied to the rotating shaft and the shaft is displaced in the axial direction, the bearing gap between the flange portion of the rotating shaft and the movable bush decreases, whereby the gap between the first throttle and the second throttle is reduced. The pressure of the provided pressure chamber increases. Due to this pressure increase, the movable bush is displaced in the opposite direction against the spring member, and at the same time, the gas pressure supplied to the bearing gap increases to act to increase the bearing gap. as a result,
The direction of the rotating shaft when acting in a direction to reduce the bearing clearance
The direction displacement is the displacement of the movable bush in the opposite direction and the bearing clearance.
Is reduced by the increase of Preferably, the spring force of the spring member
Is selected as in the invention of claim 2,
Contrary to the displacement of the rotating shaft, the rotating shaft
The shaft is displaced by the sum of the displacement in the opposite direction and the increase in bearing clearance, and the rotating shaft returns to the normal position before the displacement
And infinite stiffness is achieved.

【0008】[0008]

【実施例】以下本発明の実施例を図面に基づいて説明す
る。図1において、10は静圧気体軸受の軸受本体を示
し、この軸受本体10には回転軸11が鉛直軸線のまわ
りに回転可能に貫通されている。軸受本体10には回転
軸11の外周と微小隙間を存して遊嵌するラジアル静圧
気体軸受12が形成され、このラジアル静圧気体軸受1
2には絞り13を介して気体供給源に接続された気体通
路14が連通されている。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 10 denotes a bearing body of a static pressure gas bearing, and a rotating shaft 11 is rotatably penetrated through the bearing body 10 around a vertical axis. The bearing body 10 is formed with a radial static pressure gas bearing 12 which is loosely fitted to the outer periphery of the rotating shaft 11 with a small gap.
A gas passage 14 connected to a gas supply source via a throttle 13 is connected to 2.

【0009】前記軸受本体10上には可動ブッシュ15
が上下方向に移動可能に設けられ、この可動ブッシュ1
5の下面と軸受本体10の上面との間には複数の弾性シ
ールリング16が円周上等角度間隔に配置され、この弾
性シールリング16によって可動ブッシュ15と軸受本
体10との間に複数の圧力室17を形成している。これ
ら圧力室17は毛細管からなる第1絞り18を介して前
記気体通路14に連通されている。
A movable bush 15 is provided on the bearing body 10.
Is provided so as to be movable in the vertical direction.
A plurality of elastic seal rings 16 are arranged circumferentially at equal angular intervals between the lower surface of the bearing 5 and the upper surface of the bearing body 10, and a plurality of elastic seal rings 16 are provided between the movable bush 15 and the bearing body 10 by the elastic seal rings 16. A pressure chamber 17 is formed. These pressure chambers 17 are connected to the gas passage 14 via a first throttle 18 made of a capillary.

【0010】前記可動ブッシュ15は周縁部を軸受本体
10に取付けられた環状のばね部材1により通常所定
の高さ位置に保持されており、しかしてばね部材19を
弾性変形して上方向に変位可能となっている。なお、前
記弾性シールリング16は前記可動ブッシュ15の上下
動の変位を吸収し、可動ブッシュ15の上下動にかかわ
らず前記圧力室17を画定できるようになっている。
[0010] The movable bushing 15 is held in a normal predetermined height position by an annular spring member 1 9 attached to the bearing body 10 and the peripheral portion, Thus the spring member 19 upward elastically deformed It can be displaced. The elastic seal ring 16 absorbs the displacement of the movable bush 15 in the vertical direction, and can define the pressure chamber 17 regardless of the vertical movement of the movable bush 15.

【0011】前記回転軸11の上端にはフランジ部21
が形成され、このフランジ部21の下面は可動ブッシュ
15の上面と僅かな軸受隙間を存して対向されてスラス
ト静圧気体軸受22を形成している。かかるスラスト静
圧気体軸受22の軸受隙間は可動ブッシュ15に形成さ
れた第2絞り23を介して前記圧力室17に連通されて
いる。かかる第2絞り23は一例として環状のスロット
絞りにて構成され、このスロット絞りを構成するために
可動ブッシュ15は互いに径の異なる外周面と内周面を
もつ2部材15A,15Bにて構成され、この2部材1
5A,15Bの外周面と内周面との間で微小幅の環状ス
ロット絞りを形成している。なお、実施例においては、
ラジアル静圧気体軸受12の絞り13も同様にスロット
絞りにて構成されている。
At the upper end of the rotating shaft 11, a flange portion 21 is provided.
The lower surface of the flange portion 21 is opposed to the upper surface of the movable bush 15 with a small bearing gap to form a thrust hydrostatic gas bearing 22. The bearing gap of the thrust static pressure gas bearing 22 communicates with the pressure chamber 17 via a second throttle 23 formed in the movable bush 15. The second throttle 23 is formed of, for example, an annular slot throttle. To form the slot throttle, the movable bush 15 is formed of two members 15A and 15B having an outer peripheral surface and an inner peripheral surface having different diameters. , These two members 1
An annular slot diaphragm having a minute width is formed between the outer peripheral surface and the inner peripheral surface of 5A and 15B. In the examples,
The throttle 13 of the radial static pressure gas bearing 12 is also constituted by a slot throttle.

【0012】上記した構成において、気体供給源より気
体通路14に加圧気体が供給されると、この加圧気体
は、絞り13を介してラジアル静圧気体軸受12に供給
されて回転軸11をラジアル方向に静圧支持するととも
に、第1絞り18、圧力室17および第2絞り23を介
してスラスト静圧気体軸受22に供給されて回転軸11
をスラスト方向に静圧支持する。
In the above-described configuration, when pressurized gas is supplied from the gas supply source to the gas passage 14, the pressurized gas is supplied to the radial static pressure gas bearing 12 via the throttle 13 to move the rotating shaft 11. In addition to supporting the static pressure in the radial direction, the rotary shaft 11 is supplied to the thrust static pressure gas bearing 22 via the first throttle 18, the pressure chamber 17 and the second throttle 23.
Is supported in the thrust direction by static pressure.

【0013】ここで、回転軸11に下方向の荷重Wが加
わり、回転軸11が下方向にΔhだけ変位すると、回転
軸11のフランジ部21と可動ブッシュ15との軸受隙
間はΔhだけ減少する。この軸受隙間の減少により軸受
隙間より流出する気体の流出抵抗が高まるため、第1絞
り18と第2絞り23との間に設けられた圧力室17の
圧力が上昇する。この圧力上昇により可動ブッシュ15
はばね部材19に抗して上方に変位し、この上方変位は
圧力室17の圧力上昇とばね部材19の反力とが釣り合
う量Δh1となる。同時に前記圧力室17の圧力上昇に
よりスラスト静圧気体軸受22に供給される気体圧力が
上昇するため、その圧力上昇に見合った量Δh2だけ回
転軸11のフランジ部21は可動ブッシュ15に対して
軸受隙間を大きくするように上方に変位される。
Here, when a downward load W is applied to the rotating shaft 11 and the rotating shaft 11 is displaced downward by Δh, the bearing gap between the flange portion 21 of the rotating shaft 11 and the movable bush 15 decreases by Δh. . Since the resistance of the gas flowing out of the bearing gap increases due to the decrease in the bearing gap, the pressure in the pressure chamber 17 provided between the first throttle 18 and the second throttle 23 increases. Due to this pressure increase, the movable bush 15
Is displaced upward against the spring member 19, and this upward displacement is an amount Δh1 at which the pressure rise in the pressure chamber 17 and the reaction force of the spring member 19 are balanced. At the same time, the gas pressure supplied to the thrust static pressure gas bearing 22 rises due to the pressure rise in the pressure chamber 17, so that the flange portion 21 of the rotary shaft 11 bears against the movable bush 15 by an amount Δh2 corresponding to the pressure rise. It is displaced upward so as to increase the gap.

【0014】このような結果、回転軸11の下方向変位
Δhに対して、逆に回転軸11は、可動ブッシュ15の
上昇分Δh1と、可動ブッシュ15に対するフランジ部
21の上昇分Δhとの総和だけ上方向に変位されるこ
とになる。ここでばね部材19のばね剛性を適切に選定
することにより、下記式が満足され、回転軸11の変位
は軸受本体10に対して0とすることができ、無限剛性
が達成される。
As a result, with respect to the downward displacement Δh of the rotating shaft 11, the rotating shaft 11, on the contrary, increases the rising Δh 1 of the movable bush 15 and the rising Δh 2 of the flange 21 with respect to the movable bush 15. It will be displaced upward by the sum. Here, by appropriately selecting the spring stiffness of the spring member 19, the following expression is satisfied, the displacement of the rotary shaft 11 can be made zero with respect to the bearing body 10, and infinite stiffness is achieved.

【0015】Δh=Δh1+Δh2 図2は横軸をスラスト静圧気体軸受22の固定の基準面
からの軸受隙間h、すなわち初期設定位置における可動
ブッシュ15上面からフランジ部21下面までの距離
h、縦軸を荷重Wとして、第2絞り(スロット絞り)2
3のスロット隙間およびスロット長さがそれぞれ異なる
2種類の軸受負荷特性、を示すもので、、上の
A点は初期設定点を示す。この図から軸受隙間の実際上
の使用範囲においては、荷重Wの変化にかかわらずスラ
スト静圧気体軸受22の上記軸受隙間hは殆ど変化しな
いことが認められる。
Δh = Δh1 + Δh2 In FIG. 2, the horizontal axis represents the bearing gap h from the fixed reference plane of the thrust hydrostatic gas bearing 22, that is, the distance h from the upper surface of the movable bush 15 to the lower surface of the flange portion 21 at the initial setting position, and the vertical axis. With the load W as the second throttle (slot throttle) 2
3 shows two types of bearing load characteristics in which the slot gap and the slot length are different from each other, and point A above indicates an initial set point. From this figure, it is recognized that the bearing gap h of the thrust hydrostatic gas bearing 22 hardly changes regardless of the change in the load W in the actual use range of the bearing gap.

【0016】[0016]

【発明の効果】以上述べたように本発明によれば、スラ
スト静圧気体軸受の無限剛性を達成できるとともに、片
面にのみスラスト軸受面を有するものに適用できるの
で、軸受隙間が小さなものでもスラスト静圧気体軸受の
加工および組付けを容易に行い得る効果がある。
As described above, according to the present invention, the infinite rigidity of the thrust hydrostatic gas bearing can be achieved, and the present invention can be applied to a thrust hydrostatic gas bearing having only one thrust bearing surface. There is an effect that machining and assembly of the static pressure gas bearing can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す気体静圧軸受の断面図で
ある。
FIG. 1 is a sectional view of a gas static pressure bearing showing an embodiment of the present invention.

【図2】軸受負荷特性を示す図である。FIG. 2 is a diagram showing a bearing load characteristic.

【図3】従来の静圧気体軸受の断面図である。FIG. 3 is a sectional view of a conventional hydrostatic gas bearing.

【符号の説明】[Explanation of symbols]

10 軸受本体 11 回転軸 15 可動ブッシュ 17 圧力室 18 第1絞り 19 ばね部材 22 スラスト静圧気体軸受 23 第2絞り DESCRIPTION OF SYMBOLS 10 Bearing main body 11 Rotating shaft 15 Movable bush 17 Pressure chamber 18 1st throttle 19 Spring member 22 Thrust static pressure gas bearing 23 2nd throttle

───────────────────────────────────────────────────── フロントページの続き 審査官 藤村 聖子 (56)参考文献 実開 昭53−7545(JP,U) (58)調査した分野(Int.Cl.7,DB名) F16C 32/00 - 32/06 ────────────────────────────────────────────────── ─── Continuing from the front page Examiner Seiko Fujimura (56) References Japanese Utility Model Showa 53-7545 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F16C 32/00-32 / 06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回転軸をスラスト方向に静圧支持する静
圧気体軸受において、軸受本体と前記回転軸に設けたフ
ランジ部との間に可動ブッシュを回転軸の軸線方向に
可能に設け、この可動ブッシュと前記軸受本体との間
に圧力室を形成し、前記可動ブッシュと前記回転軸のフ
ランジ部との間にスラスト静圧気体軸受の軸受隙間を形
成し、前記回転軸に負荷が作用して前記軸受隙間が狭め
られるときに前記圧力室内の圧力を上昇させるために
記圧力室を第1絞りを介して気体供給源に接続し、前記
軸受隙間に所定の静圧力を生じさせるように前記軸受隙
間を第2絞りを介して前記圧力室に連通し、前記可動ブ
ッシュを通常は回転軸の軸線方向の所定位置に保持する
とともに、前記圧力室内の圧力が上昇して前記可動ブッ
シュが前記負荷に逆らう方向に変位するとき、弾性変形
して前記可動ブッシュの変位を許容するばね部材を設け
たことを特徴とする静圧気体軸受。
In a hydrostatic gas bearing for supporting a rotating shaft in a thrust direction by static pressure, a movable bush is moved in an axial direction of the rotating shaft between a bearing body and a flange provided on the rotating shaft.
Rotatably in provided to form a pressure chamber between the movable bushing the bearing body to form a bearing gap of the thrust hydrostatic gas bearing between the flange portion of the rotary shaft and the movable bushing, said rotating Load acts on the shaft to narrow the bearing gap
Through said first aperture in front <br/> Symbol pressure chamber to raise the pressure in the pressure chamber is connected to a gas source as it is, the
The bearing gap communicates with the pressure chamber via a second throttle so as to generate a predetermined static pressure in the bearing gap, and the movable bush is normally held at a predetermined position in the axial direction of the rotating shaft , and the pressure is reduced. When the pressure in the room rises and the movable
When the bush is displaced in the direction against the load, elastic deformation
And a spring member that allows displacement of the movable bush .
【請求項2】 前記軸受隙間を減少する方向に負荷が作2. A load is applied in a direction to decrease the bearing clearance.
用するときの前記回転軸の変位量に対し、前記圧力室内When the pressure chamber is used,
の圧力上昇が負荷作用方向に逆行して前記可動ブッシュOf the movable bush
を移動する変位量と前記圧力室内の圧力上昇に伴う前記The displacement amount to move and the pressure increase in the pressure chamber
軸受隙間の増加量との和が等しくなるように、前記ばねThe spring is set so that the sum with the increase amount of the bearing clearance becomes equal.
部材のばね力が選定されることを特徴とする請求項1記2. The spring force of the member is selected.
載の静圧気体軸受。On-board static pressure gas bearing.
JP00945991A 1991-01-30 1991-01-30 Hydrostatic gas bearing Expired - Fee Related JP3194588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00945991A JP3194588B2 (en) 1991-01-30 1991-01-30 Hydrostatic gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00945991A JP3194588B2 (en) 1991-01-30 1991-01-30 Hydrostatic gas bearing

Publications (2)

Publication Number Publication Date
JPH04244623A JPH04244623A (en) 1992-09-01
JP3194588B2 true JP3194588B2 (en) 2001-07-30

Family

ID=11720872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00945991A Expired - Fee Related JP3194588B2 (en) 1991-01-30 1991-01-30 Hydrostatic gas bearing

Country Status (1)

Country Link
JP (1) JP3194588B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908372B2 (en) * 2007-10-11 2012-04-04 株式会社ダイヤ精機製作所 Hydrostatic fluid bearing
JP5122905B2 (en) * 2007-10-11 2013-01-16 株式会社ダイヤ精機製作所 Static pressure gas bearing

Also Published As

Publication number Publication date
JPH04244623A (en) 1992-09-01

Similar Documents

Publication Publication Date Title
US8726503B2 (en) Method of positioning a bearing assembly and centering support structure therefor
JP4287021B2 (en) Foil type hydrodynamic bearing
EP1945959B1 (en) Support device for bearing assemblies
EP0317621B1 (en) Hydro dynamic bearing and methods of making same
JPS6024295B2 (en) Installation for long shafts with a substantially horizontal axis, especially for turbo engines
JP4460730B2 (en) Spindle motor
US3834775A (en) Ferrohydrodynamic low-friction bearing with improved volume compensation and fluid seal
WO1991014308A1 (en) Low-profile disk drive motor
US4668105A (en) Bearings for rotary machines
KR950701417A (en) Fluid damping bearing
US3434762A (en) Hydrodynamic shaft bearing
US5142174A (en) Low-profile disk drive motor with deflecting-pad bearings
US4343203A (en) Rotor structure for gyroscopic apparatus
JP3194588B2 (en) Hydrostatic gas bearing
CN112513480B (en) Damping bearing and damping
JPH0342255Y2 (en)
US3508799A (en) Gas bearings
US5322371A (en) Fluid film bearing
JPH0211615Y2 (en)
JPH02146312A (en) Dead load type bearing
JP4299625B2 (en) Foil type hydrodynamic bearing
JP3194590B2 (en) Movable body guidance device
US4051657A (en) Spinning-ring bearing and support
JP2012052632A (en) Flexible pad bearing
JP7523087B2 (en) Bearing structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees