JP5122384B2 - Gear support structure - Google Patents

Gear support structure Download PDF

Info

Publication number
JP5122384B2
JP5122384B2 JP2008169584A JP2008169584A JP5122384B2 JP 5122384 B2 JP5122384 B2 JP 5122384B2 JP 2008169584 A JP2008169584 A JP 2008169584A JP 2008169584 A JP2008169584 A JP 2008169584A JP 5122384 B2 JP5122384 B2 JP 5122384B2
Authority
JP
Japan
Prior art keywords
gear
shaft
intermediate gear
gear shaft
support structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008169584A
Other languages
Japanese (ja)
Other versions
JP2010007799A (en
Inventor
博 野村
孝治 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2008169584A priority Critical patent/JP5122384B2/en
Priority to US12/265,150 priority patent/US8117936B2/en
Publication of JP2010007799A publication Critical patent/JP2010007799A/en
Application granted granted Critical
Publication of JP5122384B2 publication Critical patent/JP5122384B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Details Of Gearings (AREA)
  • Lens Barrels (AREA)
  • Gear Transmission (AREA)

Description

本発明は、駆動力伝達用ギヤ列の構成ギヤの支持構造に関する。   The present invention relates to a support structure for a component gear of a driving force transmission gear train.

モータなどの駆動源に設けた回転出力軸の回転を軸方向移動に変換して駆動対象を移動させる駆動機構では、回転出力軸にリードスクリュー(送りねじ)を直結させるタイプと、回転出力軸からギヤ列を介して別設のリードスクリューに回転力を伝達するタイプが知られている。前者のタイプは、駆動機構が回転出力軸の軸線方向に長くなりがちで、軸方向での薄型化を狙った機器には不向きである。後者のギヤ列を用いたタイプは、モータなどの駆動源とリードスクリューを並べて(重ねて)配置できるので、駆動機構を薄型化することができる。但し、ギヤ列を用いた場合、回転出力軸側の原動ギヤとリードスクリュー側の従動ギヤに加えて、その間に位置される中間ギヤにおける支持安定性に留意する必要が生じる。例えば、撮像装置のAF(オートフォーカス)機構では、モータの高速な間欠駆動が行われるため、中間ギヤの支持部に余分な遊びがあると、ギヤのがたつきや異音が生じやすい。このようなギヤ列の中間ギヤを安定保持する構造として、例えば特許文献1がある。
特開2007−114530号公報
In a drive mechanism that converts the rotation of a rotary output shaft provided in a drive source such as a motor into an axial movement to move the object to be driven, a type in which a lead screw (feed screw) is directly connected to the rotary output shaft, and a rotary output shaft A type is known in which rotational force is transmitted to a separate lead screw via a gear train. In the former type, the drive mechanism tends to be long in the axial direction of the rotation output shaft, and is not suitable for a device aiming at thinning in the axial direction. In the type using the latter gear train, a drive source such as a motor and a lead screw can be arranged (stacked) side by side, so that the drive mechanism can be thinned. However, when the gear train is used, it is necessary to pay attention to the support stability in the intermediate gear positioned between the driving gear on the rotation output shaft side and the driven gear on the lead screw side. For example, in the AF (autofocus) mechanism of the image pickup apparatus, high-speed intermittent driving of the motor is performed. Therefore, if there is extra play in the support portion of the intermediate gear, gear rattling or abnormal noise is likely to occur. For example, Patent Document 1 discloses a structure for stably holding the intermediate gear of such a gear train.
JP 2007-114530 A

特許文献1では、ギヤ列の中間ギヤを構成する平歯ギヤの一端部と、この平歯ギヤの回転軸を支持する支持部材との間にスプリングワッシャ(皿ばね)を挿入し、該スプリングワッシャの付勢力によって平歯ギヤを安定させている。一般に、このタイプの付勢部材は、サイズ(支点から着力点までの距離)が小さいほど、単位変位量あたりの弾性力の変化(荷重変動)が大きくなるため、個々の部品寸法誤差を考慮した場合、安定した付勢力を得るためには、付勢部材のサイズは大きいことが好ましい。特許文献1のスプリングワッシャは、円形、楕円形、長方形などの外形形状が提案されており、このような形状のスプリングワッシャにおいてサイズの大型化を図った場合、スプリングワッシャとの干渉を避けるために、中間ギヤとその前後のギヤとのギヤ軸間隔を大きくする必要があり、ギヤ機構が大型化する原因となる。   In Patent Document 1, a spring washer (disc spring) is inserted between one end of a spur gear that constitutes an intermediate gear of a gear train and a support member that supports the rotation shaft of the spur gear, and the spring washer The spur gear is stabilized by the biasing force. In general, the smaller the size (distance from the fulcrum to the applied force point) of this type of urging member, the greater the change in elastic force per unit displacement (load fluctuation). In this case, in order to obtain a stable urging force, the size of the urging member is preferably large. The spring washer of Patent Document 1 has been proposed to have an outer shape such as a circle, an ellipse, and a rectangle. When the size of the spring washer having such a shape is increased, interference with the spring washer is avoided. In addition, it is necessary to increase the gear shaft interval between the intermediate gear and the front and rear gears, which causes an increase in the size of the gear mechanism.

本発明は、以上の問題点に鑑みてなされたもので、コンパクトでスペース効率に優れ、中間ギヤを高精度に保持することが可能なギヤ支持構造を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a gear support structure that is compact and excellent in space efficiency, and that can hold an intermediate gear with high accuracy.

本発明は、2つのギヤと、該2つのギヤに噛合して回転伝達を行う中間ギヤの支持構造において、中間ギヤのギヤ軸を支持するギヤ軸支持部材と、ギヤ軸支持部材と中間ギヤの間に挿入されるばね部材とを備え、このばね部材が、中間ギヤに当接するギヤ当接部と、該ギヤ当接部を中心とする放射方向に延出されてギヤ軸支持部材に当接する弾性変形可能な少なくとも3つの弾性支持脚とを備えており、該弾性支持脚をそれぞれ弾性変形させて中間ギヤをギヤ軸の軸線方向に付勢すること;及び、中間ギヤが噛合する2つのギヤのそれぞれの少なくとも一部が、中間ギヤのギヤ軸の軸線に沿う方向から見て、ばね部材の弾性支持脚にそれぞれ挟まれる少なくとも3つの脚間空間のうち異なる2つの脚間空間に位置しており、かつ中間ギヤのギヤ軸の軸線と直交する方向から見て、2つのギヤをそれぞれ支持するギヤ軸が2つの脚間空間に位置していること;を特徴としている。 The present invention relates to two gears and a support structure for an intermediate gear that meshes with the two gears to transmit rotation, a gear shaft support member that supports the gear shaft of the intermediate gear, a gear shaft support member, and an intermediate gear. A spring member inserted between the gear contact portion and a gear contact portion that contacts the intermediate gear, and extends in a radial direction around the gear contact portion and contacts the gear shaft support member. And at least three elastic support legs that can be elastically deformed, each of the elastic support legs is elastically deformed to urge the intermediate gear in the axial direction of the gear shaft; and two gears meshed with the intermediate gear each at least partially, when viewed from a direction along the axis of the gear shaft of the intermediate gear, located in two different inter-leg spaces of the at least three legs between the space sandwiched respectively elastically supporting leg of the spring member Gear and intermediate gear It is characterized in; as viewed from a direction perpendicular to the axis of the shaft, the gear shaft supporting the two gears each to be located at two inter-leg spaces.

ばね部材に設けられる3つの弾性支持脚は、ギヤ当接部から先端まで略同じ長さであり、かつ略等角度間隔で配置されていることが好ましい。 Three elastic support leg provided on the spring member is substantially the same length from the gear contact portion to the tip, and it is preferably disposed at a substantially uniform angular intervals.

ギヤ軸支持部材には、弾性支持脚に係合してばね部材の回転を規制する回転規制部を設けることが好ましい。例えば、ギヤ軸支持部材が中間ギヤを格納する筒状凹部を有しており、この筒状凹部の内壁面に形成された凹部によって回転規制部を形成することができる。   The gear shaft support member is preferably provided with a rotation restricting portion that engages with the elastic support leg to restrict the rotation of the spring member. For example, the gear shaft support member has a cylindrical recess for storing the intermediate gear, and the rotation restricting portion can be formed by the recess formed on the inner wall surface of the cylindrical recess.

ギヤ軸支持部材として、中間ギヤのギヤ軸が突出形成されたギヤ軸形成部材と、該ギヤ軸形成部材に固定されてギヤ軸の先端を支持し、ギヤ軸に対し中間ギヤを抜け止めさせる抜止部材とを有する態様では、ばね部材は、ギヤ軸形成部材と中間ギヤの間、あるいは抜止部材と中間ギヤの間に選択して挿入することができる。   As a gear shaft support member, a gear shaft forming member from which the gear shaft of the intermediate gear is formed to be protruded, and a retaining member that is fixed to the gear shaft forming member and supports the tip of the gear shaft and prevents the intermediate gear from coming off from the gear shaft. In the aspect having the member, the spring member can be selectively inserted between the gear shaft forming member and the intermediate gear or between the retaining member and the intermediate gear.

ばね部材のギヤ当接部には、中間ギヤのギヤ軸を挿通させる開口を形成してもよい。   An opening through which the gear shaft of the intermediate gear is inserted may be formed in the gear contact portion of the spring member.

本発明は、様々な機器のギヤ機構に適用が可能であり、例えば、撮像装置のAFレンズ駆動用のギヤ機構に特に好適である。   The present invention can be applied to a gear mechanism of various devices, and is particularly suitable for, for example, a gear mechanism for driving an AF lens of an imaging apparatus.

以上の本発明によれば、中間ギヤに噛合する前後のギヤ及びそのギヤ軸に対してばね部材の弾性支持脚が干渉しない位置にあるため、各ギヤとばね部材をスペース効率良く配置することができる。そして、ばね部材の弾性支持脚の長さが前後のギヤとの関係による制限を受けず、弾性支持脚の長さを自由に選択して任意のばねサイズ及び付勢力に設定できるため、製品誤差による付勢力の変動を抑制して中間ギヤを高精度に安定して支持することができる。また、小型のばね部材で精度管理を厳しくして製品ごとの付勢力の変動を少なくしていくという方向性に比べて、本発明を適用した場合、ばね部材の製造コストを抑えることができる。   According to the present invention described above, since the elastic support legs of the spring member do not interfere with the front and rear gears meshed with the intermediate gear and the gear shaft, the gears and the spring members can be arranged in a space-efficient manner. it can. The length of the elastic support leg of the spring member is not limited by the relationship with the front and rear gears, and the length of the elastic support leg can be freely selected and set to an arbitrary spring size and biasing force. It is possible to stably support the intermediate gear with high accuracy by suppressing the fluctuation of the urging force due to. Further, when the present invention is applied, the manufacturing cost of the spring member can be suppressed as compared with the direction in which the precision control is strictly controlled by a small spring member and the fluctuation of the urging force for each product is reduced.

図1から図4を参照して、本発明によるギヤ支持構造を備えたズームレンズ鏡筒70の概略構造を説明する。このズームレンズ鏡筒70の撮像光学系は、物体(被写体)側から順に第1レンズ群LG1、第2レンズ群LG2、絞り兼用のシャッタ羽根S、第3レンズ群LG3、ローパスフィルタ25及び撮像素子71を備えており、以下の説明中で光軸方向とは、この撮影光学系の光軸Oと平行な方向を意味する。   A schematic structure of a zoom lens barrel 70 having a gear support structure according to the present invention will be described with reference to FIGS. The imaging optical system of the zoom lens barrel 70 includes, in order from the object (subject) side, a first lens group LG1, a second lens group LG2, a shutter blade S that also serves as an aperture, a third lens group LG3, a low-pass filter 25, and an imaging element. In the following description, the optical axis direction means a direction parallel to the optical axis O of the photographing optical system.

ローパスフィルタ25と撮像素子71はユニット化されて撮像素子ホルダ23に固定され、撮像素子ホルダ23がハウジング22の後部に固定される。ハウジング22の外側には、ズームモータ150とAFモータ160が支持されている。   The low-pass filter 25 and the image sensor 71 are unitized and fixed to the image sensor holder 23, and the image sensor holder 23 is fixed to the rear portion of the housing 22. A zoom motor 150 and an AF motor 160 are supported outside the housing 22.

第3レンズ群LG3を保持する3群レンズ枠51は、ハウジング22に対して光軸方向に移動可能に支持されていて、AFモータ160によって駆動される。   The third group lens frame 51 that holds the third lens group LG3 is supported so as to be movable in the optical axis direction with respect to the housing 22, and is driven by the AF motor 160.

ハウジング22の内側にはカム環11が支持されている。カム環11は、ズームモータ150の駆動力によって回転され、鏡筒収納状態(図3)から撮影状態(図4)になるまでの間は、回転しながら光軸方向に移動し、撮影状態におけるズーム域(図4上半のワイド端と図4下半のテレ端の間)では、光軸方向には定位置で回転される。   A cam ring 11 is supported inside the housing 22. The cam ring 11 is rotated by the driving force of the zoom motor 150 and moves in the optical axis direction while rotating from the lens barrel storage state (FIG. 3) to the photographing state (FIG. 4). In the zoom range (between the wide end in the upper half of FIG. 4 and the tele end in the lower half of FIG. 4), it is rotated at a fixed position in the optical axis direction.

カム環11を挟んで第1繰出筒13と直進案内環10が支持されている。第1繰出筒13と直進案内環10はそれぞれハウジング22に対して光軸方向に直進案内されており、かつカム環11に対しては、相対回転は可能で光軸方向に共に移動するように結合されている。   The first feed cylinder 13 and the straight guide ring 10 are supported with the cam ring 11 in between. The first feeding cylinder 13 and the rectilinear guide ring 10 are each guided in a straight line with respect to the housing 22 in the optical axis direction, and can be relatively rotated with respect to the cam ring 11 and move together in the optical axis direction. Are combined.

直進案内環10は、2群レンズ移動枠8を光軸方向へ相対移動可能に直進案内している。2群レンズ移動枠8の内部には、第2レンズ群LG2を保持する2群レンズ保持枠2、シャッタ羽根Sを保持するシャッタブロック100が支持されている。また、ハウジング22に対して光軸方向に直進案内された第1繰出筒13はさらに、第2繰出筒12を光軸方向へ相対移動可能に直進案内している。第2繰出筒12の内部には、1群レンズ保持枠1を介して第1レンズ群LG1が支持されている。   The rectilinear guide ring 10 guides the second group lens moving frame 8 so that it can move relative to the optical axis. Inside the second group lens moving frame 8, a second group lens holding frame 2 that holds the second lens group LG2 and a shutter block 100 that holds the shutter blades S are supported. Further, the first feeding cylinder 13 guided linearly in the optical axis direction with respect to the housing 22 further guides the second feeding cylinder 12 so as to be relatively movable in the optical axis direction. A first lens group LG <b> 1 is supported inside the second feeding cylinder 12 via a first group lens holding frame 1.

第2繰出筒12は内径方向に突出する1群用カムフォロアCF1を有し、この1群用カムフォロアCF1が、カム環11の外周面に形成した1群制御カム溝CG1に摺動可能に嵌合している。第2繰出筒12は第1繰出筒13を介して光軸方向に直進案内されているため、カム環11が回転すると、1群制御カム溝CG1の形状に従って、第2繰出筒12すなわち第1レンズ群LG1が光軸方向へ所定の軌跡で移動する。   The second feeding cylinder 12 has a first group cam follower CF1 protruding in the inner diameter direction, and the first group cam follower CF1 is slidably fitted in a first group control cam groove CG1 formed on the outer peripheral surface of the cam ring 11. doing. Since the second feeding cylinder 12 is guided linearly in the direction of the optical axis via the first feeding cylinder 13, when the cam ring 11 rotates, the second feeding cylinder 12, i.e., the first feeding cylinder 12, according to the shape of the first group control cam groove CG1. The lens group LG1 moves along a predetermined locus in the optical axis direction.

カム環11の内周面に形成した2群制御カム溝CG2に対し、2群レンズ移動枠8の外周面に設けた2群用カムフォロアCF2が係合している。2群レンズ移動枠8は直進案内環10を介して光軸方向に直進案内されているため、カム環11が回転すると、2群制御カム溝CG2の形状に従って、2群レンズ移動枠8すなわち第2レンズ群LG2が光軸方向へ所定の軌跡で移動する。   The second group cam follower CF2 provided on the outer peripheral surface of the second group lens moving frame 8 is engaged with the second group control cam groove CG2 formed on the inner peripheral surface of the cam ring 11. Since the second group lens moving frame 8 is linearly guided in the optical axis direction via the straight guide ring 10, when the cam ring 11 rotates, the second group lens moving frame 8, i.e., the first group moving frame 8 according to the shape of the second group control cam groove CG2. The two lens group LG2 moves along a predetermined locus in the optical axis direction.

2群レンズ移動枠8と第2繰出筒12の間には、圧縮ばねからなる群間付勢ばね27が挿入されており、2群レンズ移動枠8と第2繰出筒12は互いに離間する方向に付勢されている。   A group biasing spring 27 made of a compression spring is inserted between the second group lens moving frame 8 and the second feeding cylinder 12, and the second group lens moving frame 8 and the second feeding cylinder 12 are separated from each other. Is being energized.

以上の構造からなるズームレンズ鏡筒70は次のように動作する。図1及び図3に示す鏡筒収納状態では、図2及び図4に示す撮影状態よりも光軸方向の光学系の長さ(第1レンズ群LG1の物体側の面から撮像素子71の撮像面までの距離)が短くなっている。この鏡筒収納状態において撮影状態への移行信号(例えば、ズームレンズ鏡筒70が搭載されるカメラに設けたメインスイッチのオン)が入力されると、ズームモータ150が鏡筒繰出方向に駆動され、カム環11が回転しながら光軸方向前方へ繰り出される。直進案内環10と第1繰出筒13は、カム環11と共に前方に直進移動する。カム環11が回転すると、その内側では、直進案内環10を介して直進案内された2群レンズ移動枠8が、2群用カムフォロアCF2と2群制御カム溝CG2の関係によって光軸方向に所定の軌跡で移動される。また、カム環11が回転すると、該カム環11の外側では、第1繰出筒13を介して直進案内された第2繰出筒12が、1群用カムフォロアCF1と1群制御カム溝CG1の関係によって光軸方向に所定の軌跡で移動される。   The zoom lens barrel 70 having the above structure operates as follows. In the lens barrel storage state shown in FIGS. 1 and 3, the length of the optical system in the optical axis direction compared to the imaging state shown in FIGS. 2 and 4 (imaging of the image sensor 71 from the object side surface of the first lens group LG1). The distance to the surface is short. When a transition signal to the photographing state in this lens barrel storage state (for example, a main switch provided in a camera on which the zoom lens barrel 70 is mounted) is input, the zoom motor 150 is driven in the lens barrel feeding direction. The cam ring 11 is fed forward in the optical axis direction while rotating. The rectilinear guide ring 10 and the first feed cylinder 13 move forward together with the cam ring 11. When the cam ring 11 rotates, on the inner side, the second group lens moving frame 8 guided linearly through the straight guide ring 10 is predetermined in the optical axis direction due to the relationship between the second group cam follower CF2 and the second group control cam groove CG2. It is moved by the trajectory. Further, when the cam ring 11 rotates, the second feeding cylinder 12 guided linearly through the first feeding cylinder 13 on the outside of the cam ring 11 is related to the first group cam follower CF1 and the first group control cam groove CG1. Is moved along a predetermined locus in the optical axis direction.

すなわち、鏡筒収納状態からの第1レンズ群LG1と第2レンズ群LG2の繰出量はそれぞれ、前者が、ハウジング22に対するカム環11の前方移動量と、該カム環11に対する第2繰出筒12のカム繰出量との合算値として決まり、後者が、ハウジング22に対するカム環11の前方移動量と、該カム環11に対する2群レンズ移動枠8のカム繰出量との合算値として決まる。ズーミングは、この第1レンズ群LG1と第2レンズ群LG2が互いの空気間隔を変化させながら撮影光軸Oに沿って移動することにより行われる。収納状態から鏡筒繰出を行うと、まず図4の上半断面に示すワイド端の繰出状態になり、さらにズームモータ150を鏡筒繰出方向に駆動させると、図4の下半断面に示すテレ端の繰出状態となる。テレ端とワイド端の間のズーム領域では、カム環11は前述の定位置回転を行い、光軸方向へは進退しない。収納状態への移行信号(例えば、カメラのメインスイッチのオフ)が入力されると、ズームモータ150が鏡筒収納方向に駆動され、ズームレンズ鏡筒70は以上の繰出動作とは逆の収納動作を行う。   That is, the first lens group LG1 and the second lens group LG2 are fed out from the lens barrel retracted state by the former moving amount of the cam ring 11 with respect to the housing 22 and the second feeding cylinder 12 with respect to the cam ring 11, respectively. The latter is determined as the sum of the amount of forward movement of the cam ring 11 relative to the housing 22 and the amount of cam extension of the second group lens moving frame 8 relative to the cam ring 11. Zooming is performed by moving the first lens group LG1 and the second lens group LG2 along the photographing optical axis O while changing the air interval between them. When the lens barrel is extended from the housed state, first, the wide end extended state shown in the upper half section of FIG. 4 is obtained. When the zoom motor 150 is further driven in the lens barrel extending direction, the telephoto section shown in the lower half section of FIG. The end is brought out. In the zoom region between the tele end and the wide end, the cam ring 11 performs the above-mentioned fixed position rotation and does not advance or retreat in the optical axis direction. When a storage state transition signal (for example, turning off the main switch of the camera) is input, the zoom motor 150 is driven in the lens barrel storage direction, and the zoom lens barrel 70 is retracted in the opposite manner to the above-described extension operation. I do.

また、第2繰出筒12の前端部には、第1レンズ群LG1の前方を開閉可能なバリヤ羽根104が設けられており、鏡筒収納状態ではバリヤ羽根104が閉じており、撮影状態への繰り出し動作に応じてバリヤ羽根104が開かれる。   Further, a barrier blade 104 capable of opening and closing the front of the first lens group LG1 is provided at the front end portion of the second feeding cylinder 12, and the barrier blade 104 is closed when the lens barrel is housed, so that the shooting state is restored. The barrier blade 104 is opened according to the feeding operation.

第3レンズ群LG3を支持する3群レンズ枠51は、以上のズームモータ150による第1レンズ群LG1及び第2レンズ群LG2の駆動とは独立して、AFモータ160によって光軸方向に前後移動させることができる。そして、光学系がワイド端からテレ端までのズーム域にあるとき、測距手段によって得られた被写体距離情報に応じてAFモータ160を駆動することにより、第3レンズ群LG3が光軸方向に移動してフォーカシングが実行される。   The third lens group frame 51 that supports the third lens group LG3 is moved back and forth in the optical axis direction by the AF motor 160 independently of the driving of the first lens group LG1 and the second lens group LG2 by the zoom motor 150 described above. Can be made. When the optical system is in the zoom range from the wide end to the tele end, the third lens group LG3 is moved in the optical axis direction by driving the AF motor 160 according to the subject distance information obtained by the distance measuring means. Move to perform focusing.

図5以下に示すように、ハウジング22と撮像素子ホルダ23の間に撮影光軸Oと平行な3群ガイド軸52が設けられ、この3群ガイド軸52に対して、3群レンズ枠51のガイド穴51aが摺動自在に挿通支持されている。3群レンズ枠51は、撮影光軸Oを挟んでガイド穴51aと略対称の位置に設けた回転規制キー51bを、ハウジング22の回転規制溝22aに係合させて回転規制されており、3群ガイド軸52に沿う光軸方向の直進移動のみ可能に案内されている。3群レンズ枠51は、ハウジング22の側部に支持されたトーションばね55によって、光軸方向前方(被写体側)へ向けて付勢されており、この付勢力によって、3群レンズ枠51のナット当付部51cが、前方に位置するAFナット54に当て付いている。   As shown in FIG. 5 and subsequent figures, a third group guide shaft 52 parallel to the photographing optical axis O is provided between the housing 22 and the image sensor holder 23, and the third group lens frame 51 has a third group guide shaft 52. A guide hole 51a is slidably inserted and supported. The third group lens frame 51 is restricted in rotation by engaging a rotation restricting key 51b provided at a position substantially symmetrical to the guide hole 51a with the photographing optical axis O interposed therebetween in the rotation restricting groove 22a of the housing 22. Only the linear movement in the optical axis direction along the group guide shaft 52 is guided. The third group lens frame 51 is urged toward the front in the optical axis direction (subject side) by a torsion spring 55 supported on the side of the housing 22, and the nut of the third group lens frame 51 is urged by this urging force. The abutting portion 51c is in contact with the AF nut 54 located in the front.

AFナット54はAFモータ160を駆動源とする駆動機構によって光軸方向に移動されるものである。ハウジング22の上部には駆動機構組付部(ギヤ軸支持部材、ギヤ軸形成部材)22bが形成され、AFモータ160は駆動機構組付部22bの前面側に固定され、該AFモータ160の回転出力軸160aに設けたピニオン160bが駆動機構組付部22bの後面側に突出する。駆動機構組付部22bの後面側には、ピニオン160bに噛合する中間ギヤ57と、該中間ギヤ57に噛合する従動ギヤ56が軸支されていて、AFモータ160の回転出力軸160aの回転は、ピニオン160bと中間ギヤ57を介して、従動ギヤ56と同軸で一体に回転するスクリューシャフト58に伝達される。スクリューシャフト58は、シャフト回転軸58aを中心として回転自在に、ハウジング22と撮像素子ホルダ23の間に支持されていて、図10や図11に示すように、シャフト回転軸58a上に形成した非円形断面の軸部と、従動ギヤ56に形成した非円形断面穴の嵌合によって、従動ギヤ56とスクリューシャフト58が一体化されている。スクリューシャフト58の外周面には螺旋状の送りねじが形成されていて、この送りねじ形成部分が、ナット当付部51cに形成した貫通穴を通して該ナット当付部51cの前方に突出し、AFナット54のねじ穴に螺合している。AFナット54は、3群レンズ枠51に設けた回転規制突起51dによって、光軸方向に直進案内(回転規制)されていて、スクリューシャフト58が回転すると、その軸方向に直進移動される。   The AF nut 54 is moved in the optical axis direction by a drive mechanism using the AF motor 160 as a drive source. A drive mechanism assembly portion (gear shaft support member, gear shaft forming member) 22b is formed on the upper portion of the housing 22, and the AF motor 160 is fixed to the front side of the drive mechanism assembly portion 22b, and the AF motor 160 rotates. A pinion 160b provided on the output shaft 160a protrudes to the rear surface side of the drive mechanism assembly portion 22b. An intermediate gear 57 meshed with the pinion 160b and a driven gear 56 meshed with the intermediate gear 57 are pivotally supported on the rear surface side of the drive mechanism assembly portion 22b, and the rotation of the rotation output shaft 160a of the AF motor 160 is rotated. , The pinion 160 b and the intermediate gear 57 are transmitted to the screw shaft 58 that rotates coaxially with the driven gear 56. The screw shaft 58 is supported between the housing 22 and the image sensor holder 23 so as to be rotatable about the shaft rotation shaft 58a. As shown in FIGS. 10 and 11, the screw shaft 58 is formed on the shaft rotation shaft 58a. The driven gear 56 and the screw shaft 58 are integrated by fitting a shaft portion having a circular cross section and a non-circular cross sectional hole formed in the driven gear 56. A spiral feed screw is formed on the outer peripheral surface of the screw shaft 58, and this feed screw forming portion projects forward of the nut abutting portion 51c through a through hole formed in the nut abutting portion 51c, and an AF nut. 54 is screwed into the screw hole. The AF nut 54 is linearly guided (rotation restricted) in the optical axis direction by a rotation restricting projection 51d provided on the third group lens frame 51. When the screw shaft 58 rotates, the AF nut 54 moves straight in the axial direction.

3群レンズ枠51は、トーションばね55の付勢力でナット当付部51cがAFナット54に当て付くことによって前方への移動が規制され、3群レンズ枠51の光軸方向での前後位置はAFナット54に依存して決まる。例えば、AFモータ160によってスクリューシャフト58を回転させる上記の駆動機構によってAFナット54を光軸方向前方に移動させると、AFナット54の移動分だけ、トーションばね55の付勢力によって3群レンズ枠51が追随して前方に移動する。逆に、AFナット54を光軸方向後方に移動させると、該AFナット54がナット当付部51cを押し込み、3群レンズ枠51はトーションばね55の付勢力に抗して後方へ移動される。つまり、AFナット54の移動により、第3レンズ群LG3を保持した3群レンズ枠51の光軸方向位置が変化する。   The third group lens frame 51 is restricted from moving forward by the nut abutting portion 51c being applied to the AF nut 54 by the urging force of the torsion spring 55, and the front / rear position of the third group lens frame 51 in the optical axis direction is It depends on the AF nut 54. For example, when the AF nut 54 is moved forward in the optical axis direction by the drive mechanism that rotates the screw shaft 58 by the AF motor 160, the third group lens frame 51 is moved by the urging force of the torsion spring 55 by the amount of movement of the AF nut 54. Follows and moves forward. Conversely, when the AF nut 54 is moved rearward in the optical axis direction, the AF nut 54 pushes the nut abutting portion 51 c, and the third group lens frame 51 is moved rearward against the urging force of the torsion spring 55. . That is, the movement of the AF nut 54 changes the position in the optical axis direction of the third group lens frame 51 holding the third lens group LG3.

図12に示すように、ハウジング22における駆動機構組付部22bの後面側には、ピニオン160bを格納するピニオン格納穴22cと、中間ギヤ57を格納する中間ギヤ格納凹部(筒状凹部)22dと、従動ギヤ56及びスクリューシャフト58を格納するスクリューシャフト格納空間22eが形成されている。スクリューシャフト格納空間22eの前端部には、スクリューシャフト58のシャフト回転軸58aの前端部を回転可能に軸支する軸穴22fが形成されている。ピニオン格納穴22cは、AFモータ160の回転出力軸160aを挿通させるために光軸方向に貫通しているのに対し、中間ギヤ格納凹部22dは底面22d-1を有する筒状の有底穴となっている。そして、この有底の中間ギヤ格納凹部22dの略中央に、光軸方向後方へ向けて突出し、中間ギヤ57を軸支するギヤ軸突起22gが設けられている。図7、図8、図13及び図14に示すように、中間ギヤ57は、ピニオン160bに噛み合う大径ギヤ部57aと、従動ギヤ56に噛み合う小径ギヤ部57bが同軸上に位置する二段平歯ギヤであり、その中心を軸方向に貫通する軸穴57cが形成されている。ギヤ軸突起22gは、この軸穴57cに対応する内径サイズの大径中間部22g-1と、大径中間部22g-1よりも小径の小径先端部22g-2と、中間ギヤ格納凹部22dの底面22d-1上に位置し大径中間部22g-1よりも大径の円板状の基部22g-3を有している。中間ギヤ57の大径ギヤ部57aと小径ギヤ部57bには、ギヤ軸突起22gに軸支された状態で、ギヤ軸突起22gの軸線と直交する軸直交端面57d、57eが形成されている。   As shown in FIG. 12, on the rear surface side of the drive mechanism assembly portion 22b in the housing 22, a pinion storage hole 22c for storing the pinion 160b, an intermediate gear storage recess (tubular recess) 22d for storing the intermediate gear 57, and A screw shaft storage space 22e for storing the driven gear 56 and the screw shaft 58 is formed. A shaft hole 22f that rotatably supports the front end portion of the shaft rotation shaft 58a of the screw shaft 58 is formed in the front end portion of the screw shaft storage space 22e. The pinion storage hole 22c penetrates in the optical axis direction so as to allow the rotation output shaft 160a of the AF motor 160 to pass therethrough, whereas the intermediate gear storage recess 22d has a cylindrical bottomed hole having a bottom surface 22d-1. It has become. A gear shaft projection 22g that protrudes rearward in the optical axis direction and supports the intermediate gear 57 is provided at the approximate center of the bottomed intermediate gear storage recess 22d. As shown in FIGS. 7, 8, 13, and 14, the intermediate gear 57 is a two-stage spur gear in which a large-diameter gear portion 57 a that meshes with the pinion 160 b and a small-diameter gear portion 57 b that meshes with the driven gear 56 are positioned coaxially. A shaft hole 57c that is a gear and penetrates the center in the axial direction is formed. The gear shaft protrusion 22g includes a large-diameter intermediate portion 22g-1 having an inner diameter corresponding to the shaft hole 57c, a small-diameter tip portion 22g-2 having a smaller diameter than the large-diameter intermediate portion 22g-1, and an intermediate gear storage recess 22d. It has a disk-like base portion 22g-3 which is located on the bottom surface 22d-1 and has a larger diameter than the large diameter intermediate portion 22g-1. The large-diameter gear portion 57a and the small-diameter gear portion 57b of the intermediate gear 57 are formed with axial orthogonal end surfaces 57d and 57e orthogonal to the axis of the gear shaft protrusion 22g while being supported by the gear shaft protrusion 22g.

撮像素子ホルダ23は駆動機構組付部22bに対向するギヤ列抜止部(ギヤ軸支持部材、抜止部材)23aを有し、図5に示すように、このギヤ列抜止部23aには、AFモータ160の回転出力軸160aの先端部を回転可能に支持する軸穴23bと、ギヤ軸突起22gの小径先端部22g-2が嵌合する軸固定穴23cと、スクリューシャフト58のシャフト回転軸58aの後端部を回転可能に支持する軸穴23dが形成されている。   The image sensor holder 23 has a gear train retaining portion (gear shaft support member, retaining member) 23a facing the drive mechanism assembly portion 22b. As shown in FIG. 5, the gear train retaining portion 23a includes an AF motor. The shaft hole 23b that rotatably supports the tip of the rotation output shaft 160a of 160, the shaft fixing hole 23c into which the small-diameter tip 22g-2 of the gear shaft protrusion 22g is fitted, and the shaft rotation shaft 58a of the screw shaft 58 A shaft hole 23d for rotatably supporting the rear end portion is formed.

よって、撮像素子ホルダ23をハウジング22の後部に取り付けた状態では、ピニオン160b、中間ギヤ57、従動ギヤ56及びスクリューシャフト58がそれぞれ、駆動機構組付部22bとギヤ列抜止部23aの間で回転可能に保持される。このとき、ピニオン160bの回転中心であるAFモータ160の回転出力軸160aと、中間ギヤ57の回転中心であるギヤ軸突起22gと、従動ギヤ56及びスクリューシャフト58の回転中心であるシャフト回転軸58aは、それぞれの軸線が撮影光軸Oと略平行となる。   Therefore, in a state where the image sensor holder 23 is attached to the rear portion of the housing 22, the pinion 160b, the intermediate gear 57, the driven gear 56, and the screw shaft 58 are rotated between the drive mechanism assembly portion 22b and the gear train retaining portion 23a, respectively. Held possible. At this time, the rotation output shaft 160a of the AF motor 160 that is the rotation center of the pinion 160b, the gear shaft protrusion 22g that is the rotation center of the intermediate gear 57, and the shaft rotation shaft 58a that is the rotation center of the driven gear 56 and the screw shaft 58. Each axis is substantially parallel to the photographing optical axis O.

ギヤ列を構成する中間ギヤ57は、中間ギヤ付勢ばね(ばね部材)50によってギヤ軸突起22gの軸線方向へ付勢されることにより、駆動機構組付部22bとギヤ列抜止部23aの間で安定保持されている。中間ギヤ付勢ばね50は、薄い金属製の板状体からなり、ギヤ軸突起22gの大径中間部22g-1が挿通される円形穴(開口)50aを有する環状の中心座部(ギヤ当接部)50bと、この中心座部50bを中心とする放射方向に延出された3つの弾性支持脚部50cとを有している。   The intermediate gear 57 constituting the gear train is urged in the axial direction of the gear shaft projection 22g by an intermediate gear urging spring (spring member) 50, whereby between the drive mechanism assembly portion 22b and the gear train retaining portion 23a. And is held stable. The intermediate gear biasing spring 50 is made of a thin metal plate, and has an annular center seat (gear contact) having a circular hole (opening) 50a through which the large diameter intermediate portion 22g-1 of the gear shaft projection 22g is inserted. Contact portion) 50b and three elastic support legs 50c extending in a radial direction centering on the central seat portion 50b.

図11や図12のようにギヤ軸突起22gの軸線に沿う方向(軸線延長上)から見て、中間ギヤ付勢ばね50における3つの弾性支持脚部50cは、それぞれが略同じ長さで略同じ形状をしており、中心座部50bを中心とする周方向に略等角度間隔で配置されている。また、図13及び図14に示すように、中心座部50bはギヤ軸突起22gの軸線と略直交する平面内に位置しており、それぞれの弾性支持脚部50cは、中心座部50bから離れるにつれて徐々に中間ギヤ格納凹部22dの底面22d-1に接近する傾斜部50c-1と、中間ギヤ格納凹部22dの底面22d-1に当接される50c-2先端当接部50c-2とを有している。   As shown in FIGS. 11 and 12, when viewed from the direction along the axis of the gear shaft protrusion 22g (on the extension of the axis), the three elastic support legs 50c of the intermediate gear biasing spring 50 are each substantially the same length and substantially the same. It has the same shape and is arranged at substantially equal angular intervals in the circumferential direction centering on the central seat portion 50b. As shown in FIGS. 13 and 14, the center seat portion 50b is located in a plane substantially orthogonal to the axis of the gear shaft projection 22g, and each elastic support leg portion 50c is separated from the center seat portion 50b. As shown, an inclined portion 50c-1 that gradually approaches the bottom surface 22d-1 of the intermediate gear storage recess 22d and a 50c-2 tip contact portion 50c-2 that contacts the bottom surface 22d-1 of the intermediate gear storage recess 22d. Have.

図12に示すように、ハウジング22の駆動機構組付部22bには、3つの回転規制凹部(回転規制部)22hが、中間ギヤ格納凹部22dの内壁面に臨ませて形成されている。これら3つの回転規制凹部22hは、中間ギヤ格納凹部22dに隣接するピニオン格納穴22cやスクリューシャフト格納空間22eとは重ならない位置に、周方向へ略等間隔で形成されており、中間ギヤ付勢ばね50の3つの弾性支持脚部50cの先端当接部50c-2を係合させて、その回転を規制するものである。詳細には、駆動機構組付部22bには、ギヤ列抜止部23a側の位置決め穴23e(図5)に係合する位置決めボス22iが突設されており、回転規制凹部22hは、ギヤ軸突起22gを中心として、該位置決めボス22iとピニオン格納穴22cの間、該位置決めボス22iとスクリューシャフト格納空間22eの間、ピニオン格納穴22cとスクリューシャフト格納空間22eの間の3つの位置に形成されている。   As shown in FIG. 12, in the drive mechanism assembly portion 22b of the housing 22, three rotation restricting recesses (rotation restricting portions) 22h are formed so as to face the inner wall surface of the intermediate gear storage recess 22d. These three rotation restricting recesses 22h are formed at substantially equal intervals in the circumferential direction at positions that do not overlap with the pinion storage hole 22c adjacent to the intermediate gear storage recess 22d and the screw shaft storage space 22e. The front end contact portions 50c-2 of the three elastic support legs 50c of the spring 50 are engaged to restrict the rotation thereof. Specifically, a positioning boss 22i that engages with a positioning hole 23e (FIG. 5) on the gear train retaining portion 23a side protrudes from the drive mechanism assembling portion 22b, and the rotation restricting recess 22h includes a gear shaft protrusion. Centering on 22g, it is formed at three positions between the positioning boss 22i and the pinion storage hole 22c, between the positioning boss 22i and the screw shaft storage space 22e, and between the pinion storage hole 22c and the screw shaft storage space 22e. Yes.

図12から図14に示すように、中間ギヤ付勢ばね50は、中間ギヤ57を組み付ける前にギヤ軸突起22gに対して円形穴50aを挿通させ、3つの弾性支持脚部50cをそれぞれ回転規制凹部22hに係合させて、中間ギヤ格納凹部22d内に取り付けられる。3つの弾性支持脚部50cと3つの回転規制凹部22hはそれぞれ、ギヤ軸突起22gを中心として等角度(120°間隔)で設けられており、かつそれぞれの弾性支持脚部50cの長さと形状が同じであるため、いずれの弾性支持脚部50cをいずれの回転規制凹部22hに対して係合させてもよい。すなわち、中間ギヤ付勢ばね50は、周方向に3箇所存在する任意の角度位置で組み付けることができる。   As shown in FIG. 12 to FIG. 14, the intermediate gear biasing spring 50 inserts the circular hole 50 a into the gear shaft protrusion 22 g before assembling the intermediate gear 57 and restricts the three elastic support legs 50 c respectively. It is engaged with the recess 22h and attached in the intermediate gear storage recess 22d. The three elastic support legs 50c and the three rotation restricting recesses 22h are provided at equal angles (at intervals of 120 °) around the gear shaft protrusion 22g, and the length and shape of each elastic support leg 50c are the same. Since they are the same, any elastic support leg 50c may be engaged with any rotation restricting recess 22h. That is, the intermediate gear biasing spring 50 can be assembled at arbitrary angular positions that exist in three locations in the circumferential direction.

図13に示す中間ギヤ付勢ばね50の自由状態では、中間ギヤ格納凹部22dの底面22d-1に対する弾性支持脚部50cの傾斜部50c-1の立ち上がり角度が大きくなっており、中心座部50bは中間ギヤ格納凹部22dの底面22d-1から大きく離間している。このとき、弾性支持脚部50cの先端当接部50c-2は中心座部50bと略平行をなしている。続いて、大径ギヤ部57a側を先頭にして中間ギヤ57の軸穴57cをギヤ軸突起22gに挿通させると、軸直交端面57dが中心座部50bに当接して支持される。このとき小径ギヤ部57b側の軸直交端面57eは、ギヤ軸突起22gにおける大径中間部22g-1と小径先端部22g-2の境界部よりも後方(図13の上方)に位置している。そして、撮像素子ホルダ23をハウジング22に固定すると、図14のように、ギヤ軸突起22gの小径先端部22g-2が軸固定穴23cに挿入され、ギヤ列抜止部23aの前面が軸直交端面57eを押圧し、中間ギヤ付勢ばね50の各弾性支持脚50cを中間ギヤ格納凹部22dの底面22d-1に接近させる方向に弾性変形させながら、中間ギヤ57が押し込まれる。   In the free state of the intermediate gear biasing spring 50 shown in FIG. 13, the rising angle of the inclined portion 50c-1 of the elastic support leg portion 50c with respect to the bottom surface 22d-1 of the intermediate gear storage recess 22d is large, and the center seat portion 50b. Is far away from the bottom surface 22d-1 of the intermediate gear storage recess 22d. At this time, the tip contact portion 50c-2 of the elastic support leg portion 50c is substantially parallel to the central seat portion 50b. Subsequently, when the shaft hole 57c of the intermediate gear 57 is inserted through the gear shaft projection 22g with the large-diameter gear portion 57a side as the head, the shaft orthogonal end surface 57d is in contact with and supported by the center seat portion 50b. At this time, the shaft orthogonal end surface 57e on the small-diameter gear portion 57b side is located behind (upward in FIG. 13) the boundary between the large-diameter intermediate portion 22g-1 and the small-diameter tip portion 22g-2 in the gear shaft protrusion 22g. . When the image sensor holder 23 is fixed to the housing 22, as shown in FIG. 14, the small-diameter tip 22g-2 of the gear shaft projection 22g is inserted into the shaft fixing hole 23c, and the front surface of the gear train retaining portion 23a is the axis orthogonal end surface. The intermediate gear 57 is pushed in while pressing each elastic support leg 50c of the intermediate gear biasing spring 50 in a direction to approach the bottom surface 22d-1 of the intermediate gear storage recess 22d.

ギヤ軸突起22gの大径中間部22g-1の軸方向長さは、同方向への中間ギヤ57の軸穴57cよりも長く、図14のように中間ギヤ57が押し込まれた状態で、大径ギヤ部57a側の軸直交端面57dは、ギヤ軸突起22gの基部22g-3や中間ギヤ格納凹部22dの底面22d-1には当て付いておらず、中間ギヤ57は若干の軸方向移動が許容されている。そして、中間ギヤ付勢ばね50の3つの弾性支持脚部50cが弾性変形から復元しようとする力によって、中間ギヤ57は、小径ギヤ部57b側の軸直交端面57eをギヤ列抜止部23aに当て付ける方向に付勢されるため、その軸方向位置が安定する。つまり、中間ギヤ付勢ばね50の付勢力によって中間ギヤ57のがたつき、ばたつきが防がれ、AFモータ160の駆動時における異音の発生を抑制することができる。   The axial length of the large-diameter intermediate portion 22g-1 of the gear shaft protrusion 22g is longer than the shaft hole 57c of the intermediate gear 57 in the same direction, and is large when the intermediate gear 57 is pushed in as shown in FIG. The shaft orthogonal end surface 57d on the diameter gear portion 57a side does not contact the base portion 22g-3 of the gear shaft protrusion 22g and the bottom surface 22d-1 of the intermediate gear storage recess 22d, and the intermediate gear 57 is slightly moved in the axial direction. Is allowed. Then, due to the force that the three elastic support legs 50c of the intermediate gear biasing spring 50 attempt to recover from the elastic deformation, the intermediate gear 57 applies the axis orthogonal end surface 57e on the small-diameter gear portion 57b side to the gear train retaining portion 23a. Since it is biased in the attaching direction, its axial position is stabilized. That is, rattling and fluttering of the intermediate gear 57 are prevented by the biasing force of the middle gear biasing spring 50, and the generation of abnormal noise when the AF motor 160 is driven can be suppressed.

中間ギヤ付勢ばね50においては、中心座部50bから放射状に延出した3つの弾性支持脚部50cの間に、AFモータ160の回転出力軸160aとピニオン160b、従動ギヤ56とスクリューシャフト58、といった他の回転部材やその軸を配しているため、これらの回転部材との干渉を生じることなく、スペース効率に優れたばね配置が可能となっている。詳細には、図11のようにギヤ軸突起22gの軸線方向に沿って正面視したとき、ギヤ機構における原動側のギヤであるピニオン160bの一部とその回転中心である回転出力軸160aは、中間ギヤ付勢ばね50の3つの弾性支持脚部50c-A、50c-B及び50c-Cの先端を結んだギヤ軸突起22gを中心とする先端円Rと、隣り合う一対の弾性支持脚部50c-A、50c-Bとに囲まれる脚間空間内に位置している。同様に、ギヤ機構における従動側のギヤである従動ギヤ56の一部とスクリューシャフト58の一部は、上記先端円Rと、一対の弾性支持脚部50c-B、50c-Cとに囲まれた脚間空間内に位置している。ピニオン160bを支持する回転出力軸160aや、従動ギヤ56を支持するギヤ軸は、中間ギヤ57を挟む駆動機構組付部22bとギヤ列抜止部23aのうち駆動機構組付部22b側から突出し、図13や図14のようにギヤ軸突起22gの軸線と直交する方向から見て、弾性支持脚部50c-Aと弾性支持脚部50c-Bの間や、弾性支持脚部50c-Bと弾性支持脚部50c-Cの間を通って中間ギヤ57の側方へ延設されている。 In the intermediate gear biasing spring 50, the rotation output shaft 160a and pinion 160b of the AF motor 160, the driven gear 56 and the screw shaft 58 are interposed between three elastic support legs 50c extending radially from the center seat 50b. Since other rotating members such as, and their shafts are arranged, spring arrangement with excellent space efficiency is possible without causing interference with these rotating members. Specifically, when viewed from the front along the axial direction of the gear shaft protrusion 22g as shown in FIG. 11, a part of the pinion 160b which is the driving side gear in the gear mechanism and the rotation output shaft 160a which is the rotation center thereof are: A tip circle R centering on the gear shaft projection 22g connecting the tips of the three elastic support legs 50c-A, 50c-B and 50c-C of the intermediate gear biasing spring 50 and a pair of adjacent elastic support legs It is located in the space between legs surrounded by 50c-A and 50c-B. Similarly, a part of the driven gear 56 that is a driven side gear in the gear mechanism and a part of the screw shaft 58 are surrounded by the tip circle R and the pair of elastic support legs 50c-B and 50c-C. Located in the space between the legs. The rotation output shaft 160a that supports the pinion 160b and the gear shaft that supports the driven gear 56 protrude from the drive mechanism assembly portion 22b side of the drive mechanism assembly portion 22b and the gear train retaining portion 23a sandwiching the intermediate gear 57, 13 and 14, when viewed from the direction orthogonal to the axis of the gear shaft projection 22g, the elastic support leg 50c-A and the elastic support leg 50c-B, or between the elastic support leg 50c-B and the elasticity It extends to the side of the intermediate gear 57 through between the support legs 50c-C.

例えば、本実施形態とは異なり、中間ギヤ付勢ばね50に代えて、図11の先端円Rを外形とした円形のスプリングワッシャを付勢部材として用いることを想定すると、このスプリングワッシャとの干渉を避けるため、先端円Rよりも外側の(ギヤ軸突起22gから遠い)位置にピニオン160bや従動ギヤ56を配置しなければならず、本実施形態のようなコンパクトなギヤ配置にすることができない。コンパクトなギヤ配置にするためにスプリングワッシャを小径なものに代えると、前述の通り、ばね部材は小さくなるほど単位変位量あたりの荷重変動が大きくなるため、部品の寸法誤差を小さくするための厳密な精度管理が要求されるようになり、製造コストが高くなってしまう。   For example, unlike this embodiment, assuming that a circular spring washer having an outer shape of the tip circle R in FIG. 11 is used as the urging member instead of the intermediate gear urging spring 50, interference with the spring washer is assumed. Therefore, the pinion 160b and the driven gear 56 must be disposed outside the tip circle R (distant from the gear shaft protrusion 22g), and a compact gear arrangement as in this embodiment cannot be achieved. . If the spring washer is replaced with a smaller one in order to achieve a compact gear arrangement, as described above, the smaller the spring member, the greater the load fluctuation per unit displacement amount. Precision management is required, and the manufacturing cost is increased.

これに対し本実施形態の中間ギヤ付勢ばね50では、ピニオン160bや従動ギヤ56などとの干渉を生じることなく、弾性支持脚部50cの長さや付勢力を自由に設定することができる。よって、製品ごとの荷重変動を抑制するために弾性支持脚部50cを長くした場合でも、ピニオン160bや従動ギヤ56の位置を変更する必要がなく、コンパクトな構造を維持しつつ、中間ギヤ57に対する付勢力の安定性を得ることができる。そして、弾性支持脚部50cを長くすることによって荷重変動が抑制された中間ギヤ付勢ばね50は、精度管理が容易となり安価な供給が可能となる。   On the other hand, in the intermediate gear biasing spring 50 of the present embodiment, the length and biasing force of the elastic support leg 50c can be freely set without causing interference with the pinion 160b, the driven gear 56, and the like. Therefore, even when the elastic support leg 50c is lengthened in order to suppress the load fluctuation for each product, it is not necessary to change the positions of the pinion 160b and the driven gear 56, and the intermediate gear 57 is maintained while maintaining a compact structure. The stability of the urging force can be obtained. The intermediate gear biasing spring 50, in which the load variation is suppressed by elongating the elastic support leg 50c, is easy to manage with accuracy and can be supplied at a low cost.

また、中間ギヤ付勢ばね50は、ハウジング22側の回転規制凹部22hとの係合により回転が規制されているため、中間ギヤ57の回転時に連れ回りすることがなく、ピニオン160bや従動ギヤ56などとの干渉を確実に防ぐことができる。   Further, since the rotation of the intermediate gear biasing spring 50 is restricted by the engagement with the rotation restricting recess 22 h on the housing 22 side, the intermediate gear urging spring 50 does not rotate when the intermediate gear 57 rotates, and the pinion 160 b and the driven gear 56 are not rotated. Can be reliably prevented.

以上、図示実施形態に基づき本発明を説明したが、本発明は、この実施形態に限定されるものではない。例えば、支持安定性とスペース効率の両立という観点からは、実施形態のように中間ギヤ付勢ばね50に3つの弾性支持脚部50cを設けることが好ましいが、弾性支持脚部を4つ以上の数にすることも可能である。 As mentioned above, although this invention was demonstrated based on illustration embodiment, this invention is not limited to this embodiment. For example, from the viewpoint of achieving both support stability and space efficiency, it is preferable to provide the intermediate gear biasing spring 50 with three elastic support legs 50c as in the embodiment, but the number of elastic support legs is four or more. It can also be a number.

また、前述のように、中間ギヤ付勢ばね50に設ける複数の弾性支持脚部50cを、同じ長さ及び形状にして等角度間隔で配することで、組み付け性の自由度を高くすることができるが、弾性支持脚部に関するこれらの諸条件を異ならせることも可能である。例えば、隣り合う弾性支持脚部の長さが異なる場合には、短い方の弾性支持脚部よりも内側(短い弾性支持脚部の先端を通る、中間ギヤのギヤ軸を中心とした円よりも内側)の脚間領域まで、中間ギヤの前後ギヤの少なくとも一部を進入させて配置することで、前述したコンパクト化の効果を得ることができる。   Further, as described above, by arranging the plurality of elastic support legs 50c provided on the intermediate gear biasing spring 50 with the same length and shape at equal angular intervals, the degree of freedom in assembling can be increased. However, it is possible to vary these conditions for the elastic support legs. For example, when the lengths of the adjacent elastic support legs are different, the inner side of the shorter elastic support leg (rather than the circle passing through the tip of the short elastic support leg and centering on the gear shaft of the intermediate gear) By arranging at least a part of the front and rear gears of the intermediate gear up to the inner (inter) leg region, the above-described compacting effect can be obtained.

また、実施形態の中間ギヤ付勢ばね50の中心座部50bは、ギヤ軸突起22gの大径中間部22g-1を挿通させる円形穴50aを有する円形環状をしているが、ばね部材におけるギヤ当接部の形状はこれに限定されず、例えばC字状などにすることも可能である。   Further, the center seat portion 50b of the intermediate gear biasing spring 50 of the embodiment has a circular ring shape having a circular hole 50a through which the large diameter intermediate portion 22g-1 of the gear shaft projection 22g is inserted. The shape of the contact portion is not limited to this, and may be a C-shape, for example.

また、実施形態では、ハウジング22の駆動機構組付部22bにギヤ軸突起22gが突出形成され、このギヤ軸突起22gの先端部が、撮像素子ホルダ23のギヤ列抜止部23aに形成した軸固定穴23cに対して挿入固定された構造となっており、駆動機構組付部22bとギヤ列抜止部23aが、ギヤ軸突起22gの両端部を支持するギヤ軸支持部材を構成している。本発明においては、この実施形態とは別に、ギヤ軸の端部を支持する軸穴を、駆動機構組付部22bとギヤ列抜止部23aにそれぞれ形成し、この軸穴に支持されるギヤ軸を、中間ギヤ57に一体形成したギヤ軸、あるいは中間ギヤ57とは別体の独立したギヤ軸によって構成することも可能である。すなわち、本発明では、ギヤ軸支持部材と中間ギヤのギヤ軸との具体的態様を限定するものではなく、実施形態のように、ギヤ軸が一体に形成された部材(駆動機構組付部22b)と抜止部材(ギヤ列抜止部23a)の組み合わせによってギヤ軸支持部材を構成してもよいし、それぞれがギヤ軸端部支持用の軸穴を有する一対の軸穴形成部材でギヤ軸支持部材を構成してもよい。   In the embodiment, a gear shaft projection 22 g is formed to protrude from the drive mechanism assembly portion 22 b of the housing 22, and a tip end portion of the gear shaft projection 22 g is fixed to the gear row retaining portion 23 a of the image sensor holder 23. The drive mechanism assembly portion 22b and the gear train retaining portion 23a constitute a gear shaft support member that supports both ends of the gear shaft protrusion 22g. In the present invention, apart from this embodiment, a shaft hole for supporting the end of the gear shaft is formed in each of the drive mechanism assembly portion 22b and the gear train retaining portion 23a, and the gear shaft supported by this shaft hole. Can be constituted by a gear shaft integrally formed with the intermediate gear 57 or an independent gear shaft separate from the intermediate gear 57. That is, in the present invention, the specific mode of the gear shaft support member and the gear shaft of the intermediate gear is not limited, and a member (drive mechanism assembly portion 22b) in which the gear shaft is integrally formed as in the embodiment. ) And a retaining member (gear train retaining portion 23a) may constitute a gear shaft supporting member, or each of them is a pair of shaft hole forming members each having a shaft hole for supporting a gear shaft end portion. May be configured.

また、実施形態では、ハウジング22の駆動機構組付部22bと中間ギヤ57の間に中間ギヤ付勢ばね50を設け、中間ギヤ57がギヤ列抜止部23aへの接近方向に付勢されているが、中間ギヤ付勢ばね50の配置と付勢方向を逆にし、ギヤ列抜止部23aと中間ギヤ57の間に中間ギヤ付勢ばね50を設け、駆動機構組付部22bへの接近方向へ中間ギヤ57を付勢するような構成も可能である。この場合、ピニオン160bを支持する回転出力軸160aや、従動ギヤ56を支持するギヤ軸は、駆動機構組付部22b側ではなくギヤ列抜止部23a側から突出して、中間ギヤ付勢ばね50に設けた弾性支持脚部50cの間を通って中間ギヤ57の側方へ延設される。
In the embodiment, the intermediate gear urging spring 50 is provided between the drive mechanism assembly portion 22b of the housing 22 and the intermediate gear 57, and the intermediate gear 57 is urged in the approaching direction to the gear train retaining portion 23a. However, the arrangement and the urging direction of the intermediate gear urging spring 50 are reversed, the intermediate gear urging spring 50 is provided between the gear train retaining portion 23a and the intermediate gear 57, and in the direction toward the drive mechanism assembling portion 22b. A configuration in which the intermediate gear 57 is biased is also possible. In this case, the rotation output shaft 160a that supports the pinion 160b and the gear shaft that supports the driven gear 56 protrude from the gear train retaining portion 23a side, not the drive mechanism assembly portion 22b side, to the intermediate gear biasing spring 50. It extends between the provided elastic support legs 50c to the side of the intermediate gear 57.

また、本発明は、実施形態におけるAFレンズ群の駆動機構のように、高速で間欠的に駆動されるタイプのギヤ機構に特に適しているが、それ以外の駆動機構のギヤ支持構造としても適用が可能である。   Further, the present invention is particularly suitable for a gear mechanism that is intermittently driven at a high speed, such as the AF lens group driving mechanism in the embodiment, but is also applicable to a gear support structure for other driving mechanisms. Is possible.

本発明を適用したズームレンズ鏡筒の収納状態の外観斜視図である。It is an external appearance perspective view of the storage state of the zoom lens barrel to which the present invention is applied. 同ズームレンズ鏡筒の撮影状態の外観斜視図である。It is an external appearance perspective view of the photographing state of the zoom lens barrel. 同ズームレンズ鏡筒の収納状態の断面図である。It is sectional drawing of the accommodation state of the zoom lens barrel. 同ズームレンズ鏡筒の撮影状態の断面図である。It is sectional drawing of the imaging state of the zoom lens barrel. 3群レンズ枠の駆動機構の前方分解斜視図である。It is a front exploded perspective view of the drive mechanism of a 3 group lens frame. 3群レンズ枠の駆動機構の後方分解斜視図である。It is a back disassembled perspective view of the drive mechanism of a 3 group lens frame. 3群レンズ枠の駆動機構を構成する中間ギヤと中間ギヤ付勢ばねの前方斜視図である。FIG. 6 is a front perspective view of an intermediate gear and an intermediate gear biasing spring that constitute a drive mechanism for a third group lens frame. 3群レンズ枠の駆動機構を構成する中間ギヤと中間ギヤ付勢ばねの後方斜視図である。FIG. 6 is a rear perspective view of an intermediate gear and an intermediate gear biasing spring that constitute a drive mechanism for the third group lens frame. 3群レンズ枠とその駆動機構を主として示した、ズームレンズ鏡筒の正面図である。3 is a front view of a zoom lens barrel mainly showing a third group lens frame and a driving mechanism thereof. FIG. 3群レンズ枠とその駆動機構を主として示した、ズームレンズ鏡筒の背面図である。It is a rear view of a zoom lens barrel mainly showing a third group lens frame and its driving mechanism. 図10における3群レンズ枠の駆動機構付近を拡大した図である。It is the figure which expanded the drive mechanism vicinity of the 3 group lens frame in FIG. ハウジングの駆動機構組付部に対して中間ギヤ付勢ばねのみを組み付けた状態の拡大図である。FIG. 5 is an enlarged view of a state where only an intermediate gear biasing spring is assembled to the drive mechanism assembly portion of the housing. 中間ギヤの組み付け前における、ハウジングの駆動機構組付部、撮像素子ホルダのギヤ列抜止部、中間ギヤ及び中間ギヤ付勢ばねの関係を示す、ギヤ軸突起の軸線に沿う方向の断面図である。It is sectional drawing in the direction along the axis line of a gear shaft protrusion which shows the relationship between the drive-mechanism assembly | attachment part of a housing, the gear train locking part of an image pick-up element holder, an intermediate | middle gear, and an intermediate | middle gear biasing spring before the assembly | attachment of an intermediate | middle gear. . 中間ギヤの組み付け完了状態における、ハウジングの駆動機構組付部、撮像素子ホルダのギヤ列抜止部、中間ギヤ及び中間ギヤ付勢ばねの関係を示す、ギヤ軸突起の軸線に沿う方向の断面図である。FIG. 6 is a cross-sectional view in the direction along the axis of the gear shaft projection showing the relationship between the drive mechanism assembly portion of the housing, the gear train retaining portion of the image sensor holder, the intermediate gear, and the intermediate gear biasing spring in the state where the intermediate gear is assembled. is there.

符号の説明Explanation of symbols

1 1群レンズ保持枠
2 2群レンズ保持枠
8 2群レンズ移動枠
10 直進案内環
11 カム環
12 第2繰出筒
13 第1繰出筒
22 ハウジング
22a 回転規制溝
22b 駆動機構組付部(ギヤ軸支持部材、ギヤ軸形成部材)
22c ピニオン格納穴
22d 中間ギヤ格納凹部(筒状凹部)
22d-1 中間ギヤ格納凹部の底面
22e スクリューシャフト格納空間
22f 軸穴
22g ギヤ軸突起
22g-1 大径中間部
22g-2 小径先端部
22g-3 基部
22h 回転規制凹部(回転規制部)
22i 位置決めボス
23 撮像素子ホルダ
23a ギヤ列抜止部(ギヤ軸支持部材、抜止部材)
23b 23d 軸穴
23c 軸固定穴
23e 位置決め穴
25 ローパスフィルタ
27 群間付勢ばね
50 中間ギヤ付勢ばね(ばね部材)
50a 円形穴(開口)
50b 中心座部(ギヤ当接部)
50c 弾性支持脚部
50c-1 傾斜部
50c-2 先端当接部
51 3群レンズ枠
51a ガイド穴
51b 回転規制キー
51c ナット当付部
51d 回転規制突起
52 3群ガイド軸
54 AFナット
55 トーションばね
56 従動ギヤ
57 中間ギヤ
58 スクリューシャフト
58a シャフト回転軸
70 ズームレンズ鏡筒
71 撮像素子
100 シャッタブロック
104 バリヤ羽根
150 ズームモータ
160 AFモータ
160a 回転出力軸
160b ピニオン
CF1 1群用カムフォロア
CF2 2群用カムフォロア
CG1 1群制御カム溝
CG2 2群制御カム溝
LG1 第1レンズ群
LG2 第2レンズ群
LG3 第3レンズ群
O 撮影光学系の光軸
S シャッタ羽根
DESCRIPTION OF SYMBOLS 1 1st group lens holding frame 2 2nd group lens holding frame 8 2nd group lens moving frame 10 Straight guide ring 11 Cam ring 12 2nd delivery cylinder 13 1st delivery cylinder 22 Housing 22a Rotation restriction groove 22b Drive mechanism assembly part (gear shaft) Support member, gear shaft forming member)
22c Pinion storage hole 22d Intermediate gear storage recess (cylindrical recess)
22d-1 Bottom surface of intermediate gear storage recess 22e Screw shaft storage space 22f Shaft hole 22g Gear shaft projection 22g-1 Large diameter intermediate portion 22g-2 Small diameter tip 22g-3 Base 22h Rotation restricting recess (rotation restricting portion)
22i Positioning boss 23 Image sensor holder 23a Gear train retaining portion (gear shaft support member, retaining member)
23b 23d Shaft hole 23c Shaft fixing hole 23e Positioning hole 25 Low pass filter 27 Inter-group bias spring 50 Intermediate gear bias spring (spring member)
50a Circular hole (opening)
50b Center seat (gear contact part)
50c Elastic support leg portion 50c-1 Inclined portion 50c-2 Tip contact portion 51 Third group lens frame 51a Guide hole 51b Rotation restriction key 51c Nut abutting portion 51d Rotation restriction projection 52 Third group guide shaft 54 AF nut 55 Torsion spring 56 Drive gear 57 Intermediate gear 58 Screw shaft 58a Shaft rotation shaft 70 Zoom lens barrel 71 Image sensor 100 Shutter block 104 Barrier blade 150 Zoom motor 160 AF motor 160a Rotation output shaft 160b Pinion CF1 Group 1 cam follower CF2 Group 2 cam follower CG1 1 Group control cam groove CG2 Second group control cam groove LG1 First lens group LG2 Second lens group LG3 Third lens group O Optical axis S of photographing optical system Shutter blade

Claims (7)

2つのギヤと、該2つのギヤに噛合して回転伝達を行う中間ギヤの支持構造において、
上記中間ギヤのギヤ軸を支持するギヤ軸支持部材と;
上記ギヤ軸支持部材と中間ギヤの間に挿入されるばね部材と;
を備え、
上記ばね部材は、上記中間ギヤに当接するギヤ当接部と、該ギヤ当接部を中心とする放射方向に延出されてギヤ軸支持部材に当接する弾性変形可能な少なくとも3つの弾性支持脚とを備えており、上記弾性支持脚をそれぞれ弾性変形させて中間ギヤを上記ギヤ軸の軸線方向に付勢すること;及び
上記中間ギヤのギヤ軸の軸線に沿う方向から見て、上記2つのギヤのそれぞれの少なくとも一部が、上記ばね部材の上記弾性支持脚にそれぞれ挟まれる少なくとも3つの脚間空間のうち異なる2つの脚間空間に位置しており、かつ上記中間ギヤのギヤ軸の軸線と直交する方向から見て、上記2つのギヤをそれぞれ支持するギヤ軸が上記2つの脚間空間に位置していること;
を特徴とするギヤ支持構造。
In a support structure for two gears and an intermediate gear that meshes with the two gears and transmits rotation,
A gear shaft support member for supporting the gear shaft of the intermediate gear;
A spring member inserted between the gear shaft support member and the intermediate gear;
With
The spring member includes a gear abutting portion that abuts on the intermediate gear, and at least three elastic support legs that extend in a radial direction around the gear abutting portion and abut against the gear shaft support member. includes bets, the elastic supporting legs were respectively elastically deformed it urges the intermediate gear in the axial direction of the gear shaft; when viewed from a direction along the axis of and the gear shaft of the intermediate gear, the two At least a part of each gear is located in two different leg spaces among at least three leg spaces sandwiched between the elastic support legs of the spring member , and the axis of the gear shaft of the intermediate gear The gear shafts supporting the two gears are located in the space between the two legs as viewed from the direction orthogonal to the two ;
Gear support structure characterized by
請求項1記載のギヤ支持構造において、上記ばね部材は3つの上記弾性支持脚を有し該3つの上記弾性支持脚は、上記ギヤ当接部から先端まで略同じ長さであり、かつ略等角度間隔で配置されているギヤ支持構造。 In the gear support structure according to claim 1, wherein said spring member has three of said elastic support legs, said three of the elastic supporting legs is substantially the same length to the tip from the gear contact portion, and a substantially Gear support structure arranged at equiangular intervals. 請求項1または2記載のギヤ支持構造において、上記ギヤ軸支持部材は、上記弾性支持脚に係合してばね部材の回転を規制する回転規制部を有しているギヤ支持構造。 3. The gear support structure according to claim 1, wherein the gear shaft support member has a rotation restricting portion that engages with the elastic support leg to restrict the rotation of the spring member. 請求項3記載のギヤ支持構造において、上記ギヤ軸支持部材は、中間ギヤを格納する筒状凹部を有し、上記回転規制部は、該筒状凹部の内壁面に形成された凹部からなるギヤ支持構造。 4. The gear support structure according to claim 3, wherein the gear shaft support member has a cylindrical recess for storing an intermediate gear, and the rotation restricting portion is a gear including a recess formed on an inner wall surface of the cylindrical recess. Support structure. 請求項1から4のいずれか1項に記載のギヤ支持構造において、上記ギヤ軸支持部材は、
上記中間ギヤのギヤ軸が突出形成されたギヤ軸形成部材と;
該ギヤ軸形成部材に固定されてギヤ軸の先端を支持し、ギヤ軸に対し中間ギヤを抜け止めさせる抜止部材と;
を有し、
上記ばね部材は、ギヤ軸形成部材または抜止部材と中間ギヤとの間に挿入されているギヤ支持構造。
The gear support structure according to any one of claims 1 to 4, wherein the gear shaft support member includes:
A gear shaft forming member from which the gear shaft of the intermediate gear protrudes;
A retaining member that is fixed to the gear shaft forming member, supports the tip of the gear shaft, and prevents the intermediate gear from coming off from the gear shaft;
Have
A gear support structure in which the spring member is inserted between a gear shaft forming member or a retaining member and an intermediate gear.
請求項1から5のいずれか1項に記載のギヤ支持構造において、上記ばね部材のギヤ当接部は、上記ギヤ軸を挿通させる開口を有する環状をなしているギヤ支持構造。 The gear support structure according to any one of claims 1 to 5, wherein the gear contact portion of the spring member has an annular shape having an opening through which the gear shaft is inserted. 請求項1から6のいずれか1項に記載のギヤ支持構造において、上記2つのギヤと中間ギヤは、撮像装置のAFレンズ駆動用のギヤ機構を構成しているギヤ支持構造。 The gear support structure according to any one of claims 1 to 6, wherein the two gears and the intermediate gear constitute a gear mechanism for driving an AF lens of the imaging apparatus.
JP2008169584A 2007-11-09 2008-06-27 Gear support structure Expired - Fee Related JP5122384B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008169584A JP5122384B2 (en) 2008-06-27 2008-06-27 Gear support structure
US12/265,150 US8117936B2 (en) 2007-11-09 2008-11-05 Gear support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008169584A JP5122384B2 (en) 2008-06-27 2008-06-27 Gear support structure

Publications (2)

Publication Number Publication Date
JP2010007799A JP2010007799A (en) 2010-01-14
JP5122384B2 true JP5122384B2 (en) 2013-01-16

Family

ID=41588533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008169584A Expired - Fee Related JP5122384B2 (en) 2007-11-09 2008-06-27 Gear support structure

Country Status (1)

Country Link
JP (1) JP5122384B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065940A (en) * 1983-09-17 1985-04-15 Fuji Hensokuki Kk Power equally distributing gearing using conical shaft
JP3425495B2 (en) * 1995-09-29 2003-07-14 セイコープレシジョン株式会社 Camera drive
JP4373635B2 (en) * 2001-11-19 2009-11-25 株式会社山武 Actuator
JP4590190B2 (en) * 2004-01-30 2010-12-01 キヤノン株式会社 Optical equipment
JP2007114530A (en) * 2005-10-20 2007-05-10 Sony Corp Lens barrel

Also Published As

Publication number Publication date
JP2010007799A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP4969859B2 (en) Lens barrel
JP4959407B2 (en) Lens driving device, zoom lens driving device, and camera
JP4971647B2 (en) Imaging tube and imaging device
JP2008242068A (en) Lens barrel, imaging apparatus, and information terminal device
JP5122346B2 (en) Lens barrel
JP2009251063A (en) Lens barrel
JP4339552B2 (en) Lens barrel
JP2011150132A (en) Lens barrel
JP2004233916A (en) Optical element retreat mechanism for lens barrel
JP2007033961A (en) Lens driving apparatus
JP5822558B2 (en) Lens barrel and camera system
US8117936B2 (en) Gear support structure
JP5784062B2 (en) Endoscope device
JP5122384B2 (en) Gear support structure
JP2007041151A (en) Lens driving device
JP5475554B2 (en) Lens barrel
JP3328036B2 (en) Mirror frame moving mechanism
JP2004258641A (en) Lens barrel
JP5573026B2 (en) Lens barrel and camera
JP2006337884A (en) Lens driving device
JPH0452628A (en) Zoom lens barrel
KR20050021953A (en) Zoom lens unit
JP3342480B2 (en) Lens barrel
JP5090274B2 (en) Lens barrel
JP2004258640A (en) Optical element withdrawing mechanism for lens barrel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees