JP5117077B2 - Temperature control type - Google Patents

Temperature control type Download PDF

Info

Publication number
JP5117077B2
JP5117077B2 JP2007054404A JP2007054404A JP5117077B2 JP 5117077 B2 JP5117077 B2 JP 5117077B2 JP 2007054404 A JP2007054404 A JP 2007054404A JP 2007054404 A JP2007054404 A JP 2007054404A JP 5117077 B2 JP5117077 B2 JP 5117077B2
Authority
JP
Japan
Prior art keywords
molten metal
flow path
chill vent
temperature control
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007054404A
Other languages
Japanese (ja)
Other versions
JP2007275989A (en
Inventor
悟 小出
Original Assignee
株式会社小出製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小出製作所 filed Critical 株式会社小出製作所
Priority to JP2007054404A priority Critical patent/JP5117077B2/en
Publication of JP2007275989A publication Critical patent/JP2007275989A/en
Application granted granted Critical
Publication of JP5117077B2 publication Critical patent/JP5117077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、鋳造、ダイキャストあるいは射出成形等に使用され型温度が調温される調温型に関する。   The present invention relates to a temperature control die that is used for casting, die casting, injection molding, or the like and whose temperature is controlled.

従来より鋳造、ダイキャストあるいは射出成形等では、金型の溶湯と接触する型面(対溶湯面)、分流子やチルベントの溶湯と接触する面(対溶湯面)を冷却するための方法が提案されている。   Conventionally, in casting, die casting, injection molding, etc., methods have been proposed to cool the mold surface that contacts the molten metal (the surface of the molten metal) and the surface that contacts the molten metal of the flow divider or chill vent (the surface of the molten metal). Has been.

例えば、金型の型面を冷却するために、型面の背後より金型に冷却穴を形成しこの冷却穴に冷却水を流し型面を冷却する冷却金型が知られている。例えば、特許文献1には、金型の背後に設けた冷却穴内に冷却水を往路と復路とに仕切る板を挿入し冷却水が冷却穴を折り返すように流れる冷却金型が開示されている。特許文献2には、金型の冷却穴内にパイプを挿入し、このパイプより冷却水を供給し、このパイプの外周面と冷却穴の内周面で区画される空間を通して冷却水を排水する冷却金型が開示されている。特許文献3には、同軸の内パイプと外パイプをもつ冷却水供給・排水管を装着し、内パイプより冷却水を冷却穴に供給し、外パイプと内パイプの間の空間より冷却水を排水する冷却金型が開示されている。   For example, in order to cool the mold surface of the mold, a cooling mold is known in which a cooling hole is formed in the mold from behind the mold surface, and cooling water is poured into the cooling hole to cool the mold surface. For example, Patent Document 1 discloses a cooling mold in which a plate for partitioning cooling water into a forward path and a return path is inserted into a cooling hole provided behind the mold, and the cooling water flows so that the cooling hole is folded back. In Patent Document 2, cooling is performed by inserting a pipe into a cooling hole of a mold, supplying cooling water from the pipe, and draining the cooling water through a space defined by the outer peripheral surface of the pipe and the inner peripheral surface of the cooling hole. A mold is disclosed. In Patent Document 3, a cooling water supply / drain pipe having a coaxial inner pipe and an outer pipe is mounted, cooling water is supplied from the inner pipe to the cooling hole, and cooling water is supplied from the space between the outer pipe and the inner pipe. A cooling mold for draining is disclosed.

また、チルベント内に侵入した未凝固溶湯を効率よく冷却するために、特許文献4には溶湯に接触する面の裏側に冷却パイプを蛇行状に配置するチルベントが開示されている。
特開平9−308955号公報 特公平5−61026号公報 特開2004−202566号公報 特開平10−249508号公報
Further, in order to efficiently cool the unsolidified molten metal that has entered the chill vent, Patent Document 4 discloses a chill vent in which cooling pipes are arranged in a meandering manner on the back side of the surface in contact with the molten metal.
JP-A-9-308955 Japanese Patent Publication No. 5-61026 JP 2004-202666 A Japanese Patent Laid-Open No. 10-249508

従来の冷却金型は金型の背後から型面に向けて冷却穴を形成し、この冷却穴に冷却水を供給して金型を冷却するものである。また、広い型面を冷却する必要のある場合には金型の背後に間隔を隔てて多くの冷却穴を設けそれぞれの冷却穴に冷却水を供給・排水するパイプを設けていた。これら従来の冷却金型では、金型の背後から形成された冷却穴の底の部分が冷却水で冷却され、冷えた金型の部分が放射方向に伝達され型面をスポット的に冷却するものであった。多数の冷却穴を設けた場合には型面が多数のスポット的な多数の冷却面を持つものであった。型面がスポット的に冷却されるために広い型面をより均一に冷却することが困難であった。多くの冷却穴を持つ金型でも、広い型面を均一に冷却するのは困難であった。   In the conventional cooling mold, a cooling hole is formed from the back of the mold toward the mold surface, and cooling water is supplied to the cooling hole to cool the mold. When it is necessary to cool a wide mold surface, many cooling holes are provided at intervals behind the mold, and pipes for supplying / draining cooling water are provided in the respective cooling holes. In these conventional cooling molds, the bottom part of the cooling hole formed from the back of the mold is cooled with cooling water, and the cooled mold part is transmitted in the radial direction to cool the mold surface in a spot manner. Met. When a large number of cooling holes were provided, the mold surface had a large number of spot-like cooling surfaces. Since the mold surface is cooled in a spot manner, it is difficult to cool the wide mold surface more uniformly. Even with a mold having many cooling holes, it was difficult to uniformly cool a wide mold surface.

また、従来のチルベントの対溶湯面は溶湯の進行方向に凹凸が波形に形成されており、未凝固溶湯を冷却するための冷却パイプは、凹凸形状の凹側か凸側のどちらかのみを冷却するため、冷却効率が良いものではない。未凝固溶湯が通過する対溶湯面の凹部と凸部との差が大きい方が溶湯を冷却する面積を広くとることができるが、冷却パイプから遠ざかる対溶湯面部分があり、全体として未凝固溶湯を冷却する効率が低下することとなる。   Also, the surface of the conventional chill vent against the molten metal is corrugated in the direction of the molten metal, and the cooling pipe for cooling the unsolidified molten metal only cools the concave or convex side of the irregular shape. Therefore, the cooling efficiency is not good. The larger the difference between the concave and convex portions on the surface of the molten metal through which the unsolidified molten metal passes, the larger the area for cooling the molten metal, but there is a portion of the molten metal surface away from the cooling pipe. The cooling efficiency will be reduced.

本発明は、より広い対溶湯面をより均一に冷却あるいは加温できる調温型を提供することを目的とする。さらには、本発明は対溶湯面に応じて冷却あるいは加温効果が異なる調温型を提供することを目的とする。さらには、煩雑にならないシンプルな熱媒体供給排水手段を持つ調温型を提供することを目的とする。   An object of this invention is to provide the temperature control type | mold which can cool or heat a wider molten metal surface more uniformly. Furthermore, this invention aims at providing the temperature control type | mold from which cooling or a heating effect differs according to a molten metal surface. Furthermore, it aims at providing the temperature control type | mold with the simple heat-medium supply drainage means which does not become complicated.

上記課題を解決するための本発明の調温型は、溶湯と接触する対溶湯面と内部に熱媒体が流れる流路の一部を区画する主流路面を有する凹部とを持つ本体部と、
前記流路の少なくとも他の一部を区画する副流路面を持ち前記本体部の前記凹部に固定される少なくとも一個の固定部と、を有し、
前記本体部および前記固定部の少なくとも一方は前記流路に開口する熱媒体の導入孔及び導出孔を持ち、
前記主流路面は所定間隔を隔てて前記対溶湯面の少なくとも一部に沿ったものであり、
前記主流路面と前記副流路面との間には前記対溶湯面に作用する溶湯の圧力を前記固定部に伝える柱状又は突壁状の補強部をもつことを特徴とする。本発明の調温型では、目的とする広い主流路面を有する。この広い主流路面に熱媒体が接触するために対溶湯面をより確実に調温できる。
The temperature control type of the present invention for solving the above-mentioned problem is a main body having a surface of a molten metal that comes into contact with the molten metal and a concave portion having a main flow path surface that divides a part of the flow path through which the heat medium flows,
Have at at least one of the fixed portion is secured to the recess of the main body portion has a sidestream road surface defining at least another portion of the flow path,
At least one of the main body part and the fixed part has a heat medium introduction hole and a lead hole opening in the flow path,
The main flow path surface is along at least a part of the surface of the molten metal with a predetermined interval,
Between the main flow path surface and the sub flow path surface, there is a columnar or protruding wall-shaped reinforcing portion that transmits the pressure of the molten metal acting on the molten metal surface to the fixed portion . In the temperature control type | mold of this invention, it has the target wide main flow path surface. Since the heat medium contacts the wide main flow path surface, the temperature of the molten metal surface can be controlled more reliably.

上記課題を解決するための本発明の調温型は、対溶湯面がキャビティの一部を区画する型面、分流通路の一部を区画する分流区画面あるいはチルベント通路の一部を区画するチルベント区画面とすることができる。   The temperature control mold of the present invention for solving the above-described problems is a mold surface in which the molten metal surface divides a part of the cavity, a diversion screen that divides a part of the diversion passage, or a part of the chill vent passage. It can be a chill vent screen.

上記課題を解決するための本発明の調温型は、冷却型でも加温型でも良い。熱媒体の持つ温度により所定の型温をもつ型とすることができる。また型は金型でも、セラミックス型でも他の構造材料で形成されたものでも良い。多くの場合金型として使用されるが金型に限られるものではない。また、本発明の調温型は型全体である必要もなく、型の一部を構成する部分型でも良い。例えば、キャビティを形成する一対の型の一方の型のみでも、一方の型のさらに一部であっても良い。なお溶湯として説明しているが溶湯は溶けた金属の溶湯に限らず、ゾル状の樹脂組成物、加熱により可塑化された合成樹脂も含む。熱媒体としては冷却水、加温された温水、冷却あるいは加温された無機、有機の液体及び気体を含む。   The temperature control type of the present invention for solving the above problems may be a cooling type or a heating type. A mold having a predetermined mold temperature can be obtained depending on the temperature of the heat medium. The mold may be a mold, a ceramic mold, or another structural material. In many cases, it is used as a mold, but is not limited to a mold. The temperature control mold of the present invention does not need to be the entire mold, and may be a partial mold that constitutes a part of the mold. For example, only one of the pair of molds forming the cavity or a part of the other mold may be used. Although described as a molten metal, the molten metal is not limited to a molten metal, but also includes a sol-like resin composition and a synthetic resin plasticized by heating. The heat medium includes cooling water, heated warm water, cooled or heated inorganic and organic liquids and gases.

上記課題を解決するための本発明の調温型は、本体部と固定部とで構成され、本体部は溶湯と接する対溶湯面と内部に熱媒体が流れる流路の一部を区画する主流路面を有する凹部とを持ち、固定部は流路の一部を区画する副流路面をもち前記凹部に固定されているものである。ここで流路とは熱媒体が流れる通路を意味し、通路を区画する面の一部に対溶湯面と背向する主流路面を持つ。主流路面は所定間隔を隔てて対溶湯面の少なくとも一部に沿ったものである。当然に対溶湯面と主流路面とは所定厚さの型部分が介在することになり、主流路面と接する熱媒体の温度はこの所定厚さの型部分を介して対溶湯面に伝達される。主流路面と対溶湯面の型部分の厚さは熱媒体の熱(冷熱も含む)が対溶湯面に伝達される抵抗となる。したがって、この型部分の厚さが薄いほど調温の効果が高く、厚くなるにしたがって、調温の効果は低くなる。当然に必要とする対溶湯面部分の調熱の程度に応じて主流路面あるいはその一部とこれと背向する対溶湯面あるいはその一部との厚さを厚くしたり、薄くしたりすることができる。   The temperature control mold of the present invention for solving the above problems is composed of a main body part and a fixed part, and the main body part defines a part of a flow path through which a heat medium flows and a surface of the molten metal in contact with the molten metal. It has a recess having a road surface, and the fixed portion has a sub-flow channel surface that divides a part of the flow channel, and is fixed to the recess. Here, the flow path means a passage through which the heat medium flows, and has a main flow passage surface facing away from the molten metal surface in a part of a surface defining the passage. The main flow path surface extends along at least a part of the surface of the molten metal with a predetermined interval. Naturally, a mold part having a predetermined thickness is interposed between the anti-melt surface and the main flow path surface, and the temperature of the heat medium in contact with the main flow path surface is transmitted to the anti-melt surface via the predetermined thickness mold part. The thickness of the mold part of the main flow path surface and the molten metal surface is a resistance to transfer the heat of the heat medium (including cold heat) to the molten metal surface. Therefore, the thinner the mold part is, the higher the effect of temperature adjustment becomes, and as the thickness increases, the effect of temperature adjustment becomes lower. Naturally, the thickness of the main flow path surface or a part thereof and the opposite molten metal surface or a part thereof opposite to the main flow path surface or a part thereof should be increased or decreased depending on the degree of heat control of the required molten metal surface portion. Can do.

上記課題を解決するための本発明の調温型の本体部および固定部の少なくとも一方は流路に開口する熱媒体の導入孔及び導出孔を持つものとする。導入孔及び導出孔は1個でも複数個でも良い。また、導入孔及び導出孔は最も調温効果の高い位置に設けることができる。導入孔及び導出孔は熱媒体を送るパイプあるいはホースに容易に着脱できるものであるのが好ましい。 At least one of the body portion and a fixed portion of the tempering type of the present invention for solving the above shall be the one with the introduction hole and the outlet hole of the heat medium which opens into the channel. One or a plurality of introduction holes and lead-out holes may be provided. Further, the introduction hole and the lead-out hole can be provided at a position having the highest temperature control effect. It is preferable that the introduction hole and the lead-out hole can be easily attached to and detached from the pipe or hose for feeding the heat medium.

上記課題を解決するための本発明の調温型の主流路面と副流路面との間には対溶湯面に作用する溶湯の圧力を固定部に伝える補強部をもつものとする。調温効果を高めるために主流路面と対溶湯面との間の型部分の厚さを薄くすることがある。薄くすると対溶湯面に作用する溶湯の圧力により対溶湯面が変形することも考えられる。補強部はこの変形を阻止するために設けられるものである。この補強部は、本体部又は固定部に一体的に形成しても、本体部および固定部と別部材として形成し、本体部と固定部の間に固定しても良い。この補強部は柱状又は突壁状である。また、1個でも複数個設けても良い。さらに補強部を突壁状とし、熱媒体のガイド壁として機能するものとすることもできる。 Between the main road and the side stream road tempering type of the present invention to solve the above problems shall be the one with the reinforcing portion for transmitting the pressure of the molten metal acting on the pair melt surface to the fixing unit. In order to increase the temperature control effect, the thickness of the mold part between the main flow path surface and the surface of the molten metal may be reduced. If the thickness is reduced, the molten metal surface may be deformed by the pressure of the molten metal acting on the molten metal surface. The reinforcing portion is provided to prevent this deformation. The reinforcing portion may be formed integrally with the main body portion or the fixing portion, or may be formed as a separate member from the main body portion and the fixing portion, and fixed between the main body portion and the fixing portion. The reinforcing portion is columnar or protruding wall shape. One or more may be provided. Further, the reinforcing portion may be a protruding wall shape and function as a guide wall for the heat medium.

上記課題を解決するための本発明の調温型の主流路面は流路に沿って延びる溝または突条をもつものとすることもできる。これら溝及び突条は熱媒体のガイドとなるもので、熱媒体のスムースな流れを形成し、熱媒体の淀み等を防止する。   The main flow path surface of the temperature control type of the present invention for solving the above-described problems may have a groove or a ridge extending along the flow path. These grooves and protrusions serve as a guide for the heat medium, and form a smooth flow of the heat medium to prevent stagnation of the heat medium.

上記課題を解決するための本発明の調温型は、型を製造する方法をそのまま採用できる。本体部に形成される主流路面は対溶湯面を形成する方法で形成できる。主流路面は当然に対溶湯面ほどの精度を必要としない。固定部も型を製造する方法で製造できる。固定部の副流路面も対溶湯面を形成する方法と同じ方法で形成できる。副流路面も主流路面と同様に対溶湯面ほどの精度を必要としない。熱媒体の流路は主型部の凹部に固定部を装着し接合等で一体化する事により形成される。この流路に熱媒体を流すことにより流路の主流路面と副流路面の間に熱媒体が流れ、主流路面から対溶湯面に熱媒体の温度が伝達され、対溶湯面が調温される。   The temperature control mold of the present invention for solving the above problems can employ the method for producing the mold as it is. The main flow path surface formed in the main body can be formed by a method of forming an anti-melt surface. Of course, the main flow path surface does not need to be as accurate as the surface of the molten metal. The fixed part can also be manufactured by a method of manufacturing a mold. The sub-flow channel surface of the fixed part can also be formed by the same method as the method of forming the anti-melt surface. Similarly to the main channel surface, the sub-channel surface does not require as much accuracy as the surface of the molten metal. The flow path of the heat medium is formed by attaching a fixed part to the concave part of the main mold part and integrating them by joining or the like. By flowing the heat medium through the flow path, the heat medium flows between the main flow path surface and the sub flow path surface of the flow path, the temperature of the heat medium is transmitted from the main flow path surface to the molten metal surface, and the temperature of the molten metal surface is adjusted. .

上記課題を解決するための本発明の調温型のチルベント通路は、本体部と相手部材とが組み合わされて形成され、チルベント通路の形状は通路方向に波形に延び、その厚さが0.7mm以上3mm以下とすることができる。本発明の調温型の本体部の対溶湯面は波形であり、相手部材の対溶湯面も波形に延びており、互いの凹凸の凹部分に凸部分が対向するように組み合わさることでチルベント通路が形成される。相手部材には例えば、本体部とは別の本体部とすることができる。チルベント通路には、金型のキャビティ内のガスが排出され、継いで未凝固溶湯が流れ込む。本発明のチルベント通路の厚さが0.7mm以上3mm以内と厚いため、キャビティ内のガスが抜きやすくキャビティ内にガスが残りにくいため製品に巣ができにくい。そして、チルベント通路内のガスを押し出すように流れ込んでくる未凝固溶湯は、流路を流れる熱媒体によって速やかに凝固されるため、チルベント通路から溶湯が吹き出しにくい。流路は、チルベント通路に沿って形成されることにより、よりチルベント通路内の未凝固溶湯を効率良く凝固させることができる。   The temperature-controlled chill vent passage of the present invention for solving the above problems is formed by combining a main body and a mating member, and the shape of the chill vent passage extends in a corrugated direction in the passage direction, and its thickness is 0.7 mm. It can be 3 mm or less. The molten metal surface of the temperature control type main body of the present invention is corrugated, and the molten metal surface of the mating member is also corrugated, and the chill vent is formed by combining so that the convex portions are opposed to the concave portions of the concave and convex portions of each other. A passage is formed. For example, the counterpart member may be a main body portion different from the main body portion. The gas in the mold cavity is discharged into the chill vent passage, and the unsolidified molten metal flows into the chill vent passage. Since the thickness of the chill vent passage of the present invention is as large as 0.7 mm or more and 3 mm or less, the gas in the cavity can be easily removed and the gas does not easily remain in the cavity. And since the unsolidified molten metal which flows in so that the gas in a chill vent channel may be extruded is rapidly solidified by the heat medium which flows through a flow path, molten metal does not blow out easily from a chill vent channel. By forming the flow path along the chill vent passage, the unsolidified molten metal in the chill vent passage can be more efficiently solidified.

上記課題を解決するための本発明の調温型のチルベント通路の波形の振幅は10mm以上30mm以下とすることができる。この振幅が大きいとチルベント区画面を広くすることができるため、チルベント通路内を通過する未凝固溶湯を広い面で調温することができる。   In order to solve the above problems, the amplitude of the waveform of the temperature-controlled chill vent passage of the present invention can be 10 mm or more and 30 mm or less. If the amplitude is large, the chill vent section screen can be widened, and the temperature of the unsolidified molten metal passing through the chill vent passage can be adjusted in a wide area.

本発明の調温型は、広い主流路面に熱媒体が接触するために対溶湯面をより確実に調温できる。対溶湯面は、キャビティの一部を区画する型面、分流通路の一部を区画する分流区画面あるいはチルベント通路の一部を区画するチルベント区画面とすることができ、それぞれは型を製造する方法をそのまま採用して製造ることができる。   The temperature control type of the present invention can more reliably control the temperature of the molten metal surface because the heat medium contacts the wide main flow path surface. The molten metal surface can be a mold surface that divides a part of the cavity, a shunt screen that divides a part of the shunt passage, or a chill vent screen that divides a part of the chill vent passage. This method can be employed as it is.

本発明の調温型の補強部は、型部分を薄く形成することによって変形しやすい対溶湯面の変形を阻止することができる。   The reinforcing part of the temperature control mold of the present invention can prevent deformation of the surface of the molten metal that is easily deformed by forming the mold part thinly.

本発明の調温型のチルベント通路は、厚さ(幅)が0.7mm以上3mm以下と従来よりかなり厚くすることができる。これにより、キャビティ内のガスがチルベント通路へ排出されやすくなるため、製品に巣ができにくい。   The temperature-controlled chill vent passage of the present invention has a thickness (width) of 0.7 mm or more and 3 mm or less, which can be made considerably thicker than before. This makes it easier for the gas in the cavity to be discharged into the chill vent passage, making it difficult to nest the product.

(実施例1)
本発明の調温型の実施例1であるアルミダイキャスト金型の分流子を図1〜図4に示す。ここで分流子とはダイキャスト金型を構成する可動型に組み込まれる金型部分で、鋳込口(図示せず)から鋳込まれるアルミニウム溶湯が突き当たり複数のランナーに溶湯を分離する部分である。本実施例1の分流子の分流区画面側から見た図を図1に、その背向面側から見た図を図2に示す。図3は、固定型部2を取り外した型本体部1の裏側(分流区画面と背向する側)から見た図であり、図4は、図3に示すA−A矢視断面図である。
Example 1
FIG. 1 to FIG. 4 show a diverter of an aluminum die-casting die that is Embodiment 1 of the temperature control die of the present invention. Here, the diverter is a mold part that is incorporated into a movable mold that constitutes a die-cast mold, and is a part that a molten aluminum cast from a casting port (not shown) hits and separates the molten metal into a plurality of runners. . The figure seen from the shunt division screen side of the shunt of the present Example 1 is shown in FIG. 1, and the figure seen from the back surface side is shown in FIG. FIG. 3 is a view as seen from the back side (the side facing away from the shunt screen) of the mold body 1 from which the fixed mold part 2 is removed, and FIG. 4 is a cross-sectional view taken along the line AA shown in FIG. is there.

本実施例1の分流子は、図4に示すように熱間工具鋼で作られた本体部1と固定部2とからなる。この分流子は、本体部1の分流区画面11の背向側(裏側)に設けられた凹部10に固定部2を嵌装し、溶接して一体化したものである。   As shown in FIG. 4, the diverter according to the first embodiment includes a main body 1 and a fixing portion 2 made of hot tool steel. This diversion element is obtained by fitting the fixing portion 2 into the concave portion 10 provided on the back side (back side) of the diversion screen 11 of the main body portion 1 and welding and integrating them.

本体部1は図1及び図4より明らかなように背向側が円形で分流区画面11側が、図1上、上方が欠けた円錐台となり、欠けた部分が斜面状となっている。分流区画面11は頂部に当たる欠けた円形部分111と傾斜面112とからなっている。本体部1の背向側は開口部が図3に示す奴形状で図3の下方部分が深い穴となり上方部が斜め状の穴となっている。この凹部10を区画する最深部の底面121と傾斜面122で主流路面12を構成している。この主流路面12には補強部とガイド壁とを兼ねる多数の突壁13が形成されている。これら突壁13は図3に符号Bで示す部分から符号Cで示す部分に冷却水をガイドするように、BからCに間隔を隔てて延びている。また、突壁13の頂部は図4に示すように固定部2の副流路面21に当接する高さとなっている。また、図4から明らかなように、本体部1の主流路面12は分流区画面11と互いに背向する関係にあり、主流路面12は分流区画面11の延びる方向に広がり、主流路面12と分流区画面11との間隙(型部分の厚さ)はほぼ一定となっている。   As is clear from FIGS. 1 and 4, the main body 1 has a circular shape on the back side, and the shunt section screen 11 side has a truncated cone on the upper side in FIG. 1, and the chipped portion has a slope. The shunt area screen 11 is composed of a circular part 111 and an inclined surface 112 which are not touched by the top. On the back side of the main body 1, the opening is in the shape shown in FIG. 3, and the lower part of FIG. 3 is a deep hole and the upper part is an oblique hole. The deepest bottom surface 121 and the inclined surface 122 that define the recess 10 constitute the main flow path surface 12. The main flow path surface 12 is formed with a large number of protruding walls 13 that serve both as reinforcing portions and guide walls. These protruding walls 13 extend from B to C with an interval so as to guide the cooling water from the portion indicated by B in FIG. 3 to the portion indicated by C. Moreover, the top part of the protruding wall 13 is the height which contact | abuts to the subchannel surface 21 of the fixing | fixed part 2, as shown in FIG. As is clear from FIG. 4, the main flow path surface 12 of the main body 1 is in a back-to-back relationship with the shunt section screen 11, and the main flow path surface 12 extends in the direction in which the shunt section screen 11 extends. The gap (the thickness of the mold part) with the section screen 11 is substantially constant.

固定部2は図2にその裏側面、図4にその断面図を示すように、裏側面はやっこ形状の平面で構成され、中央部に冷却水の導入孔22、導出孔23が開口している。副流路面21側は、本体部1の凹部12とほぼ型対象の突部となっている。導入孔22及び導出孔23の他端はそれぞれ副流路面21に開口している。この固定部2は本体部1の凹部12に嵌装され、裏側面で溶接されて一体化される。副流路面21は主流路面12の突壁13の頂部に当接した状態となっている。本体部1の主流路面12と固定部2の副流路面21との間に間隙がほぼ等しい空間が形成され、この空間が冷却水の流路3となる。また、固定部2の導入孔22は主流路面の図3に示す符号Bで示す流路3の部分に開口し、導出孔23は符号Cで示す流路の部分に開口する。   As shown in FIG. 2 and the cross-sectional view of FIG. 2, the fixing portion 2 is configured by a ladle-shaped plane, and a cooling water introduction hole 22 and a discharge hole 23 are opened in the center. Yes. On the side of the sub-flow channel surface 21, the concave portion 12 of the main body portion 1 and a projection that is substantially a mold target. The other ends of the introduction hole 22 and the lead-out hole 23 are open to the sub-flow channel surface 21 respectively. The fixing portion 2 is fitted into the concave portion 12 of the main body portion 1 and is integrated by welding on the back side surface. The sub-channel surface 21 is in contact with the top of the protruding wall 13 of the main channel surface 12. A space having substantially the same gap is formed between the main flow path surface 12 of the main body 1 and the sub flow path surface 21 of the fixed portion 2, and this space becomes the flow path 3 of the cooling water. Further, the introduction hole 22 of the fixing portion 2 opens in the portion of the flow passage 3 indicated by the reference symbol B shown in FIG.

本実施例1の分流子は上記した構成のものである。この分流子はダイキャスト金型に組み込まれて使用され、鋳込口(図示せず)から鋳込まれるアルミニウム溶湯を図1の2点破線で示す4本のランナーに溶湯を分離する働きをする。そして、導入孔22から冷却水が導入され流路3に流れ込み導出孔23より排水される。冷却水は流路3を流れる間に本体部1の主流路面12と接触し、本体部1を冷却する。冷却水の冷熱は主流路面12から分流区画面11に伝達され、分流区画面11で区画される分流部分のアルミニウム溶湯を効果的に冷却して短時間にアルミニウム溶湯を凝固させる。   The shunt of the first embodiment has the above-described configuration. This diverter is used by being incorporated in a die-casting mold, and functions to separate the molten aluminum into four runners indicated by two-dot broken lines in FIG. 1 from the casting port (not shown). . Then, cooling water is introduced from the introduction hole 22, flows into the flow path 3, and is drained from the outlet hole 23. While flowing through the flow path 3, the cooling water contacts the main flow path surface 12 of the main body 1 to cool the main body 1. Cooling heat of the cooling water is transmitted from the main flow path surface 12 to the branch flow area screen 11, effectively cooling the molten aluminum in the flow dividing section partitioned by the flow branch area screen 11 to solidify the molten aluminum in a short time.

本実施例1の分流子では、流路3の主流路面12が分流区画面11に沿って延びているため、主流路面12が広い。このため分流子の本体部1がより効率的に冷却され冷却速度が速くなる。分流区画面11と主流路面12との間隙がほぼ一定であるため分流区画面11が均一に冷却される。流路3は多数の突壁13を持ち、突壁で冷却水が案内されるために流路3の一部に冷却水の淀みが生じにくく、冷却水がスムースに流れ、冷却効果を高める。また、分流区画面11に鋳込口から送られる高圧のアルミニウム溶湯が当たり、分流区画面11を高圧で押しつけることになる。高い押圧力は、突壁13を介して固定部2により受け止められるため分流区画面11が変形する等の不都合は発生しない。   In the shunt of the first embodiment, the main flow path surface 12 of the flow path 3 extends along the shunt section screen 11 and thus the main flow path surface 12 is wide. For this reason, the main body part 1 of the diverter is cooled more efficiently, and the cooling rate is increased. Since the gap between the shunt screen 11 and the main flow path surface 12 is substantially constant, the shunt screen 11 is uniformly cooled. Since the flow path 3 has a large number of protruding walls 13 and the cooling water is guided by the protruding walls, it is difficult for stagnation of the cooling water to occur in a part of the flow path 3, and the cooling water flows smoothly and enhances the cooling effect. Moreover, the high-pressure aluminum molten metal sent from a pouring opening hits the shunting area screen 11, and the shunting area screen 11 is pressed at a high pressure. Since the high pressing force is received by the fixing portion 2 through the protruding wall 13, there is no inconvenience such as deformation of the shunt screen 11.

(実施例2)
本発明の調温型の実施例2であるアルミダイキャスト金型のチルベントを図5〜6に示す。このチルベントはダイキャスト金型とは別に構成され、ダイキャスト金型に組み込まれる。チルベントは、キャビティ内に残留するガスをキャビティ外に排出するとともに、その後に続くアルミニウム溶湯を冷却して凝固させ、ダイキャスト金型の外にアルミニウム溶湯が漏れ出さないようにするためのものである。本実施例2のチルベントの断面図を図5に、チルベントの構成を図6に示す。
(Example 2)
FIGS. 5 to 6 show a chill vent of an aluminum die-casting die that is a temperature control type embodiment 2 of the present invention. This chill vent is configured separately from the die cast mold and is incorporated in the die cast mold. The chill vent discharges the gas remaining in the cavity to the outside of the cavity and cools and solidifies the subsequent molten aluminum so that the molten aluminum does not leak out of the die cast mold. . A sectional view of the chill vent of the second embodiment is shown in FIG. 5, and the configuration of the chill vent is shown in FIG.

本実施例2のチルベントは、図5及び図6に示すように第1本体部4と第1固定部5と、第2本体部6と第2固定部7と、からなる。このチルベントは、第1本体部4と第2本体部6とが第1チルベント区画面41と第2チルベント区画面62とで対向し、第1固定部5と第2固定部7とが本体部が対向する面の背面にそれぞれ第1本体部4と第2本体部6とに嵌合して一体化したものである。   As shown in FIGS. 5 and 6, the chill vent of the second embodiment includes a first main body portion 4, a first fixing portion 5, a second main body portion 6, and a second fixing portion 7. In this tilt vent, the first main body portion 4 and the second main body portion 6 face each other on the first tilt vent section screen 41 and the second tilt vent section screen 62, and the first fixing portion 5 and the second fixing portion 7 are the main body portion. Are fitted to and integrated with the first main body portion 4 and the second main body portion 6 on the back surfaces of the opposing surfaces.

第1本体部4は、アルミニウム溶湯に接する第1チルベント区画面41が溶湯が流れる方向に波形に延びて形成されている。波の振幅は30mmである。第1固定部4が嵌合される背面側の第1主流路面4は第1チルベント区画面41と平行に形成され、第1チルベント区画面41と第1主流路面42との間隔(型部分の厚さ)はほぼ一定の3mmとなっている。第2本体部6も同様に、第2チルベント区画面61と第2主流路面62とが形成され、その間隔もほぼ一定の3mmである。本実施例2のチルベントのチルベント通路8は、第1本体部4の第1チルベント区画面41と第2本体部6の第2チルベント区画面61とが3mmの間隔(厚さ)で対向して組み合わさって形成される。チルベント通路8の厚さが3mmで、振幅方向に対して垂直な方向のチルベント通路8の幅は80mmである。この幅はキャビティ(図示せず)内の容量に応じて広げたり狭めたりすることができる。   The 1st main-body part 4 is formed so that the 1st chill vent area screen 41 which touches a molten aluminum may be extended in the waveform in the direction through which a molten metal flows. The wave amplitude is 30 mm. The first main flow path surface 4 on the back side to which the first fixing portion 4 is fitted is formed in parallel with the first tilt vent section screen 41, and the distance between the first tilt section screen 41 and the first main flow path surface 42 (of the mold portion). The thickness) is almost constant 3 mm. Similarly, the second main body portion 6 is also formed with a second chill vent section screen 61 and a second main flow path surface 62, and the distance between them is substantially constant 3 mm. In the chill vent passage 8 of the chill vent according to the second embodiment, the first chill vent section screen 41 of the first main body portion 4 and the second chill vent section screen 61 of the second main body portion 6 face each other at an interval (thickness) of 3 mm. It is formed by combining. The thickness of the chill vent passage 8 is 3 mm, and the width of the chill vent passage 8 in the direction perpendicular to the amplitude direction is 80 mm. This width can be increased or decreased depending on the volume in the cavity (not shown).

第1固定部5は、第1本体部4の背面つまり第1主流路面42側に嵌合し、第1主流路面42と平行に第1固定部5の第1副流路面51が形成される。第1主流路面42と第1副流路面51との間を冷却水が流れる流路9となり、冷却水の第1導入孔52及び第1導出孔(図示せず)が第1副流路面51に開口している。第1導入孔52及び第2導出孔の他端が第1固定部5の背面(第1副流路面51の反対側)に開口している。第2固定部6も同様に、第2副流路面71が第2本体部の第2主流路面と平行に形成され、第2主流路面62と第2副流路面71との間を冷却水が流れる流路9となる。第2導入孔72及び第2導出孔73が第2副流路面71に開口し、他端が第2固定部7の背面(第2副流路面71の反対側)に開口している。   The first fixing portion 5 is fitted to the back surface of the first main body portion 4, that is, the first main channel surface 42 side, and the first sub-channel surface 51 of the first fixing unit 5 is formed in parallel with the first main channel surface 42. . The flow path 9 flows between the first main flow path surface 42 and the first sub flow path surface 51, and the first introduction hole 52 and the first outlet hole (not shown) of the cooling water are the first sub flow path surface 51. Is open. The other ends of the first introduction hole 52 and the second lead-out hole are opened on the back surface of the first fixing portion 5 (opposite side of the first sub flow path surface 51). Similarly, in the second fixing portion 6, the second sub-channel surface 71 is formed in parallel with the second main channel surface of the second main body, and the cooling water is interposed between the second main channel surface 62 and the second sub-channel surface 71. It becomes the flowing flow path 9. The second introduction hole 72 and the second lead-out hole 73 open to the second sub-flow channel surface 71, and the other end opens to the back surface of the second fixing portion 7 (opposite side of the second sub-flow channel surface 71).

本実施例2のチルベントは上記した構成のものである。このチルベントはダイキャスト金型に組み込まれて使用され、アルミニウム溶湯がキャビティ(図示せず)に鋳込まれる際、キャビティ内に残留しているガスを排出する働きをする。よって、チルベント通路8には、キャビティ内の残留ガスとガスに続いてアルミニウム溶湯が流れ込む。チルベントは、チルベント通路8内のアルミニウム溶湯を冷却凝固して、チルベント通路からアルミニウム溶湯が吹き出すのを防ぐ。チルベント通路8内のアルミニウム溶湯を冷却凝固するために、第1導入孔52及び第2導入孔72から冷却水が導入され流路9に流れ込み第1導出孔及び第2導出孔73より排水される。冷却水は流路9を流れる間に第1本体部4の第1主流路面42及び第2本体部6の第2主流路面62と接触し、それぞれ本体部を冷却する。冷却水の冷熱は第1主流路面42から第1本体部4の第1チルベント区画面41及び第2主流路面62から第2本体部6の第2チルベント区画面61に伝達され、チルベント通路8内のアルミニウム溶湯を効果的に冷却して短時間でアルミニウム溶湯を凝固させる。   The chill vent of Example 2 has the above-described configuration. This chill vent is used by being incorporated in a die-cast mold, and functions to discharge the gas remaining in the cavity when molten aluminum is cast into the cavity (not shown). Therefore, the molten aluminum flows into the chill vent passage 8 following the residual gas and gas in the cavity. The chill vent cools and solidifies the molten aluminum in the chill vent passage 8 and prevents the molten aluminum from blowing out of the chill vent passage. In order to cool and solidify the molten aluminum in the chill vent passage 8, cooling water is introduced from the first introduction hole 52 and the second introduction hole 72, flows into the flow path 9, and is drained from the first lead hole and the second lead hole 73. . While the cooling water flows through the flow path 9, the cooling water contacts the first main flow path surface 42 of the first main body portion 4 and the second main flow path surface 62 of the second main body portion 6 to cool the main body portions. The cooling water is transmitted from the first main flow path surface 42 to the first chill vent section screen 41 of the first main body section 4 and from the second main flow path face 62 to the second chill vent section screen 61 of the second main body section 6, and in the chill vent passage 8. The molten aluminum is effectively cooled to solidify the molten aluminum in a short time.

本実施例2のチルベントでは、チルベント通路8の厚さが3mmと従来よりかなり厚い。これにより、キャビティ内のガスがチルベント通路に速やかに排出されやすい。一般的にはチルベント通路の厚さが厚いと、キャビティ内のガスを抜き易いが、ガスに続いて流れ込んでくるアルミニウム溶湯が凝固しにくくなる。しかし、本実施例2のチルベントは、流路9の主流路面42、62がチルベント区画面41、61に沿って延びているため、流路9の熱媒体によってチルベント通路内のアルミニウム溶湯が効率良く冷却される。また、チルベント通路8の振幅が30mmと大きいため、チルベント区画面41、61の面積が広く、チルベント通路8内のアルミニウム溶湯を広い面積で冷却することができる。そして、チルベント区画面41、61や主流路面42、62の面積も広く確保でき、熱媒体の熱を効率よく伝達することができるため、本体部4、6の型部分の厚さを厚く形成することができる。これにより、チルベント通路8に流れ込む高圧のアルミニウム溶湯がチルベント区画面41、61を高圧で押しつけたとしても変形する等の不都合が発生しにくく、チルベントの耐久性が向上する。   In the chill vent of the second embodiment, the thickness of the chill vent passage 8 is 3 mm, which is considerably thicker than the conventional one. Thereby, the gas in a cavity tends to be rapidly discharged | emitted by the chill vent channel | path. In general, when the thickness of the chill vent passage is large, the gas in the cavity is easily extracted, but the molten aluminum flowing into the gas is difficult to solidify. However, in the chill vent of the second embodiment, since the main flow path surfaces 42 and 62 of the flow path 9 extend along the chill vent section screens 41 and 61, the molten aluminum in the chill vent path is efficiently generated by the heat medium of the flow path 9. To be cooled. Further, since the amplitude of the chill vent passage 8 is as large as 30 mm, the area of the chill vent section screens 41 and 61 is large, and the molten aluminum in the chill vent passage 8 can be cooled in a wide area. And since the area of the chill vent section screens 41 and 61 and the main flow path surfaces 42 and 62 can be secured widely and the heat of the heat medium can be efficiently transmitted, the thickness of the mold parts of the main body parts 4 and 6 is formed thick. be able to. Thereby, even if the high-pressure aluminum molten metal flowing into the chill vent passage 8 presses the chill vent section screens 41 and 61 at a high pressure, it does not easily cause inconveniences and the durability of the chill vent is improved.

以上、本発明の好適な実施例について説明した。本実施例の分流子及びチルベントはそれぞれ、キャビティの容量に合わせて幾つかのサイズを用意しておき、キャビティに合わせて適当なサイズを組み込むことができる。   The preferred embodiments of the present invention have been described above. Each of the diverter and the chill vent of the present embodiment can be prepared in several sizes according to the capacity of the cavity, and an appropriate size can be incorporated according to the cavity.

本実施例1のアルミニウムダイキャスト金型の分流子の分流区画面側から見た図である。It is the figure seen from the shunt division screen side of the diverter of the aluminum die-casting die of Example 1. 図1と同じ分流子の分流区画面と背向する裏側面から見た図である。It is the figure seen from the back side which turns into the shunting area screen of the same shunt as FIG. 図1と同じ分流子を構成する本体部の裏側面から見た図である。It is the figure seen from the back side surface of the main-body part which comprises the same shunt as FIG. 図1と同じ分流子の断面図である。FIG. 2 is a cross-sectional view of the same current divider as in FIG. 1. 本実施例2のアルミニウムダイキャスト金型のチルベントの断面図である。It is sectional drawing of the chill vent of the aluminum die-casting die of the present Example 2. 本実施例2のアルミニウムダイキャスト金型のチルベントの構成図である。It is a block diagram of the chill vent of the aluminum die-casting mold of Example 2.

符号の説明Explanation of symbols

1:本体部 2:固定部 3:流路 10:凹部
11:分流区画面 12:主流路面 13:突壁 21:副流路面
22:導入孔 23:導出孔 4:第1本体部
5:第1固定部 6:第2本体部 7:第2固定部
8:チルベント通路 9:流路 41:第1チルベント区画面
42:第1主流路面 51:第1副流路面 52:導入孔
61:第2チルベント区画面 62:第2主流路面
71:第2副流路面 72:第2導入孔 73:第2導出孔
1: Body part 2: Fixed part 3: Channel 10: Recessed part 11: Shunt flow screen 12: Main channel surface 13: Projection wall 21: Sub-channel surface 22: Introduction hole 23: Lead-out hole 4: First body part 5: First 1 fixed portion 6: second main body portion 7: second fixed portion 8: chill vent passage 9: flow passage 41: first chill vent section screen 42: first main flow passage surface 51: first sub flow passage surface 52: introduction hole 61: first 2 tilt vent section screen 62: second main flow path surface 71: second sub flow path surface 72: second introduction hole 73: second lead-out hole

Claims (9)

溶湯と接触する対溶湯面と内部に熱媒体が流れる流路の一部を区画する主流路面を有する凹部とを持つ本体部と、
前記流路の少なくとも他の一部を区画する副流路面を持ち前記本体部の前記凹部に固定される少なくとも一個の固定部と、を有し、
前記本体部および前記固定部の少なくとも一方は前記流路に開口する熱媒体の導入孔及び導出孔を持ち、
前記主流路面は所定間隔を隔てて前記対溶湯面の少なくとも一部に沿ったものであり、
前記主流路面と前記副流路面との間には前記対溶湯面に作用する溶湯の圧力を前記固定部に伝える柱状又は突壁状の補強部をもつことを特徴とする調温型。
A main body having an anti-melt surface in contact with the molten metal and a concave portion having a main flow path surface defining a part of the flow path through which the heat medium flows;
Have at at least one of the fixed portion is secured to the recess of the main body portion has a sidestream road surface defining at least another portion of the flow path,
At least one of the main body part and the fixed part has a heat medium introduction hole and a lead hole opening in the flow path,
The main flow path surface is along at least a part of the surface of the molten metal with a predetermined interval,
A temperature control type characterized by having a columnar or protruding wall-shaped reinforcing portion for transmitting the pressure of the molten metal acting on the molten metal surface to the fixed portion between the main flow channel surface and the sub flow channel surface .
前記補強部は前記本体部及び前記固定部の少なくとも一方向に一体的に形成されている請求項記載の調温型。 It said reinforcing portion is the main portion and at least one direction tempering type according to claim 1, characterized in that integrally formed in the fixed part. 前記突壁状の補強部は熱媒体のガイド壁として機能する請求項または2に記載の調温型。 Tempering type according to claim 1 or 2, wherein the protruding wall-like reinforcing portion serves as the guide wall of the heat medium. 前記主流路面は前記流路に沿って延びる溝または突条をもつ請求項1〜3のいずれかに記載の調温型。   The temperature control mold according to any one of claims 1 to 3, wherein the main channel surface has a groove or a ridge extending along the channel. 前記対溶湯面はキャビティの一部を区画する型面である請求項1〜の何れかに記載の調温型。 The temperature control mold according to any one of claims 1 to 4 , wherein the molten metal surface is a mold surface that divides a part of a cavity. 前記対溶湯面は分流通路の一部を区画する分流区画面である請求項1〜の何れかに記載の調温型。 The temperature control mold according to any one of claims 1 to 5 , wherein the surface of the molten metal is a diversion area screen that divides a part of the diversion passage. 前記対溶湯面はチルベント通路の一部を区画するチルベント区画面である請求項1に記載の調温型。 The temperature control mold according to claim 1, wherein the molten metal surface is a chill vent section screen that divides a part of the chill vent passage. 前記チルベント通路は、前記本体部と相手部材とが組み合わされて形成され、該チルベント通路の形状は通路方向に波形に延び、その厚さが0.7mm以上3mm以下である請求項に記載の調温型。 The chill vent passage, said body portion and the mating member are combined to form the shape of the chill vent passage extends waveform passage direction, of claim 7 the thickness is 0.7mm or more 3mm or less Temperature control type. 前記チルベント通路の波形の振幅は10mm以上30mm以下である請求項に記載の調温型。 The temperature control mold according to claim 8 , wherein the amplitude of the waveform of the chill vent passage is 10 mm or more and 30 mm or less.
JP2007054404A 2006-03-17 2007-03-05 Temperature control type Active JP5117077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007054404A JP5117077B2 (en) 2006-03-17 2007-03-05 Temperature control type

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006075101 2006-03-17
JP2006075101 2006-03-17
JP2007054404A JP5117077B2 (en) 2006-03-17 2007-03-05 Temperature control type

Publications (2)

Publication Number Publication Date
JP2007275989A JP2007275989A (en) 2007-10-25
JP5117077B2 true JP5117077B2 (en) 2013-01-09

Family

ID=38678017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007054404A Active JP5117077B2 (en) 2006-03-17 2007-03-05 Temperature control type

Country Status (1)

Country Link
JP (1) JP5117077B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6002271B1 (en) * 2015-04-01 2016-10-05 株式会社スグロ鉄工 Mold divertor and casting mold having the same
JP2017124592A (en) * 2016-01-17 2017-07-20 有限会社スワニー Forming block and production method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386355A (en) * 1989-08-25 1991-04-11 Asahi Tec Corp Die for casting
JPH09155529A (en) * 1995-12-06 1997-06-17 Toyota Motor Corp Die cooling structure
JP4028112B2 (en) * 1998-12-08 2007-12-26 本田技研工業株式会社 Mold cooling method and apparatus
US6698496B2 (en) * 2000-06-29 2004-03-02 Ryobi Ltd. Cooling arrangement for die-casting metal mold
JP3998610B2 (en) * 2003-07-31 2007-10-31 リョービ株式会社 Mold cooling structure and mold cooling method
JP2005059035A (en) * 2003-08-08 2005-03-10 Ryobi Ltd Structure and method for cooling die
JP4177219B2 (en) * 2003-10-01 2008-11-05 ダイハツ工業株式会社 Mold with cooling function

Also Published As

Publication number Publication date
JP2007275989A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
US3978910A (en) Mold plate cooling system
RU2212980C2 (en) Process for pressure die casting of magnesium
WO2009113370A1 (en) Multiple-cavity mold
TWI657877B (en) Mould plate and mould
JP6002271B1 (en) Mold divertor and casting mold having the same
JP5117077B2 (en) Temperature control type
WO2020230902A1 (en) Casting device
JP2010075939A (en) Die-casting die
US5810068A (en) Pressure die-casting apparatus for vehicle wheel
JP6462373B2 (en) Mold cooling structure
EP0083657B1 (en) Mold and structure of vent part thereof
US20050028960A1 (en) Chill tube
KR101743944B1 (en) Mold cooling device
JPH11226716A (en) Metallic mold for casting
CN101489703A (en) Extrusion die for liquid metals, in particular for liquid steel materials
KR102048571B1 (en) Molding device for manufacturing tetragonal product
US20020129922A1 (en) Mold for continuous casting of strands
JP5763584B2 (en) Chill vent
JP5041913B2 (en) Chill vent
JP4624300B2 (en) Mold cooling structure
CN214926938U (en) Extrusion die wide in application range and uniform in extrusion
CN210501273U (en) Industrial mold heat insulation structure
JP2002059243A (en) Casting device for disk brake
JP6485712B2 (en) Die casting mold mechanism
WO2010114019A1 (en) Hot-top for continuous casting and method of continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5117077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250