JP5115244B2 - Electrostatic vibrator and method of using the same - Google Patents

Electrostatic vibrator and method of using the same Download PDF

Info

Publication number
JP5115244B2
JP5115244B2 JP2008054456A JP2008054456A JP5115244B2 JP 5115244 B2 JP5115244 B2 JP 5115244B2 JP 2008054456 A JP2008054456 A JP 2008054456A JP 2008054456 A JP2008054456 A JP 2008054456A JP 5115244 B2 JP5115244 B2 JP 5115244B2
Authority
JP
Japan
Prior art keywords
rigid portion
elastic
rigid
electrode
electrostatic vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008054456A
Other languages
Japanese (ja)
Other versions
JP2009212888A (en
Inventor
竜児 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008054456A priority Critical patent/JP5115244B2/en
Publication of JP2009212888A publication Critical patent/JP2009212888A/en
Application granted granted Critical
Publication of JP5115244B2 publication Critical patent/JP5115244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は静電振動子及びその使用方法に係り、特に、MEMS(微小電子機械システム)として構成される場合に好適な静電振動子の構造、並びに、当該静電振動子を用いる使用方法に関する。   The present invention relates to an electrostatic vibrator and a method for using the electrostatic vibrator, and more particularly to a structure of an electrostatic vibrator suitable when configured as a MEMS (microelectromechanical system) and a method for using the electrostatic vibrator. .

一般に、MEMS(Micro Electro Mechanical Systems)は微小構造体形成技術の一つで、ミクロンオーダーの微細な電子機械システムを作る技術やその製品のことを指す。半導体チップはシリコン基板上にシリコン薄膜を積み重ねて電子回路を作るため平面的であるが、同じ半導体技術を使いながらMEMSではシリコンを加工してミクロンサイズの板ばね、鏡、回転軸などが形成される。これらの構造は立体的であり、可動部分を備えている。   In general, MEMS (Micro Electro Mechanical Systems) is one of micro structure forming technologies, and refers to a technology for producing a micro electromechanical system on the order of microns or a product thereof. A semiconductor chip is planar because a silicon thin film is stacked on a silicon substrate to create an electronic circuit, but MEMS is processed to form micron-sized leaf springs, mirrors, rotating shafts, etc., while using the same semiconductor technology. The These structures are three-dimensional and have movable parts.

MEMSが注目されている分野として通信、特に携帯電話機の通信回路がある。携帯電話機にはLSIの他にフィルタ、アンテナスイッチ、送受信スイッチなど多くの部品が組み込まれている。近距離無線通信や無線LANを利用するマルチバンド化が進むことにより、アンテナの切り替えスイッチやバンド切り替えスイッチなどの受動部品が増加する。携帯電話機のような製品の小型化、省電力化を図るためにはこうした部品を1チップに納めて部品点数を減らすことが最も効率のよい方法である。また、配線が短くなり、メカニカルに動作することから信号ノイズが入りにくく、個別部品より10倍以上損失の少ないフィルタを実現することができるなどの性能向上も見込まれる。さらに、シリコンを使用することでLSIとの一体化、パッケージ化、各部材に対する貼り合わせなどが可能になる(例えば、以下の特許文献1参照)。   A field in which MEMS is attracting attention is communication, particularly communication circuits for mobile phones. In addition to LSIs, cellular phones incorporate many components such as filters, antenna switches, and transmission / reception switches. With the progress of multiband using short-range wireless communication and wireless LAN, passive components such as an antenna changeover switch and a band changeover switch increase. In order to reduce the size and power consumption of products such as mobile phones, it is the most efficient method to reduce the number of components by putting these components in one chip. In addition, since the wiring is shortened and mechanically operated, signal noise is less likely to enter, and a performance improvement such as a filter that is 10 times less loss than an individual component can be realized. Furthermore, by using silicon, integration with LSI, packaging, bonding to each member, and the like are possible (for example, see Patent Document 1 below).

上記のように機械的に振動するMEMS振動子は小型であるとともに半導体回路との一体化が可能なことから新しい振動子デバイスとして期待されているが、反面、MEMS振動子には一般的な圧電素子を用いた水晶振動子やセラミック振動子に比べて等価回路の抵抗成分が大きいという欠点がある。この抵抗成分を低くするためには、振動子のエネルギー損失を低減する必要がある。   The MEMS vibrator that vibrates mechanically as described above is expected to be a new vibrator device because it is small and can be integrated with a semiconductor circuit. There is a disadvantage that the resistance component of the equivalent circuit is larger than that of a crystal resonator or a ceramic resonator using the element. In order to reduce the resistance component, it is necessary to reduce the energy loss of the vibrator.

上記のMEMS振動子のエネルギー損失の原因としては、固定部への振動漏れ(Anchor loss)が挙げられる。この振動漏れの大きさは振動部と固定部の形状によって定まる。当該振動漏れを低減する従来方法としては、以下の非特許文献1のFig.1に記載されているように、平面視矩形状の振動体を4本の直線状の支持梁で両持ち梁状に支持してなる振動子構造において、振動体及び各支持梁は、各支持梁の両側の振動体に対する各接続部位及び基板に対する各固定部位がちょうど振動の節に相当する位置となる寸法に形成され、これにより固定部の振動変位が小さくなって上記振動漏れを抑制できるようになっている。
特表2007−533186号公報 Kun Wang,他3名 "VHF Free-Free Beam High-Q Micromechanical Resonators" Technical Digest, 12th International IEEE Micro Electro Mechanical Systems Conference, Orlando, Florida, Jan. 17-21, 1999, P.453-458
As a cause of the energy loss of the MEMS vibrator, there is vibration loss (Anchor loss) to the fixed part. The magnitude of this vibration leakage is determined by the shapes of the vibration part and the fixed part. As a conventional method for reducing the vibration leakage, FIG. 1, in a vibrator structure in which a rectangular vibrating body in plan view is supported by four linear support beams in a doubly supported beam shape, each of the vibrating body and each support beam is supported by each support beam. Each connecting part to the vibrating body on both sides of the beam and each fixing part to the substrate are formed in a size corresponding to the position of the vibration node, so that the vibration displacement of the fixed part can be reduced and the vibration leakage can be suppressed. It has become.
Special table 2007-533186 Kun Wang and 3 others "VHF Free-Free Beam High-Q Micromechanical Resonators" Technical Digest, 12th International IEEE Micro Electro Mechanical Systems Conference, Orlando, Florida, Jan. 17-21, 1999, P.453-458

しかしながら、前述の非特許文献1に記載のMEMS振動子においては、駆動周波数が高くなるに従って振動体及び支持梁の寸法を小さくする必要があるので、電極や支持梁を設けるスペースが小さくなるなど、寸法に関して設計上の制約が大きいという問題点がある。   However, in the MEMS vibrator described in Non-Patent Document 1, it is necessary to reduce the dimensions of the vibrating body and the support beam as the drive frequency increases. There is a problem in that there are large design restrictions regarding dimensions.

また、MEMS振動子の製造工程においては、通常、下層構造上に酸化シリコン等で犠牲層を形成し、この犠牲層上に当該振動子の可動部分を形成した後、フッ酸系のエッチャントを用いて上記犠牲層を除去し、上記可動部分を離間させるリリース工程を実施する必要がある。ところが、当該リリース工程では、エッチング処理後の洗浄乾燥時に上記可動部分が水位の低下とともに下方に引き寄せられ、下層構造に貼り付き、リリースに失敗するといった所謂スティッキング現象を招き、製造プロセスの歩留まりの低下を引き起こすという問題点がある。   In the manufacturing process of the MEMS vibrator, a sacrificial layer is usually formed on the lower layer structure with silicon oxide or the like, a movable part of the vibrator is formed on the sacrificial layer, and then a hydrofluoric acid based etchant is used. Thus, it is necessary to perform a release step of removing the sacrificial layer and separating the movable parts. However, in the release process, the movable part is attracted downward as the water level decreases during cleaning and drying after the etching process, sticks to the lower layer structure, and causes a so-called sticking phenomenon that causes the release to fail, thereby reducing the yield of the manufacturing process. There is a problem of causing.

そこで、本発明は上記問題点を解決するものであり、その課題は、振動漏れを低減しつつ、設計時の寸法上の制約を緩和することの可能で、しかも、スティッキング現象を回避するのに好適な振動子構造を実現することにある。   Therefore, the present invention solves the above-mentioned problems, and the problem is that it is possible to alleviate the constraints on dimensions during design while reducing vibration leakage, and to avoid the sticking phenomenon. It is to realize a suitable vibrator structure.

斯かる実情に鑑み、本発明の静電振動子は、支持体と、該支持体に対して複数の第1の弾性部を介して接続された第1の剛性部、及び、該第1の剛性部に対して複数の第2の弾性部を介して接続された第2の剛性部を有する可動電極と、前記第1の剛性部に対向配置され、前記第1の剛性部に励振力を及ぼす駆動電極と、前記第2の剛性部に対向配置され、前記第2の剛性部の振動変位を検出する検出電極と、を具備し、前記第1の弾性部及び前記第2の弾性部の前記駆動電極及び前記検出電極と対向する方向の撓み変形により前記第1の剛性部及び前記第2の剛性部がそれぞれ振動変位可能とされた2自由度の弾性振動系を構成することを特徴とする。   In view of such circumstances, the electrostatic vibrator according to the present invention includes a support, a first rigid portion connected to the support via a plurality of first elastic portions, and the first A movable electrode having a second rigid portion connected to the rigid portion via a plurality of second elastic portions, and disposed opposite to the first rigid portion, and applying an excitation force to the first rigid portion. And a detection electrode that is disposed opposite to the second rigid portion and detects a vibration displacement of the second rigid portion, and includes a first elastic portion and a second elastic portion. The elastic structure includes two degrees of freedom in which the first rigid part and the second rigid part are each capable of vibration displacement by bending deformation in a direction opposite to the drive electrode and the detection electrode. To do.

この発明によれば、駆動電極により第1の剛性部に励振力を与えると2自由度の弾性振動系が振動し、これによって生じた第2の剛性部の振動変位を検出電極により検出することで、電気的振動子を構成することができる。この場合、駆動電極により第1の剛性部に及ぼされる静電励振力の励振周波数を弾性振動系のうち第2の剛性部と第2の弾性部の固有振動数の近傍とすることにより、第1の剛性部の振幅を第2の剛性部の振幅より大幅に小さくすることができるので、支持体側への振動漏れを低減することができる。ここで、第1の弾性部及び第2の弾性部は、第1の剛性部及び第2の剛性部より弾性が高く剛性の低い部分として構成されていればよい。   According to the present invention, when an excitation force is applied to the first rigid portion by the drive electrode, the elastic vibration system having two degrees of freedom vibrates, and the vibration displacement of the second rigid portion caused thereby is detected by the detection electrode. Thus, an electric vibrator can be configured. In this case, by setting the excitation frequency of the electrostatic excitation force exerted on the first rigid portion by the drive electrode to be close to the natural frequency of the second rigid portion and the second elastic portion in the elastic vibration system, Since the amplitude of the first rigid portion can be significantly smaller than the amplitude of the second rigid portion, vibration leakage toward the support can be reduced. Here, the 1st elastic part and the 2nd elastic part should just be comprised as a part with a higher elasticity and a low rigidity than a 1st rigid part and a 2nd rigid part.

また、上記従来の振動子構造体のように振動体や弾性部の寸法を振動モードに合わせる必要がなく、寸法に関する制約が少なくなるので、より自由な構造設計が可能になる。   Further, unlike the above-described conventional vibrator structure, it is not necessary to match the dimensions of the vibrating body and the elastic portion to the vibration mode, and restrictions on the dimensions are reduced, so that a more flexible structure design is possible.

さらに、第1の剛性部は複数の第1の弾性部を介して支持体に接続され、第2の剛性部は複数の第2の弾性部を介して第1の剛性部に接続されて閉じた形状の第1の剛性部の内側に配置されるので、各剛性部が複数個所でそれぞれ安定して支持されるとともに、第1の剛性部の剛性も確保されることで、犠牲層を利用して振動子構造体を構成し、その後、リリース工程で犠牲層を除去する場合でも、各剛性部の下層構造に対する貼り付き、すなわちスティッキングを防止することができる。   Furthermore, the first rigid portion is connected to the support via the plurality of first elastic portions, and the second rigid portion is connected to the first rigid portion via the plurality of second elastic portions and closed. Since each rigid portion is stably supported at a plurality of locations and the rigidity of the first rigid portion is ensured, the sacrificial layer is used. Thus, even when the vibrator structure is configured and then the sacrificial layer is removed in the release process, sticking of the rigid portions to the lower layer structure, that is, sticking can be prevented.

本発明の一の態様においては、前記支持体は基板であり、前記第1の弾性部、前記第1の剛性部、前記第2の弾性部及び前記第2の剛性部を有する可動部分が前記基板との間に間隙を有した状態で前記基板に沿って平行に配置され、前記駆動電極が前記第1の剛性部と対向する位置で前記基板上に形成され、前記検出電極が前記第2の剛性部と対向する位置で前記基板上に形成される。これによれば、可動部分が基板に沿って平行に配置されることで当該可動部分を基板上の単一層で構成できる、上記駆動電極と検出電極を基板上に単一層で形成できるなど、振動子構造体を基板上にMEMS技術等を用いて容易に形成することができる。   In one aspect of the present invention, the support is a substrate, and the movable part having the first elastic part, the first rigid part, the second elastic part, and the second rigid part is the The driving electrode is formed on the substrate at a position facing the first rigid portion, and is arranged in parallel along the substrate with a gap between the detection electrode and the second electrode. Is formed on the substrate at a position facing the rigid portion. According to this, since the movable part is arranged in parallel along the substrate, the movable part can be configured with a single layer on the substrate, and the drive electrode and the detection electrode can be formed with a single layer on the substrate. The child structure can be easily formed on the substrate using the MEMS technique or the like.

この場合においては、前記複数の第1の弾性部と前記複数の第2の弾性部とが前記第2の剛性部を中心とする異なる方位に存在することが好ましい。本発明において、第1の弾性部と第2の弾性部の位置は特に限定されないが、第1の弾性部と第2の弾性部とを第2の剛性部を中心とする異なる方位に設けることで、第2の剛性部を中心とする支持部位の方位を分散させることが可能になるため、全体として可動部分の支持剛性の向上、不要な振動モードの抑制などを図ることができる。なお、上記複数の第1の弾性部及び上記複数の第2の弾性部を第1の剛性部及び第2の剛性部をそれぞれ中心として分散された方位に設け、好ましくは等角度間隔に設定された方位にそれぞれ設けることが効果的である。   In this case, it is preferable that the plurality of first elastic portions and the plurality of second elastic portions exist in different orientations centering on the second rigid portion. In the present invention, the positions of the first elastic portion and the second elastic portion are not particularly limited, but the first elastic portion and the second elastic portion are provided in different orientations around the second rigid portion. Thus, since it is possible to disperse the orientation of the support portion with the second rigid portion as the center, it is possible to improve the support rigidity of the movable portion as a whole, suppress unnecessary vibration modes, and the like. The plurality of first elastic portions and the plurality of second elastic portions are provided in orientations distributed around the first rigid portion and the second rigid portion, respectively, and preferably set at equiangular intervals. It is effective to provide them in different directions.

本発明の他の態様においては、前記第1の剛性部が環状に構成される。第1の剛性部を環状に構成することで、第1の剛性部の剛性を高めることができ、安定した振動状態を得ることが可能になる。この場合に、前記第1の剛性部と前記第2の剛性部は相互に同心状に形成され、前記第1の弾性部及び前記第2の弾性部はそれぞれ前記第1の剛性部及び前記第2の剛性部と同心で半径方向外側に延びる放射状に形成されることが望ましい。これによれば、振動子構造体の剛性を向上させることができるとともに対称性も高まるので振動の安定性をさらに向上させることができる。   In another aspect of the invention, the first rigid portion is configured in an annular shape. By configuring the first rigid portion in an annular shape, the rigidity of the first rigid portion can be increased, and a stable vibration state can be obtained. In this case, the first rigid portion and the second rigid portion are formed concentrically with each other, and the first elastic portion and the second elastic portion are the first rigid portion and the second rigid portion, respectively. It is desirable that the two rigid portions be formed radially so as to extend radially outward. According to this, since the rigidity of the vibrator structure can be improved and the symmetry is also increased, the stability of vibration can be further improved.

次に、本発明の静電振動子の使用方法は、上記いずれか一項に記載の静電振動子の使用方法であって、前記弾性振動系の一次の固有周波数と二次の固有周波数との間であって、前記第1の剛性部の振幅u1が前記第2の剛性部の振幅u2より小さくなる条件を満たす周波数範囲内の励振周波数で前記第1の剛性部に前記励振力を与えて前記静電振動子を動作させることを特徴とする。   Next, a method of using the electrostatic vibrator according to the present invention is the method of using the electrostatic vibrator according to any one of the above, wherein a primary natural frequency and a secondary natural frequency of the elastic vibration system are used. The excitation force is applied to the first rigid portion at an excitation frequency within a frequency range that satisfies the condition that the amplitude u1 of the first rigid portion is smaller than the amplitude u2 of the second rigid portion. The electrostatic vibrator is operated.

この発明によれば、静電振動子により構成される弾性振動系の一次の固有周波数(一次の共振点)と二次の固有周波数(二次の共振点)の間においては、第1の剛性部の振幅が第2の剛体の振幅より小さくなる周波数範囲が存在するので、静電振動子の励振周波数を当該周波数範囲で周波数範囲内とすれば、第2の剛性部の振動を確保しつつ第1の剛性部の振動を抑制できるため、上記振動漏れを低減しつつ動作させることができる。上記周波数範囲内では、第2の剛性部と第2の弾性部からなる部分振動系の固有振動数の近傍において第1の剛性部の振幅が第2の剛性部の振幅より大幅に小さくなり、特に、当該部分振動系の固有振動数では0となる。   According to the present invention, the first rigidity is between the primary natural frequency (primary resonance point) and the secondary natural frequency (secondary resonance point) of the elastic vibration system constituted by the electrostatic vibrator. Since there is a frequency range in which the amplitude of the portion is smaller than the amplitude of the second rigid body, if the excitation frequency of the electrostatic vibrator is within the frequency range within the frequency range, the vibration of the second rigid portion is secured. Since the vibration of the first rigid portion can be suppressed, the operation can be performed while reducing the vibration leakage. Within the above frequency range, the amplitude of the first rigid portion is significantly smaller than the amplitude of the second rigid portion in the vicinity of the natural frequency of the partial vibration system composed of the second rigid portion and the second elastic portion, In particular, the natural frequency of the partial vibration system is zero.

次に、添付図面を参照して本発明の実施形態について詳細に説明する。最初に、本発明の静電振動子の動作原理について図1乃至図3を参照して説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, the operation principle of the electrostatic vibrator of the present invention will be described with reference to FIGS.

図1は本発明の原理を示す2自由度の弾性振動系の概念図(或いは、本実施形態の等価構成図)、図2は当該弾性振動系における第1の剛性部の振幅u1の励振周波数f=ω/2πに対する依存性を示すグラフ、図3は2自由度の弾性振動系を構成する本実施形態の静電振動子の構造を模式的に示す概念図である。   FIG. 1 is a conceptual diagram of an elastic vibration system with two degrees of freedom showing the principle of the present invention (or an equivalent configuration diagram of this embodiment), and FIG. 2 is an excitation frequency of the amplitude u1 of the first rigid portion in the elastic vibration system. FIG. 3 is a conceptual diagram schematically showing the structure of the electrostatic vibrator of this embodiment constituting an elastic vibration system with two degrees of freedom. FIG. 3 is a graph showing the dependence on f = ω / 2π.

この弾性振動系は、図1に示すように、支持体1に対し、ばね定数k1の第1の弾性体2、質量m1の第1の剛性体3、ばね定数k2の第2の弾性体4、質量m2の第2の剛性体5が順次に連結された可動部分を有する。この弾性振動系は、第1の剛性体3及び第2の剛性体5がそれぞれ図示上下方向に振動変位x1、x2で振動可能な2自由度の弾性振動系を構成している。   As shown in FIG. 1, the elastic vibration system has a first elastic body 2 having a spring constant k1, a first rigid body 3 having a mass m1, and a second elastic body 4 having a spring constant k2 with respect to the support body 1. The second rigid body 5 having a mass m2 has a movable part that is sequentially connected. This elastic vibration system constitutes a two-degree-of-freedom elastic vibration system in which the first rigid body 3 and the second rigid body 5 can vibrate by vibration displacements x1 and x2 in the vertical direction in the figure, respectively.

ここで、上記第1の剛性体3に対して調和励振力F=F・sinωtが作用する場合、第1の剛性体3の振動変位をx1=u1・sinωt、第2の剛性体5の振動変位をx2=u2・sinωtとすると、以下の式(1)及び(2)が成立する。 Here, when the harmonic excitation force F = F 0 · sin ωt acts on the first rigid body 3, the vibration displacement of the first rigid body 3 is x 1 = u 1 · sin ωt, and the second rigid body 5 When the vibration displacement is x2 = u2 · sin ωt, the following equations (1) and (2) are established.

u1/Xst=(ω02 −ω)/[(ω02 ―ω)・{1+(k2/k1)−(ω/ω01}−(ω02 k2/k1)]…(1) u1 / X st = (ω 02 2 −ω 2 ) / [(ω 02 2 −ω 2 ) · {1+ (k2 / k1) − (ω / ω 01 ) 2 } − (ω 02 2 k2 / k1)] ... (1)

u2/Xst=ω02 /[(ω02 −ω)・{1+(k2/k1)−(ω/ω01}−(ω02 k2/k1)]…(2) u2 / X st = ω 02 2 / [(ω 02 2 −ω 2 ) · {1+ (k2 / k1) − (ω / ω 01 ) 2 } − (ω 02 2 k2 / k1)] (2)

ここで、第1の剛性体3の静的変位Xst=F/k1、第1の弾性部材2及び第1の剛性体3からなる支持体側(上部)振動系の固有角振動数ω01=(k1/m1)1/2、第2の弾性部材4及び第2の剛性体5からなる反支持体側(下部)振動系の固有角振動数ω02=(k2/m2)1/2である。 Here, the static displacement X st = F 0 / k 1 of the first rigid body 3, the natural angular frequency ω 01 of the support side (upper) vibration system composed of the first elastic member 2 and the first rigid body 3. = (K1 / m1) 1/2 , natural angular frequency ω 02 = (k2 / m2) 1/2 of the anti-support side (lower) vibration system including the second elastic member 4 and the second rigid body 5 is there.

上記の振幅u1及びu2と励振周波数f=ω/2πとの関係を示すものが図2である。図2からわかるように、第1の剛性体3は、一次の固有角振動数ωと二次の固有角振動数ωでそれぞれ共振し、その振幅u1は図示実線で示すように無限大になる。また、上記式(1)の分子によりω=ω02となるとき、すなわち、励振角振動数ω=2πf(fは励振周波数)が反支持体側振動系の固有角振動数ω02に一致するときには、第1の剛性体3の振幅u1は0(***振)となるが、第2の剛性体5の振幅u2は図示破線で示すようにu2=−F/k2となる。 FIG. 2 shows the relationship between the amplitudes u1 and u2 and the excitation frequency f = ω / 2π. As can be seen from FIG. 2, the first rigid body 3 resonates at the primary natural angular frequency ω 1 and the secondary natural angular frequency ω 2 , and the amplitude u 1 is infinite as shown by the solid line in the figure. become. Further, when ω = ω 02 by the numerator of the above formula (1), that is, when the excitation angular frequency ω = 2πf (f is the excitation frequency) matches the natural angular frequency ω 02 of the anti-support side vibration system. The amplitude u1 of the first rigid body 3 is 0 (anti-resonance), but the amplitude u2 of the second rigid body 5 is u2 = −F 0 / k2, as indicated by the broken line in the figure.

また、上記の一次の固有角振動数ω、二次の固有角振動数ω(系の特性方程式の解、すなわち、1次の共振点及び二次の共振点)は以下の式(3)及び(4)で与えられる。なお、一次の共振点未満の励振周波数fでは第1の剛性体3と第2の剛性体5が同相で振動し、二次の共振点を越える励振周波数fでは第1の剛性体3と第2の剛性体3が逆相で振動する。 The primary natural angular frequency ω 1 and the secondary natural angular frequency ω 2 (solution of the characteristic equation of the system, that is, the primary resonance point and the secondary resonance point) are expressed by the following equations (3 ) And (4). The first rigid body 3 and the second rigid body 5 vibrate in the same phase at an excitation frequency f less than the primary resonance point, and the first rigid body 3 and the second rigid body 5 vibrate at an excitation frequency f exceeding the secondary resonance point. 2 rigid body 3 vibrates in reverse phase.

ω =1/2{(m1・k1+m2・k1+m2・k2)/m1・m2}−1/2[{(m1・k2+m2・k1+m2・k2)/m1・m2}−4(k1・k2)/(m1・m2)]1/2…(3) ω 1 2 = 1/2 {(m1 · k1 + m2 · k1 + m2 · k2) / m1 · m2} −1/2 [{(m1 · k2 + m2 · k1 + m2 · k2) / m1 · m2} 2 -4 (k1 · k2) / (M1 · m2)] 1/2 (3)

ω =1/2{(m1・k1+m2・k1+m2・k2)/m1・m2}+1/2[{(m1・k2+m2・k1+m2・k2)/m1・m2}−4(k1・k2)/(m1・m2)]1/2…(4) ω 2 2 = 1/2 {(m1 · k1 + m2 · k1 + m2 · k2) / m1 · m2} +1/2 [{(m1 · k2 + m2 · k1 + m2 · k2) / m1 · m2} 2 -4 (k1 · k2) / (M1 · m2)] 1/2 (4)

したがって、上記弾性振動系が一次の固有角振動数ωと二次の固有角振動数ωの間の周波数範囲f(=ω/2π)〜f(=ω/2π)の励振周波数で強制振動する場合、図示のようにほとんどの領域で第1の剛性体3の振幅u1は第2の剛性体5の振幅u2より小さくなる。そして、振幅u1が振幅u2より小さくなる周波数範囲P内では、第1の剛性体3及び第1の弾性体2を通して支持体1側へ漏出する振動エネルギーは抑制される。 Accordingly, the elastic vibration system has a frequency range f 1 (= ω 1 / 2π) to f 2 (= ω 2 / 2π) between the primary natural angular frequency ω 1 and the secondary natural angular frequency ω 2 . In the case of forced vibration at the excitation frequency, the amplitude u1 of the first rigid body 3 is smaller than the amplitude u2 of the second rigid body 5 in most regions as shown in the figure. And in the frequency range P in which the amplitude u1 becomes smaller than the amplitude u2, vibration energy leaking to the support body 1 side through the first rigid body 3 and the first elastic body 2 is suppressed.

図3には、上記の弾性振動系を撓み変形による振動子構造体で構成した場合の概略構成を示す。図示例では、上記の弾性振動系の可動部分を支持体である基板1上に沿って配置した場合の概略構成を示す。上記可動部分は基板1に固定された支持固定部1′によって支持されている。すなわち、この支持固定部1′に第1の弾性体2の基端が固定されている。そして、この第1の弾性体2、第1の剛性体3、第2の弾性体4及び第2の剛性体5は、基板1の表面との間に間隔を有する態様で、基板1に沿って延在している。したがって、当該弾性振動系の可動部分は、上記可動部分が基板1上において片持ち梁状に支持される。   FIG. 3 shows a schematic configuration in the case where the elastic vibration system is configured by a vibrator structure by bending deformation. In the illustrated example, a schematic configuration when the movable part of the elastic vibration system is arranged along the substrate 1 as a support is shown. The movable part is supported by a support fixing part 1 ′ fixed to the substrate 1. That is, the base end of the first elastic body 2 is fixed to the support fixing portion 1 ′. The first elastic body 2, the first rigid body 3, the second elastic body 4, and the second rigid body 5 are arranged along the substrate 1 in such a manner that there is a space between the first elastic body 2, the first rigid body 3, the second elastic body 4, and the second rigid body 5. It is extended. Therefore, the movable part of the elastic vibration system is supported in a cantilever shape on the substrate 1.

上記第1の剛性体3の下方には駆動電極6が基板1上に形成されている。そして、第1の剛性体3と駆動電極6は上下方向に間隔を有して対向している。また、上記第2の剛性体5の下方には検出電極7が基板1上に形成されている。そして、第2の剛性体5と検出電極7は上下方向に間隔を有して対向している。   A drive electrode 6 is formed on the substrate 1 below the first rigid body 3. The first rigid body 3 and the drive electrode 6 are opposed to each other with an interval in the vertical direction. A detection electrode 7 is formed on the substrate 1 below the second rigid body 5. The second rigid body 5 and the detection electrode 7 are opposed to each other with an interval in the vertical direction.

そして、第1の剛性体3と駆動電極6との間に交代的な励振信号を印加すると、第1の剛性体3との間に変動する静電力が働き、これによって第1の剛性体3に図示上下方向の交代的な励振力が及ぼされる。ここで、第1の剛性体3の上下方向の変位をx1、第2の剛性体5の上下方向の変位をx2とすると、図1に示される等価構成図と同様の2自由度の弾性振動系が構成されることがわかる。一方、上記の励振力に基づいて第2の剛性体5が上下に振動すると、第2の剛性体5と検出電極7の間隔の変動により両者間の静電容量が変動するので、検出電極7を介して当該変動を検出することが可能である。   When an alternating excitation signal is applied between the first rigid body 3 and the drive electrode 6, an electrostatic force that fluctuates between the first rigid body 3 and the first rigid body 3. An alternating excitation force in the vertical direction shown in FIG. Here, assuming that the vertical displacement of the first rigid body 3 is x1 and the vertical displacement of the second rigid body 5 is x2, the elastic vibration of two degrees of freedom similar to the equivalent configuration diagram shown in FIG. It can be seen that the system is constructed. On the other hand, when the second rigid body 5 vibrates up and down based on the above-described excitation force, the capacitance between the two varies due to the variation in the distance between the second rigid body 5 and the detection electrode 7. It is possible to detect the variation via

図4は本実施形態の静電振動子の上部構造の平面図、図5は同静電振動子の下部構造の平面図、図6は同静電振動子の縦断面図である。ここで、図4において、上層構造の可動電極は図示実線で、下層構造の検査電極及び駆動電極は図示一点鎖線でそれぞれ示す。また、図5において、下層構造の検査電極及び駆動電極は図示実線で、上層構造の可動電極は図示二点鎖線でそれぞれ示す。   4 is a plan view of the upper structure of the electrostatic vibrator of the present embodiment, FIG. 5 is a plan view of the lower structure of the electrostatic vibrator, and FIG. 6 is a longitudinal sectional view of the electrostatic vibrator. Here, in FIG. 4, the movable electrode having the upper layer structure is indicated by a solid line in the figure, and the inspection electrode and the drive electrode having a lower layer structure are indicated by a dashed line in the figure. Further, in FIG. 5, the inspection electrode and the drive electrode of the lower layer structure are indicated by a solid line in the drawing, and the movable electrode of the upper layer structure is indicated by a two-dot chain line in the drawing.

本実施形態では、シリコン単結晶等よりなる半導体基板(GaAsやInP等の化合物半導体でもよい。)10の表面に窒化シリコン膜、酸化シリコン膜等の絶縁体よりなる絶縁膜11(第1の絶縁膜11S及び第2の絶縁膜11N)が形成され、この絶縁膜11上に、アルミニウム、銅などの金属、或いは、導電性ポリシリコン等の低抵抗半導体よりなる検出電極12A、駆動電極12Bが形成されている。検出電極12Aの平面形状は図示円形とされ、検出電極12Aの外周縁からは検出配線部12aが延出している。一方、駆動電極12Bの平面形状は図示環状とされ、一部に切り欠き部12cを備えて全体としてC字状に構成されている。また、駆動電極12Bの外周縁からは駆動配線部12bが延出している。上記検出配線部12aは駆動電極12Bに設けられた切り欠き部12c内を通過して外部に導出される。   In the present embodiment, an insulating film 11 (first insulation) made of an insulator such as a silicon nitride film or a silicon oxide film is formed on the surface of a semiconductor substrate 10 (may be a compound semiconductor such as GaAs or InP) made of silicon single crystal or the like. A film 11S and a second insulating film 11N) are formed, and a detection electrode 12A and a drive electrode 12B made of a metal such as aluminum or copper, or a low-resistance semiconductor such as conductive polysilicon are formed on the insulating film 11. Has been. The planar shape of the detection electrode 12A is a circular shape in the drawing, and the detection wiring portion 12a extends from the outer peripheral edge of the detection electrode 12A. On the other hand, the planar shape of the drive electrode 12B is an annular shape shown in the figure, and a cutout portion 12c is provided in part and is configured in a C shape as a whole. A drive wiring portion 12b extends from the outer peripheral edge of the drive electrode 12B. The detection wiring part 12a passes through the notch 12c provided in the drive electrode 12B and is led out to the outside.

また、基板10若しくは上記絶縁膜11上には、外周部が絶縁膜11上に固定された支持固定部13Aとされ、当該支持固定部13Aから複数の第1の弾性部13B、第1の剛性部13C、複数の第2の弾性部13D及び第2の剛性部13Eよりなる可動部分13Sが基板10の表面に沿って延在されてなる可動電極13が設けられている。可動電極13は基板10と平行に配置されている。支持固定部13Aには内外に貫通する貫通部13a、13aが形成され、上記検出配線部12a及び上記駆動配線部12bは貫通部13a,13a内を通過して外部に導出される。   Further, on the substrate 10 or the insulating film 11, an outer peripheral portion is a supporting and fixing portion 13A fixed on the insulating film 11, and a plurality of first elastic portions 13B and a first rigidity are formed from the supporting and fixing portion 13A. A movable electrode 13 is provided in which a movable portion 13S composed of a portion 13C, a plurality of second elastic portions 13D, and a second rigid portion 13E extends along the surface of the substrate 10. The movable electrode 13 is arranged in parallel with the substrate 10. The support fixing portion 13A is formed with penetrating portions 13a and 13a penetrating inward and outward, and the detection wiring portion 12a and the driving wiring portion 12b are led out through the penetrating portions 13a and 13a.

上記可動電極13では、支持固定部13Aが平面的に閉じた形状、図示例では環状(リング状)に構成され、この支持固定部13Aの内周縁は、複数のそれぞれ帯状に構成された第1の弾性部13Bの外周端に接続され、当該第1の弾性部が内側に延在している。複数の第1の弾性部13Bの内周端は、平面的に閉じた形状、図示例では環状に構成された第1の剛性部13Cの外周縁に接続されている。第1の剛性部13Cの内周縁は、複数の帯状に構成された第2の弾性部13Dの外周端に接続され、当該第2の弾性部13Dは内側に延在している。複数の第2の弾性部13Dの内周端は、図示円形に形成された第2の剛性部13Eの外終縁に接続されている。複数の第1の弾性部13B及び複数の第2の弾性部13Dは、幅が限定した状態で形成されることにより、第1の弾性部13B及び第2の弾性部13Dの図示上下方向の撓み変形に対する弾性が第1の剛性部13C及び第2の剛性部13Eのいずれの図示上下方向の撓み変形に対する弾性よりも大きく、同撓み変形に対する剛性が第1の剛性部及び第2の剛性部のいずれの同撓み変形よりも低くなっている。   In the movable electrode 13, the support fixing portion 13A is configured to have a planarly closed shape, in the illustrated example, an annular shape (ring shape), and the inner peripheral edge of the support fixing portion 13A is formed in a plurality of strip shapes. Is connected to the outer peripheral end of the elastic portion 13B, and the first elastic portion extends inward. The inner peripheral ends of the plurality of first elastic portions 13B are connected to the outer peripheral edge of the first rigid portion 13C configured to be planarly closed, which is annular in the illustrated example. The inner peripheral edge of the first rigid portion 13C is connected to the outer peripheral end of a second elastic portion 13D configured in a plurality of strips, and the second elastic portion 13D extends inward. The inner peripheral ends of the plurality of second elastic portions 13D are connected to the outer end edge of the second rigid portion 13E formed in a circular shape in the drawing. The plurality of first elastic portions 13B and the plurality of second elastic portions 13D are formed in a state in which the width is limited, whereby the first elastic portion 13B and the second elastic portion 13D are bent in the vertical direction in the drawing. The elasticity with respect to the deformation is greater than the elasticity with respect to the bending deformation in the illustrated vertical direction of any of the first rigid portion 13C and the second rigid portion 13E, and the rigidity with respect to the bending deformation of the first rigid portion and the second rigid portion. It is lower than any of the same deformation deformation.

図示例の場合、環状の第1の剛性部13Cは、上記環状の駆動電極12Bとほぼ対応する形状を有し、半径方向の幅は駆動電極12Bと同幅か若しくはやや小さな幅を有するように構成され、その結果、第1の剛性部13Cは駆動電極12Bの全面に対向するようになっている。また、円形の第2の剛性部13Eは、上記円形の検査電極12Aとほぼ対応する形状を有し、半径は検査電極12Aと同様か若しくはやや小さな幅を有するように構成され、その結果、第2の剛性部13Eは検査電極12Bの前面に対向するようになっている。   In the case of the illustrated example, the annular first rigid portion 13C has a shape substantially corresponding to the annular drive electrode 12B, and the radial width is the same as or slightly smaller than the drive electrode 12B. As a result, the first rigid portion 13C faces the entire surface of the drive electrode 12B. In addition, the circular second rigid portion 13E has a shape substantially corresponding to the circular inspection electrode 12A, and the radius is the same as or slightly smaller than that of the inspection electrode 12A. The second rigid portion 13E is opposed to the front surface of the inspection electrode 12B.

上記の第1の剛性部13Cと第2の剛性部13Eは同心状に形成され、第2の剛性部13Eを中心に、複数(図示例では4つ)の第1の弾性部13B及び複数(図示例では4つ)の第2の弾性部13Dがそれぞれ放射状に伸びるように形成される。ここで、第2の剛性部13Eの中心点から見た第1の弾性部13Bの形成方位と、第2の弾性部13Dの形成方位とが相互に異なるように構成される。具体的には、複数の第1の弾性部13Bは等角度間隔(図示例では90度間隔)で形成され、複数の第2の弾性部13Dも等角度間隔(図示例では90度間隔)で構成されているが、第1の弾性部13Bと第2の弾性部13Dとが相互に45度ずれた方位に存在するように構成される。これによって、第1の弾性部13B及び第2の弾性部13Dの支持方位が分散され、全体として安定した支持状態を得ることができる。特に、図示例ではそれぞれの弾性部が等角度間隔に配置されるので、バランスの取れた振動状態を得ることができる。また、バランス不良等に起因する不要な振動モード(例えば、第1の剛性部13Cが周回方向に撓む振動態様を有するものなど)の発生を抑制できる。さらに、後述するように、製造過程におけるスティッキングの発生をより低減することができる。   The first rigid portion 13C and the second rigid portion 13E are concentrically formed, and a plurality (four in the illustrated example) of the first elastic portions 13B and the plurality (four in the illustrated example) are centered on the second rigid portion 13E. The four second elastic portions 13D in the illustrated example are formed so as to extend radially. Here, the formation orientation of the first elastic portion 13B and the formation orientation of the second elastic portion 13D viewed from the center point of the second rigid portion 13E are different from each other. Specifically, the plurality of first elastic portions 13B are formed at equiangular intervals (90 ° intervals in the illustrated example), and the plurality of second elastic portions 13D are also equiangular intervals (90 ° intervals in the illustrated example). Although it is configured, the first elastic portion 13B and the second elastic portion 13D are configured to exist in orientations shifted from each other by 45 degrees. As a result, the support orientations of the first elastic portion 13B and the second elastic portion 13D are dispersed, and a stable support state as a whole can be obtained. In particular, in the illustrated example, the elastic portions are arranged at equiangular intervals, so that a balanced vibration state can be obtained. Moreover, generation | occurrence | production of the unnecessary vibration mode (For example, what has the vibration aspect which the 1st rigid part 13C bends in a circumference direction etc.) resulting from a balance defect etc. can be suppressed. Furthermore, as will be described later, the occurrence of sticking in the manufacturing process can be further reduced.

上記構成により、複数の第1の弾性部13B、第1の剛性部13C、複数の第2の弾性部13D及び第2の剛性部13Eを有する可動部分13Sは、図3に示すものと同様の2自由度の弾性振動系を構成する。ここで、当該弾性振動系においても、上記式(1)、(2)、(3)及び(4)に示す式が成立し、図2に示す特性を有する。ただし、この場合のばね定数k1、k2、質量m1、m2は、上記複数の第1の弾性部13B及び複数の第2の弾性部13Dのばね定数、並びに、上記第1の剛性部13C及び第2の剛性部13Eの質量と正確に一致するわけではなく、あくまでも、可動部分13Sにおける等価ばね定数、並びに、等価質量である。これは、可動部分13Sの各部13B〜13Eがそれぞれ独立に弾性変形し、独立の質量として存在するわけではなく、上記等価ばね定数及び等価質量は、可動部分13Sの全体の形状や他の部分の形状及び弾性に影響を受けるとともに、支持固定部13Aの形状や弾性の影響をも受けるからである。   With the above configuration, the movable portion 13S having the plurality of first elastic portions 13B, the first rigid portions 13C, the plurality of second elastic portions 13D, and the second rigid portions 13E is the same as that shown in FIG. An elastic vibration system having two degrees of freedom is configured. Here, also in the elastic vibration system, the expressions shown in the above expressions (1), (2), (3), and (4) are established and have the characteristics shown in FIG. However, in this case, the spring constants k1, k2, and the masses m1, m2 are the spring constants of the plurality of first elastic portions 13B and the plurality of second elastic portions 13D, and the first rigid portion 13C and the first rigid portions 13C. It is not exactly the same as the mass of the second rigid portion 13E, and is merely the equivalent spring constant and the equivalent mass in the movable portion 13S. This is because each portion 13B to 13E of the movable portion 13S is elastically deformed independently and does not exist as an independent mass. The equivalent spring constant and the equivalent mass are determined based on the overall shape of the movable portion 13S and other portions. This is because it is affected by the shape and elasticity, and is also affected by the shape and elasticity of the support fixing portion 13A.

したがって、本実施形態によれば、駆動電極12Bにより第1の剛性部13Cに静電励振力を与えると2自由度の弾性振動系が振動し、これによって生じた第2の剛性部13Eの振動変位を検出電極12Aにより静電的に検出することで、電気的振動子を構成することができる。この場合、駆動電極12Bにより第1の剛性部13Cに及ぼされる静電励振力の励振周波数f=ω/(2π)を弾性振動系のうち第2の剛性部13Eと第2の弾性部13Dの固有振動数の近傍とすることにより、第1の剛性部13Cの振幅u1を第2の剛性部13Eの振幅u2より大幅に小さくすることができる。通常、図2に示す周波数範囲P内であれば振幅u1が振幅u2より小さくなり、第1の剛性部13Cの振動が抑制されるので、支持体13A側への振動漏れを低減することができる。この場合、第1の剛性部は励振力を吸収する吸収部として機能し、第2の剛性部は上記励振力に起因して振動する振動部として機能する。なお、上記弾性振動系の特性上、等価質量m1をm2より大きくすると振動漏れの防止効果を高めることができる。   Therefore, according to the present embodiment, when an electrostatic excitation force is applied to the first rigid portion 13C by the drive electrode 12B, the elastic vibration system having two degrees of freedom vibrates, and the vibration of the second rigid portion 13E generated thereby. An electrostatic vibrator can be configured by electrostatically detecting the displacement with the detection electrode 12A. In this case, the excitation frequency f = ω / (2π) of the electrostatic excitation force exerted on the first rigid portion 13C by the drive electrode 12B is set to the second rigid portion 13E and the second elastic portion 13D in the elastic vibration system. By setting the vicinity of the natural frequency, the amplitude u1 of the first rigid portion 13C can be made significantly smaller than the amplitude u2 of the second rigid portion 13E. Usually, the amplitude u1 is smaller than the amplitude u2 within the frequency range P shown in FIG. 2, and the vibration of the first rigid portion 13C is suppressed, so that vibration leakage toward the support 13A can be reduced. . In this case, the first rigid portion functions as an absorption portion that absorbs the excitation force, and the second rigid portion functions as a vibration portion that vibrates due to the excitation force. Note that, due to the characteristics of the elastic vibration system, if the equivalent mass m1 is larger than m2, the effect of preventing vibration leakage can be enhanced.

次に、図9を参照して、上記実施形態の製造方法について説明する。この実施形態では、図9(a)に示すように、半導体基板10の表面上に酸化シリコン等よりなる第1の絶縁膜11Sを熱酸化法等で形成し、その上に、窒化シリコン等よりなる第2の絶縁膜11NをプラズマCVD法等で形成する。当該第2の絶縁膜11Nは製造上の都合により形成するもので、本製造方法における後述するリリース工程のエッチング処理に耐性を有する素材で構成される。第2の絶縁膜11Nは、基板10の表面上において後述する静電振動子の振動子構造体を形成する領域にのみ島状に形成される。   Next, with reference to FIG. 9, the manufacturing method of the said embodiment is demonstrated. In this embodiment, as shown in FIG. 9A, a first insulating film 11S made of silicon oxide or the like is formed on the surface of the semiconductor substrate 10 by a thermal oxidation method or the like, and further on the first insulating film 11S made of silicon nitride or the like. A second insulating film 11N is formed by a plasma CVD method or the like. The second insulating film 11N is formed for manufacturing reasons, and is made of a material having resistance to an etching process in a release process described later in this manufacturing method. The second insulating film 11N is formed in an island shape on the surface of the substrate 10 only in a region where a vibrator structure of an electrostatic vibrator described later is formed.

次に、図9(b)に示すように、第2の絶縁膜11N上に導電性シリコン等の導電層12をCVD法等で成膜し、レジスト塗布・露光・現像によるパターニングマスクの形成工程、及び、当該パターニングマスクを用いたエッチング工程を含むパターニング処理でパターニングすることで、上記検出電極12A及び駆動電極12Bを形成する。また、この工程では、上記支持固定部13Aの下層部分となるべき環状の支持層12Cが同時に形成される。   Next, as shown in FIG. 9B, a conductive layer 12 such as conductive silicon is formed on the second insulating film 11N by a CVD method or the like, and a patterning mask is formed by resist application / exposure / development. And the said detection electrode 12A and the drive electrode 12B are formed by patterning by the patterning process including the etching process using the said patterning mask. In this step, an annular support layer 12C to be the lower layer portion of the support fixing portion 13A is simultaneously formed.

その後、図9(c)に示すように、PSG(リンドープガラス)等よりなる犠牲層14をCVD法等で成膜し、上記と同様のパターニング処理を施して、検出電極12A及び駆動電極12Bを覆い、特に上記検出配線部12a及び駆動配線部12bを覆う被覆部14aを備えた所定のパターン形状とする。なお、この工程において、犠牲層14の表面(上面)を化学機械研摩(CMP;Chemical and Mechanical Polishing)等で平坦化してもよい。この表面平坦化工程で犠牲層14の表面を平坦化することで、後に形成する可動電極13の下面を平坦化することができる。   Thereafter, as shown in FIG. 9C, a sacrificial layer 14 made of PSG (phosphorus-doped glass) or the like is formed by a CVD method or the like, and a patterning process similar to the above is performed, so that the detection electrode 12A and the drive electrode 12B In particular, a predetermined pattern shape including a covering portion 14a covering the detection wiring portion 12a and the driving wiring portion 12b is formed. In this step, the surface (upper surface) of the sacrificial layer 14 may be planarized by chemical mechanical polishing (CMP) or the like. By flattening the surface of the sacrificial layer 14 in this surface flattening step, the lower surface of the movable electrode 13 to be formed later can be flattened.

さらに、図9(d)に示すように、上記犠牲層14上から第2の絶縁膜11N上にかけて導電性ポリシリコン等の導電体を成膜し、上記と同様のパターニング処理を施すことにより可動電極13を形成する。このとき、可動電極13の支持固定部13Aは、上記支持層12C上に上記導電体が積層されることにより形成される。また、当該支持固定部13Aには、上記犠牲層14の被覆部14aを反映した貫通部13aが形成される。   Further, as shown in FIG. 9 (d), a conductive material such as conductive polysilicon is formed over the sacrificial layer 14 and the second insulating film 11N, and is movable by performing a patterning process similar to the above. The electrode 13 is formed. At this time, the support fixing portion 13A of the movable electrode 13 is formed by laminating the conductor on the support layer 12C. Further, the support fixing portion 13A is formed with a through portion 13a reflecting the covering portion 14a of the sacrificial layer 14.

その後、上記犠牲層14をフッ酸系のエッチャントを用いたエッチング処理(例えば、緩衝フッ酸を用いたウエットエッチング)等でエッチングすることで、可動電極13の可動部分13Sを基板10上から分離するリリース工程を実施する。これにより、可動部分13Sと検査電極12A及び駆動電極12Bとが離間され、図6に示す上述の静電振動子の振動子構造体が形成される。   Thereafter, the movable portion 13S of the movable electrode 13 is separated from the substrate 10 by etching the sacrificial layer 14 by etching using a hydrofluoric acid-based etchant (for example, wet etching using buffered hydrofluoric acid). Perform the release process. As a result, the movable portion 13S is separated from the inspection electrode 12A and the drive electrode 12B, and the vibrator structure of the above-described electrostatic vibrator shown in FIG. 6 is formed.

上記リリース工程では、上記のエッチング処理の終了後に、水洗、乾燥の各処理を行うが、乾燥時においては、犠牲層14が除去された空間を満たしている水の表面が乾燥の進行に伴って低下していく過程で、表面張力によって上層の可動電極13の可動部分13Sが下方へ引き寄せられ、最終的に当該下同部分13Sが検査電極12A及び駆動電極12Bの表面に貼り付いてしまうといったスティッキングが発生する虞がある。しかしながら、本実施形態では、第1の剛性部13C及び第2の剛性部13Eが複数の第1の弾性部13B及び複数の第2の弾性部13Dによって支持され、しかも、これらの各弾性部が分散して設けられているので、スティッキングの発生を抑制し、防止することができる。   In the release step, each of the water washing and drying is performed after the etching process is finished. At the time of drying, the surface of the water filling the space from which the sacrificial layer 14 has been removed is accompanied with the progress of drying. In the process of decreasing, the sticking in which the movable portion 13S of the upper movable electrode 13 is attracted downward by the surface tension and eventually the lower same portion 13S sticks to the surfaces of the inspection electrode 12A and the drive electrode 12B. May occur. However, in the present embodiment, the first rigid portion 13C and the second rigid portion 13E are supported by the plurality of first elastic portions 13B and the plurality of second elastic portions 13D, and each of these elastic portions is Since they are provided in a distributed manner, the occurrence of sticking can be suppressed and prevented.

次に、図7及び図8を参照して第2実施形態の静電振動子について説明する。図7は第2実施形態の下層構造を示す平面図、図8は第2実施形態の縦断面図である。ここで、図7は第1実施形態を示す図5に相当する図であり、図8は第1実施形態の図6に相当する図である。ここで、図7において、下層構造の検査電極及び駆動電極は図示実線で、上層構造の可動電極は図示二点鎖線でそれぞれ示す。   Next, the electrostatic vibrator of the second embodiment will be described with reference to FIGS. FIG. 7 is a plan view showing a lower layer structure of the second embodiment, and FIG. 8 is a longitudinal sectional view of the second embodiment. Here, FIG. 7 is a diagram corresponding to FIG. 5 showing the first embodiment, and FIG. 8 is a diagram corresponding to FIG. 6 of the first embodiment. Here, in FIG. 7, the inspection electrode and the drive electrode of the lower layer structure are indicated by a solid line in the drawing, and the movable electrode of the upper layer structure is indicated by a two-dot chain line in the drawing.

本実施形態の静電振動子は、上記第1実施形態とは異なり、基板10上に形成された検査電極12A及び駆動電極12Bが独立した島状に構成され、当該電極層と同じ平面高さにおいて検査配線部及び駆動配線部が形成されていない。そして、その代わりに、上記検査電極12A及び駆動電極12Bの下層に絶縁膜を介して検査配線部12a′及び駆動配線部12b′が形成されている。これによって、第1実施形態のように、検査配線部12aを通過させるために駆動電極12Bに切り欠き部12cを形成したり、検査配線部12aや駆動配線部12bを通過させるために支持固定部13Aに貫通部13aを形成したりする必要がなくなる。   Unlike the first embodiment, the electrostatic vibrator of the present embodiment is configured in an island shape in which the inspection electrode 12A and the drive electrode 12B formed on the substrate 10 are independent, and has the same planar height as the electrode layer. However, the inspection wiring portion and the drive wiring portion are not formed. Instead, an inspection wiring portion 12a ′ and a driving wiring portion 12b ′ are formed below the inspection electrode 12A and the driving electrode 12B via an insulating film. Thus, as in the first embodiment, a notch portion 12c is formed in the drive electrode 12B in order to pass the inspection wiring portion 12a, and a support fixing portion is provided in order to pass the inspection wiring portion 12a and the driving wiring portion 12b. It is not necessary to form the through portion 13a in 13A.

図示例では、絶縁膜11(第1の絶縁膜11S又は第2の絶縁膜11N)の下に上記検査配線部12a′及び駆動配線部12b′が形成されている。具体的には、基板10の表層部に不純物領域を形成することで、上記検査配線部12a′及び駆動配線部12b′を構成することができる。   In the illustrated example, the inspection wiring portion 12a ′ and the drive wiring portion 12b ′ are formed under the insulating film 11 (the first insulating film 11S or the second insulating film 11N). Specifically, the inspection wiring portion 12a ′ and the drive wiring portion 12b ′ can be configured by forming impurity regions in the surface layer portion of the substrate 10.

図10には第2実施形態の製造方法を示す工程断面図を示す。この第2実施形態では、図10(a)に示すように、基板10の表層部にイオン注入法、不純物拡散法などにより不純物領域を形成して導電性を付与し、検査配線部12a′及び駆動配線部12b′を形成する。その後、第1実施形態と同様の第1の絶縁膜11S及び第2の絶縁膜11Nを形成し、さらにその後、絶縁膜11の一部に、上記検査配線部12a′及び駆動配線部12b′の一部を露出させる開口部11a、11bを形成する。   FIG. 10 is a process sectional view showing the manufacturing method of the second embodiment. In the second embodiment, as shown in FIG. 10A, an impurity region is formed in the surface layer portion of the substrate 10 by an ion implantation method, an impurity diffusion method or the like to impart conductivity, and an inspection wiring portion 12a ′ and A drive wiring portion 12b 'is formed. Thereafter, the first insulating film 11S and the second insulating film 11N similar to those of the first embodiment are formed, and then the inspection wiring portion 12a ′ and the drive wiring portion 12b ′ are formed on a part of the insulating film 11. Openings 11a and 11b that partially expose are formed.

次に、図10(b)に示すように導電層12を成膜し、パターニングにより島状の検査電極12A及び駆動電極12Bを形成する。このとき、検査電極12Aは上記開口部11aを通して検査配線部12a′と導電接続され、駆動電極12Bは上記開口部11bを通して駆動配線部12b′と導電接続される。また、第1実施形態と同様の支持層12Cも形成される。次に、図10(c)に示すように検査電極12A及び駆動電極12Bを覆う犠牲層14を形成する。その後、当該犠牲層14の表面を化学機械研摩等により一旦平坦化する。ただし、この犠牲層14の表面平坦化工程は上記と同様に必ずしも実施しなくても構わない。   Next, as shown in FIG. 10B, a conductive layer 12 is formed, and island-shaped inspection electrodes 12A and drive electrodes 12B are formed by patterning. At this time, the inspection electrode 12A is conductively connected to the inspection wiring portion 12a 'through the opening 11a, and the driving electrode 12B is conductively connected to the driving wiring portion 12b' through the opening 11b. A support layer 12C similar to that of the first embodiment is also formed. Next, as shown in FIG. 10C, a sacrificial layer 14 covering the inspection electrode 12A and the drive electrode 12B is formed. Thereafter, the surface of the sacrificial layer 14 is once flattened by chemical mechanical polishing or the like. However, the surface planarization process of the sacrificial layer 14 may not necessarily be performed as described above.

次に、図10(d)に示すように、上記の犠牲層14上に前述と同様の可動電極13を形成する。この可動電極13の支持固定部13Aは第1実施形態と同様に支持層12Cに導電体が積層されることによって形成されるが、上述のように検査配線層12a′及び駆動配線層12b′は絶縁膜11の下層を通過するので、第1実施形態の貫通部13aを必要としない。   Next, as shown in FIG. 10D, the movable electrode 13 similar to the above is formed on the sacrificial layer 14. The support fixing portion 13A of the movable electrode 13 is formed by laminating a conductor on the support layer 12C as in the first embodiment. As described above, the inspection wiring layer 12a 'and the drive wiring layer 12b' Since it passes through the lower layer of the insulating film 11, the through portion 13a of the first embodiment is not required.

最後に、第1実施形態と同様にリリース工程を実施し、図8に示すように、上記犠牲層14を除去して可動電極13の可動部分13Sを検査電極12A及び駆動電極12Bと離間させる。このリリース工程でも、第1実施形態と同様に、スティッキングの抑制、防止を図ることができる。   Finally, a release process is performed in the same manner as in the first embodiment, and as shown in FIG. 8, the sacrificial layer 14 is removed, and the movable portion 13S of the movable electrode 13 is separated from the inspection electrode 12A and the drive electrode 12B. Even in this release step, sticking can be suppressed and prevented as in the first embodiment.

本実施形態では、第1実施形態とは異なり、検査配線部12a′及び駆動配線部12b′が絶縁膜11の下層を通過するので、駆動電極12Bに切り欠き部12bを形成したり、支持固定部13Aに貫通部13aを形成する必要がないので、第1の剛性部13Cと駆動電極12Bとを全面的に対向配置させることができ、第2の剛性部13Eと検査電極12Aとを全面的に対向配置させることができるので、駆動効率及び検出効率を高めることができるとともに、第1の剛性部13C及び第2の剛性部13Eをより安定的に振動させることが可能となる。   In the present embodiment, unlike the first embodiment, since the inspection wiring portion 12a ′ and the driving wiring portion 12b ′ pass through the lower layer of the insulating film 11, a cutout portion 12b is formed in the driving electrode 12B, and the support is fixed. Since it is not necessary to form the through-hole 13a in the portion 13A, the first rigid portion 13C and the drive electrode 12B can be disposed entirely opposite to each other, and the second rigid portion 13E and the inspection electrode 12A are entirely disposed. Since the driving efficiency and the detection efficiency can be increased, the first rigid portion 13C and the second rigid portion 13E can be more stably vibrated.

尚、本発明の静電振動子は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記実施形態では、一体の可動電極13の可動部分13Sを局所的に細幅に構成して弾性を高める方法で第1の弾性部13B及び第2の弾性部13Dを形成しているが、当該可動部分に開口領域を形成したり薄く構成したりすることで弾性部の弾性を高めてもよい。また、当然のことではあるが、剛性部13C、13Eと弾性部13B、13Dを別の素材で構成することにより、相互の弾性を異ならせるようにしてもよい。   The electrostatic vibrator according to the present invention is not limited to the illustrated examples described above, and it is needless to say that various changes can be made without departing from the gist of the present invention. For example, in the above embodiment, the first elastic portion 13B and the second elastic portion 13D are formed by a method in which the movable portion 13S of the integral movable electrode 13 is locally narrowed to increase elasticity. The elasticity of the elastic part may be increased by forming an opening region in the movable part or by making it thin. As a matter of course, the elastic portions 13C and 13E and the elastic portions 13B and 13D may be made of different materials so that their elasticity is different.

さらに、上記実施形態では半導体基板を用いることで、半導体回路と一体的に静電振動子を構成する場合に好適な構成となっているが、支持体である基板を、ガラス、石英、セラミックス、合成樹脂などの他の素材で構成しても構わない。また、絶縁膜11は、基板が半導体や導体である場合、或いは、基板は絶縁体であるが表面上に導体パターンなどの導電体が存在している場合には必要となるが、基板が絶縁体で導体パターンなども存在しない場合には不要である。   Furthermore, in the above-described embodiment, a semiconductor substrate is used, so that the structure is suitable when an electrostatic vibrator is configured integrally with a semiconductor circuit, but the substrate as a support is made of glass, quartz, ceramics, You may comprise with other raw materials, such as a synthetic resin. The insulating film 11 is necessary when the substrate is a semiconductor or a conductor, or when the substrate is an insulator but a conductor such as a conductor pattern is present on the surface. This is not necessary when there is no conductor pattern in the body.

また、上記実施形態では第1の剛性部が環状、第2の剛性部が円形の平面形状を備えているが、本発明はこのような態様に限定されるものではなく、たとえば、第1の剛性部が矩形枠状、楕円リング状、長円リング状であってもよく、第2の剛性部が矩形状、楕円状、長円状であってもよい。   Moreover, in the said embodiment, although the 1st rigid part is cyclic | annular and the 2nd rigid part is provided with circular planar shape, this invention is not limited to such an aspect, For example, 1st The rigid portion may be a rectangular frame shape, an elliptical ring shape, or an oval ring shape, and the second rigid portion may be a rectangular shape, an elliptical shape, or an oval shape.

本発明の2自由度の弾性振動系の概念構造を示す概略構成図。The schematic block diagram which shows the conceptual structure of the elastic vibration system of 2 degrees of freedom of this invention. 本発明の2自由度の弾性振動系における各剛性体の振幅の励振周波数依存性を示すグラフ。The graph which shows the excitation frequency dependence of the amplitude of each rigid body in the elastic vibration system of 2 degrees of freedom of this invention. 本発明に係る各実施形態の概略構造を示す概略構成断面図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic structure sectional drawing which shows schematic structure of each embodiment which concerns on this invention. 第1実施形態の平面図。The top view of 1st Embodiment. 第1実施形態の下層構造の平面図(第1実施形態の横断面図)。The top view of the lower layer structure of 1st Embodiment (cross-sectional view of 1st Embodiment). 第1実施形態の縦断面図。The longitudinal cross-sectional view of 1st Embodiment. 第2実施形態の下層構造の平面図(第2実施形態の横断面図)。The top view of the lower layer structure of 2nd Embodiment (cross-sectional view of 2nd Embodiment). 第2実施形態の縦断面図。The longitudinal cross-sectional view of 2nd Embodiment. 第1実施形態の製造方法を示す工程断面図(a)乃至(d)Process sectional drawing (a) thru | or (d) which shows the manufacturing method of 1st Embodiment. 第2実施形態の製造方法を示す工程断面図(a)乃至(d)。Process sectional drawing (a) thru | or (d) which show the manufacturing method of 2nd Embodiment.

符号の説明Explanation of symbols

1…支持体(基板)、2…第1の弾性体、3…第1の剛性体、4…第2の弾性体、5…第2の剛性体、6…駆動電極、7…検出電極、10…半導体基板、11…絶縁膜、11S…第1の絶縁膜、11N…第2の絶縁膜、12…導体層、12A…検査電極、12a、12a′…検査配線部、12B…駆動電極、12b、12b′…駆動配線部、12c…切り欠き部、13…可動電極、1′、13A…支持固定部、13a…貫通部、13B…第1の弾性部、13C…第1の剛性部、13D…第2の弾性部、13E…第2の剛性部、14…犠牲層 DESCRIPTION OF SYMBOLS 1 ... Support body (board | substrate), 2 ... 1st elastic body, 3 ... 1st rigid body, 4 ... 2nd elastic body, 5 ... 2nd rigid body, 6 ... Drive electrode, 7 ... Detection electrode, DESCRIPTION OF SYMBOLS 10 ... Semiconductor substrate, 11 ... Insulating film, 11S ... 1st insulating film, 11N ... 2nd insulating film, 12 ... Conductor layer, 12A ... Inspection electrode, 12a, 12a '... Inspection wiring part, 12B ... Drive electrode, 12b, 12b '... drive wiring part, 12c ... notch part, 13 ... movable electrode, 1', 13A ... support fixing part, 13a ... through part, 13B ... first elastic part, 13C ... first rigid part, 13D: second elastic portion, 13E: second rigid portion, 14: sacrificial layer

Claims (6)

支持体と、
該支持体に対して外周側から複数の第1の弾性部を介して接続され、平面的に閉じた形状を有する第1の剛性部、及び、該第1の剛性部に対して外周側から複数の第2の弾性部を介して接続され、前記第1の剛性部の内側に配置された第2の剛性部を有する可動電極と、
前記第1の剛性部に対向配置され、前記第1の剛性部に励振力を及ぼす駆動電極と、
前記第2の剛性部に対向配置され、前記第2の剛性部の振動変位を検出する検出電極と、
を具備し、
複数の前記第1の弾性部及び前記第2の弾性部の前記駆動電極及び前記検出電極と対向する方向の撓み変形により前記第1の剛性部及び前記第2の剛性部がそれぞれ振動変位可能とされた2自由度の弾性振動系を構成することを特徴とする静電振動子。
A support;
A first rigid portion connected to the support body from the outer peripheral side through a plurality of first elastic portions and having a planarly closed shape, and from the outer peripheral side to the first rigid portion A movable electrode connected via a plurality of second elastic portions and having a second rigid portion disposed inside the first rigid portion;
A drive electrode disposed opposite to the first rigid portion and exerting an excitation force on the first rigid portion;
A detection electrode disposed opposite to the second rigid portion and detecting a vibration displacement of the second rigid portion;
Comprising
The first rigid portion and the second rigid portion can be displaced by vibration by bending deformation of the plurality of first elastic portions and the second elastic portions in the direction facing the drive electrodes and the detection electrodes, respectively. An electrostatic vibrator comprising the elastic vibration system having two degrees of freedom.
前記支持体は基板であり、前記可動電極の複数の前記第1の弾性部、前記第1の剛性部、前記第2の弾性部、及び、前記第2の剛性部を有する可動部分が前記基板との間に間隙を有した状態で前記基板に沿って平行に配置され、前記駆動電極が前記第1の剛性部と対向する位置で前記基板上に形成され、前記検出電極が前記第2の剛性部と対向する位置で前記基板上に形成されることを特徴とする請求項1に記載の静電振動子。   The support is a substrate, and the movable part having the plurality of first elastic portions, the first rigid portion, the second elastic portion, and the second rigid portion of the movable electrode is the substrate. And the drive electrode is formed on the substrate at a position facing the first rigid portion, and the detection electrode is the second electrode. The electrostatic vibrator according to claim 1, wherein the electrostatic vibrator is formed on the substrate at a position facing the rigid portion. 前記複数の第1の弾性部と前記複数の第2の弾性部とが前記第2の剛性部を中心とする異なる方位に存在することを特徴とする請求項2に記載の静電振動子。   The electrostatic vibrator according to claim 2, wherein the plurality of first elastic portions and the plurality of second elastic portions exist in different orientations centering on the second rigid portion. 前記第1の剛性部が環状に構成されることを特徴とする請求項2又は3に記載の静電振動子。   The electrostatic vibrator according to claim 2, wherein the first rigid portion is configured in an annular shape. 前記第1の剛性部と前記第2の剛性部は相互に同心状に形成され、前記第1の弾性部及び前記第2の弾性部はそれぞれ前記第1の剛性部及び前記第2の剛性部と同心で半径方向外側に延びる放射状に形成されることを特徴とする請求項4に記載の静電振動子。   The first rigid portion and the second rigid portion are formed concentrically with each other, and the first elastic portion and the second elastic portion are the first rigid portion and the second rigid portion, respectively. The electrostatic vibrator according to claim 4, wherein the electrostatic vibrator is formed in a radial shape concentrically with each other and extending radially outward. 請求項1乃至5のいずれか一項に記載の静電振動子の使用方法であって、
前記弾性振動系の一次の固有周波数と二次の固有周波数との間であって、前記第1の剛性部の振幅u1が前記第2の剛性部の振幅u2より小さくなる条件を満たす周波数範囲内の励振周波数で前記第1の剛性部に前記励振力を与えて前記静電振動子を動作させることを特徴とする静電振動子の使用方法。
A method for using the electrostatic vibrator according to any one of claims 1 to 5,
A frequency range between a primary natural frequency and a secondary natural frequency of the elastic vibration system and satisfying a condition in which an amplitude u1 of the first rigid portion is smaller than an amplitude u2 of the second rigid portion. A method of using an electrostatic vibrator, wherein the electrostatic vibrator is operated by applying the excitation force to the first rigid portion at an excitation frequency of.
JP2008054456A 2008-03-05 2008-03-05 Electrostatic vibrator and method of using the same Expired - Fee Related JP5115244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008054456A JP5115244B2 (en) 2008-03-05 2008-03-05 Electrostatic vibrator and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008054456A JP5115244B2 (en) 2008-03-05 2008-03-05 Electrostatic vibrator and method of using the same

Publications (2)

Publication Number Publication Date
JP2009212888A JP2009212888A (en) 2009-09-17
JP5115244B2 true JP5115244B2 (en) 2013-01-09

Family

ID=41185602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008054456A Expired - Fee Related JP5115244B2 (en) 2008-03-05 2008-03-05 Electrostatic vibrator and method of using the same

Country Status (1)

Country Link
JP (1) JP5115244B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344175B2 (en) 2009-12-22 2013-11-20 セイコーエプソン株式会社 MEMS oscillator and manufacturing method thereof
WO2011129351A1 (en) * 2010-04-16 2011-10-20 三洋電機株式会社 Mems device and production method for same
JP2012119822A (en) 2010-11-30 2012-06-21 Seiko Epson Corp Electronic device, electronic apparatus, and manufacturing method of the electronic device
JP2014127920A (en) * 2012-12-27 2014-07-07 Seiko Epson Corp Vibrator, electronic device, electronic apparatus, and movable body

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6549099B2 (en) * 2001-06-29 2003-04-15 Hewlett-Packard Company Electrically-coupled mechanical band-pass filter
US8063535B2 (en) * 2005-01-07 2011-11-22 Trustees Of Boston University Nanomechanical oscillator
JP2006231489A (en) * 2005-02-28 2006-09-07 Seiko Epson Corp Oscillator structure and manufacturing method thereof
JP4645227B2 (en) * 2005-02-28 2011-03-09 セイコーエプソン株式会社 Vibrator structure and manufacturing method thereof
JP4760384B2 (en) * 2006-01-10 2011-08-31 セイコーエプソン株式会社 MEMS vibrator

Also Published As

Publication number Publication date
JP2009212888A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP4086023B2 (en) Micromechanical electrostatic vibrator
US7839239B2 (en) MEMS resonator having at least one resonator mode shape
JP4087790B2 (en) Micro-bridge structure with reduced central mass for very high frequency MEM resonators
JP4690436B2 (en) MEMS resonator, MEMS oscillation circuit, and MEMS device
JP4645227B2 (en) Vibrator structure and manufacturing method thereof
US20100321125A1 (en) Resonator and a method of manufacturing the same, and oscillator and electronic apparatus including the same
CN101223692B (en) Resonator and filter using same
KR20050101313A (en) Micromechanical resonator device and method of making a micromechanical device
JP5115244B2 (en) Electrostatic vibrator and method of using the same
KR20170056008A (en) Multiple coil spring mems resonator for oscillators and real-time clock applications
JP4977431B2 (en) Micromechanical resonator
KR20210151924A (en) micro electromechanical resonator
JP2009212887A (en) Electrostatic vibrator and use thereof
JP2006231489A (en) Oscillator structure and manufacturing method thereof
JP4760384B2 (en) MEMS vibrator
JP5671742B2 (en) Method for arranging electrode structure element and vibration structure element close to each other and MEMS device using the same
JP2009088685A (en) Electromechanical element, and semiconductor device
JP2008103777A (en) Micromechanical resonator
WO2004050545A1 (en) Micromachine and method of producing the same
JP2008263493A (en) Micromechanical resonator
JP2006303558A (en) Mems resonator
JP2010540266A (en) Nanoscale or microscale vibratory electromechanical components with improved detection levels
JP4254445B2 (en) Microelectromechanical system resonator and driving method thereof
JP2006217207A (en) Vibrator and semiconductor device
JP7074605B2 (en) MEMS device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees