JP5113534B2 - Component mounting method - Google Patents

Component mounting method Download PDF

Info

Publication number
JP5113534B2
JP5113534B2 JP2008000664A JP2008000664A JP5113534B2 JP 5113534 B2 JP5113534 B2 JP 5113534B2 JP 2008000664 A JP2008000664 A JP 2008000664A JP 2008000664 A JP2008000664 A JP 2008000664A JP 5113534 B2 JP5113534 B2 JP 5113534B2
Authority
JP
Japan
Prior art keywords
suction nozzle
load
vacuum
component
component mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008000664A
Other languages
Japanese (ja)
Other versions
JP2009164347A (en
Inventor
剛志 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juki Corp
Original Assignee
Juki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juki Corp filed Critical Juki Corp
Priority to JP2008000664A priority Critical patent/JP5113534B2/en
Publication of JP2009164347A publication Critical patent/JP2009164347A/en
Application granted granted Critical
Publication of JP5113534B2 publication Critical patent/JP5113534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Description

本発明は、吸着ノズルによって部品を吸着して基板に部品を実装する部品実装方法に関し、詳しくは、部品搭載時に吸着ノズルを押し込んで部品を基板に押し付けている間、部品を基板に押し付ける荷重値の制御を適切に行うことができる部品実装方法に関する。   The present invention relates to a component mounting method in which a component is sucked by a suction nozzle and the component is mounted on a substrate. Specifically, a load value for pressing a component against the substrate while the component is being pushed into the substrate while the suction nozzle is being pushed. The present invention relates to a component mounting method that can appropriately control the above.

図6は従来の一般的な部品実装装置の全体構成を模式的に示す平面図であり、図7は該部品実装装置の搭載ヘッドを模式的に示す正面図であり、図8は該搭載ヘッドに取り付ける吸着ノズルを示す正面図である。   FIG. 6 is a plan view schematically showing the overall configuration of a conventional general component mounting apparatus, FIG. 7 is a front view schematically showing the mounting head of the component mounting apparatus, and FIG. 8 is the mounting head. It is a front view which shows the suction nozzle attached to.

この従来の一般的な部品実装装置100は、図6に示すように、搭載ヘッド102と、搭載ヘッド102をX軸方向に移動させるX軸移動機構104と、X軸移動機構104とともに搭載ヘッド102をY軸方向に移動させるY軸移動機構106と、搭載する部品を供給する部品供給部108と、部品が搭載される基板1を搬送する搬送部110と、基板1を固定して基板1の位置決めを行う固定ステーション112と、吸着ノズル122に吸着された部品を下方から撮像して吸着された部品の姿勢を認識する部品認識カメラ114と、を主要な構成要素としている。   As shown in FIG. 6, the conventional general component mounting apparatus 100 includes a mounting head 102, an X-axis moving mechanism 104 that moves the mounting head 102 in the X-axis direction, and the mounting head 102 together with the X-axis moving mechanism 104. The Y-axis moving mechanism 106 for moving the component in the Y-axis direction, the component supply unit 108 for supplying the component to be mounted, the transport unit 110 for transporting the substrate 1 on which the component is mounted, and the substrate 1 by fixing the substrate 1. The main components are a fixed station 112 that performs positioning, and a component recognition camera 114 that captures an image of the component sucked by the suction nozzle 122 from below and recognizes the posture of the sucked component.

前記搭載ヘッド102は、図7に示すように、部品を吸着する吸着ノズル122と、吸着ノズル122を先端に装着できるシャフト124と、シャフト124を上下方向に昇降させるZ軸モータ126と、基板1の基板認識マーク1Aを上方から撮像して基板1の位置を認識する基板認識カメラ128と、を有してなる。   As shown in FIG. 7, the mounting head 102 includes a suction nozzle 122 that picks up components, a shaft 124 on which the suction nozzle 122 can be mounted at the tip, a Z-axis motor 126 that moves the shaft 124 up and down, and a substrate 1. And a substrate recognition camera 128 that recognizes the position of the substrate 1 by imaging the substrate recognition mark 1A from above.

前記吸着ノズル122は、図8に示すように、ノズル本体122Aと、該本体122Aの内部に摺動可能なスライダ部122Bと、その先端に位置する吸着端部122Cと、ノズル本体122Aと吸着端部122Cとの間に弾性力を付与するためのばね122D(断面を示す)と、を有する。吸着ノズル122は、ばね122Dを有することにより、押し込み量に応じて、吸着した部品を基板に押し付ける荷重(以下、押し付け荷重と記すことがある)を変化させることができる。   As shown in FIG. 8, the suction nozzle 122 includes a nozzle main body 122A, a slider portion 122B slidable inside the main body 122A, a suction end 122C located at the tip thereof, a nozzle main body 122A and a suction end. A spring 122D (showing a cross section) for applying an elastic force to the portion 122C. Since the suction nozzle 122 includes the spring 122D, it is possible to change a load that presses the sucked component against the substrate (hereinafter, may be referred to as a pressing load) according to the amount of pressing.

この種の吸着ノズル122は、構造が比較的簡単であるにも拘わらず、ばねの弾性係数を基に予め計算される荷重値を目標実装荷重として設定することにより、実装時の荷重を目標値に制御し易いという利点がある。   Although this type of suction nozzle 122 has a relatively simple structure, the load value calculated in advance based on the elastic coefficient of the spring is set as the target mounting load, whereby the load at the time of mounting is set to the target value. There is an advantage that it is easy to control.

次に、部品実装装置100の動作について説明する。   Next, the operation of the component mounting apparatus 100 will be described.

部品供給部108で吸着ノズル122により部品を吸着した搭載ヘッド102は、吸着した部品が基板1の搭載点の真上に位置するように、X軸移動機構104とY軸移動機構106とにより水平方向(XY方向)に移動する。この移動に際しては、基板認識カメラ124によって基板1の位置を認識した結果と、部品認識カメラ114によって吸着された部品の状態を認識した結果とに基づき、目標とする移動位置の修正がなされる。また、吸着ノズル122に吸着された部品の向きも、θ軸モータ(図示せず)により吸着ノズル122が軸方向に回転することにより修正される。   The mounting head 102 that has picked up the component by the suction nozzle 122 in the component supply unit 108 is horizontally moved by the X-axis moving mechanism 104 and the Y-axis moving mechanism 106 so that the sucked component is positioned immediately above the mounting point of the substrate 1. Move in the direction (XY direction). In this movement, the target movement position is corrected based on the result of recognizing the position of the substrate 1 by the substrate recognition camera 124 and the result of recognizing the state of the component sucked by the component recognition camera 114. In addition, the orientation of the component sucked by the suction nozzle 122 is also corrected by rotating the suction nozzle 122 in the axial direction by a θ-axis motor (not shown).

そして、吸着ノズル122がZ軸モータ126の駆動により下降し、吸着した部品を基板1上の接着剤に押し付け、所定時間経過後に吸着を開放して吸着ノズル122は上昇する。   Then, the suction nozzle 122 is lowered by driving the Z-axis motor 126, the sucked component is pressed against the adhesive on the substrate 1, the suction is released after a predetermined time has elapsed, and the suction nozzle 122 is raised.

ここで、吸着した部品を基板1上の接着剤に押し付ける際の荷重には、部品や接着剤等の特性に応じた最適値がある。このため、該荷重を最適に制御するための技術が提案されている。   Here, the load when pressing the adsorbed component against the adhesive on the substrate 1 has an optimum value according to the characteristics of the component, the adhesive, and the like. For this reason, a technique for optimally controlling the load has been proposed.

例えば特許文献1に記載の技術では、吸着した部品を基板1上の接着剤に押し付ける際の荷重を最適な値に制御するために、吸着ノズル122の押し込み量に応じて荷重が変化するように構成された押圧手段を備えた部品実装装置において、吸着ノズル122の押し込み量と印加される荷重値との関係をデータテーブルとして予め記憶させておき、その結果から導き出される押し込み量と荷重値との関係から、必要とされる荷重値に相当する押し込み量だけ吸着ノズル122を押し込むことで部品へ印加される荷重値を制御する。   For example, in the technique described in Patent Document 1, in order to control the load when the sucked component is pressed against the adhesive on the substrate 1 to an optimum value, the load changes according to the pushing amount of the suction nozzle 122. In the component mounting apparatus including the configured pressing means, the relationship between the pushing amount of the suction nozzle 122 and the applied load value is stored in advance as a data table, and the pushing amount and the load value derived from the result are stored. From the relationship, the load value applied to the component is controlled by pushing the suction nozzle 122 by the push amount corresponding to the required load value.

特許文献1に記載の技術では、部品を基板1に押し付ける時間については記載されていないが、通常、必要とされる荷重値で必要な時間だけ吸着ノズル122を押し込んだ後、部品を吸着している吸着ノズル122の吸着を開放して、部品の搭載を行う。   In the technique described in Patent Document 1, the time for pressing the component against the substrate 1 is not described, but normally, after the suction nozzle 122 is pushed in for the required time at the required load value, the component is sucked. The suction of the suction nozzle 122 is released and components are mounted.

特開2005−166944号公報JP 2005-166944 A

図1は、前記部品実装装置100を用いて基板1に部品Pの搭載を行う場合、部品Pを吸着する真空を開放する前後において、部品Pが吸着ノズル122により基板1に押し付けられる荷重がどのように変動するかを、吸着ノズル122の状態と対応させて模式的に表した図である。   FIG. 1 shows the load applied to the substrate 1 by the suction nozzle 122 before and after releasing the vacuum for sucking the component P when the component P is mounted on the substrate 1 using the component mounting apparatus 100. It is the figure which expressed typically whether it fluctuates so as to correspond to the state of the suction nozzle 122.

a点において、吸着ノズル122に吸着された部品Pは基板1と接触し、a点〜b点において、シャフト124の下降に伴って、部品が吸着ノズル122により基板1に押し付けられる荷重が上昇する。b点〜c点ではb点での位置のままシャフト124は動きを停止し、所定の時間(b点からc点までの時間)、一定の荷重で部品が基板1に押し付けられる。   At the point a, the component P sucked by the suction nozzle 122 comes into contact with the substrate 1, and at the points a to b, the load by which the component is pressed against the substrate 1 by the suction nozzle 122 increases as the shaft 124 descends. . The shaft 124 stops moving from the point b to the point c while keeping the position at the point b, and the component is pressed against the substrate 1 with a constant load for a predetermined time (time from the point b to the point c).

ここで、a点よりも前の段階(シャフト124が下降して部品が基板1と接触するよりも前の段階)においても、吸着ノズル122に部品が吸着された段階で、部品を吸着する力によってばね122Dは縮み、ばね122Dにはばねエネルギーが蓄えられる。部品を吸着する力は、吸着ノズル122の口径が大きくなるほど大きくなる。   Here, even in a stage before the point a (a stage before the shaft 124 descends and the component comes into contact with the substrate 1), the force for sucking the component at the stage where the component is sucked by the suction nozzle 122 As a result, the spring 122D contracts, and spring energy is stored in the spring 122D. The force for sucking parts increases as the diameter of the suction nozzle 122 increases.

c点において、部品を吸着する真空が開放されると、真空による吸着力によってばね122Dが縮んで蓄えられていたばねエネルギー(バネを縮める方向に働いていた真空による部品吸着力)が開放されて、部品はさらに基板に押し付けられる。このとき、ばねエネルギー(バネを縮める方向に働いていた真空による部品吸着力)の開放は短時間の間になされるので、部品をさらに基板1に押し付ける力は衝撃的な力として作用し、c点〜d点の間の曲線に示すように、一時的に大きな力で部品は基板1に押し付けられる。   At the point c, when the vacuum that adsorbs the component is released, the spring energy stored by contracting the spring 122D by the adsorption force due to the vacuum (the component adsorption force due to the vacuum that worked in the direction of contracting the spring) is released, The component is further pressed against the substrate. At this time, since the release of the spring energy (the component adsorption force by the vacuum that worked in the direction of contracting the spring) is made in a short time, the force that further presses the component against the substrate 1 acts as a shocking force, c As indicated by the curve between the points d and d, the component is temporarily pressed against the substrate 1 with a large force.

吸着力の開放による衝撃的な力の作用が終了すると、d点〜e点におけるように、b点〜c点におけるときよりも、真空による部品吸着力の大きさの分だけ大きな力で部品は基板1に押し付けられる。e点でシャフト124は上昇を開始し、シャフト124の上昇とともに、ばね122Dの圧縮量は減少していき、部品が基板1に押し付けられる力は減少していく。f点で吸着ノズル122の先端(吸着端部122C)が部品から離れ、部品が基板1に押し付けられる力は零になる。   When the action of the shocking force due to the release of the suction force is completed, the part is moved with a force larger by the amount of the part suction force due to the vacuum than at the point b to point c, as at the point d to point e. Pressed against the substrate 1. At the point e, the shaft 124 starts to rise. As the shaft 124 rises, the amount of compression of the spring 122D decreases, and the force with which the component is pressed against the substrate 1 decreases. At the point f, the tip of the suction nozzle 122 (suction end 122C) is separated from the component, and the force with which the component is pressed against the substrate 1 becomes zero.

特許文献1に記載の技術でも、部品を吸着している真空を開放するまでは、吸着ノズルの押し込み量と印加される荷重値との関係に従って、所定の荷重値(図1のb点〜c点における荷重値)を部品に印加することができる。   Even in the technique described in Patent Document 1, a predetermined load value (points b to c in FIG. 1) is determined according to the relationship between the amount of pushing of the suction nozzle and the applied load value until the vacuum that sucks the component is released. The load value at the point) can be applied to the part.

しかしながら、図1を用いて説明したように、部品を吸着している真空を開放すると、それと同時に、バネを縮める方向に働いていた真空による部品吸着力も開放されてしまうため、特許文献1に記載の技術では、一瞬ではあるが衝撃的な荷重が作用し、所定の荷重値を超える荷重が部品に印加されてしまうことがある。   However, as described with reference to FIG. 1, when the vacuum that sucks the component is released, the component suction force due to the vacuum that worked in the direction of contracting the spring is also released at the same time. In this technique, an impact load is applied even in a moment, and a load exceeding a predetermined load value may be applied to the component.

本発明は、かかる問題点に鑑みてなされたものであって、部品搭載時に吸着ノズルを押し込んで部品を基板に押し付けている間、部品を基板に押し付ける荷重値の制御を適切に行うことができる部品実装方法を提供することを課題とする。   The present invention has been made in view of such a problem, and it is possible to appropriately control a load value for pressing a component against a substrate while the suction nozzle is pushed and the component is pressed against the substrate at the time of mounting the component. It is an object to provide a component mounting method.

本発明に係る部品実装方法は、押し込み量に応じて荷重が変化するように構成された吸着ノズルを用いて、部品を吸着し、基板上に該部品を搭載する部品実装方法において、該吸着ノズルを平坦面に押し当てて真空引きをするとともに、該吸着ノズルを所定の押し込み量だけ押し込んで該平坦面に所定の押し付け荷重で押し付け、所定時間経過後に真空を開放し、真空開放後の押し付け荷重の変動についての荷重プロファイルを測定し、該荷重プロファイルに対応する前記吸着ノズルの押し込み量の変化を算出し、該押し込み量の変化に対応する前記吸着ノズルの上下方向の移動についての移動動作プロファイルを作成し、該移動動作プロファイルとは移動方向を反対方向とした前記吸着ノズルの上下方向の移動についての相殺動作プロファイルを作成する予備ステップと、前記作成した相殺動作プロファイルを用いて実際の部品実装を行う実装ステップと、を有し、前記実装ステップでは、吸着した部品を前記吸着ノズルが基板に所定の押し付け荷重で押し付けた状態で真空を開放した後、前記相殺動作プロファイルに基づき前記吸着ノズルを上下動させ、前記吸着ノズルの真空開放後の押し付け荷重の変動を相殺させる部品実装方法であり、真空開放後の前記吸着ノズルの高さ位置が、真空開放前よりも真空引きによる吸着力に相当する前記吸着ノズルの押し込み量だけ高くなるように、真空開放後の前記吸着ノズルの上下動を調整して、真空の開放による衝撃的なばね反力の作用が収まった後の前記吸着ノズルによる押し付け荷重が、真空開放前の前記吸着ノズルによる押し付け荷重と同じになるようにすることを特徴とする。 A component mounting method according to the present invention is a component mounting method in which a component is sucked using a suction nozzle configured to change a load according to an amount of pressing, and the component is mounted on a substrate. Is pressed against the flat surface to evacuate it, and the suction nozzle is pushed in by a predetermined push amount and pressed against the flat surface with a predetermined pressing load. The load profile for the fluctuation of the suction nozzle is measured, the change in the pushing amount of the suction nozzle corresponding to the load profile is calculated, and the movement operation profile for the vertical movement of the suction nozzle corresponding to the change in the pushing amount is obtained. A canceling operation profile for the vertical movement of the suction nozzle with the direction of movement opposite to the movement operation profile created. And a mounting step for performing actual component mounting using the created cancellation operation profile, and in the mounting step, the suction nozzle presses the sucked component against the substrate with a predetermined pressing load. Is a component mounting method in which the suction nozzle is moved up and down on the basis of the offset operation profile after the vacuum is released in a state where the suction nozzle is pressed, and the fluctuation of the pressing load after the vacuum release of the suction nozzle is canceled . Adjusting the vertical movement of the suction nozzle after opening the vacuum so that the height position of the suction nozzle is higher by the pushing amount of the suction nozzle corresponding to the suction force by evacuation than before opening the vacuum, The pressing load by the suction nozzle after the action of the shocking spring reaction force due to the release of the pressure is reduced is the pressure by the suction nozzle before the vacuum release. Only characterized by so that it is the same as the load.

本発明によれば、吸着ノズルの真空開放後に相殺動作プロファイルに基づき吸着ノズルを上下動させるので、吸着ノズルの真空開放後の押し付け荷重の変動を相殺することができる。   According to the present invention, since the suction nozzle is moved up and down based on the canceling operation profile after the suction nozzle is released from the vacuum, fluctuations in the pressing load after the suction nozzle is released from the vacuum can be canceled out.

また、真空開放後の吸着ノズルの高さ位置が、真空開放前よりも真空引きによる吸着力に相当する吸着ノズルの押し込み量だけ高くなるように、真空開放後の吸着ノズルの上下動を調整するので、真空の開放による衝撃的なばね反力の作用が収まった後の押し付け荷重が、真空開放前の押し付け荷重と同じになり、真空開放前後で押し付け荷重は一定となる。 The height position of the suction nozzle after the vacuum opened, to be higher by pushing amount of the suction nozzle corresponding to the suction force by the vacuum than the previous vacuum opening, to adjust the vertical movement of the suction nozzle after the vacuum opening Therefore , the pressing load after the effect of the shocking spring reaction force due to the release of the vacuum is the same as the pressing load before the vacuum release, and the pressing load is constant before and after the vacuum release.

以下、図面を参照して、本発明に係る実施形態について詳細に説明するが、先に説明した従来の一般的な部品実装装置100と同一の構成については同一の符号を付し、説明は省略する。   Hereinafter, an embodiment according to the present invention will be described in detail with reference to the drawings. The same components as those of the conventional general component mounting apparatus 100 described above are denoted by the same reference numerals, and description thereof is omitted. To do.

図2は、本発明の実施形態に係る部品実装方法の実施に用いる部品実装装置の全体構成を模式的に示す平面図である。   FIG. 2 is a plan view schematically showing the overall configuration of the component mounting apparatus used for carrying out the component mounting method according to the embodiment of the present invention.

この部品実装装置10は、図2に示すように、ロードセルユニット12を備えさせた点が従来の部品実装装置100と異なる。   As shown in FIG. 2, the component mounting apparatus 10 is different from the conventional component mounting apparatus 100 in that a load cell unit 12 is provided.

ロードセルユニット12は、部品を吸着した吸着ノズル122が部品Pを基板1に押し付ける力を測定するロードセル14と、ロードセル14を校正する荷重校正装置16とからなる。   The load cell unit 12 includes a load cell 14 that measures the force with which the suction nozzle 122 that sucks the component presses the component P against the substrate 1, and a load calibration device 16 that calibrates the load cell 14.

ロードセル14は、例えば直方体形状であり、下面にひずみゲージ(図示せず)が取り付けられている。そして、一端部が固定されて片持ち梁となっており、他端部の上面の測定面に上方から荷重が加わって全体がたわむと、下面が圧縮される。下面に生じる圧縮ひずみの量を下面に取り付けたひずみゲージで測定することにより、上方から加えられる荷重を測定できるようになっている。測定面は、吸着ノズル122を押し当てて真空引きができるような平坦面となっている。   The load cell 14 has a rectangular parallelepiped shape, for example, and a strain gauge (not shown) is attached to the lower surface. And one end part is fixed and it becomes a cantilever, and when a load is added to the measurement surface of the upper surface of the other end part from the upper part and the whole bends, a lower surface will be compressed. By measuring the amount of compressive strain generated on the lower surface with a strain gauge attached to the lower surface, the load applied from above can be measured. The measurement surface is a flat surface that can be evacuated by pressing the suction nozzle 122.

本実施形態に係る部品実装方法では、実際の部品実装を行う前に、以上説明した部品実装装置10を用いて、部品を吸着していない状態で、以下の荷重プロファイルを測定する。   In the component mounting method according to the present embodiment, before actual component mounting, the following load profile is measured using the component mounting apparatus 10 described above in a state where no component is sucked.

図3は、吸着ノズル122が押し付ける荷重を時間の経過とともに測定した結果(荷重プロファイル)を吸着ノズル122の状態と対応させて模式的に示す図である。   FIG. 3 is a diagram schematically showing the result (load profile) of the load pressed by the suction nozzle 122 measured with the passage of time in correspondence with the state of the suction nozzle 122.

この測定の際には、まず、ロードセル14の測定面の真上の位置に、吸着ノズル122を移動させる。次に、シャフト124を下降させ、吸着ノズル122の先端(吸着端部122C)をロードセル14の測定面に当接させ(点i)、さらに、当接した高さ位置から所定量ΔLだけシャフト124を下降させる(点ii)。点iから点iiへの移行時には、吸着ノズル122の押し込み量は0からΔLまで増加しており、吸着ノズル122がロードセル14の測定面を押し付ける荷重は0からP1に増加する。   In this measurement, first, the suction nozzle 122 is moved to a position directly above the measurement surface of the load cell 14. Next, the shaft 124 is lowered, the tip of the suction nozzle 122 (suction end 122C) is brought into contact with the measurement surface of the load cell 14 (point i), and the shaft 124 is further moved by a predetermined amount ΔL from the contacted height position. Is lowered (point ii). At the time of transition from the point i to the point ii, the pushing amount of the suction nozzle 122 increases from 0 to ΔL, and the load with which the suction nozzle 122 presses the measurement surface of the load cell 14 increases from 0 to P1.

点iiの状態でシャフト124の高さ位置を所定時間だけ保持した後、真空引きを開始する(点iii)。真空引きによる上方への力(ロードセル14の測定面を上方へ引き上げる力)により、ばね122Dの下向きのばね反力の一部が負担されるため、吸着ノズル122がロードセル14の測定面を押し付ける荷重はP1からP2に減少する(点iv)。点iiiから点ivへの移行時には、真空引きによる上方へ引き上げる力が短時間にロードセル14の測定面に作用するため、衝撃的な力として作用し、吸着ノズル122がロードセル14の測定面を押し付ける荷重は瞬間的に状態Dにおける荷重P2よりも小さくなる。   After maintaining the height position of the shaft 124 for a predetermined time in the state of the point ii, evacuation is started (point iii). A part of the downward spring reaction force of the spring 122D is borne by the upward force (force that pulls up the measurement surface of the load cell 14) due to the evacuation, so that the suction nozzle 122 presses the measurement surface of the load cell 14 Decreases from P1 to P2 (point iv). At the time of transition from the point iii to the point iv, the upward pulling force due to evacuation acts on the measurement surface of the load cell 14 in a short time, so that it acts as an impact force, and the suction nozzle 122 presses the measurement surface of the load cell 14. The load is instantaneously smaller than the load P2 in the state D.

吸着ノズル122がロードセル14の測定面を押し付ける荷重がP2になった状態Dで所定時間だけ真空引きを維持した後、真空を開放する(点v)。真空を開放すると、真空引きによりロードセル14の測定面を上方へ引き上げていた力が零になり、その力に相当するばね122Dの下向きのばね反力がロードセル14の測定面に作用するため、吸着ノズル122がロードセル14の測定面を押し付ける荷重はP2からP1(真空引き開始前において吸着ノズル122がロードセル14の測定面を押し付けていた荷重(点ii〜点iiiにおける荷重))に増加する(点vi)。点vから点viへの移行時には、真空引きによりロードセル14の測定面を上方へ引き上げていた力は瞬間的に零になり、その力に相当するばね122Dの下向きのばね反力が衝撃的にロードセル14の測定面に作用するため、吸着ノズル122がロードセル14の測定面を押し付ける荷重は瞬間的にP1よりも大きくなる。   After maintaining the evacuation for a predetermined time in the state D in which the load by which the suction nozzle 122 presses the measurement surface of the load cell 14 is P2, the vacuum is released (point v). When the vacuum is released, the force pulling up the measurement surface of the load cell 14 by evacuation becomes zero, and the downward spring reaction force corresponding to the force acts on the measurement surface of the load cell 14. The load with which the nozzle 122 presses the measurement surface of the load cell 14 increases from P2 to P1 (the load with which the suction nozzle 122 presses the measurement surface of the load cell 14 before starting evacuation (the load at points ii to iii)). vi). At the time of transition from the point v to the point vi, the force that lifted the measurement surface of the load cell 14 upward by evacuation becomes zero instantaneously, and the downward spring reaction force corresponding to the force is shocked. Since it acts on the measurement surface of the load cell 14, the load with which the suction nozzle 122 presses the measurement surface of the load cell 14 instantaneously becomes larger than P1.

吸着ノズル122がロードセル14の測定面を押し付ける荷重がP1になった状態で所定時間だけ保持(点vi〜点vii)した後、シャフト124は上昇を開始する(vii点)。vii点からシャフト124が所定量ΔL(当初の吸着ノズル122の押し込み量)だけ上昇すると、吸着ノズル122の先端(吸着端部122C)はロードセル14の測定面から離れ、吸着ノズル122がロードセル14の測定面を押し付ける荷重は0になる(viii点)。   After the suction nozzle 122 is held for a predetermined time (point vi to point vii) with the load pressing the measurement surface of the load cell 14 being P1, the shaft 124 starts to rise (point vii). When the shaft 124 rises from the point vii by a predetermined amount ΔL (the initial pushing amount of the suction nozzle 122), the tip of the suction nozzle 122 (suction end 122C) moves away from the measurement surface of the load cell 14, and the suction nozzle 122 moves to the load cell 14. The load for pressing the measurement surface is 0 (viii point).

本実施形態に係る部品実装方法では、まず、このような荷重プロファイルを、用いる各吸着ノズルごとに測定して記憶しておき、そして、用いる吸着ノズルについての前記荷重プロファイルに応じて、真空開放直後の吸着ノズル122による押し付け荷重の瞬間的な変動(図3の点v〜点vi)を相殺するようにシャフト124を上下動させる。これにより、本実施形態に係る部品実装方法では、部品搭載時において、図1のc点〜d点におけるような真空開放直後の荷重の変動を回避することができる。   In the component mounting method according to the present embodiment, first, such a load profile is measured and stored for each suction nozzle to be used, and immediately after opening the vacuum according to the load profile for the suction nozzle to be used. The shaft 124 is moved up and down so as to cancel instantaneous fluctuations in the pressing load by the suction nozzle 122 (points v to vi in FIG. 3). As a result, in the component mounting method according to the present embodiment, it is possible to avoid fluctuations in the load immediately after the vacuum opening, such as at points c to d in FIG.

ここで、押し付け荷重は吸着ノズルの押し込み量に置き換えることができ、また、吸着ノズル122の押し込み量はシャフト124(吸着ノズル122)の上下方向(Z方向)の移動量と一致する。したがって、本実施形態に係る部品実装方法では、具体的には、図4に示すフローチャートの手順により動作を行う。   Here, the pressing load can be replaced with the pushing amount of the suction nozzle, and the pushing amount of the suction nozzle 122 matches the amount of movement of the shaft 124 (suction nozzle 122) in the vertical direction (Z direction). Therefore, in the component mounting method according to the present embodiment, specifically, the operation is performed according to the procedure of the flowchart shown in FIG.

まず、真空開放前後の吸着ノズル122による押し付け荷重の変動の状況(荷重プロファイル)を測定して記憶する(ステップS1)。次に、真空開放直後の荷重プロファイルに対応する吸着ノズル122の押し込み量の変化を、ばね122Dにおける荷重と変位の関係から算出し(ステップS2)、そのような押し込み量の変化をもたらすシャフト124(吸着ノズル122)の上下方向(Z方向)の移動動作プロファイルを作成する(ステップS3)。そして、作成した移動動作プロファイルとは移動方向を反対方向とした、シャフト124(吸着ノズル122)の上下方向(Z方向)の相殺動作プロファイルを作成する(ステップS4)。ステップS1〜S4は、実際の部品搭載動作を行う前に予め行っておく必要があり、いわば予備ステップというべきものである。   First, the state (load profile) of fluctuation of the pressing load by the suction nozzle 122 before and after opening the vacuum is measured and stored (step S1). Next, the change in the pushing amount of the suction nozzle 122 corresponding to the load profile immediately after the vacuum is released is calculated from the relationship between the load and the displacement in the spring 122D (step S2), and the shaft 124 (such as that causing the change in pushing amount) ( A moving operation profile in the vertical direction (Z direction) of the suction nozzle 122) is created (step S3). Then, a canceling operation profile in the vertical direction (Z direction) of the shaft 124 (suction nozzle 122), which has the moving direction opposite to the created moving operation profile, is created (step S4). Steps S1 to S4 need to be performed in advance before performing the actual component mounting operation, which is a preliminary step.

ステップS1〜S4により、相殺動作プロファイルを作成した後、実際に部品実装を行う実装ステップに入る。実装ステップにおいては、まず、吸着ノズル122が部品Pを吸着し、吸着した部品Pを基板1上の所定の位置に所定の押し付け荷重で押し付ける(ステップS5)。そして、所定時間経過後、吸着した部品Pを基板1に押し付けた状態で真空を開放し、前記相殺動作プロファイルに基づきシャフト124(吸着ノズル122)を上下動させる(ステップS6)。これにより、吸着ノズル122の真空開放後の押し付け荷重の変動が相殺され、吸着ノズル122による押し付け荷重を一定とすることができる。   After creating the canceling operation profile in steps S1 to S4, the process enters a mounting step for actually mounting components. In the mounting step, first, the suction nozzle 122 sucks the component P, and presses the sucked component P to a predetermined position on the substrate 1 with a predetermined pressing load (step S5). Then, after a predetermined time has elapsed, the vacuum is released with the sucked component P pressed against the substrate 1, and the shaft 124 (suction nozzle 122) is moved up and down based on the offset operation profile (step S6). Thereby, the fluctuation | variation of the pressing load after the vacuum release of the suction nozzle 122 is canceled, and the pressing load by the suction nozzle 122 can be made constant.

吸着ノズル122が真空を開放してから所定時間が経過した後、シャフト124(吸着ノズル122)は上昇する(ステップS7)。全ての部品の搭載が終了したかどうかを判断し(ステップS8)、全ての部品の搭載が終了したら、一連の部品実装を終了する。   After a predetermined time has elapsed since the suction nozzle 122 opened the vacuum, the shaft 124 (suction nozzle 122) moves up (step S7). It is determined whether or not all the components have been mounted (step S8). When all the components have been mounted, a series of component mounting is ended.

また、従来技術では、真空開放前の押し付け荷重(図1のb点〜c点)よりも、真空開放後の押し付け荷重(図1のd点〜e点)の方が、真空による部品吸着力の分だけ大きくなるが、部品を基板上の接着剤に押し付ける力は一定である方が好ましいので、本実施形態に係る部品実装方法において、真空による部品吸着力に相当する分の押し付け荷重も相殺するように、シャフト124を上下動させてもよい。   In the prior art, the pressing load after opening the vacuum (points d to e in FIG. 1) is higher than the pressing load before opening the vacuum (points b to c in FIG. 1). However, since it is preferable that the force pressing the component against the adhesive on the board is constant, in the component mounting method according to this embodiment, the pressing load corresponding to the component adsorption force by vacuum is also offset. As such, the shaft 124 may be moved up and down.

具体的には、図3におけるP1とP2との差分が真空による部品吸着力に相当するので、P1とP2との差分に相当する吸着ノズル122の押し込み量を、ばね122Dにおける荷重と変位の関係から算出しておく。そして、真空開放後のシャフト124(吸着ノズル122)の高さ位置が、P1とP2との差分に相当する吸着ノズル122の押し込み量だけ、真空開放前のシャフト124(吸着ノズル122)の高さ位置よりも高くなるように、シャフト124(吸着ノズル122)の上下動を調整する。   Specifically, since the difference between P1 and P2 in FIG. 3 corresponds to the component suction force due to vacuum, the pushing amount of the suction nozzle 122 corresponding to the difference between P1 and P2 is set to the relationship between the load and the displacement at the spring 122D. Calculate from Then, the height position of the shaft 124 (suction nozzle 122) before the vacuum is released is the height position of the shaft 124 (suction nozzle 122) after the vacuum is released by the pushing amount of the suction nozzle 122 corresponding to the difference between P1 and P2. The vertical movement of the shaft 124 (suction nozzle 122) is adjusted so as to be higher than the position.

このようにすることで、真空の開放による衝撃的なばね反力の作用が収まった後の押し付け荷重が、真空開放前の押し付け荷重と同じになり、真空開放前後で押し付け荷重は一定となる。   By doing in this way, the pressing load after the effect of the shocking spring reaction force due to the release of the vacuum is the same as the pressing load before the vacuum release, and the pressing load is constant before and after the vacuum release.

以上説明したように、本実施形態に係る部品実装方法では、真空の開放直後の吸着ノズル122による押し付け荷重の瞬間的な変動を相殺するように、真空開放後にシャフト124を上下動させる。さらに、真空開放後の押し付け荷重の上昇(真空による部品吸着力の分だけの上昇)も相殺するように、シャフト124の上下動を調整してもよい。   As described above, in the component mounting method according to the present embodiment, the shaft 124 is moved up and down after the vacuum is released so as to cancel out the instantaneous fluctuation of the pressing load by the suction nozzle 122 immediately after the vacuum is released. Further, the vertical movement of the shaft 124 may be adjusted so as to offset the increase in the pressing load after the vacuum is released (the increase in the component suction force due to the vacuum).

図5は、本実施形態に係る部品実装方法を用いて基板1に部品Pの搭載を行う場合、部品Pを吸着する真空を開放する前後において、部品Pが吸着ノズル122により基板1に押し付けられる荷重がどのように変動するかを、吸着ノズル122の状態と対応させて模式的に表した図である。図5では図示の都合上、真空開放後から所定時間内(C点〜D点)については、他の部分よりも単位時間当たりの横軸の長さを長くしている。また、真空開放後の押し付け荷重の上昇(真空による部品吸着力の分だけの上昇)も相殺するように、シャフト124の上下動を調整している。   FIG. 5 shows that when the component P is mounted on the substrate 1 using the component mounting method according to this embodiment, the component P is pressed against the substrate 1 by the suction nozzle 122 before and after releasing the vacuum for sucking the component P. It is the figure which represented how the load fluctuated corresponding to the state of adsorption nozzle 122 typically. In FIG. 5, for the convenience of illustration, the length of the horizontal axis per unit time is set longer than the other portions within a predetermined time (point C to point D) after the vacuum is opened. Further, the vertical movement of the shaft 124 is adjusted so as to cancel out the increase in the pressing load after the vacuum is released (the increase in the component adsorption force due to the vacuum).

図5に示すように、吸着ノズル122(シャフト124)の上下方向(Z方向)の動きは、まず、基板1上の部品搭載点で下降し(状態(1))、吸着ノズル122が吸着した部品Pが基板1と接触する(状態(2)、点A)。そして、さらに所定量下降し、部品Pを基板1に押し付ける荷重がQ1に上昇する(状態(3)、点B)。その高さ位置で、所定時間、吸着ノズル122(シャフト124)は位置を保持し、部品Pを基板1に押し付け荷重Q1で押し付け続け(状態(3)〜(4)、点B〜点C)、その後、真空を開放する(状態(4)、点C)。   As shown in FIG. 5, the movement of the suction nozzle 122 (shaft 124) in the vertical direction (Z direction) first descends at the component mounting point on the substrate 1 (state (1)), and the suction nozzle 122 sucks. The component P contacts the substrate 1 (state (2), point A). Then, the load further decreases by a predetermined amount, and the load pressing the component P against the substrate 1 increases to Q1 (state (3), point B). At that height position, the suction nozzle 122 (shaft 124) keeps its position for a predetermined time, and keeps pressing the component P against the substrate 1 with the load Q1 (states (3) to (4), points B to C). Then, the vacuum is released (state (4), point C).

真空開放直後に、吸着ノズル122(シャフト124)をわずかに上昇させ(状態(4)〜(7))、そして次には、その上昇量よりも小さい量だけ下降させる(状態(7)〜(11))。そして、その位置をわずかな時間だけ保ち(状態(11)〜(12))、その後、吸着ノズル122(シャフト124)を上方に大きく上昇させていく。これにより、吸着ノズル122の先端(吸着端部122C)は部品Pから離れ(状態(13)、点F)、基板1上に部品Pを搭載したまま、吸着ノズル122(シャフト124)はさらに上方へと上昇していく(状態(14))。   Immediately after the vacuum is released, the suction nozzle 122 (shaft 124) is slightly raised (states (4) to (7)), and then lowered by an amount smaller than the amount of rise (states (7) to (7). 11)). Then, the position is maintained for a short time (states (11) to (12)), and then the suction nozzle 122 (shaft 124) is greatly raised upward. As a result, the tip (suction end 122C) of the suction nozzle 122 is separated from the component P (state (13), point F), and the suction nozzle 122 (shaft 124) is further moved upward while the component P is mounted on the substrate 1. (State (14)).

本実施形態に係る部品実装方法では、以上説明したような動きを吸着ノズル122(シャフト124)にさせるので、図5の実線で示すように、真空開放後、部品に加わる吸着ノズル122からの押し付け荷重は一定となる(点C〜点D)。なお、図5における破線は、従来のように、真空開放後の所定時間の間、吸着ノズル122(シャフト124)の高さ位置を固定した場合の押し付け荷重の変動を示している(点C〜点D1〜点D2)。 In the component mounting method according to this embodiment, the suction nozzle 122 (shaft 124) moves as described above. Therefore, as shown by the solid line in FIG. The load is constant (point C to point D). In addition, the broken line in FIG. 5 has shown the fluctuation | variation of the pressing load at the time of fixing the height position of the suction nozzle 122 (shaft 124) for the predetermined time after a vacuum open | release like the past (point C-). point D 1 ~ point D 2).

以上説明した実施形態では、図3に示す荷重プロファイル、即ち、吸着ノズル122に部品を吸着させないで、吸着ノズル122を直接ロードセル14の接触面に押し付けて真空引きおよびその開放をして測定した荷重プロファイルに基づいて、真空開放後の吸着ノズル122(シャフト124)の上下方向(Z方向)の動きを決定したが、搭載する部品の表面状態や大きさ等の条件が大きく変動しない場合には、吸着ノズル122に部品を吸着させて行って測定した荷重プロファイルを採用してもよく、この荷重プロファイルを採用した方が、真空開放後に部品に加わる吸着ノズル122からの押し付け荷重をより安定的に一定とすることができる場合もある。   In the embodiment described above, the load profile shown in FIG. 3, that is, the load measured by evacuating and releasing the suction nozzle 122 by directly pressing the suction nozzle 122 against the contact surface of the load cell 14 without causing the suction nozzle 122 to suck the component. Based on the profile, the movement in the vertical direction (Z direction) of the suction nozzle 122 (shaft 124) after the vacuum is released is determined, but when conditions such as the surface state and size of the component to be mounted do not vary greatly, A load profile measured by adsorbing a component to the suction nozzle 122 may be adopted, and the load load applied to the component after the vacuum is released is more stably fixed when this load profile is used. In some cases,

従来技術を用いた場合における、真空開放前後の荷重変動の様子を、吸着ノズルの状態と対応させて模式的に表した図A diagram schematically showing the state of load fluctuation before and after opening the vacuum when the conventional technology is used, corresponding to the state of the suction nozzle 本発明の実施形態に係る部品実装方法の実施に用いる部品実装装置の全体構成を模式的に示す平面図The top view which shows typically the whole structure of the component mounting apparatus used for implementation of the component mounting method which concerns on embodiment of this invention 吸着ノズルが押し付ける荷重を時間の経過とともに測定した結果(荷重プロファイル)を吸着ノズルの状態と対応させて模式的に示す図The figure which shows typically the result (load profile) which measured the load which a suction nozzle presses with progress of time corresponding to the state of a suction nozzle. 本発明の実施形態に係る部品実装方法の動作手順を示すフローチャートThe flowchart which shows the operation | movement procedure of the component mounting method which concerns on embodiment of this invention. 本発明の実施形態に係る部品実装方法を用いた場合における、真空開放前後の荷重変動の様子を、吸着ノズルの状態と対応させて模式的に表した図The figure which represented typically the mode of the load fluctuation before and behind vacuum release in the case of using the component mounting method concerning the embodiment of the present invention corresponding to the state of the suction nozzle. 従来の部品実装装置の全体構成を模式的に示す平面図The top view which shows typically the whole structure of the conventional component mounting apparatus 従来の部品実装装置の搭載ヘッドを模式的に示す正面図Front view schematically showing a mounting head of a conventional component mounting apparatus 従来の部品実装装置の搭載ヘッドに取り付ける吸着ノズルを示す正面図Front view showing a suction nozzle attached to a mounting head of a conventional component mounting apparatus

符号の説明Explanation of symbols

1…基板
1A…基板認識マーク
10、100…部品実装装置
12…ロードセルユニット
14…ロードセル
16…荷重校正装置
102…搭載ヘッド
104…X軸移動機構
106…Y軸移動機構
108…部品供給部
110…搬送部
112…固定ステーション
114…部品認識カメラ
122…吸着ノズル
122A…ノズル本体
122B…スライダ部
122C…吸着端部
122D…ばね
124…シャフト
126…Z軸モータ
128…基板認識カメラ
P…部品
P1、P2、Q1…荷重
DESCRIPTION OF SYMBOLS 1 ... Board | substrate 1A ... Board | substrate recognition mark 10, 100 ... Component mounting apparatus 12 ... Load cell unit 14 ... Load cell 16 ... Load calibration apparatus 102 ... Mounting head 104 ... X-axis moving mechanism 106 ... Y-axis moving mechanism 108 ... Component supply part 110 ... Conveying unit 112 ... fixed station 114 ... part recognition camera 122 ... suction nozzle 122A ... nozzle body 122B ... slider part 122C ... suction end 122D ... spring 124 ... shaft 126 ... Z-axis motor 128 ... substrate recognition camera P ... parts P1, P2 , Q1 ... Load

Claims (1)

押し込み量に応じて荷重が変化するように構成された吸着ノズルを用いて、部品を吸着し、基板上に該部品を搭載する部品実装方法において、
該吸着ノズルを平坦面に押し当てて真空引きをするとともに、該吸着ノズルを所定の押し込み量だけ押し込んで該平坦面に所定の押し付け荷重で押し付け、所定時間経過後に真空を開放し、真空開放後の押し付け荷重の変動についての荷重プロファイルを測定し、該荷重プロファイルに対応する前記吸着ノズルの押し込み量の変化を算出し、該押し込み量の変化に対応する前記吸着ノズルの上下方向の移動についての移動動作プロファイルを作成し、該移動動作プロファイルとは移動方向を反対方向とした前記吸着ノズルの上下方向の移動についての相殺動作プロファイルを作成する予備ステップと、
前記作成した相殺動作プロファイルを用いて実際の部品実装を行う実装ステップと、
を有し、
前記実装ステップでは、吸着した部品を前記吸着ノズルが基板に所定の押し付け荷重で押し付けた状態で真空を開放した後、前記相殺動作プロファイルに基づき前記吸着ノズルを上下動させ、前記吸着ノズルの真空開放後の押し付け荷重の変動を相殺させる部品実装方法であり、
真空開放後の前記吸着ノズルの高さ位置が、真空開放前よりも真空引きによる吸着力に相当する前記吸着ノズルの押し込み量だけ高くなるように、真空開放後の前記吸着ノズルの上下動を調整して、真空の開放による衝撃的なばね反力の作用が収まった後の前記吸着ノズルによる押し付け荷重が、真空開放前の前記吸着ノズルによる押し付け荷重と同じになるようにすることを特徴とする部品実装方法。
In a component mounting method for sucking a component and mounting the component on a board using a suction nozzle configured to change the load according to the amount of pushing,
The suction nozzle is pressed against a flat surface to evacuate, and the suction nozzle is pushed by a predetermined push amount and pressed against the flat surface with a predetermined pressing load. After a predetermined time has elapsed, the vacuum is released. Measure the load profile with respect to the change in the pressing load, calculate the change in the pushing amount of the suction nozzle corresponding to the load profile, and move the suction nozzle in the vertical direction corresponding to the change in the pushing amount A preliminary step of creating an operation profile and creating an offset operation profile for the vertical movement of the suction nozzle with the movement direction opposite to the movement operation profile;
A mounting step of performing actual component mounting using the created cancellation action profile;
Have
In the mounting step, after the vacuum is released in a state where the suction nozzle is pressed against the substrate with a predetermined pressing load, the suction nozzle is moved up and down based on the offset operation profile, and the suction nozzle is released from the vacuum. It is a component mounting method that cancels out the fluctuation of the subsequent pressing load ,
Adjusting the vertical movement of the suction nozzle after opening the vacuum so that the height position of the suction nozzle after opening the vacuum is higher than that before opening the vacuum by the pushing amount of the suction nozzle corresponding to the suction force by evacuation. Then, the pressing load by the suction nozzle after the action of the shocking spring reaction force due to the release of the vacuum is settled is the same as the pressing load by the suction nozzle before the vacuum release. Component mounting method.
JP2008000664A 2008-01-07 2008-01-07 Component mounting method Active JP5113534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008000664A JP5113534B2 (en) 2008-01-07 2008-01-07 Component mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008000664A JP5113534B2 (en) 2008-01-07 2008-01-07 Component mounting method

Publications (2)

Publication Number Publication Date
JP2009164347A JP2009164347A (en) 2009-07-23
JP5113534B2 true JP5113534B2 (en) 2013-01-09

Family

ID=40966624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008000664A Active JP5113534B2 (en) 2008-01-07 2008-01-07 Component mounting method

Country Status (1)

Country Link
JP (1) JP5113534B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614404B2 (en) 2009-07-13 2014-10-29 旭硝子株式会社 Glass plate manufacturing method and manufacturing apparatus
CN105794333B (en) * 2013-10-21 2018-12-21 株式会社富士 The method and electronic components mounting machine that electronic component is installed on substrate
WO2015162700A1 (en) * 2014-04-22 2015-10-29 富士機械製造株式会社 Load measurement method and recovery method
JP6754943B2 (en) * 2016-08-23 2020-09-16 パナソニックIpマネジメント株式会社 Component mounting device and component mounting method
JP7193062B2 (en) 2018-08-01 2022-12-20 Thk株式会社 Actuator sensing device and actuator control system
JP7188735B2 (en) 2018-08-01 2022-12-13 Thk株式会社 actuator
TWI796524B (en) 2018-10-19 2023-03-21 日商Thk股份有限公司 actuator system
DE112019005202T5 (en) * 2018-10-19 2021-07-01 Thk Co., Ltd. Actuator
JP7360263B2 (en) 2019-07-18 2023-10-12 Thk株式会社 actuator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205293A (en) * 2001-01-09 2002-07-23 Murata Mfg Co Ltd Suction nozzle and work carrying device using the same
JP4522881B2 (en) * 2005-02-15 2010-08-11 パナソニック株式会社 Electronic component mounting method

Also Published As

Publication number Publication date
JP2009164347A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
JP5113534B2 (en) Component mounting method
JP5491748B2 (en) Semiconductor device manufacturing apparatus and semiconductor device manufacturing method
JP6021550B2 (en) Electronic component mounting equipment
JP2012174822A (en) Compression control head of mounter device
JP6665405B2 (en) Work adsorption method and device
JP5095542B2 (en) Electronic component mounting equipment
WO2016129105A1 (en) Mounting processing unit, mounting device, and control method for mounting processing unit
JP2014123731A (en) Method and device of thermal compression bonding for mounting semiconductor chip on substrate
JP4708449B2 (en) Head drive control method and surface mount apparatus
WO2013168278A1 (en) Electronic-component supporting head, electronic-component detection method, and die feeding apparatus
WO2015182347A1 (en) Component mounting apparatus
JP2006286781A (en) Mounting head of electronic parts, parts mounting device, and its control method
JP2011040551A (en) Elevating device for suction nozzle, and method of controlling weight to electronic component therein
JP2005032860A (en) Mounter and mounting method of electronic component
JP6840158B2 (en) Die mounting device
JP2009200204A (en) Inspecting method and inspecting device for suction nozzle unit
JP6898936B2 (en) Wafer supply equipment and component mounting equipment
JP5065969B2 (en) Component mounting equipment
JP2006108384A (en) Mounting device, its mounting load correcting method and nozzle inspecting method
WO2018055697A1 (en) Component mounter
JP2019061990A (en) Component mounting equipment and component mounting method
WO2018061151A1 (en) Component mounting apparatus
JP6891281B2 (en) Component mounting device
JP5216450B2 (en) Pickup device
JP6754943B2 (en) Component mounting device and component mounting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5113534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150