JP5110930B2 - Method for producing methane gas from biomass containing lignin - Google Patents

Method for producing methane gas from biomass containing lignin Download PDF

Info

Publication number
JP5110930B2
JP5110930B2 JP2007085431A JP2007085431A JP5110930B2 JP 5110930 B2 JP5110930 B2 JP 5110930B2 JP 2007085431 A JP2007085431 A JP 2007085431A JP 2007085431 A JP2007085431 A JP 2007085431A JP 5110930 B2 JP5110930 B2 JP 5110930B2
Authority
JP
Japan
Prior art keywords
biomass
methane
methane gas
methane fermentation
white
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007085431A
Other languages
Japanese (ja)
Other versions
JP2008237164A (en
Inventor
潤 坪田
天崇 上垣内
隆司 渡邊
健太 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2007085431A priority Critical patent/JP5110930B2/en
Publication of JP2008237164A publication Critical patent/JP2008237164A/en
Application granted granted Critical
Publication of JP5110930B2 publication Critical patent/JP5110930B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)
  • Disintegrating Or Milling (AREA)

Description

本発明は、リグニンを含むバイオマスから、簡便且つ効率的に、メタンガスとしてエネルギーを生産する方法に関する。   The present invention relates to a method for producing energy as methane gas simply and efficiently from biomass containing lignin.

建築廃材、剪定街路樹、森林伐採木等を初めとして、日本では有効利用されずに焼却若しくは放置されている木質バイオマスが多量に存在する。木質バイオマスからエネルギーを回収する方法として、焼却熱回収、焼却熱による発電、ガス化発電等が知られているが、いずれもエネルギー回収率が低く、有効ではない。一方、木質バイオマスをメタン発酵によりメタンガスに変換できれば、ガスエンジン等により、最終的に熱効率70%程度と高い効率でエネルギー回収できると試算される。   There is a large amount of woody biomass that is incinerated or neglected in Japan, such as construction waste, pruned street trees, and deforested trees. As methods for recovering energy from woody biomass, incineration heat recovery, power generation by incineration heat, gasification power generation, and the like are known, but all of them are low in energy recovery rate and are not effective. On the other hand, if woody biomass can be converted to methane gas by methane fermentation, it is estimated that energy can be recovered with a high efficiency of about 70% by a gas engine or the like.

木質バイオマスの主成分であるセルロースやヘミセルロース等は比較的メタン発酵によってエネルギー変換を受け易い有機物であるが、木質バイオマスに10〜35%程度含まれているリグニンはセルロースやヘミセルロースの生物分解を妨げる役目を持つため、単に木質バイオマスをメタン発酵に供しても、高いエネルギー回収率は得られないことが分かっている。そこで、エネルギー回収率を高めるために、木質バイオマスを蒸煮爆砕やミル粉砕等に供して、リグニン構造を物理的に破壊した後に、メタン発酵を行う方法が提案されている。しかしながら、蒸煮爆砕やミル粉砕等の破砕処理には、多量のエネルギーや大規模な施設が必要であり、メタン発酵で回収されるエネルギーの殆どを当該破砕処理で消費してしまうという欠点がある。   Cellulose biomass, such as cellulose and hemicellulose, are organic substances that are relatively susceptible to energy conversion by methane fermentation, but lignin, which is contained in wood biomass by about 10 to 35%, plays a role in preventing biodegradation of cellulose and hemicellulose. Therefore, it is known that even if woody biomass is simply subjected to methane fermentation, a high energy recovery rate cannot be obtained. Therefore, in order to increase the energy recovery rate, a method has been proposed in which woody biomass is subjected to steam explosion, milling, or the like to physically destroy the lignin structure and then perform methane fermentation. However, crushing processes such as steam explosion and mill crushing require a large amount of energy and large-scale facilities, and have a drawback that most of the energy recovered by methane fermentation is consumed by the crushing process.

一方、木質バイオマスを効率的に糖化させる方法として、木質バイオマスをPhanerochaete chrysosporiumで腐朽処理した後に、蒸煮爆砕をする方法が報告されている(非特許文献1参照)。しかしながら、非特許文献1の木質バイオマスの糖化方法では、190〜210℃程度の高エネルギーを要する温度条件での爆砕が必要とされており、170℃の温度条件では木質バイオマスの糖化率が30%程度と十分に行えないことが例証されている。また、木質バイオマスの糖化には、特定の酵素の作用により行われるのに対して、木質バイオマスのメタン発酵はメタン発酵菌の作用により行われる。即ち、糖化とメタン発酵では、その作用機序やプロセスが全く異なるものであり、両者を同一に論じることはできない。 On the other hand, as a method for efficiently saccharifying woody biomass, there has been reported a method in which woody biomass is decayed with Phanerochaete chrysosporium and then steamed and crushed (see Non-Patent Document 1). However, in the saccharification method of woody biomass of Non-Patent Document 1, explosion under a temperature condition requiring high energy of about 190 to 210 ° C is required, and the saccharification rate of woody biomass is 30% under the temperature condition of 170 ° C. It has been demonstrated that it cannot be performed sufficiently. In addition, saccharification of woody biomass is carried out by the action of a specific enzyme, whereas methane fermentation of woody biomass is carried out by the action of methane fermentation bacteria. That is, saccharification and methane fermentation have completely different mechanisms and processes and cannot be discussed in the same way.

このように従来の技術では、木質バイオマスからのエネルギー回収効率は、産業的に実用できるレベルに到達しておらず、木質バイオマスから簡便且つ効率的にメタンガスとしてエネルギーを回収する方法の開発が切望されている。特に、実用性を考慮すると、木質バイオマスからのエネルギー回収効率が40%を上回るエネルギー回収技術の開発が強く求められている。
Tatsuro Sawada et al., Biotech. & Bioeng., Vol. 48, pages 719-724 (1995)
As described above, in the conventional technology, the energy recovery efficiency from the woody biomass has not reached a level that can be industrially practically used, and development of a method for easily and efficiently recovering energy from the woody biomass as methane gas is eagerly desired. ing. In particular, in view of practicality, there is a strong demand for the development of an energy recovery technique in which the energy recovery efficiency from woody biomass exceeds 40%.
Tatsuro Sawada et al., Biotech. & Bioeng., Vol. 48, pages 719-724 (1995)

そこで本発明は、リグニンを含むバイオマスから、簡便でしかも効率的に、メタンガスを生産する方法を提供することを目的とする。   Then, this invention aims at providing the method of producing methane gas simply and efficiently from biomass containing lignin.

本発明者らは、上記課題を解決すべく鋭意検討したところ、(i)リグニンを含むバイオマスを白色腐朽菌を用いてで腐朽させる、(ii)その後、腐朽化されたバイオマスを180℃以下で蒸煮爆砕する、(iii)次いで、破砕されたバイオマスをメタン発酵させることによって、メタンガスを効率的に生産できることをを見出した。本発明は、かかる知見に基づいて、更に改良を重ねることにより完成したものである。   The present inventors diligently studied to solve the above problems, and (i) rotate the biomass containing lignin with white rot fungi, and (ii) then, the rotified biomass at 180 ° C. (Iii) Next, it was found that methane gas can be efficiently produced by subjecting the crushed biomass to methane fermentation. The present invention has been completed by making further improvements based on such findings.

即ち、本発明は、下記に掲げる態様の発明である:
項1. リグニンを含むバイオマスからメタンガスを生産する方法であって、
(i)リグニンを含むバイオマスを白色腐朽菌を用いて腐朽させる腐朽化工程、
(ii)腐朽化されたバイオマスを180℃以下で蒸煮爆砕により、破砕させる破砕工程、
(iii)破砕されたバイオマスをメタン発酵させるメタン発酵工程、
を含む、メタンガス生産方法。
項2. 前記腐朽化工程において使用される白色腐朽菌が、セリポリオプシス・サブファーミスポーラ(Ceriporiopsis subvermispora)である、項1に記載のメタンガス生産方法。
項3. 前記腐朽化工程において使用される白色腐朽菌が、FERM P-20591として寄託されている白色腐朽菌である、項1に記載のメタンガス生産方法。
項4. 前記破砕工程における蒸煮爆砕の温度条件が140〜160℃である、項1乃至3のいずれかに記載のメタンガス生産方法。
That is, this invention is invention of the aspect hung up below:
Item 1. A method for producing methane gas from biomass containing lignin,
(i) a decaying process in which biomass containing lignin is decayed using white-rot fungi,
(ii) a crushing step of crushing the decayed biomass by steam explosion at 180 ° C. or lower,
(iii) a methane fermentation process for methane fermentation of crushed biomass,
Including methane gas production method.
Item 2. Item 2. The method for producing methane gas according to Item 1, wherein the white rot fungus used in the decay process is Ceriporiopsis subvermispora .
Item 3. Item 2. The method for producing methane gas according to Item 1, wherein the white rot fungus used in the decay step is a white rot fungus deposited as FERM P-20591.
Item 4. Item 4. The method for producing methane gas according to any one of Items 1 to 3, wherein a temperature condition of steaming explosion in the crushing step is 140 to 160 ° C.

本発明によれば、白色腐朽菌による腐朽化処理と180℃以下(好ましくは160℃以下)での蒸煮爆砕処理という簡便に実施できる方法で木質バイオマスの効率的な糖化、ひいてはメタン発酵によるメタンガスの効率的な回収を実現することができる。   According to the present invention, efficient saccharification of woody biomass, and consequently methane gas produced by methane fermentation, can be carried out in a simple manner that can be carried out by a decaying treatment with white rot fungi and a steaming explosion treatment at 180 ° C. or less (preferably 160 ° C. or less). Efficient recovery can be realized.

また、従来技術では、木質バイオマス前処理する蒸煮爆砕条件としては、200℃程度の加熱が必要とされ、高エネルギーを消費するだけでなく、ボイラー取り扱い作業主任者による管理が必須であり、高度な工程管理も必要とされていた。特に200℃を超える蒸気を使用する場合、装置の耐圧構造から、爆砕装置はバッチ式が必要とされるため、処理効率が低い上に、バッチごとにエネルギーの開放が必要であるため、消費エネルギー量が多いという欠点がある。これに対して、本発明では、蒸煮爆砕条件として、180℃以下(好ましくは160℃以下)が採用されているため、エネルギー的にも有利で、しかもボイラー取り扱い作業主任者による管理は必要なく、簡便に工程を管理できるという利点もある。また、180℃以下の爆砕処理となれば、連続爆砕が可能となり、処理効率の向上、装置の小型化、エネルギー量の削減が可能となるという利点もある。   In addition, in the prior art, as a steaming explosion condition for pretreatment of woody biomass, heating at about 200 ° C. is required, which not only consumes high energy, but also requires management by the boiler handling work supervisor. Process control was also required. In particular, when steam exceeding 200 ° C is used, the explosive device requires a batch type due to the pressure-resistant structure of the device, so the processing efficiency is low and the energy needs to be released for each batch. There is a disadvantage that the amount is large. On the other hand, in the present invention, 180 ° C. or less (preferably 160 ° C. or less) is adopted as the steaming explosion condition, which is advantageous in terms of energy, and further, management by the boiler handling work supervisor is not necessary. There is also an advantage that the process can be easily managed. Further, if the blasting treatment is performed at 180 ° C. or lower, continuous blasting is possible, and there is an advantage that the processing efficiency can be improved, the apparatus can be downsized, and the amount of energy can be reduced.

本発明のメタンガス生産方法において、メタンガス製造の原料として、リグニンを含むバイオマスが使用される。当該バイオマスとしては、リグニンを含むことを限度として特に限定されるものではなく、例えば、針葉樹材、広葉樹材、非樹木系材料、及びそれらの廃棄物が例示される。具体的には、スギ、エゾマツ、カラマツ、クロマツ、トドマツ、ヒメコマツ、イチイ、ネズコ、ハリモミ、イラモミ、イヌマキ、モミ、サワラ、トガサワラ、アスナロ、ヒバ、ツガ、コメツガ、ヒノキ、イチイ、イヌガヤ、トウヒ、イエローシーダー(ベイヒバ)、ロウソンヒノキ(ベイヒ)、ダグラスファー(ベイマツ)、シトカスプルース(ベイトウヒ)、ラジアータマツ、イースタンスプルース、イースタンホワイトパイン、ウェスタンラーチ、ウェスタンファー、ウェスタンヘムロック、タマラック等の針葉樹材;アスベン、アメリカンブラックチェリー、イエローポプラ、ウォールナット、カバザクラ、ケヤキ、シカモア、シルバーチェリー、タモ、チーク、チャイニーズエルム、チャイニーズメープル、ナラ、ハードメイプル、ヒッコリー、ピーカン、ホワイトアッシュ、ホワイトオーク、ホワイトバーチ、レッドオーク、アカシア、ユーカリ等の広葉樹材;、イネ、サトウキビ、ムギ、トウモロコシ、パイナップル、オイルパーム、ケナフ、綿、アルファルファ、チモシー、タケ、ササ、テンサイ等の非樹木系材料;及びこれらの廃棄物が挙げられる。   In the methane gas production method of the present invention, biomass containing lignin is used as a raw material for methane gas production. The biomass is not particularly limited as long as it contains lignin, and examples thereof include softwood materials, hardwood materials, non-tree materials, and wastes thereof. Specifically, Japanese cedar, Scots pine, Japanese larch, Japanese black pine, Todomatsu, Japanese pine, Yew, Nezuko, Hari fir, Iramomi, Inu Maki, Fir, Sawara, Togasawara, Asunaro, Hiba, Tsuga, Kototsuga, Hinoki, Ichii, Inugaya, Spruce, Yellow Coniferous materials such as Cedar (Beihiba), Lawson Hinoki (Beihi), Douglas Fir (Bay Pine), Sitka Spruce (Beisuhi), Radiata Pine, Eastern Spruce, Eastern White Pine, Western Larch, Western Fur, Western Hemlock, Tamarack; American black cherry, yellow poplar, walnut, cabbage cherry, zelkova, sycamore, silver cherry, tamo, teak, chinese elm, chinese maple, oak, hard maple, Hardwood materials such as akkoli, pecan, white ash, white oak, white birch, red oak, acacia, eucalyptus; rice, sugarcane, wheat, corn, pineapple, oil palm, kenaf, cotton, alfalfa, timothy, bamboo, sasa, Non-tree materials such as sugar beet; and wastes thereof.

本発明の原料として使用されるバイオマスにおけるリグニン含量については、特に制限されるものではないが、一例としてバイオマスの乾燥重量当たり1〜50重量%の割合が例示される。一般的に、リグニンが含まれているバイオマスでは、メタン発酵が十分に進行しなくなる傾向が認められ、本発明では、このようなリグニンの存在によるメタン発酵の欠点を改善するものである。   Although it does not restrict | limit especially about the lignin content in the biomass used as a raw material of this invention, The ratio of 1-50 weight% per dry weight of biomass is illustrated as an example. In general, in a biomass containing lignin, there is a tendency that methane fermentation does not proceed sufficiently. In the present invention, the disadvantage of methane fermentation due to the presence of such lignin is improved.

以下、本発明のメタンガス生産方法について、工程順に詳述する。
(i)腐朽化工程
まず、リグニンを含むバイオマスを白色腐朽菌を用いて腐朽させる腐朽化させる(腐朽化工程)。
Hereinafter, the methane gas production method of the present invention will be described in detail in the order of steps.
(i) Rotation process First, the biomass containing lignin is rotted using white rot fungi (rotation process).

本工程に供されるバイオマスの形状については、特に制限されず、チップ状、粉末状、フレーク状、繊維状、角材状、丸太状等の如何なる形状のものであってもよい。効率的な腐朽化処理を実施するためには、上記バイオマスは、チップ状又は粉末状であることが望ましい。   The shape of the biomass used in this step is not particularly limited, and may be any shape such as a chip shape, a powder shape, a flake shape, a fiber shape, a square shape, and a log shape. In order to carry out an efficient decay process, the biomass is preferably in the form of chips or powder.

リグニンを含むバイオマスがチップ状である場合、その大きさは、例えば、縦50mm以下、横50mm以下、長さ50mm以下程度、好ましくは縦5〜20mm以下、横5〜20mm以下、長さ5〜20mm以下程度に調整すればよい。   When the biomass containing lignin is chip-shaped, the size is, for example, 50 mm or less in length, 50 mm or less in width, 50 mm or less in length, preferably 5 to 20 mm or less in length, 5 to 20 mm or less in length, and 5 to 5 in length. What is necessary is just to adjust to about 20 mm or less.

本工程に使用される白色腐朽菌は、リグニン分解能を有することを限度として特に制限されないが、一例として、セリポリオプシス(Ceriporiopsis)属、トラメテス(Trametes)属、レンチナス(Lentinus)属等の属に属する微生物、及びこれらの類縁微生物が例示される。これらの中でも、好ましくは、セリポリオプシス・サブファーミスポーラ(Ceriporiopsis subvermispora)及び白色腐朽菌SK M2102が挙げられる。セリポリオプシス・サブファーミスポーラの中でも、好適なものとして、ATCC 90467株、CBS347.63株等が例示される。
であり、これらの白色腐朽菌を使用することにより、より一層高効率でメタンガスを生産することが可能になる。なお、白色腐朽菌SK M2102は、独立行政法人産業技術総合研究所特許生物寄託センターにFERM −20591(識別のための表示:SK M2102)として寄託されている菌株である。
The white rot fungus used in this process is not particularly limited as long as it has lignin resolving ability. The microorganisms to which they belong and the related microorganisms are exemplified. Among these, Preferably, Ceriporiopsis subvermispora and white rot fungus SK M2102 are mentioned. Among the Seripoliopsis subfarmis polars, ATCC 90467 strain, CBS347.63 strain and the like are exemplified as preferable ones.
By using these white rot fungi, it becomes possible to produce methane gas with higher efficiency. It should be noted that the white-rot fungus SK M2102 is, National Institute of Advanced Industrial Science and Technology Patent Organism Depositary in FERM P -20591 (denotation for identification: SK M2102) is a strain that has been deposited as.

本工程は、具体的には、上記バイオマスに白色腐朽菌を添加し、これを培養することによって行われる。   Specifically, this step is performed by adding a white rot fungus to the biomass and culturing it.

本工程では、白色腐朽菌による培養、即ち腐朽化を効率的に進行させるために、白色腐朽菌が良好に生育できる環境下で、白色腐朽菌と上記バイオマスとを共存させることが望ましい。具体的には、上記バイオマス(乾燥重量換算)100重量部に対して、水分を10〜400重量部、好ましくは50〜300重量部、更に好ましくは70〜200重量部程度含ませておくことが望ましい。また、更に、上記バイオマスには、必要に応じて、白色腐朽菌の生育に必要とされる塩や栄養素(例えば、ふすま、ペプトン、コーンスティープリカー、酵母エキス、肉エキス、麦芽エキス、ポテトエキス、無機塩類等)を添加してもよい。また、白色腐朽化効率をより高めるために、本工程に供される上記バイオマスは、植菌(白色腐朽菌の添加)に先だって、加熱殺菌等の殺菌処理に供しておいてもよい。   In this step, it is desirable that the white rot fungus and the biomass coexist in an environment where the white rot fungus can grow well in order to efficiently promote the cultivation with the white rot fungus, that is, the decay. Specifically, 10 to 400 parts by weight, preferably 50 to 300 parts by weight, and more preferably about 70 to 200 parts by weight of water is included with respect to 100 parts by weight of the biomass (in terms of dry weight). desirable. Furthermore, the above-mentioned biomass includes, as necessary, salts and nutrients necessary for the growth of white rot fungi (for example, bran, peptone, corn steep liquor, yeast extract, meat extract, malt extract, potato extract, Inorganic salts and the like) may be added. In addition, in order to further enhance the white decay efficiency, the biomass used in this step may be subjected to a sterilization treatment such as heat sterilization prior to inoculation (addition of white decay fungi).

上記バイオマスに白色腐朽菌を添加する方法は、特に制限されず、通常の植菌方法に従って行うことができる。例えば、上記バイオマスがチップ状の場合であれば、該バイオマスの表面に白色腐朽菌の種菌を降りかけたり、或いは該バイオマスと白色腐朽菌の種菌を混合したりすればよい。また上記バイオマスが角材状や丸太状の場合であれば、例えば、角材や丸太材に適当な数の穴を開けて、その穴に白色腐朽菌の種菌を詰めればよい。   The method for adding white rot fungi to the biomass is not particularly limited, and can be performed according to a normal inoculation method. For example, if the biomass is in the form of chips, a white rot fungus inoculum may be applied to the surface of the biomass, or the biomass and the white rot fungus may be mixed. In addition, when the biomass is in the shape of a square bar or a log, for example, an appropriate number of holes may be formed in the square bar or log, and the seeds of white rot fungus may be filled in the holes.

本工程における上記バイオマスの腐朽化は、該バイオマスに白色腐朽菌を添加して、通常20〜42℃、好ましくは22〜38℃の温度条件下で、3〜180日間、好ましくは4〜90日間、好気的に培養することにより行われる。また、当該培養中は、相対湿度を10〜100%、好ましくは50〜80%程度に保持しておくと、白色腐朽菌の生育を良好に保持することができる。   The decay of the biomass in this step is performed by adding white rot fungi to the biomass, usually at 20 to 42 ° C., preferably at 22 to 38 ° C., for 3 to 180 days, preferably 4 to 90 days. It is performed by culturing aerobically. Moreover, during the culture, when the relative humidity is maintained at 10 to 100%, preferably about 50 to 80%, the growth of white rot fungi can be maintained well.

(ii)破砕工程
次いで、上記(i)工程によって腐朽化されたバイオマスを、160℃以下で蒸煮爆砕により破砕する(破砕工程)。
(ii) Crushing step Next, the biomass decayed in the step (i) is crushed by steam explosion at 160 ° C. or less (crushing step).

本工程は、具体的には、耐圧性の容器又は槽内に、上記(i)工程によって腐朽化されたバイオマスを入れ、蒸煮温度を160℃以下にした後、0.5〜30分間、好ましくは2〜10分間保持し、急激に内部の圧力を開放することにより実施される。   Specifically, in this step, the biomass decayed by the step (i) is put in a pressure-resistant container or tank, and the steaming temperature is set to 160 ° C. or lower, and preferably 0.5 to 30 minutes. Is carried out by holding for 2 to 10 minutes and rapidly releasing the internal pressure.

本工程において、蒸煮温度については、180℃以下であればよいが、好ましくは160℃以下、更に好ましくは140〜160℃、特に好ましくは100〜160℃が挙げられる。   In this step, the steaming temperature may be 180 ° C. or less, preferably 160 ° C. or less, more preferably 140 to 160 ° C., and particularly preferably 100 to 160 ° C.

本発明では、リグニンを含むバイオマスを、本破砕工程に先立って、上記(i)工程に供しておくことにより、従来技術では実現不可能であった低エネルギーによる蒸煮爆砕処理を採用して、該バイオマスを効率的にメタン発酵が進行するように変換することが可能になっている。   In the present invention, the biomass containing lignin is subjected to the above-mentioned step (i) prior to the main crushing step, thereby adopting a steaming explosion treatment with low energy that cannot be realized by the conventional technology, It is possible to convert biomass so that methane fermentation proceeds efficiently.

(iii)メタン発酵工程
次いで、蒸煮爆砕されたバイオマスを、メタン発酵させる(メタン発酵工程)。当該メタン発酵によって、上記バイオマスがメタンに変換され、エネルギーとして回収される。
(iii) Methane fermentation process Next, the steamed and exploded biomass is subjected to methane fermentation (methane fermentation process). By the methane fermentation, the biomass is converted into methane and recovered as energy.

本工程では、上記工程(ii)で爆砕されたバイオマスとメタン発酵菌を混合して、メタン発酵を進行させることにより行われる。メタン発酵菌としては、従来公知のメタン発酵菌を使用できるが、簡便には、メタン発酵菌が含まれる汚泥(例えば、メタン発酵施設において生じたメタン発酵処理後の汚泥)を使用することもできる。   In this step, the biomass blasted in the above step (ii) and the methane fermentation bacteria are mixed to proceed with methane fermentation. As the methane-fermenting bacteria, conventionally known methane-fermenting bacteria can be used, but for convenience, sludge containing the methane-fermenting bacteria (for example, sludge after methane fermentation treatment generated in the methane fermentation facility) can also be used. .

メタン発酵は、通常、嫌気性雰囲気で行われ、本工程では、嫌気性雰囲気の調製・維持は、二酸化炭素、窒素、アルゴン、水素、天然ガス、メタン、都市ガス等を用いて行うことができる。また、必要に応じて、硫化ナトリウムなどの酸素除去剤を使用してもよい。   Methane fermentation is usually performed in an anaerobic atmosphere, and in this step, the preparation and maintenance of the anaerobic atmosphere can be performed using carbon dioxide, nitrogen, argon, hydrogen, natural gas, methane, city gas, and the like. . Moreover, you may use oxygen removal agents, such as sodium sulfide, as needed.

本工程において、メタン発酵の形式は特に制限されず、回分式、固定床式、等のメタン発酵において利用されている公知のいずれの形式であってもよい。また、当該メタン発酵は、乾式であっても、また湿式であってもよい。   In this step, the form of methane fermentation is not particularly limited, and may be any known form used in methane fermentation, such as a batch type or a fixed bed type. The methane fermentation may be dry or wet.

メタン発酵時の温度条件は、用いるメタン発酵菌の種類に応じて広い温度範囲から適宜設定することができ、特に限定されるものではないが、一般には20〜60℃程度、例えば、35℃程度のいわゆる中温でも、55℃程度のいわゆる高温でもよい。   The temperature conditions at the time of methane fermentation can be appropriately set from a wide temperature range depending on the type of methane fermentation bacteria to be used, and are not particularly limited, but are generally about 20 to 60 ° C, for example, about 35 ° C. Or a so-called high temperature of about 55 ° C.

上記(ii)工程で蒸煮爆砕されたバイオマスは、爆砕直後は、高温であるため、当該バイオマスは、メタン発酵に著しく悪影響を及ぼすことがない程度(例えば、60℃以下)に冷却した後に、メタン発酵に供することがが望ましい。   Since the biomass steamed and crushed in the step (ii) has a high temperature immediately after the blasting, the biomass is cooled to an extent that does not significantly adversely affect methane fermentation (for example, 60 ° C. or lower), and then methane. It is desirable to use for fermentation.

本工程におけるメタン発酵時間としては、バイオマスの種類や量、使用するメタン発酵菌の種類、発酵温度、発酵形態等によって異なり、一律に規定することはできないが、通常14〜30日、好ましくは10〜20日、更に好ましくは10〜14日を挙げることができる。   The methane fermentation time in this step varies depending on the type and amount of biomass, the type of methane fermentation bacteria to be used, the fermentation temperature, the fermentation mode, etc., and cannot be defined uniformly, but usually 14 to 30 days, preferably 10 -20 days, more preferably 10-14 days.

本工程により生じるメタンガスは、公知のメタンガス回収手段により、分離回収することができる。   The methane gas generated in this step can be separated and recovered by a known methane gas recovery means.

また、本工程により回収されたメタンガスを、ガスエンジン、マイクロガスタービン、ボイラー等で利用する場合、その廃熱を上記(ii)工程における蒸煮爆砕の熱エネルギーとして利用してもよい。このように廃熱を有効利用することにより、メタンガス起源の電力を自家使用することなく、上記工程(ii)を実施することが可能になる。   Moreover, when using the methane gas collect | recovered by this process with a gas engine, a micro gas turbine, a boiler, etc., you may utilize the waste heat as thermal energy of the steaming explosion in the said (ii) process. By effectively utilizing the waste heat in this way, it becomes possible to carry out the step (ii) without using methane gas-derived power in-house.

以下、実施例及び試験例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
試験例1
1.試験方法
予め蒸気滅菌したブナ木粉(40-80メッシュ)を用いて、以下に示す条件で、腐朽化処理、爆砕処理、及びメタン発酵を行い、爆砕処理後のTS(固形物重量)及びメタンガス発生量を測定した。
<腐朽処理>
前培養用培地で白色腐朽菌(Phelinus sp.) SKM2102又はCeriporiopsis subvermispora(ATCC 90467株)をポテトデキストロース寒天(PDA)プレート上で5日間28℃で前培養した。
EXAMPLES Hereinafter, although an Example and a test example are given and this invention is demonstrated, this invention is not limited to these Examples.
Test example 1
1. Test method Using beech wood powder (40-80 mesh) sterilized in advance, under the conditions shown below, decay treatment, explosion treatment, methane fermentation, TS (solid weight) and methane gas after explosion treatment The amount generated was measured.
<Decoration>
White rot fungus (Phelinus sp.) SKM2102 or Ceriporiopsis subvermispora (ATCC 90467 strain) was pre-cultured on a potato dextrose agar (PDA) plate at 28 ° C. for 5 days.

オートクレーブ可能な滅菌フィルター付き菌床椎茸栽培用の袋NTキノバッグ(日昌株式会社製)内で、ブナ木粉又はブナチップ(固形分換算50g、含水率100%)に、小麦フスマ50 g及び蒸留水150 mlを添加し、よく混合した。これを121℃、20分間オートクレーブで滅菌した。このNTキノバッグ内に、前培養したPDAプレートからコルクボーラーで打ち抜いた直径6〜7mmのペレット10個を入れて混合し、28℃、相対湿度70%、8週間培養した。   Bacteria wood powder or beech chips (50 g solid content, water content 100%), wheat bran 50 g, and distilled water in an autoclavable fungus bed shiitake cultivation bag (manufactured by Nissho Co., Ltd.) 150 ml was added and mixed well. This was sterilized by autoclaving at 121 ° C. for 20 minutes. Ten pellets having a diameter of 6 to 7 mm punched out from a pre-cultured PDA plate with a cork borer were placed in the NT kino bag and mixed, and cultured for 8 weeks at 28 ° C. and a relative humidity of 70%.

<爆砕処理>
上記条件で腐朽化処理したブナ木粉又はブナチップを、蒸煮爆砕用の耐圧性容器に入れ、140℃、160℃又は180℃の水蒸気を導入して6.5分間保持した後、一気に容器内部の圧力を大気圧に開放することにより、爆砕処理を行った。なお、比較のために、上記腐朽化処理を実施していないブナ木粉又はブナチップに対しても、同様に、爆砕処理を行った。
<Blasting treatment>
Put the beech wood powder or beech chips decayed under the above conditions into a pressure-resistant container for steaming and explosion, introduce steam at 140 ° C., 160 ° C. or 180 ° C. and hold for 6.5 minutes. Explosion treatment was performed by releasing the pressure to atmospheric pressure. For comparison, the beech wood powder or beech chips that were not subjected to the above-described decay treatment were similarly subjected to an explosion treatment.

<メタン発酵処理>
上記条件で爆砕したブナ木粉又はブナチップ(乾燥重量換80mg)とメタン発酵汚泥19mLを混合し、嫌気雰囲気55℃で14日間インキュベートした。当該メタン発酵処理により生じたメタンガス量を測定し、下記式に従って、メタン転換率を算出した。なお、本試験では、メタン発酵汚泥として、発酵温度が55℃で運転されているメタン発酵施設の発酵槽内から採取された汚泥(固形分濃度:2重量%)を使用した。
<Methane fermentation treatment>
Beech wood flour or beech chips (dry weight change 80 mg) and 19 mL of methane fermentation sludge were mixed under the above conditions and incubated at an anaerobic atmosphere at 55 ° C. for 14 days. The amount of methane gas produced by the methane fermentation treatment was measured, and the methane conversion rate was calculated according to the following formula. In this test, sludge (solid content concentration: 2% by weight) collected from the fermentation tank of a methane fermentation facility operated at a fermentation temperature of 55 ° C. was used as the methane fermentation sludge.

Figure 0005110930
Figure 0005110930

2.試験結果
メタン発生量の測定結果を図1に示す。なお、図1における各実施例及び比較例は、下表1に示す条件で腐朽処理及び爆砕処理を行ったものである。また、図1におけるコントロールには、爆砕したブナ木粉の変わりに、粉末セルロースを用いて、上記メタン発酵処理を実施した際のメタン転換率を測定した結果を示す。
2. Test results The measurement results of the amount of methane generated are shown in FIG. In addition, each Example and comparative example in FIG. 1 performed the decay process and the explosion process on the conditions shown in the following table 1. Moreover, the control in FIG. 1 shows the result of measuring the methane conversion rate when the above methane fermentation treatment was carried out using powdered cellulose instead of the exploded beech wood powder.

この結果から、180℃以下(特に140〜160℃)という穏やかな蒸煮爆砕条件を採用し爆砕しても、腐朽処理を予め実施しておくことによって、木質バイオマスから工業的な実施が可能なレベルの転換率でメタンを発生させることが可能になることが明らかとなった。一方、腐朽処理を行わなかった木質バイオマスに対して、180℃以下の蒸煮爆砕条件では、工業的な実施の目安とされる40%のメタン転換率を実現することはできなかった。   From this result, even if it employs mild steaming and explosion conditions of 180 ° C. or less (especially 140 to 160 ° C.), it can be industrially implemented from woody biomass by carrying out the decay treatment in advance. It became clear that methane can be generated at a conversion rate of. On the other hand, it was not possible to realize a 40% methane conversion rate, which is a standard for industrial implementation, under the steaming and pyrolysis conditions of 180 ° C. or lower for woody biomass that was not subjected to decay processing.

Figure 0005110930
Figure 0005110930

試験例1の結果、図縄値各腐朽処理及び爆砕処理条件下(実施例1−6,比較例1−3)でブナ木材を前処理した場合の各メタン転換率を示す図である。It is a figure which shows each methane conversion rate at the time of pre-processing beech wood on the result of the test example 1 under each rotting process and explosion process condition (Example 1-6, Comparative Example 1-3).

Claims (4)

リグニンを含むバイオマスからメタンガスを生産する方法であって、
(i)リグニンを含むバイオマスを白色腐朽菌を用いて腐朽させる腐朽化工程、
(ii)前記腐朽化工程によって腐朽化されたバイオマスを160℃以下で蒸煮爆砕により、破砕させる破砕工程、
(iii)前記破砕工程によって破砕されたバイオマスをメタン発酵させるメタン発酵工程、
を含む、メタンガス生産方法。
A method for producing methane gas from biomass containing lignin,
(i) a decaying process in which biomass containing lignin is decayed using white-rot fungi,
(ii) a crushing step of crushing the biomass decayed by the decaying step by steam explosion at 160 ° C. or lower,
(iii) a methane fermentation process for methane fermentation of the biomass crushed by the crushing process,
Including methane gas production method.
前記腐朽化工程において使用される白色腐朽菌が、セリポリオプシス・サブファーミスポーラ(Ceriporiopsis subvermispora)である、請求項1に記載のメタンガス生産方法。 The method for producing methane gas according to claim 1, wherein the white rot fungus used in the decay process is Ceriporiopsis subvermispora . 前記腐朽化工程において使用される白色腐朽菌が、FERM P-20591として寄託されている白色腐朽菌である、請求項1に記載のメタンガス生産方法。 The method for producing methane gas according to claim 1, wherein the white rot fungus used in the decay process is a white rot fungus deposited as FERM P-20591. 前記破砕工程における蒸煮爆砕の温度条件が140〜160℃である、請求項1乃至3のいずれかに記載のメタンガス生産方法。 The method for producing methane gas according to any one of claims 1 to 3, wherein a temperature condition of the steaming explosion in the crushing step is 140 to 160 ° C.
JP2007085431A 2007-03-28 2007-03-28 Method for producing methane gas from biomass containing lignin Expired - Fee Related JP5110930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007085431A JP5110930B2 (en) 2007-03-28 2007-03-28 Method for producing methane gas from biomass containing lignin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007085431A JP5110930B2 (en) 2007-03-28 2007-03-28 Method for producing methane gas from biomass containing lignin

Publications (2)

Publication Number Publication Date
JP2008237164A JP2008237164A (en) 2008-10-09
JP5110930B2 true JP5110930B2 (en) 2012-12-26

Family

ID=39909247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007085431A Expired - Fee Related JP5110930B2 (en) 2007-03-28 2007-03-28 Method for producing methane gas from biomass containing lignin

Country Status (1)

Country Link
JP (1) JP5110930B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254612A (en) * 2009-04-24 2010-11-11 Dainichiseika Color & Chem Mfg Co Ltd Antioxidant, cosmetic composition and method for producing antioxidant
MY183208A (en) * 2014-05-15 2021-02-18 Ihi Corp Liquid fuel production method using biomass

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3694744B2 (en) * 2002-06-28 2005-09-14 独立行政法人土木研究所 Biogas resource recovery method

Also Published As

Publication number Publication date
JP2008237164A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
Alexandropoulou et al. Fungal pretreatment of willow sawdust and its combination with alkaline treatment for enhancing biogas production
Tian et al. Impact and prospective of fungal pre‐treatment of lignocellulosic biomass for enzymatic hydrolysis
Elisashvili et al. Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition
Mohsenzadeh et al. Alkali pretreatment of softwood spruce and hardwood birch by NaOH/thiourea, NaOH/urea, NaOH/urea/thiourea, and NaOH/PEG to improve ethanol and biogas production
Asada et al. Waste reduction system for production of useful materials from un-utilized bamboo using steam explosion followed by various conversion methods
Zhang et al. Selective removal of lignin in steam-exploded rice straw by Phanerochaete chrysosporium
Claassen et al. Acetone, butanol and ethanol production from domestic organic waste by solventogenic clostridia
Take et al. Production of methane gas from Japanese cedar chips pretreated by various delignification methods
Lissens et al. Wet oxidation pre‐treatment of woody yard waste: parameter optimization and enzymatic digestibility for ethanol production
JP4793781B2 (en) White-rot fungi having lignocellulose-degrading action and use thereof
Brezáni et al. Cultivation of medicinal mushrooms on spruce sawdust fermented with a liquid digestate from biogas stations
JP5110930B2 (en) Method for producing methane gas from biomass containing lignin
Nakamura et al. Anaerobic fermentation of woody biomass treated by various methods
Phutela et al. Effect of Fusarium sp. on paddy straw digestibility and biogas production
Sahu et al. Delignification of cotton gin waste and its optimization by using white rot fungus Pycnoporus cinnabarinus
Tareen et al. Utilization of urea as a nitrogen source for ethanol production from oil palm trunk using simultaneous saccharification and fermentation
Shokrollahi et al. Efficient bioenergy recovery from different date palm industrial wastes
Bhatia et al. FTIR Analysis and optimization of simultaneous saccharification and fermentation parameters for sustainable production of ethanol from peels of Ananas cosmosus by Mucor indicus MTCC 4349
Nurika et al. Enhancement of the ligninolytic activity of Lysinibacillus sphaericus by the addition of MnSO4 and its impact on subsequent methane production from Oil Palm Empty Fruit Bunches (OPEFB)
Ndukwe et al. Bio-ethanol production from saccharified sawdust cellulose obtained from twenty different trees along the Lagos Lagoon in Nigeria.
JP6963260B2 (en) Wood decomposition products containing fulvic acid and fulvic acid, and methods for producing them.
Chmelová et al. Determination of enzymes produced by Ceriporiopsis subvermispora during pretreatment of different biomass sources
Suyanto et al. Isolation of a novel thermophilic fungus Chaetomium sp. nov. MS-017 and description of its palm-oil mill fiber-decomposing properties
Prasad et al. Degradation of agrowastes by lignocellulolytic activity of bacterial isolates from marine sources
Guzmán Gil et al. Depolymerization of lignin by extracellular activity of Pycnoporus cinnabarinus, to obtain cellulose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120713

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees