JP5110537B2 - Method for producing homoallyl ether - Google Patents

Method for producing homoallyl ether Download PDF

Info

Publication number
JP5110537B2
JP5110537B2 JP2009058950A JP2009058950A JP5110537B2 JP 5110537 B2 JP5110537 B2 JP 5110537B2 JP 2009058950 A JP2009058950 A JP 2009058950A JP 2009058950 A JP2009058950 A JP 2009058950A JP 5110537 B2 JP5110537 B2 JP 5110537B2
Authority
JP
Japan
Prior art keywords
acetal
reaction
nmr
group
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009058950A
Other languages
Japanese (ja)
Other versions
JP2010209031A (en
Inventor
修 小林
シュナイダー ウーベ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2009058950A priority Critical patent/JP5110537B2/en
Publication of JP2010209031A publication Critical patent/JP2010209031A/en
Application granted granted Critical
Publication of JP5110537B2 publication Critical patent/JP5110537B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

この発明は、アリル化剤によってアセタールをアリル化するホモアリルエーテルの製造方法に関する。   The present invention relates to a method for producing homoallyl ether in which acetal is allylated with an allylating agent.

アセタールは、糖類合成への応用を含む有機合成において有用な合成中間体であり、様々な求核剤とのカップリングによって炭素−炭素結合を形成する。アセタールに用いる有効な求核剤としては、シリルエノールエーテル、ビニルエーテル、オレフィン、シアン化合物、アリル化試薬などがある。
また、アセタールのアリル化によって生成するホモアリルエーテルは、水酸基の保護基として多段階の有機合成における重要なビルディングブロックとなる。但し、アセタールのアリル化方法は数少なく、有毒性、腐食性、基質の制限性、触媒使用量などの点で様々な問題がある。
Acetals are synthetic intermediates useful in organic synthesis, including application to saccharide synthesis, and form carbon-carbon bonds by coupling with various nucleophiles. Effective nucleophiles used for acetals include silyl enol ethers, vinyl ethers, olefins, cyanide compounds, allylation reagents and the like.
In addition, homoallyl ether produced by allylation of acetal is an important building block in multistage organic synthesis as a protecting group for a hydroxyl group. However, there are few methods for allylation of acetals, and there are various problems in terms of toxicity, corrosivity, substrate limitation, amount of catalyst used, and the like.

アセタールのアリル化反応については多数報告されており、それらは大きく、(1)アリルシランを用いる反応(細見−桜井反応)、(2)アリルホウ素を用いる反応、(3)臭化アリルを用いる反応(バービアー反応)、に分けられる。   Many reports have been made on the allylation reaction of acetal, and they are large, and (1) reaction using allylsilane (Hosomi-Sakai reaction), (2) reaction using allyl boron, (3) reaction using allyl bromide ( Barber reaction).

アリルシランを用いる反応は、アセタールのアリル化反応では最も研究されている方法であり、さらに、(i) 化学量論量のルイス酸を用いるもの、(ii) 触媒量のルイス酸を用いるもの、(iii) ブレンステッド酸を用いるもの、がある。
化学量論量のルイス酸としては、マイクロ波を用いた反応系での臭化銅(I)(CuBr)(非特許文献1参照)、四塩化チタニウム(TiCl4)(非特許文献2参照)、三塩化アルミニウム(AlCl3)又は三塩化ホウ素−ジエチルエーテル(BF3−OEt2)(非特許文献3参照)が挙げられる。
触媒量のルイス酸としては、塩化ニオブ(V)―過塩素酸銀(I)(NbCl5−AgClO4)(非特許文献4参照)、三臭化アルミニウム−臭化銅(AlBr3−CuBr)(非特許文献5参照)、二座の有機アルミニウム化合物(非特許文献6参照)、三塩化鉄(FeCl3)(非特許文献7参照)、トリメチルシリルトリフラート(TMSOTF)(非特許文献8,9参照)、ビスマス(III)トリフラート(Bi(OTf)3)(非特許文献10参照)、スカンジウム(III)トリフラート(Sc(OTf)3)(非特許文献11参照)、トリメチルシリルビス(フルオロスルホニル)イミド(TMSN(SO2F)2)(非特許文献12参照)、モンモリロナイト(非特許文献13参照)、過塩素酸トリチル又は
ジフェニルボリルトリフラート(非特許文献14参照)、トリメチルシリルヨウ化物(非特許文献15参照)、トルエンスルホン酸鉄(III)(Fe(OTs)3)(非特許文献16参照)が挙げられる。
ブレンステッド酸としては、2,4-ジニトロベンゼンスルホン酸(DNBA) (非特許文献17参照)が挙げられる。
The reaction using allylsilane is the most studied method in the acetal allylation reaction, and (i) uses a stoichiometric amount of Lewis acid, (ii) uses a catalytic amount of Lewis acid, iii) Some use Bronsted acid.
As the stoichiometric amount of Lewis acid, copper bromide (I) (CuBr) in a reaction system using microwaves (see Non-Patent Document 1), titanium tetrachloride (TiCl 4 ) (see Non-Patent Document 2) , Aluminum trichloride (AlCl 3 ) or boron trichloride-diethyl ether (BF 3 -OEt 2 ) (see Non-Patent Document 3).
As the catalytic amount of Lewis acid, niobium chloride (V) -silver perchlorate (I) (NbCl 5 -AgClO 4 ) (see Non-Patent Document 4), aluminum tribromide-copper bromide (AlBr 3 -CuBr) (See Non-Patent Document 5), bidentate organoaluminum compound (see Non-Patent Document 6), iron trichloride (FeCl 3 ) (see Non-Patent Document 7), trimethylsilyl triflate (TMSOTF) (see Non-Patent Documents 8 and 9) ), Bismuth (III) triflate (Bi (OTf) 3 ) (see non-patent document 10), scandium (III) triflate (Sc (OTf) 3 ) (see non-patent document 11), trimethylsilylbis (fluorosulfonyl) imide ( TMSN (SO 2 F) 2 ) (see non-patent document 12), montmorillonite (see non-patent document 13), trityl perchlorate or diphenylboryl triflate (see non-patent document 14), trimethylsilyl iodide (non-patent document) 15), and iron (III) toluenesulfonate (Fe (OTs) 3 ) (see Non-Patent Document 16).
Examples of Bronsted acid include 2,4-dinitrobenzenesulfonic acid (DNBA) (see Non-Patent Document 17).

アリルホウ素としては、ブチルリチウム(BuLi)(ルイス塩基、1等量)で活性化されたトリアリルボランとTMSOTf(ルイス酸、>1等量)(非特許文献18参照)や、アリルー9−BBNと四塩化チタニウム(TiCl4)(非特許文献19参照)が挙げられる。 As allylboron, triallylborane activated with butyllithium (BuLi) (Lewis base, 1 equivalent) and TMSOTf (Lewis acid,> 1 equivalent) (see Non-Patent Document 18), allyl-9-BBN And titanium tetrachloride (TiCl 4 ) (see Non-Patent Document 19).

臭化アリルを用いる反応としては、バービアー反応(非特許文献20参照)が挙げられる。
なお、本発明者らはすでに、インジウム(I)触媒により活性化されたピナコリルアリルボロネートを用いた、ケトンやN-ベンゾイルヒドラゾンのアリル化反応を報告している(非特許文献21〜23参照)。
An example of the reaction using allyl bromide is the Bar Beer reaction (see Non-Patent Document 20).
The present inventors have already reported an allylation reaction of ketone or N-benzoylhydrazone using pinacolylallylboronate activated by an indium (I) catalyst (Non-Patent Documents 21 to 23). reference).

M. E. Jung, A. Maderna, J. Org. Chem. 2004, 69, 7755-7757.M. E. Jung, A. Maderna, J. Org. Chem. 2004, 69, 7755-7757. A. Hosomi, E. Masahiko, H. Sakurai, Chem. Lett. 1976, 941-942.A. Hosomi, E. Masahiko, H. Sakurai, Chem. Lett. 1976, 941-942. A. Hosomi, M. Endo, H. Sakurai, Chem. Lett. 1978, 499-500.A. Hosomi, M. Endo, H. Sakurai, Chem. Lett. 1978, 499-500. S. Arai, Y. Sudo, A. Nishida, Tetrahedron 2005, 61, 4639-4642.S. Arai, Y. Sudo, A. Nishida, Tetrahedron 2005, 61, 4639-4642. M. E. Jung, A. Maderna, Tetrahedron Lett. 2004, 45, 5301-5304.M. E. Jung, A. Maderna, Tetrahedron Lett. 2004, 45, 5301-5304. T. Ooi, M. Takahashi, M. Yamada, E. Tayama, K. Omoto, K. Maruoka, J. Am. Chem. Soc. 2004, 126, 1150-1160.T. Ooi, M. Takahashi, M. Yamada, E. Tayama, K. Omoto, K. Maruoka, J. Am. Chem. Soc. 2004, 126, 1150-1160. T. Watahiki, Y. Akabane, S. Mori, T. Oriyama, Org. Lett. 2003, 5, 3045-3048.T. Watahiki, Y. Akabane, S. Mori, T. Oriyama, Org. Lett. 2003, 5, 3045-3048. H. M. Zerth, N. M. Leonard, R. S. Mohan, Org. Lett. 2003, 5, 55-57.H. M. Zerth, N. M. Leonard, R. S. Mohan, Org. Lett. 2003, 5, 55-57. T. Tsunoda, M. Suzuki, R. Noyori, Tetrahedron Lett. 1980, 21, 71-74.T. Tsunoda, M. Suzuki, R. Noyori, Tetrahedron Lett. 1980, 21, 71-74. L. C. Wieland, H. B. Zerth, R. S. Mohan, Tetrahedron Lett. 2002, 43, 4597-4600.L. C. Wieland, H. B. Zerth, R. S. Mohan, Tetrahedron Lett. 2002, 43, 4597-4600. J. S. Yadav, B. V. S. Reddy, P. Srihari, Synlett 2001, 673-675.J. S. Yadav, B. V. S. Reddy, P. Srihari, Synlett 2001, 673-675. A. Trehan, A. Vij, M. Walia, G. Kaur, R. D. Verma, S. Trehan, Tetrahedron Lett. 1993, 34, 7335-7338.A. Trehan, A. Vij, M. Walia, G. Kaur, R. D. Verma, S. Trehan, Tetrahedron Lett. 1993, 34, 7335-7338. M. Kawai, M. Onaka, Y. Izumi, Chem. Lett. 1986, 381-384.M. Kawai, M. Onaka, Y. Izumi, Chem. Lett. 1986, 381-384. T. Mukaiyama, H. Nagaoka, M. Murakami, M. Ohshima, Chem. Lett. 1985, 977-980.T. Mukaiyama, H. Nagaoka, M. Murakami, M. Ohshima, Chem. Lett. 1985, 977-980. H. Sakurai, K. Sasaki, A. Hosomi, Tetrahedron Lett. 1981, 22, 745-748.H. Sakurai, K. Sasaki, A. Hosomi, Tetrahedron Lett. 1981, 22, 745-748. M. J. Spafford, E. D. Anderson, J. R. Lacey, A. C. Palma, R. S. Mohan, Tetrahedron. Lett. 2007, 48, 8665-8667.M. J. Spafford, E. D. Anderson, J. R. Lacey, A. C. Palma, R. S. Mohan, Tetrahedron. Lett. 2007, 48, 8665-8667. D. Kampen, B. List, Synlett 2006, 2589-2592.D. Kampen, B. List, Synlett 2006, 2589-2592. R. Hunter, G. D. Tomlinson, Tetrahedron Lett. 1989, 30, 2013-2016; R. Hunter, J. P. Michael, G. D. Tomlinson, Tetrahedron 1994, 50, 871-888.R. Hunter, G. D. Tomlinson, Tetrahedron Lett. 1989, 30, 2013-2016; R. Hunter, J. P. Michael, G. D. Tomlinson, Tetrahedron 1994, 50, 871-888. Y. Yamamoto, S. Nishii, J. Yamada, J. Am. Chem. Soc. 1986, 108, 7116-7117.Y. Yamamoto, S. Nishii, J. Yamada, J. Am. Chem. Soc. 1986, 108, 7116-7117. H. Tanaka, S. Yamashita, Y. Ikemoto, S. Torii, Tetrahedron Lett. 1988, 29, 1721-1724.H. Tanaka, S. Yamashita, Y. Ikemoto, S. Torii, Tetrahedron Lett. 1988, 29, 1721-1724. For our earlier work related to indium(I) catalysis: (a) U. Schneider, S. Kobayashi, Angew. Chem. Int. Ed. 2007, 46, 5909-5912.For our earlier work related to indium (I) catalysis: (a) U. Schneider, S. Kobayashi, Angew. Chem. Int. Ed. 2007, 46, 5909-5912. U. Schneider, I-H. Chen, S. Kobayashi, Org. Lett. 2008, 10, 737-740.U. Schneider, I-H. Chen, S. Kobayashi, Org. Lett. 2008, 10, 737-740. S. Kobayashi, H. Konishi, U. Schneider, Chem. Commun. 2008, 46, 2313-2315.S. Kobayashi, H. Konishi, U. Schneider, Chem. Commun. 2008, 46, 2313-2315.

本発明者らは、上記したようにインジウム(I)触媒がケトンやN-ベンゾイルヒドラゾンのアリル化反応に有効であることから、インジウム(I)触媒をアセタールのアリル化反応に適用することを試み、本発明に至った。
従って、本発明は、1価のインジウムを触媒として用いてアセタールをアリル化するホモアリルエーテルの製造方法の提供を目的とする。
As described above, since the indium (I) catalyst is effective for the allylation reaction of a ketone or N-benzoylhydrazone, the present inventors tried to apply the indium (I) catalyst to the allylation reaction of an acetal. The present invention has been reached.
Accordingly, an object of the present invention is to provide a method for producing homoallyl ether in which acetal is allylated using monovalent indium as a catalyst.

このような課題を解決するために、本発明者らは鋭意研究した結果、1価のインジウム触媒としてInOTfを用い、さらにホウ素を含むアリル化剤を用いることにより、触媒量のインジウムでアリル化反応が進行することを見出し、本発明を完成するに至った。   In order to solve such problems, the present inventors have intensively studied, and as a result, by using InOTf as a monovalent indium catalyst and further using an allylating agent containing boron, an allylation reaction with a catalytic amount of indium. As a result, the present invention has been completed.

即ち、本発明のホモアリルエーテルの製造方法は、ホウ素を含むアリル化剤によってアセタールをアリル化するホモアリルエーテルの製造方法であって、前記アセタールに対し1〜50mol%のInOTfを触媒として用い、前記アリル化剤は、式(1)

Figure 0005110537
(式中、R は水素原子、炭化水素基、クロロ基、アルコキシ基、又はシリル基;R は水素原子又は脂肪族炭化水素基)で表されるか、又は式(2)
Figure 0005110537
(式中、R は水素原子、炭化水素基、クロロ基、アルコキシ基、又はシリル基)で表されるピコナールアリルボレートであり、前記アセタールは、ベンズアルデヒドジメチルアセタール、3-フェニルプロパナールジメチルアセタール、又は
Figure 0005110537
(式中、R 5 、R 6 の組み合わせは、それぞれC 6 H 5 、H;3-O 2 N-C 6 H 4 、H;3-F 3 C-C 6 H 4 、H;4-MeO 2 C-C 6 H 4 、H;4-Br-C 6 H 4 、H;4-MeO-C 6 H 4 、H;3-HO-C 6 H 4 、H;2-チエニル、H;Ph-CH 2 、H;Ph(CH 2 ) 2 、H;Me(CH 2 ) 10 、H;Me(CH 2 ) 3 CH(Et)、H;Ph、Me;Cl(CH 2 ) 4 、Me;-(CH 2 ) 5 -、-(CH 2 ) 5 -;のいずれか)で表される。 That is, the method for producing homoallyl ether of the present invention is a method for producing homoallyl ether in which acetal is allylated with an allylating agent containing boron, and 1-50 mol% of InOTf is used as a catalyst with respect to the acetal . The allylating agent has the formula (1)
Figure 0005110537
(Wherein R 1 is a hydrogen atom, a hydrocarbon group, a chloro group, an alkoxy group, or a silyl group; R 3 is a hydrogen atom or an aliphatic hydrocarbon group) or a formula (2)
Figure 0005110537
(Wherein R 2 is a hydrogen atom, a hydrocarbon group, a chloro group, an alkoxy group, or a silyl group). Or
Figure 0005110537
(In the formula, combinations of R 5 and R 6 are C 6 H 5 and H; 3-O 2 NC 6 H 4 and H; 3-F 3 CC 6 H 4 and H; 4-MeO 2 CC 6 H, respectively. 4 , H; 4-Br—C 6 H 4 , H; 4-MeO—C 6 H 4 , H; 3-HO—C 6 H 4 , H; 2-thienyl, H; Ph—CH 2 , H; Ph (CH 2 ) 2 , H; Me (CH 2 ) 10 , H; Me (CH 2 ) 3 CH (Et), H; Ph, Me; Cl (CH 2 ) 4 , Me ; — ( CH 2 ) 5 -,-(CH 2 ) 5- ;

本発明によれば、触媒量の1価インジウムを用いてアセタールをアリル化することができる。   According to the present invention, acetal can be allylated using a catalytic amount of monovalent indium.

本発明は、1価のインジウム触媒としてInOTfの存在下、ホウ素を含むアリル化剤によってアセタールをアリル化するものである。
ホウ素を含むアリル化剤としては、以下の式(1)

Figure 0005110537
に示すアリルボロネート(式中、Rは水素原子、炭化水素基、クロロ基、アルコキシ基、又は置換基を有するシリル基;Rは水素原子又は脂肪族炭化水素基)が挙げられる。
は好ましくは水素原子又はメチル基である。
特に、アリル化剤として、式(2)
Figure 0005110537
で表されるピコナールアリルボレート(式中、Rは水素原子、炭化水素基、クロロ基、アルコキシ基、又は置換基を有するシリル基)を用いることが好ましい。
は好ましくは水素原子又はメチル基である。 In the present invention, acetal is allylated with an allylating agent containing boron in the presence of InOTf as a monovalent indium catalyst.
As an allylating agent containing boron, the following formula (1)
Figure 0005110537
(Wherein, R 1 is a hydrogen atom, a hydrocarbon group, a chloro group, an alkoxy group, or a silyl group having a substituent; R 3 is a hydrogen atom or an aliphatic hydrocarbon group).
R 1 is preferably a hydrogen atom or a methyl group.
In particular, as an allylating agent, the formula (2)
Figure 0005110537
It is preferable to use piconal allyl borate represented by the formula (wherein R 2 is a hydrogen atom, a hydrocarbon group, a chloro group, an alkoxy group, or a silyl group having a substituent).
R 2 is preferably a hydrogen atom or a methyl group.

InOTf中の一価のインジウムが、ホウ素原子と置換する(トランスメタル化)ことで高活性なアリルインジウムが生成するか、又はインジウムがホウ素原子に配位することでアリルボロネートの活性が向上すると考えられる。   When monovalent indium in InOTf is substituted with a boron atom (transmetallation), highly active allylindium is generated, or when indium is coordinated to a boron atom, the activity of allylboronate is improved. Conceivable.

アセタールとしては、特に制限されず、例えば、ベンズアルデヒドジメチルアセタール、3?フェニルプロパナールジメチルアセタールを用いることができる。又、ケタールを用いてもよい。   The acetal is not particularly limited, and for example, benzaldehyde dimethyl acetal or 3-phenylpropanal dimethyl acetal can be used. Ketal may also be used.

アセタールのアリル化の触媒として、アセタールに対し1〜50mol%の1価のインジウムを用いる。アセタールに対するインジウムの量は、好ましくは1〜20mol%、より好ましくは5〜20mol%である。
1価のインジウムとしてはInOTfを用いる。溶媒としては、トルエン、ヘキサン、テトラヒドロフランを例示することができる。水中では1価のインジウムは不安定で、ゼロ価や3価のインジウムを生じるので、水は溶媒として好ましくない。
As a catalyst for acetal allylation, 1 to 50 mol% of monovalent indium is used with respect to acetal. The amount of indium with respect to the acetal is preferably 1 to 20 mol%, more preferably 5 to 20 mol%.
InOTf is used as monovalent indium. Examples of the solvent include toluene, hexane, and tetrahydrofuran. Since monovalent indium is unstable in water and produces zero-valent or trivalent indium, water is not preferable as a solvent.

本発明において、反応系の溶媒中の各成分の濃度はそれぞれ0.01〜5mol/lであることが好ましい。
この反応の温度は、好ましくは-78〜60℃である。
この反応時間は、数分〜数10時間程度である。
この反応系には上記成分のほか、適宜、触媒等の公知の添加剤を添加してもよい。
In the present invention, the concentration of each component in the solvent of the reaction system is preferably 0.01 to 5 mol / l.
The temperature of this reaction is preferably -78 to 60 ° C.
This reaction time is about several minutes to several tens of hours.
In addition to the above components, a known additive such as a catalyst may be appropriately added to this reaction system.

本発明の製造方法によって得られる生成物としては、種々の二級又は三級ホモアリルエーテルが挙げられ、具体的には、1-(1-メトキシブテ-2-ニル)ベンゼン、1-アリル-1-メトキシシクロヘキサンを例示することができる。
生成物は、抽出、カラムクロマトグラフィー、蒸留、再結晶等の一般的精製法を利用して回収できる。
The product obtained by the production method of the present invention includes various secondary or tertiary homoallyl ethers, specifically, 1- (1-methoxybut-2-enyl) benzene, 1-allyl-1 An example is -methoxycyclohexane.
The product can be recovered using common purification methods such as extraction, column chromatography, distillation, recrystallization and the like.

以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。   The following examples illustrate the invention but are not intended to limit the invention.

なお、以下の各実施例において、特に記載しない限り、全ての溶媒とアセタールは使用前にアルゴン下で蒸留した。
インジウム触媒として、ヨウ化インジウム(I) (10mesh-beads or powdered form; 99.999%)はAldrich社の市販品,インジウム(I)トリフラート (powder)は文献の方法(C. L. B. Macdonald, A. M. Corrente, C. G. Andrews, A. Taylor, B. D. Ellis, Chem. Commun. 2004, 250-251.)により調製、インジウム(III)トリフラート (powder, 99+%)はAldrich社の市販品であり, さらなる精製を行わずに用いた。全ての反応操作は乾燥したガラス器具を用い、アルゴン下で行った。
In the following examples, all solvents and acetals were distilled under argon before use unless otherwise specified.
As an indium catalyst, indium iodide (I) (10mesh-beads or powdered form; 99.999%) is a commercial product of Aldrich, and indium (I) triflate (powder) is a literature method (CLB Macdonald, AM Corrente, CG Andrews, A. Taylor, BD Ellis, Chem. Commun. 2004, 250-251.) Indium (III) triflate (powder, 99 +%) is a commercial product of Aldrich and used without further purification . All reaction operations were performed under argon using dry glassware.

又、生成物の同定は、以下のNMR,IR,マススペクトル、及びクロマトグラフィーを用いた。NMR スペクトルは日本電子製のJEOL JNM-ECX400 を用い CDCl3 もしくはDMSO-d6.中で測定し、テトラメチルシラン(TMS; δ = 0.00 ppm) 及び非重水素化DMSO シグナル (δ = 2.49 ppm) を 1H NMRの内部標準とした。また、次の非重水素化溶媒シグナル (CDCl3: δ = 77.00 ppm; DMSO-d6: δ = 39.50 ppm) を13C NMRの内部標準として用いた。IR スペクトルはJASCO FT/IR-610 を用いて測定した。ESI 高分解能マススペクトル(ESI-HRMS) はブルカダルトニクスBioTOF IIを用いて測定した。 カラムクロマトグラフィーはSilica gel 60 (Merck) を用い、分取用薄層クロマトグラフィーはWakogel B-5Fを用いて行った。 The product was identified using the following NMR, IR, mass spectrum, and chromatography. NMR spectra were measured in CDCl 3 or DMSO-d 6 using JEOL JNM-ECX400 manufactured by JEOL. Tetramethylsilane (TMS; δ = 0.00 ppm) and non-deuterated DMSO signal (δ = 2.49 ppm) Was used as an internal standard for 1 H NMR. The following non-deuterated solvent signal (CDCl 3 : δ = 77.00 ppm; DMSO-d 6 : δ = 39.50 ppm) was used as an internal standard for 13 C NMR. The IR spectrum was measured using JASCO FT / IR-610. ESI high-resolution mass spectra (ESI-HRMS) were measured using a Brucadartonics BioTOF II. Column chromatography was performed using Silica gel 60 (Merck), and preparative thin layer chromatography was performed using Wakogel B-5F.

<実施例1>
<種々のインジウム触媒による、ベンズアルデヒドジメチルアセタールのアリル化>
アルゴン雰囲気下、加熱乾燥した5mLスクリュー管瓶に、表1に示す触媒を秤量し、ドライトルエン又はヘキサン(0.5-1M)、基質(アセタールまたはケタール1a、0.4-0.5mmol)、アリルボロネート(1.1-1.5等量)をシリンジを用いて注入した。表1に示す溶媒中で、室温で16時間攪拌を行い反応させた。反応終了後、ジクロロメタン(2ml)で希釈し、炭酸カリウム水溶液(1M)で反応を停止した。ジクロロメタンを用いて有機層有機層を抽出する操作を3回繰り返した後、無水硫酸ナトリウムを用いて乾燥した。ろ過後、減圧濃縮し、得られた粗製化合物を分取薄層クロマトグラフィーにより精製して、目的のホモアリルエーテル3aを得た。
反応式を式(3)

Figure 0005110537
に示す。 <Example 1>
<Allylation of benzaldehyde dimethyl acetal with various indium catalysts>
The catalyst shown in Table 1 is weighed in a 5 mL screw tube bottle dried under heat in an argon atmosphere, and dry toluene or hexane (0.5-1M), substrate (acetal or ketal 1a, 0.4-0.5 mmol), allyl boronate (1.1 -1.5 equivalents) was injected using a syringe. In the solvent shown in Table 1, the reaction was carried out by stirring at room temperature for 16 hours. After completion of the reaction, the reaction mixture was diluted with dichloromethane (2 ml) and quenched with aqueous potassium carbonate (1M). The operation of extracting the organic layer with dichloromethane was repeated three times, and then dried with anhydrous sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure, and the resulting crude compound was purified by preparative thin layer chromatography to obtain the desired homoallyl ether 3a.
Equation (3)
Figure 0005110537
Shown in

実施例1で得られた結果を表1に示す。   The results obtained in Example 1 are shown in Table 1.

Figure 0005110537
Figure 0005110537

表1より、インジウム(I)トリフラートを触媒として用いた実験例5、7,8の場合、アリル反応が進行し、目的物の収率は80%以上となった。
一方、ヨウ化インジウムを用いた実験例1、4、及び触媒を加えなかった実験例2の場合、アリル化反応は進行しなかった。また、有効なルイス酸として知られるインジウム(III)トリフラートを触媒として用いた実験例3の場合、アリル反応の収率は12%しか得られなかった。
又、インジウムを含まない触媒を用いた実験例6の場合も、アリル反応の収率は17%しか得られなかった。
From Table 1, in Experimental Examples 5, 7, and 8 using indium (I) triflate as a catalyst, the allyl reaction proceeded and the yield of the target product was 80% or more.
On the other hand, in Experimental Examples 1 and 4 using indium iodide and Experimental Example 2 in which no catalyst was added, the allylation reaction did not proceed. In the case of Experimental Example 3 using indium (III) triflate known as an effective Lewis acid as a catalyst, the yield of the allyl reaction was only 12%.
In the case of Experimental Example 6 using a catalyst containing no indium, the yield of the allyl reaction was only 17%.

<実施例2>
<InOTfによる、アセタールのアリル化>
アルゴン雰囲気下、加熱乾燥した5mLスクリュー管瓶に、インジウム(I)トリフラート(1−10mol%)を秤量し、ドライトルエン又はヘキサン(0.5-1M)、基質(アセタールまたはケタール1、0.4-0.5mmol)、アリルボロネート(1.1-1.5等量)をシリンジを用いて注入した。表2に示す溶媒中で、45℃、かつ表2に示す時間攪拌を行い反応させた。反応終了後、ジクロロメタン(2ml)で希釈し、炭酸カリウム水溶液(1M)で反応を停止した。ジクロロメタンを用いて有機層有機層を抽出する操作を3回繰り返した後、無水硫酸ナトリウムを用いて乾燥した(表2の生成物3gの場合、塩化メチルの代わりに酢酸エチルを用いた)。ろ過後、減圧濃縮し、得られた粗製化合物を分取薄層クロマトグラフィーにより精製して、目的のホモアリルエーテル3を得た。
なお、分取薄層クロマトグラフィーによる精製の際の溶出液は、ヘキサン/エーテル = 9:1 〜 7:3のものを用いた。但し、生成物3gの場合は、溶出液のヘキサン/酢酸エチル=7:3とした。又、生成物3k,3l,3m,3oの場合はカラムクロマトグラフィーで精製を行い、この際の溶出液は、ヘキサン/エーテル=8:2とした。
又、生成物3lの収率は、ジアステレオマー(1:1)混合物の値である。

反応式を式(4)

Figure 0005110537
に示す。 <Example 2>
<Allylation of acetal with InOTf>
Indium (I) triflate (1-10 mol%) is weighed into a 5 mL screw tube bottle that has been heat-dried under an argon atmosphere, dry toluene or hexane (0.5-1 M), substrate (acetal or ketal 1, 0.4-0.5 mmol) Allylboronate (1.1-1.5 equivalents) was injected using a syringe. In the solvent shown in Table 2, stirring was performed at 45 ° C. for the time shown in Table 2. After completion of the reaction, the reaction mixture was diluted with dichloromethane (2 ml) and quenched with aqueous potassium carbonate (1M). The operation of extracting the organic layer with dichloromethane was repeated three times, followed by drying with anhydrous sodium sulfate (in the case of 3 g of the product in Table 2, ethyl acetate was used instead of methyl chloride). After filtration, the filtrate was concentrated under reduced pressure, and the resulting crude compound was purified by preparative thin layer chromatography to obtain the desired homoallyl ether 3.
The eluate used for purification by preparative thin layer chromatography was hexane / ether = 9: 1 to 7: 3. However, in the case of 3 g of product, hexane / ethyl acetate of the eluate was set to 7: 3. In the case of products 3k, 3l, 3m, 3o, purification was performed by column chromatography, and the eluent at this time was hexane / ether = 8: 2.
The yield of product 3l is the value of the diastereomeric (1: 1) mixture.

Equation (4)
Figure 0005110537
Shown in

実施例2で得られた結果を表2に示す。   The results obtained in Example 2 are shown in Table 2.

Figure 0005110537
Figure 0005110537

表2より、アセタールとして、一個のヘテロ芳香族の例を含む芳香族アルデヒドの誘導体を用いた実験例1〜8の場合、アリル化反応は良好に進行した。
また、アセタールとして、脂肪族アルデヒドの誘導体を用いた実験例9〜12の場合、高収率で生成物を得ることができた。さらに、実験例9〜12と同じ反応条件下で、ケタールを用いた実験例13〜15の場合も、アリル化反応が進行し、目的の三級ホモアリルエーテルが得られた。
以上のように、InOTfを触媒に用いることで、ヒドロキシ基、メトキシ基、クロロ基、ブロモ基、エステル、ニトロ基などを含むアセタールやケタールに対しても高い収率で目的物が得られることがわかった。さらに、インジウム(I)トリフラートが他のルイス酸触媒やブレンステッド酸触媒と比較し、より高い触媒能や選択性を示すことも判明した。
From Table 2, in the case of Experimental Examples 1 to 8 using an aromatic aldehyde derivative including one heteroaromatic example as an acetal, the allylation reaction proceeded well.
In Experimental Examples 9 to 12 using an aliphatic aldehyde derivative as the acetal, the product could be obtained in high yield. Furthermore, under the same reaction conditions as in Experimental Examples 9 to 12, in the case of Experimental Examples 13 to 15 using a ketal, the allylation reaction proceeded, and the target tertiary homoallyl ether was obtained.
As described above, by using InOTf as a catalyst, the target product can be obtained in high yield with respect to acetals and ketals containing hydroxy groups, methoxy groups, chloro groups, bromo groups, esters, nitro groups, and the like. all right. Furthermore, it has been found that indium (I) triflate exhibits higher catalytic ability and selectivity than other Lewis acid catalysts and Bronsted acid catalysts.

生成物3a〜3oの構造式、及び同定結果を以下に示す。合成したホモアリルエーテル 3a,3b,3c,3e,3f,3h,3i,3j,3k,3m,3o は既知化合物であり、文献値と一致した。ホモアリルエーテル3d,3g,3l,3n は未知化合物であることが判明した。   The structural formulas and identification results of the products 3a to 3o are shown below. The synthesized homoallyl ethers 3a, 3b, 3c, 3e, 3f, 3h, 3i, 3j, 3k, 3m, and 3o are known compounds and are consistent with literature values. Homoallyl ethers 3d, 3g, 3l and 3n were found to be unknown compounds.

生成物3a

Figure 0005110537
無色液体(収率: 85%); 1H NMR (CDCl3, 400 MHz): δ= 2.36-2.45 (m, 1H), 2.52-2.61 (m, 1H), 3.22 (s, 3H), 4.16 (dd, J = 5.2 Hz, J = 6.0 Hz, 1H), 4.99-5.09 (m, 2H), 5.70-5.83 (m, 1H), 7.25-7.38 (m, 5H). Product 3a
Figure 0005110537
Colorless liquid (Yield: 85%); 1 H NMR (CDCl 3 , 400 MHz): δ = 2.36-2.45 (m, 1H), 2.52-2.61 (m, 1H), 3.22 (s, 3H), 4.16 ( dd, J = 5.2 Hz, J = 6.0 Hz, 1H), 4.99-5.09 (m, 2H), 5.70-5.83 (m, 1H), 7.25-7.38 (m, 5H).

生成物3b

Figure 0005110537
黄色い液体(収率:50%); 1H NMR (CDCl3, 400 MHz): δ= 2.38-2.47 (m, 1H), 2.53-2.62 (m, 1H), 3.26 (s, 3H), 4.23 (dd, J = 6.4 Hz, J = 6.8 Hz, 1H), 5.00-5.07 (m, 2H), 5.68-5.80 (m, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 8.15 (dd, J = 1.0 Hz, J = 7.6 Hz, 1H), 8.16 (d, J = 1.0 Hz, 1H); 13C NMR (CDCl3, 100 MHz): δ= 42.2, 57.0, 82.6, 117.9, 121.6, 122.6, 129.3, 132.7, 133.4, 144.0, 148.3. Product 3b
Figure 0005110537
Yellow liquid (yield: 50%); 1 H NMR (CDCl 3 , 400 MHz): δ = 2.38-2.47 (m, 1H), 2.53-2.62 (m, 1H), 3.26 (s, 3H), 4.23 ( dd, J = 6.4 Hz, J = 6.8 Hz, 1H), 5.00-5.07 (m, 2H), 5.68-5.80 (m, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 8.15 (dd, J = 1.0 Hz, J = 7.6 Hz, 1H), 8.16 (d, J = 1.0 Hz, 1H); 13 C NMR (CDCl 3 , 100 MHz): δ = 42.2 , 57.0, 82.6, 117.9, 121.6, 122.6, 129.3, 132.7, 133.4, 144.0, 148.3.

生成物3c

Figure 0005110537
無色液体(収率: 95%). Colorless liquid; 1H NMR (CDCl3, 400 MHz): δ= 2.36-2.47 (m, 1H), 2.51-2.60 (m, 1H), 3.24 (s, 3H), 4.23 (dd, J = 6.0 Hz, J = 6.0 Hz, 1H), 5.01-5.08 (m, 2H), 5.68-5.82 (m, 1H), 7.46-7.56 (m, 4H); 13C NMR (CDCl3, 100 MHz): δ= 42.4, 56.9, 83.0, 117.4, 123.3, 124.4, 124.5, 128.8, 129.9, 130.7 (J = 31.6 Hz), 134.0, 142.8. Product 3c
Figure 0005110537
Colorless liquid; 1 H NMR (CDCl 3 , 400 MHz): δ = 2.36-2.47 (m, 1H), 2.51-2.60 (m, 1H), 3.24 (s, 3H) , 4.23 (dd, J = 6.0 Hz, J = 6.0 Hz, 1H), 5.01-5.08 (m, 2H), 5.68-5.82 (m, 1H), 7.46-7.56 (m, 4H); 13 C NMR (CDCl (3 , 100 MHz): δ = 42.4, 56.9, 83.0, 117.4, 123.3, 124.4, 124.5, 128.8, 129.9, 130.7 (J = 31.6 Hz), 134.0, 142.8.

生成物3d

Figure 0005110537
無色液体(収率: 94%); 1H NMR (CDCl3, 400 MHz): δ= 2.36-2.45 (m, 1H), 2.51-2.60 (m, 1H), 3.23 (s, 3H), 3.91 (s, 3H), 4.23 (dd, J = 6.4 Hz, J = 6.8 Hz, 1H), 5.00-5.06 (m, 2H), 5.68-5.80 (m, 1H), 7.36 (d, J = 8.2 Hz, 2H), 8.03 (d, J = 8.2 Hz, 2H); 13C NMR (CDCl3, 100 MHz): δ= 42.2, 52.0, 56.8, 83.1, 117.3, 126.6 (2C), 129.4, 129.6 (2C), 134.0, 146.9, 166.8. Product 3d
Figure 0005110537
Colorless liquid (Yield: 94%); 1 H NMR (CDCl 3 , 400 MHz): δ = 2.36-2.45 (m, 1H), 2.51-2.60 (m, 1H), 3.23 (s, 3H), 3.91 ( s, 3H), 4.23 (dd, J = 6.4 Hz, J = 6.8 Hz, 1H), 5.00-5.06 (m, 2H), 5.68-5.80 (m, 1H), 7.36 (d, J = 8.2 Hz, 2H ), 8.03 (d, J = 8.2 Hz, 2H); 13 C NMR (CDCl 3 , 100 MHz): δ = 42.2, 52.0, 56.8, 83.1, 117.3, 126.6 (2C), 129.4, 129.6 (2C), 134.0 , 146.9, 166.8.

生成物3e

Figure 0005110537
無色液体(収率: 94%); 1H NMR (CDCl3, 400 MHz): δ= 2.32-2.41 (m, 1H), 2.46-2.57 (m, 1H), 3.20 (s, 3H), 4.13 (dd, J = 6.4 Hz, J = 6.8 Hz, 1H), 4.97-5.06 (m, 2H), 5.64-5.78 (m, 1H), 7.16 (d, J = 8.6 Hz, 2H), 7.47 (d, J = 8.6 Hz, 2H); 13C NMR (CDCl3, 100 MHz): δ= 42.3, 56.6, 82.9, 117.2, 121.3, 128.3 (2C), 131.4 (2C), 134.1, 140.6. Product 3e
Figure 0005110537
Colorless liquid (Yield: 94%); 1 H NMR (CDCl 3 , 400 MHz): δ = 2.32-2.41 (m, 1H), 2.46-2.57 (m, 1H), 3.20 (s, 3H), 4.13 ( dd, J = 6.4 Hz, J = 6.8 Hz, 1H), 4.97-5.06 (m, 2H), 5.64-5.78 (m, 1H), 7.16 (d, J = 8.6 Hz, 2H), 7.47 (d, J = 8.6 Hz, 2H); 13 C NMR (CDCl 3 , 100 MHz): δ = 42.3, 56.6, 82.9, 117.2, 121.3, 128.3 (2C), 131.4 (2C), 134.1, 140.6.

生成物3f

Figure 0005110537
無色液体(収率: 93%); 1H NMR (CDCl3, 400 MHz): δ= 2.34-2.43 (m, 1H), 2.51-2.61 (m, 1H), 3.19 (s, 3H), 3.81 (s, 3H), 4.11 (dd, J = 6.4 Hz, J = 7.2 Hz, 1H), 4.98-5.08 (m, 2H), 5.68-5.81 (m, 1H), 6.89 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H); 13C NMR (CDCl3, 100 MHz): δ= 42.4, 55.1, 56.3, 83.0, 113.6 (2C), 116.7, 127.8 (2C), 133.5, 134.8. 159.0. Product 3f
Figure 0005110537
Colorless liquid (Yield: 93%); 1 H NMR (CDCl 3 , 400 MHz): δ = 2.34-2.43 (m, 1H), 2.51-2.61 (m, 1H), 3.19 (s, 3H), 3.81 ( s, 3H), 4.11 (dd, J = 6.4 Hz, J = 7.2 Hz, 1H), 4.98-5.08 (m, 2H), 5.68-5.81 (m, 1H), 6.89 (d, J = 8.4 Hz, 2H ), 7.21 (d, J = 8.4 Hz, 2H); 13 C NMR (CDCl 3 , 100 MHz): δ = 42.4, 55.1, 56.3, 83.0, 113.6 (2C), 116.7, 127.8 (2C), 133.5, 134.8 159.0.

生成物3g

Figure 0005110537
無色液体(収率: 88%)薄い黄色液体; 1H NMR (CDCl3, 400 MHz): δ= 2.38-2.46 (m, 1H), 2.53-2.62 (m, 1H), 3.26 (s, 3H), 4.19 (dd, J = 6.0 Hz, J = 6.0 Hz, 1H), 5.00-5.09 (m, 2H), 5.69-5.81 (m, 1H), 6.33 (s, 1H), 6.77-6.84 (m, 2H), 6.92 (dd, J = 2.0 Hz, J = 2.4 Hz, 1H), 7.21 (t, J = 7.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz): δ= 42.2, 56.5, 83.7, 112.8, 114.9, 117.2, 119.3, 129.6, 134.2, 142.9, 156.2. Product 3g
Figure 0005110537
Colorless liquid (Yield: 88%) Pale yellow liquid; 1 H NMR (CDCl 3 , 400 MHz): δ = 2.38-2.46 (m, 1H), 2.53-2.62 (m, 1H), 3.26 (s, 3H) , 4.19 (dd, J = 6.0 Hz, J = 6.0 Hz, 1H), 5.00-5.09 (m, 2H), 5.69-5.81 (m, 1H), 6.33 (s, 1H), 6.77-6.84 (m, 2H ), 6.92 (dd, J = 2.0 Hz, J = 2.4 Hz, 1H), 7.21 (t, J = 7.8 Hz, 1H); 13 C NMR (CDCl 3 , 100 MHz): δ = 42.2, 56.5, 83.7, 112.8, 114.9, 117.2, 119.3, 129.6, 134.2, 142.9, 156.2.

生成物3h

Figure 0005110537
無色液体(収率: 87%)。 薄い黄色液体; 1H NMR (CDCl3, 400 MHz): δ= 2.41-2.48 (m, 1H), 2.57-2.63 (m, 1H), 3.19 (s, 3H), 4.36 (dd, J = 6.4 Hz, J = 7.2 Hz, 1H), 4.94-5.04 (m, 2H), 5.66-5.75 (m, 1H), 6.87-6.91 (m, 2H), 7.20 (dd, J = 2.8 Hz, J = 3.6 Hz, 1H); 13C NMR (CDCl3, 100 MHz): δ= 42.5, 56.4, 78.9, 117.3, 124.9, 125.3, 126.2, 134.2, 145.3. Product 3h
Figure 0005110537
Colorless liquid (Yield: 87%). Pale yellow liquid; 1 H NMR (CDCl 3 , 400 MHz): δ = 2.41-2.48 (m, 1H), 2.57-2.63 (m, 1H), 3.19 (s, 3H), 4.36 (dd, J = 6.4 Hz , J = 7.2 Hz, 1H), 4.94-5.04 (m, 2H), 5.66-5.75 (m, 1H), 6.87-6.91 (m, 2H), 7.20 (dd, J = 2.8 Hz, J = 3.6 Hz, 1H); 13 C NMR (CDCl 3 , 100 MHz): δ = 42.5, 56.4, 78.9, 117.3, 124.9, 125.3, 126.2, 134.2, 145.3.

生成物3i

Figure 0005110537
無色液体(収率: 79%); 1H NMR (CDCl3, 400 MHz): δ= 2.17-2.32 (m, 2H), 2.70-2.86 (m, 2H), 3.36 (s, 3H), 3.41-3.51 (m, 1H), 5.05-5.11 (m, 2H), 5.79-5.92 (m, 1H), 7.18-7.31 (m, 5H). Product 3i
Figure 0005110537
Colorless liquid (Yield: 79%); 1 H NMR (CDCl 3 , 400 MHz): δ = 2.17-2.32 (m, 2H), 2.70-2.86 (m, 2H), 3.36 (s, 3H), 3.41- 3.51 (m, 1H), 5.05-5.11 (m, 2H), 5.79-5.92 (m, 1H), 7.18-7.31 (m, 5H).

生成物3j

Figure 0005110537
無色液体(収率: 76%); 1H NMR (CDCl3, 400 MHz): δ= 1.74-1.84 (m, 2H), 2.25-2.37 (m, 2H), 2.58-2.67 (m, 1H), 2.69-2.78 (m, 1H), 3.19-3.29 (m, 1H), 3.36 (s, 3H), 5.03-5.11 (m, 2H), 5.74-5.86 (m, 1H), 7.14-7.30 (m, 5H); 13C NMR (CDCl3, 100 MHz): δ= 31.4, 35.2, 37.5, 56.5, 79.4, 117.0, 125.6, 128.2 (2C), 128.3 (2C), 134.5, 142.2. Product 3j
Figure 0005110537
Colorless liquid (Yield: 76%); 1 H NMR (CDCl 3 , 400 MHz): δ = 1.74-1.84 (m, 2H), 2.25-2.37 (m, 2H), 2.58-2.67 (m, 1H), 2.69-2.78 (m, 1H), 3.19-3.29 (m, 1H), 3.36 (s, 3H), 5.03-5.11 (m, 2H), 5.74-5.86 (m, 1H), 7.14-7.30 (m, 5H ); 13 C NMR (CDCl 3 , 100 MHz): δ = 31.4, 35.2, 37.5, 56.5, 79.4, 117.0, 125.6, 128.2 (2C), 128.3 (2C), 134.5, 142.2.

生成物3k

Figure 0005110537
無色液体(収率: 97%); 1H NMR (CDCl3, 400 MHz): δ= 0.88 (t, J = 6.6 Hz, 3H), 1.23-1.49 (m, 20H), 2.26 (dd, J = 6.4 Hz, J = 6.8 Hz, 2H), 3.15-3.24 (m, 1H), 3.34 (s, 3H), 5.02-5.11 (m, 2H), 5.75-5.87 (m, 1H); 13C NMR (CDCl3, 100 MHz): δ= 14.1, 22.6, 25.2, 29.3, 29.6 (2C), 29.7 (2C), 29.8, 31.9, 33.3, 37.7, 56.5, 80.4, 116.7, 135.0. Product 3k
Figure 0005110537
Colorless liquid (Yield: 97%); 1 H NMR (CDCl 3 , 400 MHz): δ = 0.88 (t, J = 6.6 Hz, 3H), 1.23-1.49 (m, 20H), 2.26 (dd, J = 6.4 Hz, J = 6.8 Hz, 2H), 3.15-3.24 (m, 1H), 3.34 (s, 3H), 5.02-5.11 (m, 2H), 5.75-5.87 (m, 1H); 13 C NMR (CDCl (3 , 100 MHz): δ = 14.1, 22.6, 25.2, 29.3, 29.6 (2C), 29.7 (2C), 29.8, 31.9, 33.3, 37.7, 56.5, 80.4, 116.7, 135.0.

生成物3l

Figure 0005110537
無色液体(収率: 69%; diastereoisomeric ratio 1:1); 1H NMR (CDCl3, 400 MHz): δ= 0.80-0.96 (m, 6H), 1.10-1.50 (m, 9H), 2.18-2.30 (m, 2H), 3.11-3.20 (m, 1H), 3.35 (s, 3H), 5.02-5.10 (m, 2H), 5.79-5.91 (m, 1H); 13C NMR (CDCl3, 100 MHz): δ= 11.8 and 11.9 (diast), 14.1, 22.2, 23.1, 28.8, 29.7 and 29.9 (diast), 34.6 and 34.7 (diast), 41.6 and 41.7 (diast), 57.3 and 57.4 (diast), 82.7 and 82.8 (diast), 116.2, 136.1. Product 3l
Figure 0005110537
Colorless liquid (Yield: 69%; diastereoisomeric ratio 1: 1); 1H NMR (CDCl3, 400 MHz): δ = 0.80-0.96 (m, 6H), 1.10-1.50 (m, 9H), 2.18-2.30 (m , 2H), 3.11-3.20 (m, 1H), 3.35 (s, 3H), 5.02-5.10 (m, 2H), 5.79-5.91 (m, 1H); 13C NMR (CDCl3, 100 MHz): δ = 11.8 and 11.9 (diast), 14.1, 22.2, 23.1, 28.8, 29.7 and 29.9 (diast), 34.6 and 34.7 (diast), 41.6 and 41.7 (diast), 57.3 and 57.4 (diast), 82.7 and 82.8 (diast), 116.2 , 136.1.

生成物3m

Figure 0005110537
無色液体(収率: 71%); 1H NMR (CDCl3, 400 MHz): δ= 1.52 (s, 3H), 2.46-2.60 (m, 2H),3.08 (s, 3H), 4.98-5.04 (m, 2H), 5.59-5.71 (m, 1H), 7.22-7.43 (m, 5H). Product 3m
Figure 0005110537
Colorless liquid (Yield: 71%); 1 H NMR (CDCl 3 , 400 MHz): δ = 1.52 (s, 3H), 2.46-2.60 (m, 2H), 3.08 (s, 3H), 4.98-5.04 ( m, 2H), 5.59-5.71 (m, 1H), 7.22-7.43 (m, 5H).

生成物3n

Figure 0005110537
無色液体(収率: 88%); 1H NMR (CDCl3, 400 MHz): δ= 1.11 (s, 3H), 1.41-1.51 (m, 4H), 1.71-1.81 (m, 2H), 2.24 (d, J = 7.2 Hz, 2H), 3.18 (s, 3H), 3.54 (t, J = 6.8 Hz, 2H), 4.99-5.10 (m, 2H), 5.73-5.85 (m, 1H); 13C NMR (CDCl3, 100 MHz): δ= 20.6, 22.4, 32.9, 36.5, 42.0, 44.9, 48.8, 76.0, 117.4, 134.1. Product 3n
Figure 0005110537
Colorless liquid (Yield: 88%); 1 H NMR (CDCl 3 , 400 MHz): δ = 1.11 (s, 3H), 1.41-1.51 (m, 4H), 1.71-1.81 (m, 2H), 2.24 ( d, J = 7.2 Hz, 2H), 3.18 (s, 3H), 3.54 (t, J = 6.8 Hz, 2H), 4.99-5.10 (m, 2H), 5.73-5.85 (m, 1H); 13 C NMR (CDCl 3 , 100 MHz): δ = 20.6, 22.4, 32.9, 36.5, 42.0, 44.9, 48.8, 76.0, 117.4, 134.1.

生成物3o

Figure 0005110537
無色液体(収率: 88%); 1H NMR (CDCl3, 400 MHz): δ= 1.18-1.73 (m, 10H), 2.21 (d, J = 7.2 Hz, 2H), 3.18 (s, 3H), 5.00-5.09 (m, 2H), 5.75-5.88 (m, 1H). Product 3o
Figure 0005110537
Colorless liquid (Yield: 88%); 1 H NMR (CDCl 3 , 400 MHz): δ = 1.18-1.73 (m, 10H), 2.21 (d, J = 7.2 Hz, 2H), 3.18 (s, 3H) , 5.00-5.09 (m, 2H), 5.75-5.88 (m, 1H).

<実施例3>
<α-メチルアリルボロネートを用いたアセタールのアリル化>
アルゴン雰囲気下、加熱乾燥した5mLスクリュー管瓶に、インジウム(I)トリフラート(5mol%)を秤量し、ドライトルエン(1M)、基質(アセタールまたはケタール1、0.4-0.5mmol)、アリルボロネート(1.1等量)をシリンジを用いて注入した。室温で16時間攪拌を行い反応させた。反応終了後、ジクロロメタン(2ml)で希釈し、炭酸カリウム水溶液(1M)で反応を停止した。ジクロロメタンを用いて有機層有機層を抽出する操作を3回繰り返した後、無水硫酸ナトリウムを用いて乾燥した。ろ過後、減圧濃縮し、得られた粗製化合物を分取薄層クロマトグラフィーにより精製して、目的のホモアリルエーテル5aを得た。
なお、分取薄層クロマトグラフィーによる精製の際の溶出液は、ヘキサン/エーテル = 9:1 〜 7:3のものを用いた。
アリルエーテル5aの収率を計算したところ84%であった。なお、アリルエーテル5aの収率は、シン体:アンチ体=1:1.8であった。
<Example 3>
<Allylation of acetal using α-methylallylboronate>
Indium (I) triflate (5 mol%) is weighed into a 5 mL screw tube bottle heated and dried under an argon atmosphere, and dry toluene (1M), substrate (acetal or ketal 1, 0.4-0.5 mmol), allyl boronate (1.1 Equal volume) was injected using a syringe. The reaction was allowed to stir at room temperature for 16 hours. After completion of the reaction, the reaction mixture was diluted with dichloromethane (2 ml) and quenched with aqueous potassium carbonate (1M). The operation of extracting the organic layer with dichloromethane was repeated three times, and then dried with anhydrous sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure, and the resulting crude compound was purified by preparative thin layer chromatography to obtain the desired homoallyl ether 5a.
The eluate used for purification by preparative thin layer chromatography was hexane / ether = 9: 1 to 7: 3.
The yield of allyl ether 5a was calculated to be 84%. The yield of allyl ether 5a was syn isomer: anti isomer = 1: 1.8.

反応式を式(5)

Figure 0005110537
に示す。 Equation (5)
Figure 0005110537
Shown in

生成物5aは、通常のアリルホウ素求核剤の付加反応において得られるγ-付加体ではなく、α-付加体であったことから、本発明によれば、アリルボロネートを求核剤として用いるα-選択的付加反応を進行させることができることが判明した。
生成物5aの同定結果を以下に示す。生成物5aは既知化合物であり、文献値と一致した。
無色液体(収率: 84%; syn:anti = 1:1.8); 1H NMR (CDCl3, 400 MHz): δ= 0.84 (d, J = 6.8 Hz, 1H; syn), 1.05 (d, J = 6.8 Hz, 1H; anti), 2.49-2.56 (m, 2H), 3.19 (s, 3H; syn), 3.22 (s, 3H; anti), 3.92 (d, J = 7.2 Hz, 1H; syn), 3.96 (d, J = 6.8 Hz, 1H; anti), 4.89-4.95 (m, 2H; anti), 5.00-5.06 (m, 2H; syn), 5.62-5.72 (m, 1H; anti), 5.83-5.94 (m, 1H; syn), 7.22-7.37 (m, 5H).
Since the product 5a was not an γ-adduct obtained in the usual addition reaction of an allylboron nucleophile but an α-adduct, according to the present invention, allylboronate was used as a nucleophile. It has been found that α-selective addition reactions can proceed.
The identification result of product 5a is shown below. Product 5a was a known compound and agreed with literature values.
Colorless liquid (Yield: 84%; syn: anti = 1: 1.8); 1 H NMR (CDCl 3 , 400 MHz): δ = 0.84 (d, J = 6.8 Hz, 1H; syn), 1.05 (d, J = 6.8 Hz, 1H; anti), 2.49-2.56 (m, 2H), 3.19 (s, 3H; syn), 3.22 (s, 3H; anti), 3.92 (d, J = 7.2 Hz, 1H; syn), 3.96 (d, J = 6.8 Hz, 1H; anti), 4.89-4.95 (m, 2H; anti), 5.00-5.06 (m, 2H; syn), 5.62-5.72 (m, 1H; anti), 5.83-5.94 (m, 1H; syn), 7.22-7.37 (m, 5H).

以上のように、本発明によれば、インジウム(I)トリフラートを触媒に用いてアセタールのアリル化反応を高い収率で行うことができ、インジウム(I)トリフラートを触媒とする炭素―炭素結合形成反応としては従来なかったものである。また、アリルホウ素を用いたアセタールの触媒的なアリル化反応としても従来なかったものである。アセタールのアリル化反応は、糖類の合成への応用を含む有機合成へ適用可能である。   As described above, according to the present invention, it is possible to carry out allylation of acetal with high yield using indium (I) triflate as a catalyst, and carbon-carbon bond formation using indium (I) triflate as a catalyst. The reaction has never existed. Further, there has been no conventional allylation reaction of acetal using allyl boron. The acetal allylation reaction is applicable to organic synthesis including application to the synthesis of sugars.

Claims (1)

ホウ素を含むアリル化剤によってアセタールをアリル化するホモアリルエーテルの製造方法であって、前記アセタールに対し1〜50mol%のInOTfを触媒として用い
前記アリル化剤は、式(1)
Figure 0005110537
(式中、R は水素原子、炭化水素基、クロロ基、アルコキシ基、又はシリル基;R は水素原子又は脂肪族炭化水素基)で表されるか、
又は式(2)
Figure 0005110537
(式中、R は水素原子、炭化水素基、クロロ基、アルコキシ基、又はシリル基)で表されるピコナールアリルボレートであり、
前記アセタールは、ベンズアルデヒドジメチルアセタール、3-フェニルプロパナールジメチルアセタール、
又は
Figure 0005110537
(式中、R 5 、R 6 の組み合わせは、それぞれC 6 H 5 、H;3-O 2 N-C 6 H 4 、H;3-F 3 C-C 6 H 4 、H;4-MeO 2 C-C 6 H 4 、H;4-Br-C 6 H 4 、H;4-MeO-C 6 H 4 、H;3-HO-C 6 H 4 、H;2-チエニル、H;Ph-CH 2 、H;Ph(CH 2 ) 2 、H;Me(CH 2 ) 10 、H;Me(CH 2 ) 3 CH(Et)、H;Ph、Me;Cl(CH 2 ) 4 、Me;-(CH 2 ) 5 -、-(CH 2 ) 5 -;のいずれか)で表されるホモアリルエーテルの製造方法。
A method for producing a homoallyl ether in which acetal is allylated with an allylating agent containing boron, using 1-50 mol% InOTf as a catalyst with respect to the acetal ,
The allylating agent has the formula (1)
Figure 0005110537
(Wherein R 1 is a hydrogen atom, a hydrocarbon group, a chloro group, an alkoxy group, or a silyl group; R 3 is a hydrogen atom or an aliphatic hydrocarbon group),
Or formula (2)
Figure 0005110537
(Wherein R 2 is a hydrogen atom, a hydrocarbon group, a chloro group, an alkoxy group, or a silyl group) represented by piconal allyl borate,
The acetal is benzaldehyde dimethyl acetal, 3-phenylpropanal dimethyl acetal,
Or
Figure 0005110537
(In the formula, combinations of R 5 and R 6 are C 6 H 5 and H; 3-O 2 NC 6 H 4 and H; 3-F 3 CC 6 H 4 and H; 4-MeO 2 CC 6 H, respectively. 4 , H; 4-Br—C 6 H 4 , H; 4-MeO—C 6 H 4 , H; 3-HO—C 6 H 4 , H; 2-thienyl, H; Ph—CH 2 , H; Ph (CH 2 ) 2 , H; Me (CH 2 ) 10 , H; Me (CH 2 ) 3 CH (Et), H; Ph, Me; Cl (CH 2 ) 4 , Me ; — ( CH 2 ) 5 -, - (CH 2) 5 -; any) method for producing homo allyl ether represented by the.
JP2009058950A 2009-03-12 2009-03-12 Method for producing homoallyl ether Expired - Fee Related JP5110537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009058950A JP5110537B2 (en) 2009-03-12 2009-03-12 Method for producing homoallyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009058950A JP5110537B2 (en) 2009-03-12 2009-03-12 Method for producing homoallyl ether

Publications (2)

Publication Number Publication Date
JP2010209031A JP2010209031A (en) 2010-09-24
JP5110537B2 true JP5110537B2 (en) 2012-12-26

Family

ID=42969607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009058950A Expired - Fee Related JP5110537B2 (en) 2009-03-12 2009-03-12 Method for producing homoallyl ether

Country Status (1)

Country Link
JP (1) JP5110537B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5072026B2 (en) * 2007-03-09 2012-11-14 独立行政法人科学技術振興機構 Method for producing homoallyl alcohol or homoallyl hydrazide
JP6703256B2 (en) * 2016-03-15 2020-06-03 セントラル硝子株式会社 Water repellent protective film forming agent, water repellent protective film forming chemical, and wafer cleaning method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4584625B2 (en) * 2004-05-20 2010-11-24 第一三共株式会社 Process for producing 1,2-cis-2-fluorocyclopropane-1-carboxylic acid esters
JP5072026B2 (en) * 2007-03-09 2012-11-14 独立行政法人科学技術振興機構 Method for producing homoallyl alcohol or homoallyl hydrazide

Also Published As

Publication number Publication date
JP2010209031A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
Zhang et al. Acylsilanes: valuable organosilicon reagents in organic synthesis
US5358546A (en) Highly reactive forms of zinc and reagents thereof
JP5110537B2 (en) Method for producing homoallyl ether
Zhou et al. Intermolecular and Intramolecular Ketone–Nitrile Reductive Coupling Reactions Promoted by TiCl4–Sm System
JP5816037B2 (en) Method for producing 3,3,3-trifluoropropanols
US8729320B2 (en) Method for producing difluorocyclopropane compound
Chevtchouk et al. Preparation of ketones from esters via substituted cyclopropanols: Application to the synthesis of (±)-ipsenol,(±)-ipsdienol and amitinol, the components of aggregation pheromones of the Ips bark beetles
KR101773070B1 (en) Method for producing aryl and heteroarylacetic acid derivatives
Yamada et al. Fluorine–copper exchange reaction of α, β, γ, γ, γ-pentafluorocrotonates with organocuprates: Generation and cross-coupling reactions of β-metallated α, γ, γ, γ-tetrafluorocrotonates
JP6498048B2 (en) Fluorine-containing organic compound and method for producing biaryl compound using this and Grignard reagent
JP4948030B2 (en) Method for producing fluorine-containing alcohol derivative
JP4268806B2 (en) Catalyst system for aldol reaction
CH687877A5 (en) 2,2-difluorobenzo-1,3-dioxole-4-carbaldehyde.
CZ2005305A3 (en) Process for preparing derivatives of substituted 2-arylalkanoic acids
TW201808871A (en) Method for producing acetal compound
JPS5855129B2 (en) Method for producing 2-substituted or unsubstituted geranyl acetates
JP5170987B2 (en) Novel fluorine-containing unsaturated silyl ether compound and method for producing fluorine-containing unsaturated alcohol derivative using the compound as an intermediate
Kume et al. Synthesis of 3, 4-disubstituted 3, 4-dihydro-2-pyrones via 2-(silyloxy) pyrylium salts: regioselective introduction of substituents into 2-pyrones
JP5818278B2 (en) Improved synthesis of peretinoin
EP3492449B1 (en) Process for the preparation of dihalobenzophenones, new chemicals useful for its implementation and methods for preparing said chemicals
JP2007051079A (en) Method for producing aromatic acetylene compound
JPH07145098A (en) Alkoxyl group-containing compound
Ibrayim et al. A Green and Novel Method for the Synthesis of 4, 4‐Difluoro‐3‐oxo‐2‐(triphenylphosphoranylidene) δ‐Lactones by Reformatsky Reaction
JPH10101614A (en) Production of alpha alpha-difluoro-beta-hydroxy ester
Jian et al. A Practical Method to Stereospecifically Synthesize trans‐Stilbene Derivatives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5110537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees