JP5102953B2 - X線ct装置 - Google Patents

X線ct装置 Download PDF

Info

Publication number
JP5102953B2
JP5102953B2 JP2005318976A JP2005318976A JP5102953B2 JP 5102953 B2 JP5102953 B2 JP 5102953B2 JP 2005318976 A JP2005318976 A JP 2005318976A JP 2005318976 A JP2005318976 A JP 2005318976A JP 5102953 B2 JP5102953 B2 JP 5102953B2
Authority
JP
Japan
Prior art keywords
data
ray
tube
value
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005318976A
Other languages
English (en)
Other versions
JP2007125129A (ja
Inventor
広則 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2005318976A priority Critical patent/JP5102953B2/ja
Publication of JP2007125129A publication Critical patent/JP2007125129A/ja
Application granted granted Critical
Publication of JP5102953B2 publication Critical patent/JP5102953B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Description

本発明はX線CT装置に関し,特に人体の断層像を生成して画像診断を行うためのX線CT装置に関するものである。
X線CT装置は被写体のX線透過像を様々な角度から撮影し,得られた撮影画像を再構成して被写体の断層像を生成する装置である。一般に,再構成演算に先立って幾つかの撮影データの補正が行われる。このような補正の代表例として,エアキャリブレーションとリニアリティ補正がある。
エアキャリブレーションは,被写体の撮影画像Iを,被写体を配置せずに撮影したエア画像Ioで正規化する演算であり,次式で示される。
Figure 0005102953
ただしlはX線ビーム上の位置,μ(l)は位置lにおける被写体の吸収係数である。再構成演算はエアキャリブレーション後のデータから,逆ラドン変換に基づいて被写体の吸収係数μ(l)を計算するものである。なお被写体の吸収係数が均一である場合,数1は次式となる。
Figure 0005102953
ただしdはX線ビームの被写体中のパス長である。エアデータは通常,X線CT装置の起動時等に撮影される。また通常,S/N向上のために数百〜数千フレーム分のエアデータが撮影され,キャリブレーションにはその平均値が使用される。エアデータはX線管の管電圧毎に異なるため,通常,撮影に使用される管電圧毎に取得される。
リニアリティ補正は,特に画像診断を目的としたX線CT装置で一般的に行われる補正であり,CT値の精度を向上するためにエアキャリブレーション後のデータに対して実施される。数2によれば,水のように吸収係数が一定の被写体を撮影した場合,μdの値は被写体厚dに対してリニアに変化するはずである。しかし実際には,ビームハードニング効果やX線検出器の入出力特性の歪みによって上記リニアリティが低下するため,再構成画像のCT値が不均一となる。このような問題を避けるためにリニアリティ補正が実施される。リニアリティ補正の従来例としては特許文献1がある。ただし特許文献1では,リニアリティ補正はファントムキャリブレーションと呼ばれている。特許文献1では,被写体厚dが既知の均一な水ファントムを用いてμdの非線形特性を測定し,多項式変換によりこれを補正している。特許文献1のリニアリティ補正は水ファントムに対して最適化されるため,被写体の組成によっては必ずしも有功な補正精度が保たれる訳ではない。しかし,人体のように水に近い組成を有する被写体を対象とした場合は,非常に有効な補正である。なお,ビームハードニング効果はX線管の管電圧に依存して変化するため,リニアリティ補正用の多項式は通常,撮影に使用される管電圧毎に測定される。また,リニアリティ補正用の多項式は通常CT装置のメンテナンス時などに測定される。
特公昭61−54412号
エアキャリブレーション用データやリニアリティ補正用データを取得するためには,通常様々な撮影を行う必要があり,計測に非常に多くの時間と手間がかかる。このため,撮影可能な管電圧の種類は,通常3〜4種類程度に限定されているのが現状である。一方,管電圧は画質や被曝量を左右する重要なパラメータであるため,設定可能な管電圧の種類をできるだけ多くして撮影条件を最適化したいというニーズがある。
本発明の目的は,少ない種類の管電圧で計測したエアデータおよびリニアリティ補正データに基づいて,任意の管電圧のエアデータおよびリニアリティ補正データを生成する方法を提供することにある。
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば,以下のとおりである。
(手段1)
X線管と,前記X線管に対向配置されたX線検出器と,前記X線管と前記X線検出器の対を回転させる回転機構を有し,前記回転の周方向の多数の位置で取得した被写体のX線透過像に基づいて前記被写体の断層像を生成するX線CT装置において,被写体を配置しない状態で前記X線管のN種類(ただし,Nは2以上の自然数とする)の管電圧で撮影したエアデータの実測値を記録する記録手段と,異なるM種類(ただし,MはN<Mを満たす自然数)の管電圧に対してエアデータの理論値を計算する手段と,前記N種類の管電圧に対して前記エアデータの実測値と前記エアデータ理論値の差分値を計算する手段と,前記エアデータの差分値を管電圧を変数とする近似式で近似する手段と,前記M種類の管電圧に対して前記近似式を用いてエアデータの差分値を計算した後に前記エアデータの理論値に加算して修正エアデータを計算する手段と,前記修正エアデータを用いてエアキャリブレーション計算を行う手段を有することを特徴とするX線CT装置である。これにより,少数(N種類)の管電圧で計測したエアデータから,より多数(M種類)の管電圧に対応したエアデータを生成できるため,エアデータの撮影時間を短縮すると共に,多数の撮影管電圧に対応可能なX線CT装置を提供できる。また,エアデータの理論値と実測値の差分量のみを管電圧を変数とする近似式で近似するため,上記近似が理論値成分に影響されることなく,高精度の近似が可能である。この結果,近似誤差に起因するエアキャリブレーション精度の低下を縮小できる。
(手段2)
前記修正エアデータを記録する第2の記録手段を有することを特徴とする手段1に記載のX線CT装置である。これにより,多数の管電圧に対してエアデータを予め計算して記録できるので,エアキャリブレーション演算を高速に行える。
(手段3)
略均一の素材で構成される模擬被写体に対して前記N種類の管電圧において撮影データを実測して記録する第3の記録手段と,前記M種類の管電圧に対して前記模擬被写体の撮影データの理論値を計算する手段と,前記N種類の管電圧に対して前記撮影データの実測値と前記撮影データ理論値の差分値を計算する手段と,前記撮影データの差分値を管電圧を変数とする近似式で近似する手段と,前記M種類の管電圧に対して前記近似式を用いて撮影データの差分値を計算した後に前記撮影データの理論値に加算して修正撮影データを計算する手段と,前記修正撮影データに対して生成した前記模擬被写体のCT値が略一定となるように前記修正撮影データを変換する変換式を計算する手段と,前記変換式に基づいて前記被写体の撮影データを修正する手段を有することを特徴とする手段1および2に記載のX線CT装置である。これにより,少数(N種類)の管電圧で計測した撮影データから,より多数(M種類)の管電圧に対応したリニアリティ補正データを生成できるため,模擬被写体の撮影に必要な時間や手間を減少すると共に,多数の撮影管電圧に対応可能なX線CT装置を提供できる。また,撮影データの理論値と実測値の差分量のみを管電圧を変数とする近似関数で近似するため,上記近似が理論値成分に影響されることなく,高精度の近似が可能である。この結果,近似誤差に起因するリニアリティ補正精度の低下を縮小できる。
(手段4)
前記変換式を規定するパラメータの値を記録する第4の記録手段を有することを特徴とする手段3に記載のX線CT装置である。これにより,多数の管電圧に対してリニアリティ補正データを予め計算して記録できるので,リニアリティ補正演算を高速化に行える。
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば,以下の通りである。
少ない手間と時間で,任意の管電圧におけるX線CT計測を可能とするエアデータおよびリニアリティ補正データを作成できる。その結果,撮影管電圧の高精度の設定が可能となり,計測画像の画質を向上できる。
以下,本発明の実施例を図面に基づいて詳細に説明する。
図1は本発明の実施の形態に係るX線CT装置の正面模式図である。本実施の形態に係るX線CT装置は,X線管1,X線検出器2,回転板3,寝台天板4,ガントリー5,撮影制御手段100,操作卓101,フレームメモリ102,エアキャリブレーション手段103,リニアリティ補正手段104,画像再構成手段105,画像表示手段106,演算手段A107,離散エアデータテーブル108,演算手段B109,連続エアデータテーブル110,演算手段C111,離散リニアリティ補正テーブル112,演算手段D113,連続リニアリティ補正テーブル114,離散μdテーブル115,および連続μdテーブル116等から構成される。X線管1およびX線検出器2の対からなる撮影系は回転板3に固定されており,上記撮影系および回転板3の全体はガントリー5の内部に格納されている。ガントリー5の中央部には開口部6が設けられており,開口部6の中心付近には被写体10が配置される。なお本実施の形態では被写体10として人体を想定しており,通常被写体10は寝台天板4上に横たわった状態で計測される。回転板3は図示しない駆動モーターによって回転し,被写体10の全周方向からのX線透過像を撮影する。
図1において,X線管1のX線発生点とX線検出器2のX線入力面との距離の代表例は1040 [mm]である。また開口部8の直径の代表例は500 [mm]である。回転板3の回転の所要時間の代表例は0.4 [s]である。X線検出器2にはシンチレータおよびフォトダイオード等から構成される公知のX線検出器が使用される。X線検出器2はマルチスライスCT用の多層センサであり,紙面水平方向のチャネル数の代表例は900チャネル,紙面垂直方向のスライス数の代表例は64スライスである。各検出素子のチャネル方向およびスライス方向のサイズの代表例は1[mm]である。撮影系の1回転における撮影回数の代表例は900回であり,回転板3が0.4度回転する毎に1回の撮影が行われる。
次に,本実施の形態に係るX線CT装置の動作を説明する。本X線CT装置には,本撮影モードおよびキャリブレーション撮影モードの2種類の撮影モードが用意されている。本撮影モードおよびキャリブレーション撮影モードの選択は,検者が操作卓101を通して指示する。なお図1では,本撮影モード時におけるデータの流れを実線で,キャリブレーション撮影モードにおけるデータの流れを破線で示してある。以下,両撮影モードにおける動作を説明する。
まず本撮影モードにおける本X線撮影装置の動作を説明する。使用者は操作卓101を通して撮影時の管電圧や管電流,被写体10の撮影範囲等の撮影条件を指定した後に撮影開始を指示する。撮影開始が指示されると同時に,撮影制御手段100は回転板3の回転を開始する。回転板3の回転が定速状態に入った時点で撮影制御手段100はX線管1のX線照射開始およびX線検出器2の撮影開始を指示し,撮影を開始する。X線検出器2から出力された撮影データはフレームメモリ102に順次格納される。エアキャリブレーション手段103は,フレームメモリ102に格納された全てのチャネルおよびスライス位置のデータに対して,数1に示したエアキャリブレーションを行う。このとき撮影管電圧に対応するエアデータが,連続エアデータテーブル110から参照される。続いてリニアリティ補正手段104は,連続リニアリティ補正テーブル114を参照して撮影管電圧に対応するリニアリティ補正データを読み出し,後述する方法でリニアリティ補正104を行う。続いて画像再構成手段105は公知の再構成アルゴリズムを用いて被写体10の断層像を再構成し,再構成結果はモニタ等の公知の画像表示手段106によって表示される。
次にキャリブレーション撮影モードにおける本X線撮影装置の動作を説明する。キャリブレーション撮影モードでは,エアデータとリニアリティ補正データが計測される。
エアデータ計測時には被写体10および寝台天板4を配置しない状態で撮影が行われる。使用者が,操作卓101を通してエアデータ撮影の開始を指示すると,回転板3が回転を開始し,回転が定速状態に入った時点でエアデータの撮影を開始する。撮影では回転板3の1回または2回転分程度のエアデータが取得され,フレームメモリ102に記録される。次に演算手段Aは前記エアデータの全フレーム分の平均値を計算して離散エアデータテーブル108に格納する。エアデータの撮影開始から離散エアデータテーブル108への平均エアデータの格納に至る上記一連の作業は,予め指定された離散的な管電圧値に対して実施され,全ての管電圧に対して上記一連の作業が終了した段階でエアデータの撮影を終了する。なお以下においては,上記離散的な管電圧値として,90kV,100kV,110kV,120kV,および130kVの5種類の管電圧が指定されたものと仮定して説明を進めるが,本例に限定されるものではない。エアデータの撮影が終了すると,演算手段B109は後述する方法を用いて,連続的な管電圧に対するエアデータを作製し,結果を連続エアデータテーブル110に格納する。なお,本実施の形態では連続的な管電圧を,90kV〜130kVの区間における1kV刻みの管電圧と定義する。連続エアデータテーブル110を用いれば,任意の1kV刻みの管電圧での撮影が可能となる。離散エアデータテーブル108および連続エアデータテーブル110のデータ構造については後述する。
リニアリティ補正データ計測時には,文献1に示されるような直径の異なる円筒状の水ファントムが被写体として配置され,それぞれの撮影データがフレームメモリ102に格納される。演算手段C111は文献1に示される公知の方法を用いて,後述するリニアリティ補正テーブルを作成し,結果を離散リニアリティ補正テーブル112に格納する。なお,水ファントムの撮影から離散リニアリティ補正テーブル112へのリニアリティ補正テーブルの格納に至る上記一連の作業は全ての離散的な管電圧値に対して実施される。全ての離散的な管電圧値に対して離散リニアリティ補正テーブル112へのリニアリティ補正テーブルの格納が終了した時点で,演算手段C111は後述する方法を用いて離散μdテーブル115を作成する。続いて演算手段D113は離散μdテーブル115を参照して後述する方法で連続的な管電圧に対するμdテーブルを作成し,結果を連続μdテーブル116に格納する。更に,演算手段D113は連続μdテーブル116を参照して後述する方法で連続的な管電圧に対するリニアリティ補正テーブルを作成し,結果を連続リニアリティ補正テーブル114に格納する。離散リニアリティ補正テーブル112,連続リニアリティ補正テーブル114,離散μdテーブル115,および連続μdテーブル116のデータ構造については後述する。
なお,図1においてエアキャリブレーション手段103,リニアリティ補正手段104,画像再構成手段105,演算手段A107,演算手段B109,演算手段C111,および演算手段D113のそれぞれは,専用演算器または公知の汎用演算器等が用いられる。
図2は離散エアデータテーブル108のデータ構造を説明するための図である。なお,図2では簡単のためX線検出器2の1つの画素(チャネル位置i,スライス位置j)に対するテーブルを示したが,実際には全ての画素に対してエアデータが格納される。離散的な管電圧で計測されたエアデータの平均値は,離散エアデータテーブル108中の対応する位置に格納される。
図3は連続エアデータテーブル110のデータ構造を説明するための図である。なお,図2の場合と同様,簡単のためX線検出器2の1つの画素に対するテーブルのみを示している。演算手段B109によって連続的な管電圧に対して計算されたエアデータの平均値は,連続エアデータテーブル110の対応する位置に格納される。ただし,図3において離散的な管電圧と一致するエアデータに関しては,図2中のデータがコピーされる。
図4は演算手段B109において,離散的な管電圧で計測されたエアデータから連続的な管電圧に対するエアデータを計算する方法を説明するための図である。図4(a)中のプロットは,離散的な管電圧に対して実測されたエアデータの信号値Ioを示したものである。これに対して,図4(a)中の実線は,後述する方法を用いてエアデータの理論値を計算した結果である。本理論値は,連続的な管電圧に対して計算されている。図4(b)のプロットは,図4(a)に示された実測値と理論値の差分値を示したものである。このような実測値と理論値の誤差は,X線検出器2の入出力特性の歪み等が原因で生じるものである。図4(b)中の破線は,図4(b)中のプロットを多項式近似したものである。近似多項式には通常以下の3次式が用いられる。
Figure 0005102953
ただし,a0〜a3を近似係数とし,Vを管電圧とする。いま,図4(a)で計算したエアデータの理論値をJ(V)とすると,任意の管電圧Vに対するエアデータの値は次式で計算できる。
Figure 0005102953
演算手段B109は,連続的な管電圧に対するエアデータの理論値を計算した後に数3の近似および数4の計算を行って,結果を連続エアデータテーブル110の該当位置に格納する。
図5はリニアリティ補正手段104における補正方法を説明するための図である。文献1の計測では,予め被写体厚dが既知である円筒状の水に対して撮影が行われ,エアキャリブレーションが実施される。このとき,数2よりエアキャリブレーション後の信号値はμdに相当している。リニアリティ補正では,上記μdの実測値が理想値に変換される。ここでCT値の定義によれば,水の吸収係数が1000となるように規格化が行われるため,μdの理想値は1000dとなる。このようなμdの実測値および理想値をX,Y軸上の値としてプロットした結果が図5である。リニアリティ補正はXからYへの値の変換であり,このような変換は,通常上記プロットを以下の多項式で近似することで実現される。
Figure 0005102953
一方,YからXへの変換を次式のような多項式で近似すれば,任意の被写体厚dに対してμdの実測値を計算できる。
Figure 0005102953
図6は離散リニアリティ補正テーブル112のデータ構造を説明するための図である。なお,図6では簡単のためX線検出器2の1つの画素(チャネル位置i,スライス位置j)に対するテーブルを示したが,実際には全ての画素に対してリニアリティ補正係数が格納される。演算手段C111は各離散的な管電圧に対して,得られたμdの実測値とその理想値の関係を数5で近似し,得られた補正係数b2, b1を,該当するテーブル位置に格納する。
図7は離散μdテーブル115のデータ構造を説明するための図である。なお,図6の場合と同様,簡単のためX線検出器2の1つの画素に対するテーブルのみを示している。数6を用いれば,任意の被写体厚dに対してμdの実測値を計算できる。演算手段C111は各離散的な管電圧に対して,離散μdテーブル115中に示された各被写体厚におけるμdの実測値を計算して,結果を該当するテーブル位置に格納する。
図8は連続リニアリティ補正テーブル114のデータ構造を説明するための図である。なお,図6の場合と同様,簡単のためX線検出器2の1つの画素に対するテーブルのみを示している。演算手段D113によって連続的な管電圧に対して計算されたリニアリティ補正係数は,連続リニアリティ補正テーブル114の対応する位置に格納される。ただし,図8において離散的な管電圧と一致するリニアリティ補正係数に関しては,図6中のデータがコピーされる。
図9は連続μdテーブル116のデータ構造を説明するための図である。なお,図7の場合と同様,簡単のためX線検出器2の1つの画素に対するテーブルのみを示している。演算手段D113によって連続的な管電圧に対して計算されたμdの値は,連続μdテーブル116の対応する位置に格納される。ただし,図9において離散的な管電圧と一致するμdの値に関しては,図7中のデータがコピーされる。
図10は演算手段D113において,離散的な管電圧で計測されたμd値から連続的な管電圧に対するμd値を計算する方法を説明するための図である。図10(a)中のプロットは,離散μdテーブル115中の1つの被写体厚において,離散的な管電圧とμd実測値の関係を示したものである。これに対して,図10(a)中の実線は,後述する方法を用いてμd値の理論値を計算した結果である。本理論値は,連続的な管電圧に対して計算される。
図10(b)のプロットは,図10(a)に示された実測値と理論値の差分値を示したものである。このような実測値と理論値の誤差は,散乱X線やX線検出器2の入出力特性の歪み等が原因で生じるものである。図10(b)中の破線は,図10(b)中のプロットを多項式近似したものである。近似多項式には通常以下の3次式が用いられる。
Figure 0005102953
ただし,p0〜p3を近似係数とする。いま,図10(a)で計算したμd値の理論値をK(V)とすると,任意の管電圧Vに対するμd値は次式で計算できる。
Figure 0005102953
演算手段D113は,連続的な管電圧に対するμdの理論値を計算した後に数7の近似および数8の計算を行って,結果を連続μdテーブル116の該当位置に格納する。続いて演算手段D113は連続μdテーブル116を参照し,各管電圧においてμd値(X軸)と対応する理想μd値(Y軸)の関係を数5で近似する。このとき得られたリニアリティ補正係数b2およびb1は連続リニアリティ補正テーブル114に格納される。
図11はエアデータおよびμdの理論値の計算方法を説明するための図である。X線発生点1100より放射されたX線ビームは,X線管1の固有ろ過1103,線質フィルタ1104,補償フィルタ1105,被写体1106等で一部減衰した後に,X線検出器2中のシンチレータ1102に入射して検出される。ここでX線のエネルギーをε,管電圧VにおけるX線のエネルギースペクトルをNv(ε),固有ろ過1103中のX線ビームのパス長およびトータル吸収係数をそれぞれλ1, μ1(ε),線質フィルタ1104中のX線ビームのパス長およびトータルX線吸収係数をそれぞれλ2, μ2(ε),補償フィルタ1105中のX線ビームのパス長およびトータルX線吸収係数をそれぞれλ3, μ3(ε),被写体1106中のX線ビームのパス長およびトータルX線吸収係数をそれぞれλw, d,シンチレータ1102の厚さおよびエネルギー吸収係数をそれぞれλd, μd(ε),X線検出器のゲインをαとすると,エアデータおよび被写体透過後の信号データはそれぞれ数9および10で計算できる。
Figure 0005102953
Figure 0005102953
なお,エネルギースペクトルNv(ε)は,Med. Phys. Vol.15, No5, 713-720, Sep/Oct, 1988(以下,文献2とする)に記載の方法を用いて計算できる。μdの理論値を計算する場合は数2に数9および数10を代入すれば良い。このとき被写体1106には均質な水を仮定し,離散μdテーブル115中に示される様々な被写体厚dに対してμdを計算する。
以上本実施の形態に示したX線CT装置を用いれば,少数の離散的な管電圧で計測したエアデータおよびリニアリティ補正係数に基づいて,任意の連続的な管電圧に対するエアデータおよびリニアリティ補正係数を計算できるため,これらの補正データの計測時間を短縮すると共に,多数の撮影管電圧に対応可能なX線CT装置を提供できる。また上記計算は,理論値と実測値の差分量のみを管電圧を変数とする多項式で近似するため,上記近似が理論値成分に影響されることなく,高精度の多項式近似が可能である。この結果,近似誤差に起因する補正精度の低下を縮小できる。
以上,実施の形態を用いて本発明に係るX線CT装置の例を示したが,本発明は本例に限定されるものではなく,その要旨を逸脱しない範囲において種々変更しうることはいうまでもない。例えば,本実施の形態では連続的な管電圧に対するエアデータおよびリニアリティ補正係数を予め求めて,それぞれ連続エアデータテーブル110および連続リニアリティ補正テーブル114に記録していたが,撮影開始前にこれらの値をその都度計算しても良い。この場合,連続エアデータテーブル110および連続リニアリティ補正テーブル114 を保存しておくためのメモリ空間が不要となり,装置コストを低減できる。
本発明の実施の形態に係るX線CT装置の正面模式図である。 離散エアデータテーブル108のデータ構造を説明するための図である。 連続エアデータテーブル110のデータ構造を説明するための図である。 演算手段B109において,離散的な管電圧で計測されたエアデータから連続的な管電圧に対するエアデータを計算する方法を説明するための図である。 リニアリティ補正手段104における補正方法を説明するための図である。 離散リニアリティ補正テーブル112のデータ構造を説明するための図である。 離散μdテーブル115のデータ構造を説明するための図である。 連続リニアリティ補正テーブル114のデータ構造を説明するための図である。 連続μdテーブル116のデータ構造を説明するための図である。 演算手段D113において,離散的な管電圧で計測されたμd値から連続的な管電圧に対するμd値を計算する方法を説明するための図である。 エアデータおよびμdの理論値の計算方法を説明するための図である。
符号の説明
1・・・X線管,
2・・・X線検出器,
3・・・回転板,
4・・・寝台天板,
5・・・ガントリー,
6・・・開口部,
10・・・被写体,
1100・・・X線発生点,
1102・・・シンチレータ,
1103・・・固有ろ過,
1104・・・線質フィルタ,
1105・・・補償フィルタ,
1106・・・被写体。

Claims (4)

  1. X線管と,前記X線管に対向配置されたX線検出器と,前記X線管と前記X線検出器の対を回転させる回転機構を有し,前記回転の周方向の多数の位置で取得した被写体のX線透過像に基づいて前記被写体の断層像を生成するX線CT装置において,被写体を配置しない状態で前記X線管のN種類(ただし,Nは2以上の自然数とする)の管電圧で撮影したエアデータの実測値を記録する記録手段と,異なるM種類(ただし,MはN<Mを満たす自然数)の管電圧に対してエアデータの理論値を計算する手段と,前記N種類の管電圧に対して前記エアデータの実測値と前記エアデータ理論値の差分値を計算する手段と,前記エアデータの差分値を管電圧を変数とする近似式で近似する手段と,前記M種類の管電圧に対して前記近似式を用いてエアデータの差分値を計算した後に前記エアデータの理論値に加算して修正エアデータを計算する手段と,前記修正エアデータを用いてエアキャリブレーション計算を行う手段を有することを特徴とするX線CT装置。
  2. 前記修正エアデータを記録する第2の記録手段を有することを特徴とする請求項1に記載のX線CT装置。
  3. 略均一の素材で構成される模擬被写体に対して前記N種類の管電圧において撮影データを実測して記録する第3の記録手段と,前記M種類の管電圧に対して前記模擬被写体の撮影データの理論値を計算する手段と,前記N種類の管電圧に対して前記撮影データの実測値と前記撮影データ理論値の差分値を計算する手段と,前記撮影データの差分値を管電圧を変数とする近似式で近似する手段と,前記M種類の管電圧に対して前記近似式を用いて撮影データの差分値を計算した後に前記撮影データの理論値に加算して修正撮影データを計算する手段と,前記修正撮影データに対して生成した前記模擬被写体のCT値が略一定となるように前記修正撮影データを変換する変換式を計算する手段と,前記変換式に基づいて前記被写体の撮影データを修正する手段を有することを特徴とする請求項1または2に記載のX線CT装置。
  4. 前記変換式を規定するパラメータの値を記録する第4の記録手段を有することを特徴とする請求項3に記載のX線CT装置。
JP2005318976A 2005-11-02 2005-11-02 X線ct装置 Active JP5102953B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005318976A JP5102953B2 (ja) 2005-11-02 2005-11-02 X線ct装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005318976A JP5102953B2 (ja) 2005-11-02 2005-11-02 X線ct装置

Publications (2)

Publication Number Publication Date
JP2007125129A JP2007125129A (ja) 2007-05-24
JP5102953B2 true JP5102953B2 (ja) 2012-12-19

Family

ID=38148304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005318976A Active JP5102953B2 (ja) 2005-11-02 2005-11-02 X線ct装置

Country Status (1)

Country Link
JP (1) JP5102953B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017045620A1 (zh) * 2015-09-18 2017-03-23 上海联影医疗科技有限公司 一种计算机断层成像方法与***

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028193A (ja) * 2007-07-26 2009-02-12 Ge Medical Systems Global Technology Co Llc X線ct装置
JP6026145B2 (ja) * 2012-06-05 2016-11-16 東芝メディカルシステムズ株式会社 X線ct装置
CN106539590B (zh) * 2015-09-18 2018-10-30 上海联影医疗科技有限公司 计算机断层成像校正方法及计算机断层成像***
US10758203B2 (en) 2017-08-08 2020-09-01 Canon Medical Systems Corporation X-ray computed tomography apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594241A (en) * 1979-01-11 1980-07-17 Hitachi Medical Corp Xxray transverse layer device
JPH05154142A (ja) * 1991-12-05 1993-06-22 Hitachi Medical Corp X線ct装置
JP3423828B2 (ja) * 1995-11-30 2003-07-07 株式会社日立メディコ X線画像作成方法およびその装置
US20070116183A1 (en) * 2003-07-30 2007-05-24 Hironori Ueki Tomograph
JP4533010B2 (ja) * 2003-11-20 2010-08-25 キヤノン株式会社 放射線撮像装置、放射線撮像方法及び放射線撮像システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017045620A1 (zh) * 2015-09-18 2017-03-23 上海联影医疗科技有限公司 一种计算机断层成像方法与***
US10722204B2 (en) 2015-09-18 2020-07-28 Shanghai United Imaging Healthcare Co., Ltd. System and method for computer tomography
GB2550070B (en) * 2015-09-18 2021-11-24 Shanghai United Imaging Healthcare Co Ltd System and method for computer tomography
US11191509B2 (en) 2015-09-18 2021-12-07 Shanghai United Imaging Healthcare Co., Ltd. System and method for computed tomography

Also Published As

Publication number Publication date
JP2007125129A (ja) 2007-05-24

Similar Documents

Publication Publication Date Title
US20100142791A1 (en) Image processing apparatus and image processing method
JP4336661B2 (ja) X線ct装置および散乱測定方法
JP6470837B2 (ja) X線ct装置および逐次修正パラメータ決定方法
JP3802869B2 (ja) ビームハードニング後処理方法およびx線ct装置
WO2015137011A1 (ja) X線ct装置、及び処理装置
EP0486591A1 (en) Method and apparatus for computing tomographic scans
WO2005011502A1 (ja) 放射線断層撮影装置
JP2003180675A (ja) 計算機式断層写真法システムの雑音低減の方法及び装置
US9084543B2 (en) X-ray diagnostic apparatus
JP5102953B2 (ja) X線ct装置
WO2014156611A1 (ja) 画像処理装置、放射線撮影装置および画像処理方法
JP5579505B2 (ja) X線ct装置
US10098603B2 (en) Method for estimation and correction of grid pattern due to scatter
JPWO2015020072A1 (ja) X線ct装置および補正処理装置
JP3527381B2 (ja) X線ct装置
JP2011212434A (ja) 放射線画像撮影方法および装置
JP4799000B2 (ja) X線撮影装置及びx線撮影方法
JP3270153B2 (ja) コンピュータトモグラフ
KR20040090725A (ko) X선 ct 장치 및 x선 ct 장치의 빔 강화 후처리 방법
JP2008023039A5 (ja)
JP2004531306A (ja) 対象画像におけるアーチファクトを減少する方法
JP4703221B2 (ja) X線ct装置
JP2008125691A (ja) 放射線画像演算方法および装置並びにプログラム
JP2003033348A (ja) 3次元x線ct装置
JP5523691B2 (ja) X線診断装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111003

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5102953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250