JP5101848B2 - Method for producing soft magnetic powder and dust core using the soft magnetic powder - Google Patents

Method for producing soft magnetic powder and dust core using the soft magnetic powder Download PDF

Info

Publication number
JP5101848B2
JP5101848B2 JP2006245301A JP2006245301A JP5101848B2 JP 5101848 B2 JP5101848 B2 JP 5101848B2 JP 2006245301 A JP2006245301 A JP 2006245301A JP 2006245301 A JP2006245301 A JP 2006245301A JP 5101848 B2 JP5101848 B2 JP 5101848B2
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic powder
processing chamber
metal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006245301A
Other languages
Japanese (ja)
Other versions
JP2008063642A (en
Inventor
浩 永田
良憲 新垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2006245301A priority Critical patent/JP5101848B2/en
Publication of JP2008063642A publication Critical patent/JP2008063642A/en
Application granted granted Critical
Publication of JP5101848B2 publication Critical patent/JP5101848B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、軟磁性粉末の製造方法及びこの軟磁性粉末を用いた圧粉磁心に関する。   The present invention relates to a method for producing a soft magnetic powder and a dust core using the soft magnetic powder.

圧粉磁心は、小型や複雑な形状を有する製品に対し高い歩留まりで製造でき、しかも、磁心内部の電気抵抗を高くできることから、ノイズフィルタ、トランス、チョークコイルまたはモータのコアなど幅広い分野で用いられている。この圧粉磁心は、例えば次のように作製される。即ち、絶縁膜で被覆されたFeを主成分とする軟磁性粉末を、少量の有機樹脂バインダーと混合後に所定の金型に充填し、例えばプレス成形機を用いて、所定の圧力でプレス成形して圧粉磁心のグリーンを成形する。次いで、このグリーンに対し所定温度で熱処理を施し、成形時に蓄積された成形歪みを解放して所望の圧粉磁心にする。このように作製した圧粉磁心を交流電場で使用する場合、渦電流による電力ロスや回路部品の発熱を抑制するためには、軟磁性粉末相互の間が十分に絶縁されていることが必要となる。   Dust cores can be manufactured at high yields for products with small and complex shapes, and because the electrical resistance inside the core can be increased, they are used in a wide range of fields such as noise filters, transformers, choke coils or motor cores. ing. This powder magnetic core is produced as follows, for example. That is, a soft magnetic powder composed mainly of Fe coated with an insulating film is mixed with a small amount of an organic resin binder, filled into a predetermined mold, and press-molded at a predetermined pressure using, for example, a press molding machine. Form green powder core. Next, the green is heat treated at a predetermined temperature to release the molding distortion accumulated at the time of molding to obtain a desired dust core. When the dust core produced in this way is used in an AC electric field, it is necessary that the soft magnetic powder be sufficiently insulated from each other in order to suppress power loss due to eddy currents and heat generation of circuit components. Become.

このことから、軟磁性粉末表面を絶縁膜で被覆する方法として、転動流動造粒装置内で、純鉄粉末を攪拌しながら、例えばアルミニウムを含むリン酸塩と、例えばカリウムやアンモニウムを含む重クロム塩とを含有する絶縁膜水溶液を噴霧し、次いで、上記装置から取出した後、軟磁性粉末を大気中所定温度下で加熱処理し、さらに乾燥処理するものが知られている(特許文献1)。
特開2003−272911号公報(例えば、実施例1の記載参照)
Therefore, as a method of coating the surface of the soft magnetic powder with an insulating film, for example, a phosphate containing aluminum and a heavy metal containing potassium or ammonium are mixed while stirring pure iron powder in a tumbling flow granulator. An insulating film aqueous solution containing a chromium salt is sprayed and then taken out from the apparatus, and then the soft magnetic powder is heat-treated at a predetermined temperature in the atmosphere and further dried (Patent Document 1). ).
Japanese Patent Laid-Open No. 2003-272911 (for example, see the description of Example 1)

しかしながら、上記方法で得た絶縁膜を有する軟磁性粉末を用いて、プレス成形により圧粉磁心を作製する場合、成形時の圧力により絶縁膜が破損し易く、加工性が低いという問題があった。成形時の圧力により絶縁膜が破損すると、軟磁性粉末の電気抵抗率が低下し、渦電流による電力ロスが大きくなる。   However, when a soft magnetic powder having an insulating film obtained by the above method is used to produce a powder magnetic core by press molding, there is a problem that the insulating film is easily damaged by the pressure during molding and the workability is low. . If the insulating film is damaged by the pressure during molding, the electrical resistivity of the soft magnetic powder is lowered, and the power loss due to eddy current is increased.

そこで、上記点に鑑み、本発明の第一の目的は、高い絶縁性を有し、加工性の高い軟磁性粉末の製造方法を提供することにある。また、本発明の第二の目的は、渦電流による電力ロスが小さいと共に、高透磁率や高飽和磁束密度を有する圧粉磁心を提供することにある。   Therefore, in view of the above points, a first object of the present invention is to provide a method for producing a soft magnetic powder having high insulation and high workability. A second object of the present invention is to provide a dust core having a small power loss due to an eddy current and a high magnetic permeability and a high saturation magnetic flux density.

上記課題を解決するために、Feを主成分とし、その表面が絶縁膜で被覆された本発明の軟磁性粉末の製造方法は、軟磁性粉末の表面を酸化処理する酸化工程と、Mgを含む金属蒸発材料を処理室に配置して加熱し、この金属蒸発材料を蒸発させて金属蒸気雰囲気を処理室内に形成し、この軟磁性粉末を処理室内の温度より低く保持した状態で処理室に投入し、この処理室内で軟磁性粉末を移動させながら処理室内と軟磁性粉末との間の温度差によって、軟磁性粉末表面に金属蒸発材料を選択的に付着堆積させる成膜工程と、表面に金属蒸発材料が付着堆積した軟磁性粉末を所定温度下で加熱し、酸化工程で形成された酸化膜を還元して軟磁性粉末の表面にマグネシウムを含む酸化絶縁膜を形成する熱処理工程と、を含むことを特徴とする。
In order to solve the above problems, a main component F e, a manufacturing method of the soft magnetic powder of the present invention whose surface is covered with an insulating film, an oxidation step of oxidizing the surface of the soft magnetic powder, the Mg The metal evaporating material is placed in the processing chamber and heated to evaporate the metal evaporating material to form a metal vapor atmosphere in the processing chamber, and the soft magnetic powder is kept in the processing chamber in a state kept below the temperature in the processing chamber. A film forming process for selectively depositing and depositing a metal evaporation material on the surface of the soft magnetic powder according to a temperature difference between the processing chamber and the soft magnetic powder while moving the soft magnetic powder in the processing chamber; A heat treatment step of heating the soft magnetic powder deposited with the metal evaporation material under a predetermined temperature to reduce the oxide film formed in the oxidation step to form an oxide insulating film containing magnesium on the surface of the soft magnetic powder ; It is characterized by including

これによれば、処理室内にMgを含有する金属蒸発材料を配置した後、この処理室を加熱すると、処理室内にMgの金属蒸気雰囲気が形成される。次いで、例えばFeを主成分とする軟磁性粉末を大気雰囲気にさらすことで酸素が吸着してその表面に酸化膜が形成されたものを、処理室内の温度より低く保持した状態で処理室に投入する。この軟磁性粉末が金属蒸気雰囲気が形成された処理室内に投入されると、軟磁性粉末表面にのみ選択的に金属蒸気雰囲気中の金属原子が高速で付着して堆積する。その際、処理室内で移動させながら所定時間保持すると、軟磁性粉末の表面全体に亘って金属蒸発材料の薄膜が形成される。次いで、表面にMgを含む金属原子が付着堆積した軟磁性粉末を加熱すると、還元されて軟磁性粉末の表面に、例えば酸化マグネシウムからなる強固な絶縁膜が形成される。これにより、表面が強固な絶縁膜で被覆されることで、絶縁膜が破損し難く、高い絶縁性及び加工性を有する軟磁性材料が得られる。   According to this, when a metal evaporation material containing Mg is arranged in the processing chamber and then this processing chamber is heated, an Mg metal vapor atmosphere is formed in the processing chamber. Next, for example, when a soft magnetic powder containing Fe as a main component is exposed to an air atmosphere, oxygen is adsorbed and an oxide film is formed on the surface of the soft magnetic powder. To do. When this soft magnetic powder is put into a processing chamber in which a metal vapor atmosphere is formed, metal atoms in the metal vapor atmosphere selectively adhere and deposit only on the surface of the soft magnetic powder. At that time, if the substrate is held for a predetermined time while being moved in the processing chamber, a thin film of a metal evaporation material is formed over the entire surface of the soft magnetic powder. Next, when the soft magnetic powder with metal atoms including Mg deposited on the surface is heated, the soft magnetic powder is reduced and a strong insulating film made of, for example, magnesium oxide is formed on the surface of the soft magnetic powder. As a result, the surface is covered with a strong insulating film, so that the insulating film is hardly damaged and a soft magnetic material having high insulating properties and workability can be obtained.

尚、軟磁性粉末表面の酸化を促進させるために、前記成膜工程に先立って、軟磁性粉末の表面を酸化処理する酸化工程を含むことが望ましい。   In order to promote the oxidation of the surface of the soft magnetic powder, it is desirable to include an oxidation step of oxidizing the surface of the soft magnetic powder prior to the film forming step.

前記金属蒸気雰囲気が、前記処理室内で飽和状態であれば、金属蒸発材料を高速で成膜できてよい。   If the metal vapor atmosphere is saturated in the processing chamber, the metal evaporation material may be formed at a high speed.

また、前記金属蒸発材料はAlを含むものであれば、軟磁性材料への密着性を向上できてよい。   Further, if the metal evaporation material contains Al, the adhesion to the soft magnetic material may be improved.

上記課題を解決するために、請求項5記載の圧粉磁心は、請求項1乃至請求項4のいずれかに記載の製造方法で得た軟磁性粉末を加圧成形し、次いで所定温度の熱処理を施してなることを特徴とする。強固な絶縁膜で被覆された軟磁性材料を用いることで、この強固な絶縁膜が潤滑剤としての役割を果たし、製造時に密度が高くなると共に歪が入り難くなって、電気抵抗率が高く、渦電流による電力ロスを小さくでき、その上、高透磁率や高飽和磁束密度を有するものとなる。   In order to solve the above-mentioned problems, a dust core according to claim 5 is formed by press-molding soft magnetic powder obtained by the manufacturing method according to any one of claims 1 to 4, and then heat treatment at a predetermined temperature. It is characterized by giving. By using a soft magnetic material coated with a strong insulating film, this strong insulating film plays a role as a lubricant, and at the time of manufacturing, the density becomes high and distortion is difficult to occur, and the electric resistivity is high, The power loss due to the eddy current can be reduced, and in addition, it has high magnetic permeability and high saturation magnetic flux density.

以上説明したように、本発明の軟磁性粉末の製造方法では、高い絶縁性及び加工性を有する軟磁性材料が得られ、また、本発明の圧粉磁心は、渦電流による電力ロスが小さく、その上、高透磁率や高飽和磁束密度を有するという効果を奏する。   As described above, in the method for producing a soft magnetic powder of the present invention, a soft magnetic material having high insulation and workability is obtained, and the dust core of the present invention has a small power loss due to eddy currents. In addition, it has the effect of having high magnetic permeability and high saturation magnetic flux density.

図1及び図2を参照して説明すれば、1は、本発明の製造方法を実施するのに適して処理装置である。処理装置1は、処理室10を構成する断面略六角形の真空チャンバ11を有する。真空チャンバ11は、床面に設置される台座21と、所定の間隔を置いて台座21に対し直角に設けた支持板22a、22bとから構成される支持手段2に取付けられている。   Referring to FIGS. 1 and 2, reference numeral 1 denotes a processing apparatus suitable for carrying out the manufacturing method of the present invention. The processing apparatus 1 includes a vacuum chamber 11 having a substantially hexagonal cross section that constitutes a processing chamber 10. The vacuum chamber 11 is attached to a support means 2 composed of a pedestal 21 installed on the floor and support plates 22a and 22b provided at a predetermined interval and perpendicular to the pedestal 21.

支持板22a、22bの台座21から所定の高さ位置には、支持板22a、22bの内側に向かってそれぞれ突出させかつ同一水平線上に位置させて、回転軸23a、23bが軸受(図示せず)を介して回転自在に設けられ、冷却手段231を有する各回転軸23a、23bの一端が真空チャンバ11の側壁11a、11bにそれぞれ連結されている。一方の支持板22aから突出した一方の回転軸23aの他端にはプーリ24が設けられ、このプーリー24と、台座21上に設けたモータ3の回転軸31に設けたプーリー32との間にはベルトVが掛架されている。これにより、モータ3を作動させて回転軸23a、23bを回転させると、真空チャンバ11が所定の回転数(例えば、1rpm)で回転軸23a、23bを中心として回転自在となる。   The rotating shafts 23a and 23b are provided with bearings (not shown) at predetermined height positions from the pedestals 21 of the supporting plates 22a and 22b so as to protrude toward the inside of the supporting plates 22a and 22b and on the same horizontal line. ), And one end of each of the rotating shafts 23a and 23b having the cooling means 231 is connected to the side walls 11a and 11b of the vacuum chamber 11, respectively. A pulley 24 is provided at the other end of one rotating shaft 23 a protruding from one support plate 22 a, and between this pulley 24 and a pulley 32 provided on a rotating shaft 31 of the motor 3 provided on the base 21. The belt V is hung. Accordingly, when the motor 3 is operated to rotate the rotation shafts 23a and 23b, the vacuum chamber 11 can rotate about the rotation shafts 23a and 23b at a predetermined rotation speed (for example, 1 rpm).

真空チャンバ11の外周には、その略全体を覆うように内側に反射面を備えたステンレス製の断熱材41が設けられ、この断熱材41の内側には、ニクロム製のフィラメントを有する電気加熱ヒータ42が配置され、加熱手段4を構成する。そして、後述するように真空チャンバ11を減圧した後、この真空チャンバ11を加熱手段4で加熱することで、処理室10を略均等に所定温度に加熱できる。   On the outer periphery of the vacuum chamber 11, there is provided a stainless steel heat insulating material 41 provided with a reflection surface on the inner side so as to cover substantially the whole, and an electric heater having a nichrome filament is provided inside the heat insulating material 41. 42 is arranged to constitute the heating means 4. Then, after the vacuum chamber 11 is depressurized as described later, the processing chamber 10 can be heated to a predetermined temperature substantially uniformly by heating the vacuum chamber 11 with the heating means 4.

真空チャンバ11の上面及び下面には開口がそれぞれ設けられ、各開口には開閉弁5a、5bがそれぞれ取付けられている。各開閉弁5a、5bは、例えば公知の構造を有するバタフライバルブであり、真空チャンバ11の上面及び下面の開口にそれぞれ取付けた弁本体51を有する。弁本体51内には、回動自在な円形の弁体と、この弁体が着座する弁座とが設けられている。そして、弁本体51に設けた駆動軸(図示せず)を手動または電動で操作して、弁体が弁座に着座する閉弁位置と弁体が弁座から離間した開弁位置との間で弁体を回動させることで開閉自在となる。   Openings are respectively provided in the upper surface and the lower surface of the vacuum chamber 11, and open / close valves 5a and 5b are attached to the respective openings. Each of the on-off valves 5a and 5b is a butterfly valve having a known structure, for example, and has valve bodies 51 attached to the openings on the upper surface and the lower surface of the vacuum chamber 11, respectively. In the valve main body 51, a rotatable circular valve body and a valve seat on which the valve body is seated are provided. Then, a drive shaft (not shown) provided in the valve body 51 is operated manually or electrically, so that the valve body is located between the valve closing position where the valve body is seated on the valve seat and the valve opening position where the valve body is separated from the valve seat. It can be opened and closed by turning the valve body.

各弁本体51の真空チャンバ11と背向する側には、一端にカップリング(図示せず)を設けた排気管6またはホッパー7が着脱自在に取付けられる。蛇腹状の排気管6の他端は、ターボ分子ポンプ、クライオポンプ、拡散ポンプやロータリポンプなどから構成される真空排気手段61に接続されている。そして、両開閉弁5a、5bの閉弁位置で一方の開閉板5bの弁本体51に排気管6を接続し、真空排気手段61を作動させると共に開閉弁5bを開弁すると、処理室10が所定圧力(例えば1×10−5Pa)に減圧できる。 An exhaust pipe 6 or a hopper 7 provided with a coupling (not shown) at one end is detachably attached to the valve body 51 on the side facing the vacuum chamber 11. The other end of the bellows-like exhaust pipe 6 is connected to a vacuum exhaust means 61 including a turbo molecular pump, a cryopump, a diffusion pump, a rotary pump, and the like. Then, when the exhaust pipe 6 is connected to the valve body 51 of one of the on-off plates 5b at the closed position of both the on-off valves 5a, 5b, the vacuum exhaust means 61 is activated and the on-off valve 5b is opened, the processing chamber 10 is opened. The pressure can be reduced to a predetermined pressure (eg, 1 × 10 −5 Pa).

他方、ホッパー7は、その内部が密閉可能な金属製であり、その内部が準備室70を構成する。ホッパー7下側のシュート部71には、回動自在な円形の弁体とこの弁体が着座する弁座とからなる他の開閉弁72が設けられ、開閉弁72を閉弁位置で準備室70が密閉されるようになっている。処理室10に後述する原料を投入する場合、ホッパー70内に原料を収納した後、シュート部71の先端に図示しない排気管を接続し、真空排気手段を作動させると共に開閉弁72を開弁させて、準備室70を所定圧力(例えば1×10−3Pa)に減圧する。 On the other hand, the hopper 7 is made of a metal that can be hermetically sealed, and the inside constitutes the preparation chamber 70. The chute portion 71 below the hopper 7 is provided with another open / close valve 72 including a rotatable circular valve body and a valve seat on which the valve body is seated. 70 is sealed. When the raw material described later is put into the processing chamber 10, after the raw material is stored in the hopper 70, an exhaust pipe (not shown) is connected to the tip of the chute portion 71 to operate the vacuum exhaust means and open the on-off valve 72. Then, the preparation chamber 70 is depressurized to a predetermined pressure (for example, 1 × 10 −3 Pa).

Feを主成分とする軟磁性粉末の原料としては、例えば20μm〜400μmの平均粒径に微粉砕した純鉄粉末が用いられる。他方、金属蒸発材料Mは、Mgまたは純鉄粉末との密着性を向上させるべくMgにAlを添加した合金が用いられる。金属蒸発材料Mは、各回転軸23a、23bの同一線上に位置させて真空チャンバ11の内壁に設けた収納室12内に収納される。収納室12は、筒状の部材から構成され、真空チャンバ11内側に開口した面には、その開口の一部を覆うように庇部12aが設けられている。これにより、真空チャンバ11を回転させたとき、庇部12aによって、収納室12に配置した金属蒸発材料Mが処理室10に飛び出すことが防止できる。収納室12は、その真空チャンバ11の内壁において周方向で等間隔に少なくとも2個配置されるが、開閉弁5a、5bを通って処理室10に投入される原料の周囲を囲って金属蒸発材料Mが配置されるように、真空チャンバ12の内壁面全体に亘る環状に形成してもよい。   As a raw material of the soft magnetic powder containing Fe as a main component, for example, pure iron powder finely pulverized to an average particle diameter of 20 μm to 400 μm is used. On the other hand, the metal evaporating material M is an alloy obtained by adding Al to Mg in order to improve the adhesion with Mg or pure iron powder. The metal evaporating material M is stored in a storage chamber 12 provided on the inner wall of the vacuum chamber 11 so as to be positioned on the same line of the rotary shafts 23a and 23b. The storage chamber 12 is composed of a cylindrical member, and a flange 12a is provided on a surface opened inside the vacuum chamber 11 so as to cover a part of the opening. Thereby, when the vacuum chamber 11 is rotated, the metal evaporating material M arranged in the storage chamber 12 can be prevented from jumping out into the processing chamber 10 by the flange 12a. At least two storage chambers 12 are arranged at equal intervals in the circumferential direction on the inner wall of the vacuum chamber 11, and surround the periphery of the raw material charged into the processing chamber 10 through the on-off valves 5a and 5b. You may form cyclically | annularly over the whole inner wall face of the vacuum chamber 12, so that M may be arrange | positioned.

次に、本処理装置1を用いた軟磁性粉末の製造方法及びこの軟磁性粉末を用いた圧粉磁心の作製について説明する。真空チャンバ11上側に位置する一方の開閉弁5aの開弁位置で、収納室12内に顆粒状の金属蒸発材料Mを収納する。収納室12に収納する金属蒸発材料Mの総量は、金属蒸発材料Mの収率が高くなるように、原料表面に所定の膜厚で金属蒸発材料Mが成膜できるのに必要な時間だけ、真空チャンバ11内で金属蒸気雰囲気を継続させるのに必要なものとする。   Next, a method for producing soft magnetic powder using the processing apparatus 1 and production of a dust core using the soft magnetic powder will be described. The granular metal evaporation material M is accommodated in the storage chamber 12 at the open position of one of the on-off valves 5a located above the vacuum chamber 11. The total amount of the metal evaporating material M stored in the storage chamber 12 is the time required for forming the metal evaporating material M with a predetermined film thickness on the surface of the raw material so that the yield of the metal evaporating material M is increased. It is necessary to continue the metal vapor atmosphere in the vacuum chamber 11.

次いで、一方の開閉弁5aを閉弁し、下側の他方の開閉弁5bの弁本体51に排気管6を接続した後、真空排気手段61を作動させると共に駆動軸を操作して他方の開閉弁5bを開弁する。そして、収納室12に収納した金属蒸発材料Mの種類に応じて、処理室10を所定圧力(例えば1〜1×10−2Pa)まで減圧した後、加熱手段4を作動させて所定温度(例えば370〜650℃)に処理室10を加熱する。300℃より低い温度では、真空チャンバ11に投入された原料表面に高速でMgを付着堆積できる蒸気圧まで達しない。他方、800℃を超えた温度では、原料への付着堆積時間が極端に短くなり過ぎる。 Next, after closing one open / close valve 5a and connecting the exhaust pipe 6 to the valve body 51 of the other lower open / close valve 5b, the vacuum exhaust means 61 is operated and the drive shaft is operated to open / close the other open / close valve 5b. The valve 5b is opened. Then, the processing chamber 10 is depressurized to a predetermined pressure (for example, 1 to 1 × 10 −2 Pa) according to the type of the metal evaporation material M stored in the storage chamber 12, and then the heating unit 4 is operated to set the predetermined temperature ( For example, the processing chamber 10 is heated to 370 to 650 ° C. At a temperature lower than 300 ° C., the vapor pressure at which Mg can be deposited and deposited at high speed on the surface of the raw material put into the vacuum chamber 11 is not reached. On the other hand, when the temperature exceeds 800 ° C., the deposition time on the raw material becomes extremely short.

処理室10が所定温度に達すると、処理室10に所定の蒸気圧を持つ金属蒸気雰囲気(Mgの場合、例えば370℃で0.13Paの蒸気圧)が形成される。処理室10に金属蒸気雰囲気を形成する間、ホッパー7の準備室70では、原料、例えば純鉄粉末を収納した後、大気圧下で準備室70を、図示しない加熱手段によって所定温度(例えば、250℃)に加熱し、所定時間(例えば1時間)保持することで、純鉄粉末表面の酸化処理を施す(これにより、純鉄粉末表面がFeの酸化膜で被覆される(図2(a)参照))。酸化処理が終了すると、シュート部71の先端に、図示しない排気管を接続し、真空排気手段を作動させると共に開閉弁72を開弁させ、準備室70が所定圧力(例えば1×10−2Pa)まで一旦減圧する。この場合、純鉄粉末の温度が200℃になる。 When the processing chamber 10 reaches a predetermined temperature, a metal vapor atmosphere having a predetermined vapor pressure (in the case of Mg, for example, a vapor pressure of 0.13 Pa at 370 ° C.) is formed in the processing chamber 10. While a metal vapor atmosphere is formed in the processing chamber 10, in the preparation chamber 70 of the hopper 7, after the raw material, for example, pure iron powder is stored, the preparation chamber 70 is heated to a predetermined temperature (for example, by a heating unit (not shown)) under atmospheric pressure. 250 ° C.) and held for a predetermined time (for example, 1 hour) to oxidize the surface of the pure iron powder (by this, the surface of the pure iron powder is covered with an oxide film of Fe 2 O 3 (FIG. 2 (a))). When the oxidation process is completed, an exhaust pipe (not shown) is connected to the tip of the chute 71, the vacuum exhaust means is operated, the on-off valve 72 is opened, and the preparation chamber 70 has a predetermined pressure (for example, 1 × 10 −2 Pa). ) Until the pressure is reduced. In this case, the temperature of the pure iron powder becomes 200 ° C.

次いで、処理室10での金属蒸気雰囲気の形成と、準備室70での酸化処理とが終了すると、開閉弁72を閉弁し、シュート部71の先端から排気管を取外す。そして、処理室10と準備室70との間で2桁以上の圧力差が生じるように、図示しないガス導入手段を介してAr等の不活性ガスを導入し、準備室70の圧力を所定値(例えば、1000Pa)にする。   Next, when the formation of the metal vapor atmosphere in the processing chamber 10 and the oxidation treatment in the preparation chamber 70 are finished, the on-off valve 72 is closed and the exhaust pipe is removed from the tip of the chute portion 71. Then, an inert gas such as Ar is introduced through a gas introduction means (not shown) so that a pressure difference of two digits or more is generated between the processing chamber 10 and the preparation chamber 70, and the pressure in the preparation chamber 70 is set to a predetermined value. (For example, 1000 Pa).

この状態で、ホッパー7のシュート部71の先端を、上側に位置する一方の開閉弁5aの弁本体51に接続した後、開閉弁5a、72をそれぞれ開弁すると、準備室70内の純鉄粉末が、その自重で各開閉弁72、5aを通って処理室10に投入される。この場合、処理室10と準備室70との間に圧力差をつけているので、準備室70から処理室10に不活性ガスが処理室10に侵入し、処理室10の圧力が高くなることで、一旦蒸発が停止するが(加熱手段4の作動は停止しない)、金属蒸発雰囲気中の金属原子が準備室70側に入り込むことが防止できる。   In this state, after the tip of the chute portion 71 of the hopper 7 is connected to the valve body 51 of the one on-off valve 5a located on the upper side, when the on-off valves 5a and 72 are opened, the pure iron in the preparation chamber 70 is opened. Powder is thrown into the processing chamber 10 through the on-off valves 72 and 5a by its own weight. In this case, since there is a pressure difference between the processing chamber 10 and the preparation chamber 70, the inert gas enters the processing chamber 10 from the preparation chamber 70 into the processing chamber 10, and the pressure in the processing chamber 10 increases. Thus, although the evaporation is temporarily stopped (the operation of the heating means 4 is not stopped), it is possible to prevent the metal atoms in the metal evaporation atmosphere from entering the preparation chamber 70 side.

次いで、処理室10への純鉄粉末の投入が終了すると、開閉弁5a、72をそれぞれ閉弁して処理室10及び準備室70を相互に隔絶した後、ホッパー7を取り外す。そして、真空排気手段を介して排気されている真空チャンバ11の圧力が再度所定値(例えば、1×10−2Pa)に達すると、金属蒸発材料Mが再蒸発して処理室10に金属蒸気雰囲気が形成される。金属蒸気雰囲気が形成されると、開閉弁5bを閉弁し、排気管6を取り外した後、モータ3を作動させて所定の回転数で真空チャンバ11を回転させながら、所定時間保持する。これにより、処理室10内温度より低い純鉄粉末と処理室10との温度差によって、純鉄粉末表面に金属蒸気雰囲気中の金属原子が高速かつ選択的に付着して堆積する。そして、真空チャンバ11を回転させて処理室10内で純鉄粉末を移動させることで、その全表面に亘って金属蒸発材料Mが成膜される。 Next, when the introduction of pure iron powder into the processing chamber 10 is completed, the on-off valves 5a and 72 are closed to isolate the processing chamber 10 and the preparation chamber 70 from each other, and then the hopper 7 is removed. When the pressure in the vacuum chamber 11 evacuated through the vacuum evacuation means reaches a predetermined value (for example, 1 × 10 −2 Pa) again, the metal evaporation material M is re-evaporated and the metal vapor enters the processing chamber 10. An atmosphere is formed. When the metal vapor atmosphere is formed, the on-off valve 5b is closed, the exhaust pipe 6 is removed, the motor 3 is operated, and the vacuum chamber 11 is rotated at a predetermined number of revolutions and held for a predetermined time. As a result, due to the temperature difference between the pure iron powder lower than the temperature inside the processing chamber 10 and the processing chamber 10, metal atoms in the metal vapor atmosphere adhere to and deposit on the surface of the pure iron powder at high speed and selectively. And the metal evaporation material M is formed into a film over the whole surface by rotating the vacuum chamber 11 and moving the pure iron powder in the processing chamber 10.

次いで、所定時間保持した後、真空チャンバ11の回転及び加熱手段4の作動を停止させると共に、図示しないガス導入手段を介してAr等の不活性ガスを導入して処理室10内での金属蒸気雰囲気の形成を停止させる。そして、下側の他方の開閉弁5bの弁本体51に排気管6を接続し、真空排気手段61を作動させる共に他方の開閉弁5bを開弁して、所定圧力(10×10ー3Pa)まで処理室10を再度減圧する。 Next, after holding for a predetermined time, the rotation of the vacuum chamber 11 and the operation of the heating means 4 are stopped, and an inert gas such as Ar is introduced through a gas introduction means (not shown) to cause metal vapor in the processing chamber 10 Stop the formation of the atmosphere. Then, the exhaust pipe 6 is connected to the valve main body 51 of the lower other on-off valve 5b, the vacuum exhaust means 61 is operated, and the other on-off valve 5b is opened, so that a predetermined pressure (10 × 10 −3 Pa ) The processing chamber 10 is again depressurized.

次いで、加熱手段4を再度作動させて処理室10を加熱し、所定温度(例えば、400〜600℃)下で所定時間(例えば1時間)だけ熱処理を施す。これにより、純鉄粉末表面を被覆する酸化膜(Fe)が還元されて軟磁性粉末の表面に、例えば酸化マグネシウム、酸化アルミニウムやマグネシアスピネル等の強固な絶縁膜が形成され、軟磁性材料が得られる(図2(b)参照)。そして、図示しないガス導入手段を介してAr等の不活性ガスを処理室10に導入して処理室10をベントし、軟磁性材料を急冷する。その後、図示しない回収容器を、下側位置する開閉弁5bの弁本体51に連結し、この開閉弁5bを開弁して、軟磁性材料を回収する。 Next, the heating means 4 is operated again to heat the processing chamber 10, and heat treatment is performed at a predetermined temperature (for example, 400 to 600 ° C.) for a predetermined time (for example, 1 hour). As a result, the oxide film (Fe 2 O 3 ) covering the surface of the pure iron powder is reduced, and a strong insulating film such as magnesium oxide, aluminum oxide or magnesia spinel is formed on the surface of the soft magnetic powder. A material is obtained (see FIG. 2 (b)). Then, an inert gas such as Ar is introduced into the processing chamber 10 through a gas introducing means (not shown), the processing chamber 10 is vented, and the soft magnetic material is rapidly cooled. Thereafter, a collection container (not shown) is connected to the valve body 51 of the on-off valve 5b located on the lower side, and the on-off valve 5b is opened to collect the soft magnetic material.

次いで、上記一連の処理により得られた軟磁性粉末を所定の金型に充填し、公知の構造を有するプレス成形機を用いて、所定の圧力でプレス成形して圧粉磁心のグリーンを成形し、そして、このグリーンに所定温度の熱処理を施して、成形時に蓄積された成形歪みを解放して所望の圧粉磁心が作製される。これにより、軟磁性粉末表面が強固な絶縁膜で被覆されていることで、プレス成形の際に成形時の圧力により絶縁膜が破損し難く、加工性が高い。また、軟磁性材相互間の絶縁性が高いことから、電気抵抗率が高く、渦電流による電力ロスを小さくでき、その上、高透磁率や高飽和磁束密度を有する。   Next, the soft magnetic powder obtained by the above-described series of treatments is filled into a predetermined mold, and is pressed at a predetermined pressure using a press molding machine having a known structure to form a green powder core. The green is then subjected to a heat treatment at a predetermined temperature to release the molding distortion accumulated during molding, and a desired dust core is produced. As a result, the surface of the soft magnetic powder is covered with a strong insulating film, so that the insulating film is not easily damaged by the pressure during molding during press molding, and the workability is high. Further, since the insulation between the soft magnetic materials is high, the electrical resistivity is high, the power loss due to eddy current can be reduced, and furthermore, the magnetic permeability and the saturation magnetic flux density are high.

原料として、平均粒径が20、40、100、200、300及び400μmの各純鉄粉末をそれぞれ100Kg用意し、上記処理装置1を用いて絶縁膜を形成した後、プレス成形機を使用してモータ用コア形状の圧粉磁心を得た。   As raw materials, 100 kg of each pure iron powder having an average particle size of 20, 40, 100, 200, 300 and 400 μm was prepared, and after forming an insulating film using the processing apparatus 1, a press molding machine was used. A core-shaped powder magnetic core for a motor was obtained.

成膜工程に先立って準備室70で酸化処理を行った。この場合、準備室70の温度を250℃に設定し、処理時間を1時間とした。一方、成膜工程における金属蒸発材料Mとして、Mg及びAlを3:7の組成比で混合して得た合金を用い、顆粒状のものを収納室12に収納した。また、処理室10を、1×10−3Paまで真空排気した後、加熱手段4によって処理室10の温度を400℃に設定し、処理室10内に1Paの蒸気圧をもつ金属蒸気雰囲気を形成した。そして、Mg及びAlの蒸気雰囲気が形成された処理室10への純鉄粉末の投入後、2分間成膜処理し、平均100nmの薄膜を得た。この場合、1rpmの回転速度で真空チャンバ11を回転させることとした。 Prior to the film formation process, an oxidation treatment was performed in the preparation chamber 70. In this case, the temperature of the preparation chamber 70 was set to 250 ° C., and the processing time was 1 hour. On the other hand, as the metal evaporation material M in the film forming process, an alloy obtained by mixing Mg and Al at a composition ratio of 3: 7 was used, and a granular material was stored in the storage chamber 12. Further, after the processing chamber 10 is evacuated to 1 × 10 −3 Pa, the temperature of the processing chamber 10 is set to 400 ° C. by the heating means 4, and a metal vapor atmosphere having a vapor pressure of 1 Pa is set in the processing chamber 10. Formed. Then, after the pure iron powder was put into the processing chamber 10 in which the vapor atmosphere of Mg and Al was formed, a film forming process was performed for 2 minutes to obtain a thin film having an average of 100 nm. In this case, the vacuum chamber 11 was rotated at a rotation speed of 1 rpm.

次いで、Mg及びAlの蒸気雰囲気の形成を停止させた後、処理室10を再度減圧し、加熱手段4を再度作動させてMg及びAlの金属膜が成膜された純鉄粉末に対し熱処理を施し、軟磁性粉末を得た。この場合、処理室10の温度を700℃に設定し、処理時間を1時間とした。   Next, after the formation of the Mg and Al vapor atmosphere is stopped, the processing chamber 10 is decompressed again, the heating means 4 is operated again, and the pure iron powder on which the Mg and Al metal film is formed is heat-treated. To obtain a soft magnetic powder. In this case, the temperature of the processing chamber 10 was set to 700 ° C., and the processing time was 1 hour.

次いで、上記の軟磁性粉末を6t/cmの成形圧力で、モータ用コア形状の圧粉磁心に成形し、そして、加熱炉内で炉内温度650℃、処理時間30分に設定し、歪取りのため焼き鈍しを行った。
(比較例1)
Next, the above soft magnetic powder was molded into a core magnetic powder core with a molding pressure of 6 t / cm 2 , and the furnace temperature was set to 650 ° C. and the treatment time was 30 minutes in the heating furnace. Annealing was performed for removal.
(Comparative Example 1)

原料として、上記実施例1と同様、平均粒径が20、40、100、200、300及び400μmの各純鉄粉末を100Kg用意し、リン酸処理により絶縁膜を形成した後、プレス成形機を使用してモータ用コア形状の圧粉磁心を得た。   As in Example 1, 100 kg of each pure iron powder having an average particle size of 20, 40, 100, 200, 300 and 400 μm was prepared, and after forming an insulating film by phosphoric acid treatment, a press molding machine was used. A powder magnetic core having a core shape for a motor was obtained.

リン酸処理としては、市販のリン酸系処理液を上記各粉末に対し5重量%添加し、混合後に乾燥して作成した。その結果、500〜700nmのリン酸絶縁膜が得られた。   As the phosphoric acid treatment, a commercially available phosphoric acid-based treatment solution was added by 5% by weight to each of the above powders, mixed and dried. As a result, a phosphate insulating film having a thickness of 500 to 700 nm was obtained.

次いで、実施例1と同条件で、モータ用コア形状の圧粉磁心に成形し、そして、加熱炉内で炉内温度650℃、処理時間30分に設定し、歪取りのため焼き鈍しを行った。   Next, under the same conditions as in Example 1, it was molded into a motor core-shaped dust core, and the furnace temperature was set to 650 ° C. and the treatment time was 30 minutes in the heating furnace, and annealing was performed for strain relief. .

図3は、実施例1及び比較例1により得られた各圧粉磁心の磁束密度、透磁率、抵抗値、鉄損の諸特性を示す表である。これによれば、比較例1では、電気抵抗値が0.05〜0.2μΩmであり、また、鉄損が150W/Kgを超えていることが判る。それに対して、実施例1では、各軟軟磁性粉末が強固な絶縁膜で被覆されていることで、比較例1より二桁以上高い電気抵抗値が得られ、鉄損も一桁低い値であることが判る。   FIG. 3 is a table showing various characteristics of the magnetic flux density, magnetic permeability, resistance value, and iron loss of each dust core obtained in Example 1 and Comparative Example 1. According to this, in the comparative example 1, it turns out that an electrical resistance value is 0.05-0.2 microhm and the iron loss exceeds 150 W / Kg. On the other hand, in Example 1, each soft soft magnetic powder is covered with a strong insulating film, so that an electric resistance value that is two orders of magnitude higher than that of Comparative Example 1 is obtained, and the iron loss is also an order of magnitude lower. I know that there is.

本発明の成膜装置の構成を概略的に説明する図。1 is a diagram schematically illustrating a configuration of a film forming apparatus of the present invention. 本発明の軟軟磁性粉末の製造手順を説明する図。The figure explaining the manufacture procedure of the soft soft magnetic powder of this invention. 実施例1及び比較例1で得た圧粉磁心の特性を示す図。The figure which shows the characteristic of the powder magnetic core obtained in Example 1 and Comparative Example 1.

符号の説明Explanation of symbols

1 処理装置
10 処理室
3 駆動手段
4 加熱手段
70 準備室
M 金属蒸発材料
DESCRIPTION OF SYMBOLS 1 Processing apparatus 10 Processing chamber 3 Drive means 4 Heating means 70 Preparation chamber M Metal evaporation material

Claims (4)

Feを主成分とし、その表面が絶縁膜で被覆された軟磁性粉末の製造方法であって、
軟磁性粉末の表面を酸化処理する酸化工程と、
Mgを含む金属蒸発材料を処理室に配置して加熱し、この金属蒸発材料を蒸発させて金属蒸気雰囲気を処理室内に形成し、この軟磁性粉末を処理室内の温度より低く保持した状態で処理室に投入し、この処理室内で軟磁性粉末を移動させながら処理室内と軟磁性粉末との間の温度差によって、軟磁性粉末表面に金属蒸発材料を選択的に付着堆積させる成膜工程と、
表面に金属蒸発材料が付着堆積した軟磁性粉末を所定温度下で加熱し、酸化工程で形成された酸化膜を還元して軟磁性粉末の表面にマグネシウムを含む酸化絶縁膜を形成する熱処理工程と、を含むことを特徴とする軟磁性粉末の製造方法。
A method for producing a soft magnetic powder comprising Fe as a main component and having a surface coated with an insulating film,
An oxidation process for oxidizing the surface of the soft magnetic powder;
A metal evaporating material containing Mg is placed in a processing chamber and heated to evaporate the metal evaporating material to form a metal vapor atmosphere in the processing chamber, and the soft magnetic powder is processed in a state kept below the temperature in the processing chamber. A film forming step of selectively depositing and depositing a metal evaporation material on the surface of the soft magnetic powder according to a temperature difference between the processing chamber and the soft magnetic powder while moving the soft magnetic powder in the processing chamber;
A heat treatment process in which a soft magnetic powder having a metal evaporation material adhered and deposited on the surface is heated at a predetermined temperature, and the oxide film formed in the oxidation process is reduced to form an oxide insulating film containing magnesium on the surface of the soft magnetic powder ; A process for producing a soft magnetic powder, comprising:
前記金属蒸気雰囲気が、前記処理室内で飽和状態であることを特徴とする請求項1記載の軟磁性粉末の製造方法。 The metal vapor atmosphere, the manufacturing method of the soft magnetic powder of claim 1 Symbol mounting, characterized in that a saturated state in the processing chamber. 前記金属蒸発材料はAlを含むことを特徴とする請求項1または請求項2記載の軟磁性粉末の製造方法。 The method for producing a soft magnetic powder according to claim 1 or 2, wherein the metal evaporation material contains Al. 請求項1〜請求項3のいずれか1項に記載の製造方法で得た軟磁性粉末を加圧成形し、次いで所定温度の熱処理を施してなることを特徴とする圧粉磁心。
A powder magnetic core, wherein the soft magnetic powder obtained by the production method according to any one of claims 1 to 3 is pressure-molded and then subjected to a heat treatment at a predetermined temperature.
JP2006245301A 2006-09-11 2006-09-11 Method for producing soft magnetic powder and dust core using the soft magnetic powder Expired - Fee Related JP5101848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006245301A JP5101848B2 (en) 2006-09-11 2006-09-11 Method for producing soft magnetic powder and dust core using the soft magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006245301A JP5101848B2 (en) 2006-09-11 2006-09-11 Method for producing soft magnetic powder and dust core using the soft magnetic powder

Publications (2)

Publication Number Publication Date
JP2008063642A JP2008063642A (en) 2008-03-21
JP5101848B2 true JP5101848B2 (en) 2012-12-19

Family

ID=39286601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006245301A Expired - Fee Related JP5101848B2 (en) 2006-09-11 2006-09-11 Method for producing soft magnetic powder and dust core using the soft magnetic powder

Country Status (1)

Country Link
JP (1) JP5101848B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5184182B2 (en) * 2008-03-31 2013-04-17 三菱マテリアル株式会社 Method for producing Mg-containing oxide film-coated soft magnetic metal powder
KR102402075B1 (en) 2013-09-30 2022-05-25 퍼시몬 테크놀로지스 코포레이션 Structures and methods utilizing structured magnetic material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142143B2 (en) * 1971-08-10 1976-11-13
JP2001254168A (en) * 2000-03-10 2001-09-18 Kinya Adachi Surface rust prevention and performance improving treatment of magnetic material
JP4761836B2 (en) * 2005-01-25 2011-08-31 株式会社ダイヤメット Mg-containing iron oxide coated iron powder

Also Published As

Publication number Publication date
JP2008063642A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP5101849B2 (en) Manufacturing method of magnetic material for bonded magnet excellent in magnetic properties, heat resistance, corrosion resistance and weather resistance, and rare earth bonded magnet manufactured using this magnetic material
KR101316803B1 (en) Method of film formation, film formation apparatus, permanent magnet, and process for producing permanent magnet
JP5090359B2 (en) Permanent magnet and method for manufacturing permanent magnet
US8375891B2 (en) Vacuum vapor processing apparatus
JP5205277B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2007329250A (en) Permanent magnet, and manufacturing method of permanent magnet
US5186854A (en) Composites having high magnetic permeability and method of making
JP2011035001A (en) Method for manufacturing permanent magnet
CN101563739B (en) Permanent magnet and method for producing permanent magnet
JP2004297036A (en) Method of manufacturing iron soft magnetic powder coated with spinel ferrite film containing zinc and soft magnetic sintered composite material produced by this method
JP2007305878A (en) Permanent magnet and manufacturing method therefor
WO2008032666A1 (en) Vacuum evaporation processing equipment
JP5064930B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5101848B2 (en) Method for producing soft magnetic powder and dust core using the soft magnetic powder
JP2006278833A (en) Manufacturing method of composite soft-magnetic sintered material having high strength, high magnetic-flux density, and high resistance
CN100491585C (en) Preparation method of ultrathin, large-size, high-silicon silicon steel sheet by electron beam physical vapor deposition
JP2006332524A (en) High-strength complex soft magnetic material having high strength, high magnetic flux density, high resistance and less iron loss, and manufacturing method thereof
JP4922704B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2009170796A (en) Permanent magnet, and manufacturing method of permanent magnet
WO2007052772A1 (en) Fe-Si TYPE IRON-BASED SOFT MAGNETIC POWDER COATED WITH OXIDE DEPOSIT FILM AND PROCESS FOR PRODUCING THE SAME
JP2008088459A (en) Method of manufacturing complex soft magnetic sintered material with high strength, high magnetic flux density, and high resistance
WO2005024858A1 (en) Soft magnetic material and method for producing same
JP2006213944A (en) Apparatus for coating powder and method for producing coated powder
JP2008091414A (en) Composite soft magnetic material having high strength, high magnetic flux density, high resistance and less iron loss, and manufacturing method thereof
JP2004238684A (en) Method of producing composite soft magnetic material having high density, high resistance and high magnetic flux density

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5101848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees