JP5099375B2 - Exhaust gas treatment method by electron beam irradiation - Google Patents

Exhaust gas treatment method by electron beam irradiation Download PDF

Info

Publication number
JP5099375B2
JP5099375B2 JP2009041728A JP2009041728A JP5099375B2 JP 5099375 B2 JP5099375 B2 JP 5099375B2 JP 2009041728 A JP2009041728 A JP 2009041728A JP 2009041728 A JP2009041728 A JP 2009041728A JP 5099375 B2 JP5099375 B2 JP 5099375B2
Authority
JP
Japan
Prior art keywords
exhaust gas
electron beam
nox
electron
cnt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009041728A
Other languages
Japanese (ja)
Other versions
JP2010194448A5 (en
JP2010194448A (en
Inventor
真 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2009041728A priority Critical patent/JP5099375B2/en
Publication of JP2010194448A publication Critical patent/JP2010194448A/en
Publication of JP2010194448A5 publication Critical patent/JP2010194448A5/ja
Application granted granted Critical
Publication of JP5099375B2 publication Critical patent/JP5099375B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、NOxを含む排ガスに電子線を照射してNOxを分解する方法に関するものである。   The present invention relates to a method for decomposing NOx by irradiating exhaust gas containing NOx with an electron beam.

従来、NOxを含む排ガスの処理方法としては、NOx含有ガスを吸着剤に流してNOx吸着させ、雰囲気ガスを窒素ガスに置換してから加熱してNOxを放出させてこのガスを放電処理することによりNOxを還元する方法(特許文献1)、NOxを吸着剤に吸着させた後、雰囲気ガスを酸素濃度10vol%以下で純度90vol%以上の窒素ガスに置換してから、この吸着剤に非熱プラズマを印加し、NOxの脱着と吸着剤の再生を行う方法(特許文献2)が知られている。   Conventionally, as a method for treating exhaust gas containing NOx, NOx-containing gas is caused to flow through an adsorbent to adsorb NOx, and after replacing the atmospheric gas with nitrogen gas, heating is performed to release NOx, and this gas is discharged. NOx is reduced by the above method (Patent Document 1), after NOx is adsorbed on the adsorbent, the atmosphere gas is replaced with nitrogen gas having an oxygen concentration of 10 vol% or less and a purity of 90 vol% or more, and then the adsorbent is not heated. A method (Patent Document 2) in which plasma is applied to desorb NOx and regenerate the adsorbent is known.

また、排ガスにアンモニア添加と電子線照射を行うことにより、排ガス中の窒素酸化物及び/又は硫黄酸化物を除去する方法において、アンモニアの添加位置を、反応器内に照射される電子線の中心より排ガスの上流側に電子線の飛程の2.5倍以内とする方法(特許文献3)も知られている。   Further, in the method of removing nitrogen oxides and / or sulfur oxides in exhaust gas by adding ammonia to the exhaust gas and irradiating the electron beam, the position of ammonia addition is determined at the center of the electron beam irradiated into the reactor. A method (Patent Document 3) is also known in which the range of the electron beam is within 2.5 times the upstream side of the exhaust gas.

さらに、カーボンナノチューブから放出される高密度の電子およびその加速を用いて、ダイオキシン類やNOxを還元反応により分解、無害化する方法(特許文献4)も知られている。この方法は、図4に示す如く、チャンバー1の対向する側面の一方にガス導入口2、他方にはガス排出口3を設け、下部には直流もしくはパルス高電圧5に接続されているアノード電極4を設け、上部には、グリッド電極6を介してカーボンナノチューブ(CNT)電子源7が接地8されて設けられている装置を用いている。そして、この装置内を真空もしくは低圧力にして処理を目的とした試料10を導入すると、CNTから放出された電子9がダイオキシン類やNOxに衝突して還元する。   Furthermore, a method of decomposing and detoxifying dioxins and NOx by a reduction reaction using high-density electrons emitted from carbon nanotubes and acceleration thereof (Patent Document 4) is also known. In this method, as shown in FIG. 4, a gas inlet 2 is provided on one of the opposite side surfaces of the chamber 1, a gas outlet 3 is provided on the other side, and an anode electrode connected to a direct current or pulse high voltage 5 at the lower portion. 4 is used, and an apparatus in which a carbon nanotube (CNT) electron source 7 is grounded 8 via a grid electrode 6 is used in the upper part. Then, when the sample 10 intended for processing is introduced under vacuum or low pressure in the apparatus, the electrons 9 emitted from the CNT collide with dioxins or NOx and are reduced.

特開2001−300249号公報JP 2001-300409 A 国際公開第2005/037412A1号パンフレットInternational Publication No. 2005 / 037412A1 Pamphlet 特開平8−108037号公報JP-A-8-108037 特開2008−200057号公報JP 2008-200057 A

特許文献1,2記載の低温プラズマ法では、処理効率が悪く、また、酸素環境下ではNOxが還元分解しない、という問題があった。
特許文献3記載の電子線処理方法は、アンモニアを加えて硝酸アンモニウムを生成させて除去するものであるのでアンモニアの添加が必要であった。
特許文献4記載の方法は、真空ないし低圧下でNOxを少量ずつ直接分解しているので効率が悪かった。
The low-temperature plasma methods described in Patent Documents 1 and 2 have problems in that the processing efficiency is poor and NOx does not undergo reductive decomposition in an oxygen environment.
The electron beam processing method described in Patent Document 3 requires addition of ammonia because ammonia is added to produce and remove ammonium nitrate.
The method described in Patent Document 4 is inefficient because NOx is directly decomposed little by little under vacuum or low pressure.

本発明者は、NOxの効率のよい分解方法を開発するべく鋭意検討の結果、窒素が主成分の排ガス中に電子線を照射し、生成したNラジカルを用いてNOxを還元分解する方法を案出した。   As a result of intensive studies to develop an efficient decomposition method of NOx, the present inventor has devised a method for reducing and decomposing NOx using the generated N radicals by irradiating an exhaust gas mainly containing nitrogen with an electron beam. I put it out.

そして、この方法が、酸素濃度が高い排ガス中においてもNOxを極めて効率よく分解しうることを見出して本発明を完成するに至った。
すなわち、本発明は、窒素ガスを主成分としNOxを含む大気圧の排ガスに電子線を照射してNOxを還元分解することを特徴とする排ガス処理方法に関するものである。
And it discovered that this method can decompose | disassemble NOx very efficiently also in the waste gas with high oxygen concentration, and came to complete this invention.
That is, the present invention relates to an exhaust gas treatment method characterized in that NOx is reduced and decomposed by irradiating an atmospheric pressure exhaust gas containing nitrogen gas as a main component and containing NOx with an electron beam.

本発明では、低温プラズマよりエネルギーが高く、一様な電子を電子線装置で発生させ、この電子により窒素分子を解離させNラジカルを高効率で生成させる。このNラジカルによりNOxをNとOに直接分解している。 In the present invention, uniform electrons having higher energy than low-temperature plasma are generated by an electron beam device, and nitrogen molecules are dissociated by the electrons to generate N radicals with high efficiency. This N radical decomposes NOx directly into N 2 and O 2 .

本発明の方法は、従来法と異なり、吸着工程やアンモニア添加が不要であり、窒素が主成分の排ガス中へ電子線を照射し、あるいは電子線を照射して窒素ガスを排ガス中へ注入することにより、排ガス中のNOxを効率よく分解できる。   Unlike the conventional method, the method of the present invention does not require an adsorption step or addition of ammonia, and irradiates an electron beam into exhaust gas containing nitrogen as a main component, or injects an electron beam to inject nitrogen gas into the exhaust gas. Thus, NOx in the exhaust gas can be efficiently decomposed.

本発明の一実施例を説明する図である。It is a figure explaining one Example of this invention. 図1を組込んだ装置の一例を示す図である。It is a figure which shows an example of the apparatus incorporating FIG. NO処理効率と酸素含有濃度との関係を示す図である。It is a figure which shows the relationship between NO process efficiency and oxygen content concentration. 従来の電子線照射装置の概要構造を示す図である。It is a figure which shows the general | schematic structure of the conventional electron beam irradiation apparatus.

本発明が適用される排ガスは、窒素ガスを主成分とし、NOxを含む大気圧の排ガスである。この排ガスの窒素含有濃度は40vol%以上、通常60vol%以上であり、NOxの含有量は10〜3000ppm程度、通常100〜1500ppm程度である。排ガスのその他の成分は、排ガスの種類によって異なるが、例えば酸素、炭酸ガス、一酸化炭素、水、SOx等がある。酸素を含有しているとNOxの分解効率は低下するが、酸素含有濃度が15vol%程度でもNOxの分解は可能である。酸素含有濃度の好ましい上限は20vol%である。排ガスの例としては自動車、船舶、発電用などのディーゼル機関から排出される排ガス、石油、石炭、天然ガス等による火力発電所から発生する燃焼排ガス、ボイラーから発生する排ガス等を挙げることができる。   The exhaust gas to which the present invention is applied is an atmospheric exhaust gas mainly containing nitrogen gas and containing NOx. The nitrogen content concentration of the exhaust gas is 40 vol% or more, usually 60 vol% or more, and the NOx content is about 10 to 3000 ppm, usually about 100 to 1500 ppm. The other components of the exhaust gas vary depending on the type of exhaust gas, and include, for example, oxygen, carbon dioxide, carbon monoxide, water, and SOx. If oxygen is contained, the decomposition efficiency of NOx decreases, but NOx can be decomposed even if the oxygen-containing concentration is about 15 vol%. A preferable upper limit of the oxygen-containing concentration is 20 vol%. Examples of the exhaust gas include exhaust gas discharged from automobiles, ships, diesel engines for power generation, combustion exhaust gas generated from a thermal power plant using petroleum, coal, natural gas, etc., exhaust gas generated from a boiler, and the like.

排ガスの圧力は大気圧程度、通常、一気圧±10%程度である。本発明の方法は、これより低気圧であっても適用できるが、あえて、排ガスを低圧化しなくても適用できるところに特徴がある。   The pressure of the exhaust gas is about atmospheric pressure, usually about 1 atmosphere ± 10%. The method of the present invention can be applied even at a lower atmospheric pressure than this, but is characterized in that it can be applied without reducing the pressure of exhaust gas.

電子線は、公知の電子線装置を使用することができ、電子放出部を有する陰極、陽極(電子線を大気に取り出す窓部)、陰陽極間に高電圧を印加して電子を加速するための真空容器部(真空ポンプを用いるチャンバーや真空封止管)とその高電圧電源等よりなる。電子放出部としては、高電圧、高電流出力条件での長寿命特性が必要であり、従来よりも低電圧で照射量を稼げる点で、従来の熱陰極型ではなく、加熱電源が不要なカーボンナノチューブ(CNT)、スピントなどの電界放出型冷陰極が効果的である。カーボンナノチューブによる電子放出部は、金属基板の上にCNTを成膜し、起毛処理を施したものが特に好ましい。CNTとしては、最も許容電流密度が高く耐久性の優れたアーク放電法により製造された多層CNTが最適である。CNTを金属基板へ成膜する方法は、スプレー堆積法、スクリーン印刷法、電気泳動法などの公知の方法を用いることができるが、CNT分散剤、増粘剤等の化学物質や樹脂等の不純物がなくCNTと基板との高い接合性を有することが電子放出能の耐久性には好ましい。CNTと金属微粒子を混合したものを成膜し、熱処理により接合性を持たせる方法や、真空中の電子ビーム照射により接合性を高める方法等がある。   For the electron beam, a known electron beam device can be used, and a high voltage is applied between the cathode having the electron emission portion, the anode (the window portion for taking out the electron beam to the atmosphere), and the negative anode to accelerate the electrons. The vacuum container (chamber using a vacuum pump or vacuum sealed tube) and its high voltage power source. The electron emission part must have long life characteristics under high voltage and high current output conditions, and it can produce a higher dose at a lower voltage than conventional ones. Field emission cold cathodes such as nanotubes (CNT) and spint are effective. The electron emission portion made of carbon nanotubes is particularly preferably one obtained by forming a CNT film on a metal substrate and performing a raising treatment. As the CNT, a multilayer CNT manufactured by an arc discharge method having the highest allowable current density and excellent durability is most suitable. Known methods such as spray deposition, screen printing, and electrophoresis can be used as a method for forming a film on a metal substrate. However, chemical substances such as CNT dispersants and thickeners, and impurities such as resins. It is preferable for durability of the electron emission ability to have a high bonding property between the CNT and the substrate. There are a method of forming a film of a mixture of CNT and metal fine particles and imparting the bonding property by heat treatment, a method of increasing the bonding property by electron beam irradiation in vacuum, and the like.

CNT膜に電子放出性を発揮させるための起毛処理方法としては、極短パルスの高エネルギー密度のレーザ照射法や粘着テープ等による引剥し起毛法などを用いることができる。また、テープ状のCNTを用いた場合には、軟らかい金属を蒸着させた基板にCNTテープを圧着後引剥し、固定と起毛処理を同時に行う方法を用いてもよい。   As a raising treatment method for causing the CNT film to exhibit electron emission, an ultrashort pulse high energy density laser irradiation method, a peeling raising method using an adhesive tape, or the like can be used. When tape-like CNTs are used, a method may be used in which the CNT tape is pressure-bonded to a substrate on which a soft metal is vapor-deposited and then peeled off, and fixing and raising are performed at the same time.

本発明の方法を適用しうる装置の一例を図1に示す。
陰極は電界放出型の電子銃であり、印加された直流高電圧により電界集中したCNT先端からトンネル効果によって電子放出部から電子が放出される。この電子は、真空容器内で印加電圧によりさらに加速され、高エネルギー電子線となって陽極である電子取り出し窓へ到達する。電子線は取り出し窓の数〜数十ミクロン厚の薄い金属膜を透過し、排ガス管内へ照射される。排ガス管内は、窒素分子を主成分とするNOxを含む排気ガスが一方向へ流れており、この主成分である窒素分子に電子線が衝突すると原子に解離し、Nラジカルと呼ばれる不対電子を持った窒素原子を多量に生成する。このNラジカルは化学的に高活性でありNOxと高い確率で還元反応を起こし、高効率にNOxをNとOに分解する。
An example of an apparatus to which the method of the present invention can be applied is shown in FIG.
The cathode is a field emission electron gun, and electrons are emitted from the electron emission portion by the tunnel effect from the tip of the CNT concentrated in the electric field by the applied DC high voltage. The electrons are further accelerated by the applied voltage in the vacuum vessel, and become high-energy electron beams and reach the electron extraction window that is the anode. The electron beam passes through a thin metal film having a thickness of several to several tens of microns from the extraction window, and is irradiated into the exhaust gas pipe. In the exhaust gas pipe, exhaust gas containing NOx containing nitrogen molecules as the main component flows in one direction. When an electron beam collides with the main component nitrogen molecules, it dissociates into atoms, and unpaired electrons called N radicals are removed. Generates a large amount of nitrogen atoms. This N radical is chemically highly active and causes a reduction reaction with NOx with a high probability, and decomposes NOx into N 2 and O 2 with high efficiency.

本発明の方法を実施するに当っては、電子を加速する電圧は、30kV以上、好ましくは50kV以上、300kV以下、好ましくは150kV以下とすることが好ましい。これは、電子を薄膜の取り出し窓を通して大気中の取り出せる実用上の最低電圧と、X線遮蔽、電波等の設備コストからの上限電圧として定められたものである。加速電圧は低いほど電子線の排ガス中を透過する距離(電子の飛程あるいは行程)が短くなり、照射密度が高くなり好ましい。しかし、実用では排ガス流量や管径に制約があるため、必要な飛程、取り出し窓の損失、強度などより最適な加速条件を求めなければならない。   In carrying out the method of the present invention, the voltage for accelerating electrons is preferably 30 kV or higher, preferably 50 kV or higher, 300 kV or lower, preferably 150 kV or lower. This is defined as a practical minimum voltage at which electrons can be extracted into the atmosphere through a thin film extraction window, and an upper limit voltage from equipment costs such as X-ray shielding and radio waves. The lower the acceleration voltage, the shorter the distance (electron range or stroke) of the electron beam that passes through the exhaust gas, and the higher the irradiation density, the better. However, since there are restrictions on the exhaust gas flow rate and pipe diameter in practical use, it is necessary to obtain optimum acceleration conditions from the necessary range, loss of extraction window, strength, and the like.

電子放出部の電流密度は、0.1mA/cm以上、好ましくは0.3mA/cm以上、66mA/cm以下、好ましくは33mA/cm以下とすることが好ましい。これは、上記の電圧範囲における取り出し窓での熱損失から電流密度が制限され、電子放出源の電流密度上限値を設定したものである。また、電界放出素子一個当り(CNTでは電子放出している1本)の放出電流が1nA〜100nA(直径10nmの多層CNTとすると1.27kA/cm〜1.27MA/cm)で、その有効放出本数が1cm当り1×10〜1×10の範囲にあることが好ましい。 The current density of the electron emission portion, 0.1 mA / cm 2 or more, preferably 0.3 mA / cm 2 or more, 66 mA / cm 2 or less, preferably to 33 mA / cm 2 or less. This is because the current density is limited by the heat loss at the extraction window in the above voltage range, and the upper limit value of the current density of the electron emission source is set. In addition, the emission current per field emission device (one electron emission in the CNT) is 1 nA to 100 nA (if the multi-wall CNT having a diameter of 10 nm is 1.27 kA / cm 2 to 1.27 MA / cm 2 ), It is preferable that the number of effective releases is in the range of 1 × 10 3 to 1 × 10 8 per 1 cm 2 .

本発明は、排ガス流量やNOx濃度に関わらず、大小様々なNOx排出源に適用することができるが、高排ガス流量(1000L/分以上)かつ高NOx濃度(100〜1000ppm)での大型ディーゼル機関に対し、本発明を適用した場合の装置イメージを図2に示した。   The present invention can be applied to a large and small NOx emission source regardless of the exhaust gas flow rate and NOx concentration. On the other hand, FIG. 2 shows an apparatus image when the present invention is applied.

図2に示したように、装置の構成は小型の電子線源をマトリックス状に配置し、低エネルギー電子線を連続で平面状に照射するものとなる。排気ガス管は圧損をできるだけ小さくするため管断面積は0.1〜1mとした。 As shown in FIG. 2, the configuration of the apparatus is such that small electron beam sources are arranged in a matrix, and low energy electron beams are continuously irradiated in a plane. The exhaust gas pipe had a cross-sectional area of 0.1 to 1 m 2 in order to minimize the pressure loss.

以下に、排気ガス管の断面積0.5mのエンジンにおいて加速電圧100kV(電子の飛程約12cm)、必要電流値は1Aが最適と算出された場合について説明する。 Hereinafter, a description will be given of a case where an acceleration voltage of 100 kV (electron range of about 12 cm) and a required current value of 1 A are calculated to be optimal in an engine having an exhaust gas pipe cross-sectional area of 0.5 m 2 .

電子飛程12cmより管形状は20cm×2.5mの長方形とし、その長尺面に電子線源をマトリックス状に配置する。なお、断面積が小さい場合には円筒管の周囲に配置することも可能である。一つの電子放出部のサイズを、例えば10cmで10mA(電流密度1mA/cm)とすると、100個(上下面各50個)の電子源を設置することになり、1個の電子源の大きさを25cm幅とすると10個×5列の配置となる。この電子線源は、真空ポンプを用いた真空チャンバーやガラス製の真空封管(真空管)内のCNTから放出された電子線を100kVに加速し、数ミクロン〜数10ミクロンのチタン、アルミ、シリコン、ベリリウム、カーボンなどの低密度かつ高強度材の薄膜を通して排ガス中に照射される。真空容器は電子放出源個々に独立しても良いし、複数に1つあるいは全体で1つの真空容器でも良い。各々の電流量の調整は、電子放出部の電子銃カバー(ウェネルト)に対する位置や抵抗や電圧印加によるウェネルト電位調整、さらには電子銃と陽極間に設置された追加電極(引出し電極)により調整される。 From the electron range of 12 cm, the tube shape is a rectangle of 20 cm × 2.5 m, and electron beam sources are arranged in a matrix on the long surface. In addition, when a cross-sectional area is small, it is also possible to arrange | position around a cylindrical tube. If the size of one electron emission part is 10 mA at 10 cm 2 (current density 1 mA / cm 2 ), for example, 100 electron sources (50 on each of the upper and lower surfaces) are installed, and one electron source When the size is 25 cm wide, the arrangement is 10 × 5 rows. This electron beam source accelerates an electron beam emitted from a CNT in a vacuum chamber using a vacuum pump or a glass vacuum sealed tube (vacuum tube) to 100 kV, and is made of titanium, aluminum, silicon of several microns to several tens of microns. It is irradiated into the exhaust gas through a thin film of low density and high strength material such as beryllium and carbon. The vacuum vessel may be independent for each electron emission source, or one vacuum vessel or one vacuum vessel as a whole. The amount of each current is adjusted by adjusting the position, resistance, and voltage applied to the electron gun cover (Wenert) of the electron emitter, and also by an additional electrode (drawer electrode) installed between the electron gun and the anode. The

装置稼動中には、照射部の排ガス管前後に設置したNOx濃度および流量センサーによりその変化をモニタリングし、制御装置により照射電流値を最適に調整することにより、80%以上のNOxを分解除去することが可能である。   During operation of the system, NOx concentration and flow rate sensors installed before and after the exhaust gas pipe of the irradiation unit are monitored for changes, and the control unit optimizes the irradiation current value to decompose and remove 80% or more of NOx. It is possible.

本発明の方法と低温プラズマ法(従来法)を比較するため、NO濃度1000ppmを含有する排ガスを用いて、酸素含有濃度を変化させて処理試験を行った。図3にそれぞれの方法におけるNO処理効率を示したが、その横軸は排ガス中の酸素含有濃度、縦軸は単位電力量当りのNO分解量をNO処理効率としたものである。   In order to compare the method of the present invention with the low-temperature plasma method (conventional method), a treatment test was conducted using an exhaust gas containing a NO concentration of 1000 ppm and varying the oxygen-containing concentration. FIG. 3 shows the NO treatment efficiency in each method. The horizontal axis represents the oxygen content concentration in the exhaust gas, and the vertical axis represents the NO decomposition amount per unit power amount as the NO treatment efficiency.

なお、本発明において、電子を加速する電圧は100kVとし、電子放出部の電流密度は5mA/cmとした。
図3より、本発明の方法によればNO処理効率は圧倒的に高く、低温プラズマ法では、酸素含有濃度の上昇に伴ってNO処理効率は低下し、酸素含有濃度5vol%ではほとんど分解しなかった。これは、低温プラズマ法の場合、酸素含有濃度の上昇によりNOがNOへと酸化し、還元しなかったためであると考えられる。一方、電子線照射による本発明では、酸素含有濃度の上昇に伴ってNO処理効率は低下するものの高酸素含有濃度(10〜15vol%)においても十分に還元分解することが確認された。
In the present invention, the voltage for accelerating electrons was 100 kV, and the current density of the electron emission portion was 5 mA / cm 2 .
From FIG. 3, according to the method of the present invention, the NO treatment efficiency is overwhelmingly high, and in the low temperature plasma method, the NO treatment efficiency decreases with an increase in the oxygen-containing concentration, and hardly decomposes at an oxygen-containing concentration of 5 vol%. It was. This is considered to be because in the case of the low temperature plasma method, NO was oxidized to NO 2 due to an increase in oxygen-containing concentration and was not reduced. On the other hand, in the present invention by electron beam irradiation, it was confirmed that the NO treatment efficiency decreases as the oxygen content increases, but it is sufficiently reduced and decomposed even at a high oxygen content (10 to 15 vol%).

本発明により、排ガスに含まれるNOxを安価に効率よくNとOに分解できるので、NOxを含む排ガスの処理に広く適用できる。 According to the present invention, NOx contained in the exhaust gas can be efficiently and inexpensively decomposed into N 2 and O 2 , so that it can be widely applied to the treatment of exhaust gas containing NOx.

Claims (1)

窒素ガスを主成分とし、酸素含有濃度が20vol%以下でNOを含む大気圧の排ガスに加速電圧が30kV以上300kV以下かつ電子放出部の電流密度が0.1mA/cm以上66mA/cm以下の電子線を照射してNOを還元分解するとともに、前記電子線が起毛処理を施したカーボンナノチューブから発せられるものであることを特徴とする排ガス処理方法。 Nitrogen gas as a main component, the current density of the oxygen-containing concentration exhaust gas in the accelerating voltage is higher 30 kV 300 kV or less and the electron emission portion of the atmospheric pressure including the NO X below 20 vol% is 0.1 mA / cm 2 or more 66 mA / cm 2 exhaust gas treatment method, characterized in that following the NO X with reducing and decomposing by irradiation with electron beam, the electron beam is one that is emitted from the carbon nanotubes subjected to raising treatment.
JP2009041728A 2009-02-25 2009-02-25 Exhaust gas treatment method by electron beam irradiation Expired - Fee Related JP5099375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041728A JP5099375B2 (en) 2009-02-25 2009-02-25 Exhaust gas treatment method by electron beam irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041728A JP5099375B2 (en) 2009-02-25 2009-02-25 Exhaust gas treatment method by electron beam irradiation

Publications (3)

Publication Number Publication Date
JP2010194448A JP2010194448A (en) 2010-09-09
JP2010194448A5 JP2010194448A5 (en) 2012-01-19
JP5099375B2 true JP5099375B2 (en) 2012-12-19

Family

ID=42819746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041728A Expired - Fee Related JP5099375B2 (en) 2009-02-25 2009-02-25 Exhaust gas treatment method by electron beam irradiation

Country Status (1)

Country Link
JP (1) JP5099375B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2537196B (en) * 2015-10-02 2017-05-10 Mario Michan Juan Apparatus and method for electron irradiation scrubbing
GB2593786B (en) * 2020-07-07 2023-01-25 Daphne Tech Sa Apparatus and method for electron irradiation scrubbing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189100A (en) * 2000-12-22 2002-07-05 Ebara Corp Electron beam irradiation system
JP2008200057A (en) * 2006-06-01 2008-09-04 Laser Gijutsu Sogo Kenkyusho Environmentally harmful substance treatment method using carbon nanotube (cnt) electron source
JP5099756B2 (en) * 2007-06-18 2012-12-19 Jfeエンジニアリング株式会社 Electron beam generator and control method thereof
JP2010194503A (en) * 2009-02-27 2010-09-09 Jfe Engineering Corp Apparatus for treating exhaust gas by electron beam irradiation
JP5499489B2 (en) * 2009-02-27 2014-05-21 Jfeエンジニアリング株式会社 NOx-containing exhaust gas treatment apparatus and NOx-containing exhaust gas treatment method
JP5299647B2 (en) * 2010-04-09 2013-09-25 Jfeエンジニアリング株式会社 Exhaust gas treatment equipment

Also Published As

Publication number Publication date
JP2010194448A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP5299647B2 (en) Exhaust gas treatment equipment
US6345497B1 (en) NOx reduction by electron beam-produced nitrogen atom injection
CN1386563A (en) Apparatus and process for cleaning gas
JP4378592B2 (en) Control method of discharge generator
JP5099375B2 (en) Exhaust gas treatment method by electron beam irradiation
CN208260501U (en) A kind of comprehensive emission-control equipment
JP2010194503A (en) Apparatus for treating exhaust gas by electron beam irradiation
JP5153748B2 (en) Nitrous oxide reduction method and reduction apparatus
Qi et al. Simultaneous removal of NO and SO2 from dry gas stream using non-thermal plasma
JP2003080058A (en) Method for producing reactive gas and producing apparatus therefor
JP2023533053A (en) Electron beam irradiation scrubbing apparatus and method
JP5499489B2 (en) NOx-containing exhaust gas treatment apparatus and NOx-containing exhaust gas treatment method
JP2008200057A (en) Environmentally harmful substance treatment method using carbon nanotube (cnt) electron source
CN204865478U (en) Integrated form stench clean system
JP2019501022A (en) Apparatus and method for purification by electron irradiation
JPH05237337A (en) Treatment of exhaust gas and treating equipment for exhaust gas
Lakshmipathiraj et al. Electron beam treatment of gas stream containing high concentration of NOx: An in situ FTIR study
CN1513753A (en) Method of producing sulfuric acid using hydroxg oxidation of sulfur dioxide
Zhang et al. Removal dynamics of nitric oxide (NO) pollutant gas by pulse-discharged plasma technique
JP2005319413A (en) Chemical decomposition and reaction method
JP3950856B2 (en) Catalytic electrode type ozone generation method and generator
Ibuka et al. Novel plasma reactor using honeycomb ceramics driven by a fast SI-thyristor for environmental applications
CN109908749B (en) Multiphase discharge system for catalyzing and cooperatively removing VOCs with different solubilities
JP4385131B2 (en) Gas reactor
CN210303101U (en) Large-caliber low-temperature plasma oxidation device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5099375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees