JP5088236B2 - Finned tube heat exchanger - Google Patents

Finned tube heat exchanger Download PDF

Info

Publication number
JP5088236B2
JP5088236B2 JP2008138147A JP2008138147A JP5088236B2 JP 5088236 B2 JP5088236 B2 JP 5088236B2 JP 2008138147 A JP2008138147 A JP 2008138147A JP 2008138147 A JP2008138147 A JP 2008138147A JP 5088236 B2 JP5088236 B2 JP 5088236B2
Authority
JP
Japan
Prior art keywords
cut
heat transfer
raised
downstream
airflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008138147A
Other languages
Japanese (ja)
Other versions
JP2009287799A (en
Inventor
宏和 藤野
俊光 鎌田
春男 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008138147A priority Critical patent/JP5088236B2/en
Publication of JP2009287799A publication Critical patent/JP2009287799A/en
Application granted granted Critical
Publication of JP5088236B2 publication Critical patent/JP5088236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、フィンチューブ型熱交換器、特に、板厚方向に間隔を空けて並べて気流中に配置される複数の伝熱フィンと、複数の伝熱フィンに挿入されており気流の流れ方向に略直交する方向に配置される複数の伝熱管とを備えており、伝熱フィン面の伝熱管の鉛直方向における両側において、気流の流れ方向上流側から下流側に向かって並ぶ複数の切り起こし部が切り起こし加工により形成されたフィンチューブ型熱交換器に関する。   The present invention relates to a finned-tube heat exchanger, in particular, a plurality of heat transfer fins arranged in the airflow with a gap in the plate thickness direction, and inserted in the plurality of heat transfer fins in the airflow direction. A plurality of heat transfer tubes arranged in a substantially orthogonal direction, and a plurality of cut-and-raised portions arranged from the upstream side to the downstream side in the airflow direction on both sides in the vertical direction of the heat transfer tubes on the heat transfer fin surface The present invention relates to a finned tube heat exchanger formed by cutting and raising.

空気調和装置等に使用されるフィンチューブ型熱交換器として、図1に示されるように、伝熱フィン102における伝熱管103の空気流の流れ方向下流側の部分に形成される死水域の低減や伝熱フィン102における境界層の更新等による伝熱促進のために、伝熱フィン面の伝熱管103の鉛直方向における両側において、伝熱管103近傍の空気流を伝熱管103の空気流の流れ方向後側に案内するように、空気流の流れ方向に対して傾斜した切り起こし部104a〜104c、104d〜104fが切り起こし加工により形成され、さらに、空気と冷媒等の熱媒体との熱交換より発生したドレン水が切り起こし部104a〜104c、104d〜104fに滞留して排水性が低下するのを防ぐために、切り起こし部104a〜104c、104d〜104fを空気流の流れ方向上流側から下流側に向かって3つに分割して一直線(図1の直線L参照)上に並べたものがある(特許文献1参照)。
特開2008−111646号公報
As a finned tube heat exchanger used in an air conditioner or the like, as shown in FIG. 1, the dead water area formed in the downstream portion of the heat transfer fin 102 in the air flow direction of the heat transfer tube 103 is reduced. In order to promote heat transfer by updating the boundary layer in the heat transfer fins 102, the air flow in the vicinity of the heat transfer tubes 103 is changed to the air flow in the heat transfer tubes 103 on both sides in the vertical direction of the heat transfer tubes 103 on the surface of the heat transfer fins. The cut-and-raised portions 104a to 104c and 104d to 104f that are inclined with respect to the flow direction of the air flow are formed by the cut-and-raise processing so as to guide the rear side of the direction, and further heat exchange between the air and a heat medium such as a refrigerant In order to prevent the drain water generated more from staying in the raised portions 104a to 104c and 104d to 104f and lowering the drainage, the raised portions 104a to 104c. 104d~104f certain those arranged on the straight line (see the straight line L in FIG. 1) is divided into three toward the downstream side from the flow direction upstream side of the air flow (see Patent Document 1).
JP 2008-111646 A

ところで、上述の切り起こし部の空気流の流れ方向に対する迎え角α(図1参照)を小さくすると、切り起こし部1個当たりの伝熱促進効果は低下する傾向にあるが(図2における迎え角αと交換熱量Qとの関係を参照)、通風抵抗ΔP当たりの伝熱促進効果は大きくなる傾向にある(図3における迎え角αと通風抵抗当たりの交換熱量Q/ΔPとの関係を参照)。   By the way, if the angle of attack α (see FIG. 1) with respect to the flow direction of the air flow of the cut-and-raised part is reduced, the heat transfer promoting effect per cut-and-raised part tends to be reduced (attack angle in FIG. 2). (See the relationship between α and the exchange heat quantity Q), and the heat transfer promotion effect per ventilation resistance ΔP tends to increase (see the relationship between the angle of attack α and the exchange heat quantity Q / ΔP per ventilation resistance in FIG. 3). .

このため、上述のような、伝熱フィン面の伝熱管の鉛直方向における両側において、空気流の流れ方向上流側から下流側に向かって一直線上に並ぶ複数の切り起こし部が切り起こし加工により形成されたフィンチューブ型熱交換器においては、迎え角を小さくしつつ切り起こし部の数を増やすことで、理論的には、さらなる伝熱促進を図ることが可能になる。   For this reason, as described above, on both sides of the heat transfer fin surface in the vertical direction of the heat transfer tube, a plurality of cut-and-raised portions aligned in a straight line from the upstream side to the downstream side in the air flow direction are formed by cutting and raising. In the finned tube heat exchanger, it is theoretically possible to further promote heat transfer by increasing the number of cut and raised portions while reducing the angle of attack.

しかし、迎え角を小さくしつつ切り起こし部の数を増やすと、切り起こし部間の間隔が小さくなり、ドレン水が切り起こし部間の隙間にブリッジ状に滞留しやすくなり、排水性が確保できなくなるおそれがある。また、切り起こし部間の間隔が小さい状態で複数の切り起こし部を一直線上に並べると、各切り起こし部によって下流側に導かれる空気流が、その下流側の切り起こし部を通過しようとする空気流に干渉しやすくなり、各切り起こし部における伝熱促進効果が十分に発揮されなくなるおそれがある。   However, increasing the number of cut-and-raised parts while reducing the angle of attack reduces the spacing between the cut-and-raised parts, making it easier for drain water to stay in the gap between the raised and raised parts, ensuring drainage. There is a risk of disappearing. Further, when a plurality of cut-and-raised portions are arranged in a straight line with a small interval between the cut-and-raised portions, the air flow guided downstream by each cut-and-raised portion tends to pass through the cut-and-raised portion on the downstream side. It becomes easy to interfere with the air flow, and there is a concern that the heat transfer promoting effect at each cut and raised portion may not be sufficiently exhibited.

このため、迎え角を小さくしつつ切り起こし部の数を増やすことで伝熱促進を図るためには、切り起こし部間の排水性を確保しつつ、各切り起こし部における伝熱促進効果が十分に発揮されるようにする必要がある。   For this reason, in order to promote heat transfer by increasing the number of cut-and-raised parts while reducing the angle of attack, the effect of promoting heat transfer at each cut-and-raised part is sufficient while ensuring drainage between the cut and raised parts. It is necessary to be demonstrated to.

本発明の課題は、板厚方向に間隔を空けて並べて気流中に配置される複数の伝熱フィンと、複数の伝熱フィンに挿入されており気流の流れ方向に略直交する方向に配置される複数の伝熱管とを備えており、伝熱フィン面の伝熱管の鉛直方向における両側において、気流の流れ方向上流側から下流側に向かって並ぶ複数の切り起こし部が切り起こし加工により形成されたフィンチューブ型熱交換器において、切り起こし部間の排水性を確保し、かつ、各切り起こし部における伝熱促進効果が十分に発揮されるようにすることにある。   An object of the present invention is to arrange a plurality of heat transfer fins arranged in the airflow side by side with an interval in the plate thickness direction, and to be inserted in the plurality of heat transfer fins and in a direction substantially orthogonal to the flow direction of the airflow. A plurality of cut-and-raised parts arranged from the upstream side to the downstream side in the air flow direction are formed by cutting and raising on both sides of the heat transfer pipe in the vertical direction of the heat transfer pipe. In the fin tube type heat exchanger, the drainage property between the cut and raised portions is ensured, and the heat transfer promoting effect at each cut and raised portion is sufficiently exhibited.

第1の発明にかかるフィンチューブ型熱交換器は、複数の伝熱フィンと、複数の伝熱管とを備えている。伝熱フィンは、板厚方向に間隔を空けて並べて気流中に配置される。伝熱管は、複数の伝熱フィンに挿入されており、気流の流れ方向に略直交する方向に配置される。そして、各伝熱フィンには、伝熱管の鉛直方向における両側において、気流の流れ方向上流側から下流側に向かって並ぶ複数の切り起こし部が、切り起こし加工により形成されており、複数の切り起こし部は、伝熱管近傍の気流が、伝熱管の気流の流れ方向後側に案内されるように気流の流れ方向に対して傾斜するように、かつ、各切り起こし部の気流の流れ方向に対する迎え角が、複数の切り起こし部のうち気流の流れ方向の上流側に位置する上流側切り起こし部よりも気流の流れ方向の下流側に位置する下流側切り起こし部のほうが小さくなるように、配置されている。   The finned tube heat exchanger according to the first invention includes a plurality of heat transfer fins and a plurality of heat transfer tubes. The heat transfer fins are arranged in the airflow side by side with a space in the thickness direction. The heat transfer tubes are inserted into the plurality of heat transfer fins, and are arranged in a direction substantially orthogonal to the airflow direction. Each heat transfer fin has a plurality of cut-and-raised parts arranged on the both sides in the vertical direction of the heat transfer tube from the upstream side to the downstream side in the airflow direction. The raising portion is inclined with respect to the airflow direction so that the airflow in the vicinity of the heat transfer tube is guided to the rear side in the airflow direction of the heat transfer tube, and with respect to the airflow direction of each cut and raised portion. The angle of attack is such that, among the plurality of cut-and-raised parts, the downstream cut-and-raised part located on the downstream side in the airflow direction is smaller than the upstream cut-and-raised part located on the upstream side in the airflow direction. Has been placed.

このフィンチューブ型熱交換器では、気流の流れ方向上流側から下流側に向かって並ぶ複数の切り起こし部が、伝熱管近傍の気流が伝熱管の気流の流れ方向後側に案内されるように気流の流れ方向に対して傾斜するように配置されているため、従来の複数の切り起こし部を一直線上に並べる場合と同様に、伝熱フィンにおける伝熱管の気流の流れ方向下流側の部分に形成される死水域の低減や伝熱フィンにおける境界層の更新等による伝熱促進効果を得ることができる。そして、このフィンチューブ型熱交換器では、各切り起こし部の気流の流れ方向に対する迎え角が、複数の切り起こし部のうち気流の流れ方向の上流側に位置する上流側切り起こし部よりも気流の流れ方向の下流側に位置する下流側切り起こし部のほうが小さくなるように配置されていることから、上流側切り起こし部の迎え角が大きな角度で維持されることになるため、上流側切り起こし部及び下流側切り起こし部のすべてを同一の直線上に並べる場合に比べて、各切り起こし部間の隙間を確保しやすくなり、これにより、迎え角を小さくしつつ切り起こし部の数を増やす場合であっても、切り起こし部間の排水性を確保することができる。しかも、複数の切り起こし部が、伝熱管近傍の気流が伝熱管の気流の流れ方向後側に案内されるように気流の流れ方向に対して傾斜するように配置されている場合には、複数の切り起こし部と伝熱管とによって挟まれた空間を通過する気流の流速が、気流の流れ方向の上流側に位置する上流側切り起こし部付近よりも気流の流れ方向の下流側に位置する下流側切り起こし部付近のほうが大きくなる傾向にあるが、このフィンチューブ型熱交換器では、上流側切り起こし部の迎え角が大きな角度で維持されることになるため、風速が小さく通風抵抗の小さい領域に位置する上流側切り起こし部については、高い交換熱量が得られやすくなり、風速が大きく通風抵抗の大きい領域に位置する下流側切り起こし部については、通風抵抗当たりの伝熱促進効果が得られやすくなり、これにより、迎え角を小さくしつつ切り起こし部の数を増やす場合であっても、伝熱フィンにおける風速分布を考慮して複数の切り起こし部の気流の流れ方向に対する迎え角を設定でき、伝熱促進効果が十分に発揮されるようにすることができる。   In this finned tube heat exchanger, a plurality of cut-and-raised portions arranged from the upstream side to the downstream side in the airflow direction are guided so that the airflow in the vicinity of the heat transfer tube is guided to the rear side in the airflow direction of the heat transfer tube. Since it is arranged so as to incline with respect to the flow direction of the airflow, it is arranged on the downstream side in the flow direction of the airflow of the heat transfer tube in the heat transfer fin, as in the case where a plurality of conventional raised portions are arranged in a straight line. The heat transfer promotion effect by the reduction of the dead water area formed, the update of the boundary layer in a heat transfer fin, etc. can be acquired. In the finned tube heat exchanger, the angle of attack of each cut-and-raised part with respect to the airflow direction is higher than the upstream cut-and-raised part located upstream of the airflow direction in the plurality of cut-and-raised parts. Since the downstream cut-and-raised portion located downstream in the flow direction of the pipe is arranged so as to be smaller, the attack angle of the upstream cut-and-raised portion is maintained at a large angle. Compared to the case where all of the raised parts and the downstream cut-and-raised parts are arranged on the same straight line, it becomes easier to secure a gap between the raised parts, thereby reducing the number of raised parts while reducing the angle of attack. Even if it is increased, the drainage between the cut and raised portions can be ensured. Moreover, when the plurality of cut-and-raised portions are arranged so as to be inclined with respect to the flow direction of the air flow so that the air flow in the vicinity of the heat transfer tube is guided to the rear side in the flow direction of the air flow of the heat transfer tube, The flow velocity of the airflow passing through the space sandwiched between the cut-and-raised portion and the heat transfer tube is located downstream of the upstream cut-and-raised portion located upstream of the airflow direction and downstream of the airflow direction. In the fin tube type heat exchanger, the angle of attack of the upstream cut-and-raised part is maintained at a large angle, so the wind speed is small and the ventilation resistance is low. For the upstream cut-and-raised part located in the region, it becomes easy to obtain a high amount of exchange heat, and for the downstream cut-and-raised part located in the region where the wind speed is large and the ventilation resistance is large, the heat transfer per ventilation resistance Even if the number of cut-and-raised parts is increased while reducing the angle of attack, the flow direction of the air flow in multiple cut-and-raised parts takes into account the wind speed distribution in the heat transfer fins. The angle of attack with respect to can be set, and the heat transfer promoting effect can be sufficiently exerted.

このように、このフィンチューブ型熱交換器では、切り起こし部間の排水性を確保し、かつ、各切り起こし部における伝熱促進効果が十分に発揮されるようにしながら、迎え角を小さくしつつ切り起こし部の数を増やすことで伝熱促進を図ることができる。   As described above, in this finned tube heat exchanger, the angle of attack is reduced while ensuring the drainage between the cut and raised portions and sufficiently exhibiting the heat transfer promoting effect at each cut and raised portion. However, heat transfer can be promoted by increasing the number of cut and raised portions.

第2の発明にかかるフィンチューブ型熱交換器は、第1の発明にかかるフィンチューブ型熱交換器において、複数の下流側切り起こし部は、各下流側切り起こし部の気流の流れ方向前端又は後端同士を仮想的に結ぶ直線が、各下流側切り起こし部の気流の流れ方向に対する迎え角よりも大きな角度をなすように配置されている。   The finned tube heat exchanger according to a second aspect of the present invention is the finned tube heat exchanger according to the first aspect of the present invention, wherein the plurality of downstream cut-and-raised portions are front ends in the air flow direction of the respective downstream cut-and-raised portions or A straight line that virtually connects the rear ends is arranged so as to form an angle larger than the angle of attack of each downstream cut-and-raised part with respect to the airflow direction.

このフィンチューブ型熱交換器では、各下流側切り起こし部の気流の流れ方向前端同士又は後端同士を仮想的に結ぶ直線が各下流側切り起こし部の気流の流れ方向に対する迎え角よりも大きな角度をなすように配置されていることから、各下流側切り起こし部の気流の流れ方向後端とその下流側の下流側切り起こし部の気流の流れ方向前端とが各下流側切り起こし部の気流の流れ方向前端又は後端同士を仮想的に結ぶ直線からずれた状態で配置されることになるため、複数の下流側切り起こし部を一直線上に並べる場合に比べて、各下流側切り起こし部間の隙間を確保しやすくなり、下流側切り起こし部間の排水性をさらに確保しやすくできる。しかも、各下流側切り起こし部の気流の流れ方向後端とその下流側の下流側切り起こし部の気流の流れ方向前端とが各下流側切り起こし部の気流の流れ方向前端又は後端同士を仮想的に結ぶ直線からずれた状態で配置されているため、複数の下流側切り起こし部を一直線上に並べる場合に比べて、各下流側切り起こし部によって下流側に導かれる気流が、その下流側の下流側切り起こし部を通過しようとする気流に干渉しにくくなり、各下流側切り起こし部における伝熱促進効果がさらに発揮されやすくすることができる。   In this fin tube heat exchanger, the straight line that virtually connects the front ends or the rear ends of the downstream cut-and-raised portions in the airflow direction is larger than the angle of attack of each downstream cut-and-raised portion with respect to the airflow direction. Since it is arranged so as to form an angle, the downstream end of each downstream cut-and-raised part in the direction of air flow and the downstream end of the downstream cut-and-raised part in the direction of air flow of each downstream cut-and-raised part Since it is arranged in a state of being deviated from the straight line that virtually connects the front end or rear end of the airflow direction, each downstream side cut and raised compared to the case where a plurality of downstream cut and raised portions are arranged on a straight line. It becomes easy to ensure the gap between the parts, and it is possible to further ensure the drainage between the downstream cut and raised parts. In addition, the rear end in the air flow direction of each downstream cut-and-raised part and the front end in the air flow direction of the downstream cut-and-raised part on the downstream side are the front ends or rear ends of the air flow directions in the respective downstream cut-and-raised parts. Since the plurality of downstream cut-and-raised portions are arranged in a straight line, the air flow guided downstream by each downstream cut-and-raised portion is arranged downstream of the virtual connecting straight line. It becomes difficult to interfere with the airflow that is about to pass through the downstream cut-and-raised part, and the heat transfer promoting effect at each downstream cut-and-raised part can be more easily exhibited.

第3の発明にかかるフィンチューブ型熱交換器は、第2の発明にかかるフィンチューブ型熱交換器において、各下流側切り起こし部は、気流の流れ方向下流側に向かって伝熱フィン面からの高さが漸増している。   The finned tube heat exchanger according to a third aspect of the present invention is the finned tube heat exchanger according to the second aspect of the present invention, wherein each downstream cut-and-raised part is directed from the heat transfer fin surface toward the downstream side in the airflow direction. The height of is gradually increasing.

このフィンチューブ型熱交換器では、各下流側切り起こし部の形状を気流の流れ方向下流側に向かって高さが漸増した形状にすることによって、各下流側切り起こし部の背後に縦渦を生じさせることができるため、下流側切り起こし部による伝熱促進効果をさらに高めることができるようになっている。   In this fin-tube heat exchanger, the shape of each downstream cut-and-raised part is formed so that the height gradually increases toward the downstream side in the air flow direction, thereby creating a vertical vortex behind each downstream-side cut and raised part. Since it can be made, the heat transfer promotion effect by the downstream cut-and-raised part can be further enhanced.

そして、このような縦渦は、気流の流れ方向下流側に向かって成長することで、大きな伝熱促進効果をもたらすものであるが、上述のように、各下流側切り起こし部の気流の流れ方向後端とその下流側の下流側切り起こし部の気流の流れ方向前端とが各下流側切り起こし部の気流の流れ方向前端又は後端同士を仮想的に結ぶ直線からずれた状態で配置されることによって、この縦渦の成長が妨げられにくくなるため、縦渦による伝熱促進効果を確実に得ることができる。   Such a vertical vortex grows toward the downstream side in the airflow direction, thereby providing a large heat transfer enhancement effect. As described above, the airflow in each downstream cut-and-raised part The rear end in the direction and the front end in the air flow direction of the downstream cut-and-raised part are arranged in a state shifted from the straight line that virtually connects the front or rear ends in the air flow direction in each downstream cut-and-raised part. This makes it difficult for the growth of the vertical vortex to be hindered, so that the effect of promoting heat transfer by the vertical vortex can be reliably obtained.

以上の説明に述べたように、本発明によれば、以下の効果が得られる。   As described above, according to the present invention, the following effects can be obtained.

第1の発明では、切り起こし部間の排水性を確保し、かつ、各切り起こし部における伝熱促進効果が十分に発揮されるようにしながら、迎え角を小さくしつつ切り起こし部の数を増やすことで伝熱促進を図ることができる。   In the first invention, the number of the cut-and-raised portions is reduced while reducing the angle of attack while ensuring the drainage between the cut-and-raised portions and sufficiently exhibiting the heat transfer promoting effect in each cut and raised portion. Heat transfer can be promoted by increasing the number.

第2の発明では、下流側切り起こし部間の排水性をさらに確保しやすくでき、しかも、各下流側切り起こし部における伝熱促進効果がさらに発揮されやすくすることができる。   In the second invention, the drainage between the downstream cut-and-raised portions can be further ensured, and the heat transfer promoting effect at each downstream cut-and-raised portion can be further easily exerted.

第3の発明では、縦渦による伝熱促進効果を確実に得ることができる。   In 3rd invention, the heat-transfer promotion effect by a vertical vortex can be acquired reliably.

以下、本発明にかかるフィンチューブ型熱交換器の実施形態について、図面に基づいて説明する。   Hereinafter, embodiments of a finned tube heat exchanger according to the present invention will be described with reference to the drawings.

図4、図5に本発明の一実施形態にかかるフィンチューブ型熱交換器1の要部を示す。ここで、図4は、フィンチューブ型熱交換器1の断面図である。図5は、図4のI−I断面図である。   The principal part of the finned-tube type heat exchanger 1 concerning one Embodiment of this invention is shown in FIG. 4, FIG. Here, FIG. 4 is a cross-sectional view of the finned tube heat exchanger 1. 5 is a cross-sectional view taken along the line II of FIG.

(1)フィンチューブ型熱交換器の基本構成
フィンチューブ型熱交換器1は、クロスフィンアンドチューブ型熱交換器であり、主として、複数のプレート状の伝熱フィン2と、複数の伝熱管3とを備えている。伝熱フィン2は、その平面を空気等の気流の流れ方向に概ね沿わせた状態で、板厚方向に所定の間隔を空けて並んで配置されている。伝熱フィン2には、気流の流れ方向に略直交する方向に間隔を空けて複数の貫通孔2aが形成されている。貫通孔2aの周囲部分は、伝熱フィン2の板厚方向の一方側に突出する環状のカラー部8となっている。カラー部8は、板厚方向に隣り合う伝熱フィン2のカラー部8が形成された面と反対の面に当接しており、伝熱フィン2の板厚方向間に所定の間隔(以下、この所定の間隔をフィンピッチFPとする)が確保されるようになっている。伝熱管3は、内部に冷媒等の熱媒体が流れる管部材であり、複数の伝熱フィン2に挿入されており、気流の流れ方向に略直交する方向に配置されている。具体的には、伝熱管3は、伝熱フィン2に形成された貫通孔2aを貫通しており、フィンチューブ型熱交換器1の組立時の拡管作業によって、カラー部8の内面に密着している。
(1) Basic configuration of fin tube type heat exchanger The fin tube type heat exchanger 1 is a cross fin and tube type heat exchanger, and mainly includes a plurality of plate-shaped heat transfer fins 2 and a plurality of heat transfer tubes 3. And. The heat transfer fins 2 are arranged side by side at a predetermined interval in the plate thickness direction with the plane thereof being generally along the flow direction of the airflow such as air. A plurality of through holes 2 a are formed in the heat transfer fins 2 at intervals in a direction substantially perpendicular to the airflow direction. A peripheral portion of the through hole 2 a is an annular collar portion 8 that protrudes to one side in the plate thickness direction of the heat transfer fin 2. The collar portion 8 is in contact with the surface opposite to the surface on which the collar portion 8 of the heat transfer fin 2 adjacent in the plate thickness direction is formed, and a predetermined interval (hereinafter, referred to as the plate thickness direction of the heat transfer fin 2). This predetermined interval is set as a fin pitch FP). The heat transfer tube 3 is a tube member through which a heat medium such as a refrigerant flows. The heat transfer tube 3 is inserted into the plurality of heat transfer fins 2 and is disposed in a direction substantially orthogonal to the airflow direction. Specifically, the heat transfer tube 3 passes through the through holes 2 a formed in the heat transfer fins 2, and comes into close contact with the inner surface of the collar portion 8 by tube expansion work when the fin tube heat exchanger 1 is assembled. ing.

また、本実施形態のフィンチューブ型熱交換器1は、複数の伝熱管3の配列方向が略上下方向となるように設置された状態で使用されるものである(すなわち、図4は、複数の伝熱管3のうちの1つだけを示している)。このため、気流は、フィンチューブ型熱交換器1を、略水平方向に向かって横切るように流れることになる。なお、以下の説明において、「上側」、「上方」や「下側」、「下方」という文言を用いる場合には、伝熱管3の配列方向を示しているものとする。   Further, the finned tube heat exchanger 1 of the present embodiment is used in a state where the plurality of heat transfer tubes 3 are arranged so that the arrangement direction of the heat transfer tubes 3 is substantially vertical (that is, FIG. Only one of the heat transfer tubes 3 is shown). For this reason, the airflow flows so as to cross the finned tube heat exchanger 1 in a substantially horizontal direction. In the following description, when the terms “upper side”, “upper side”, “lower side”, and “lower side” are used, the arrangement direction of the heat transfer tubes 3 is indicated.

(2)伝熱フィンの詳細形状
次に、本実施形態のフィンチューブ型熱交換器1に用いられている伝熱フィン2の詳細形状について説明する。
(2) Detailed shape of heat transfer fin Next, the detailed shape of the heat transfer fin 2 used for the fin tube type heat exchanger 1 of this embodiment is demonstrated.

伝熱フィン2には、各伝熱管3の鉛直方向における両側(すなわち、各伝熱管3の下側および上側)において、気流の流れ方向上流側から下流側に向かって並ぶ複数(本実施形態では、伝熱管3の下側に4つ、伝熱管3の上側に4つ)の切り起こし部4a〜4hが、切り起こし加工により、伝熱フィン面2bに形成されている。ここで、伝熱管3の下側の4つの切り起こし部を第1切り起こし部4a〜4d、伝熱管3の上側の4つの切り起こし部を第2切り起こし部4e〜4hとする。各切り起こし部4a〜4hは、伝熱フィン2に切り込みを入れて伝熱フィン2の板厚方向に延びる方向に起こすことによって形成された略台形形状の部分である。そして、伝熱フィン2の各切り起こし部4a〜4hに隣接する部分には、切り起こし部4a〜4hが切り起こされるのに伴って、略台形形状のスリット孔7a〜7hが各切り起こし部4a〜4hに対応するように形成されている。   The heat transfer fins 2 have a plurality of (in this embodiment) arranged from the upstream side to the downstream side in the airflow direction on both sides in the vertical direction of the heat transfer tubes 3 (that is, the lower side and the upper side of the heat transfer tubes 3). The four raised portions 4a to 4h on the lower side of the heat transfer tube 3 and the fourth on the upper side of the heat transfer tube 3 are formed on the heat transfer fin surface 2b by the cut and raised processing. Here, the lower four raised portions of the heat transfer tube 3 are first cut and raised portions 4a to 4d, and the upper four raised portions of the heat transfer tube 3 are second cut and raised portions 4e to 4h. Each cut-and-raised portion 4 a to 4 h is a substantially trapezoidal portion formed by cutting the heat-transfer fin 2 and raising it in the direction extending in the plate thickness direction of the heat-transfer fin 2. And in the part adjacent to each cut-and-raised part 4a-4h of the heat-transfer fin 2, as the cut-and-raised parts 4a to 4h are cut and raised, the substantially trapezoidal slit holes 7a to 7h are respectively cut and raised. It is formed so as to correspond to 4a to 4h.

また、第1切り起こし部4a〜4d及び第2切り起こし部4e〜4hは、伝熱管3近傍の気流が、伝熱管3の気流の流れ方向後側に案内されるように気流の流れ方向に対して傾斜するように配置されている。より具体的には、第1切り起こし部4a〜4dについては、第1切り起こし部4a〜4dの気流の流れ方向に対する各迎え角αa〜αdが正値であり、第1切り起こし部4a〜4dのうち気流の流れ方向の上流側に位置する第1上流側切り起こし部4a、4bが直線M1上に真っ直ぐ並んでおり(すなわち、迎え角αaと迎え角αbとは同じ角度である)、第1上流側切り起こし部4a、4bよりも気流の流れ方向の下流側に位置する第1下流側切り起こし部4c、4dが直線N1上に真っ直ぐ並んで(すなわち、迎え角αcと迎え角αdとは同じ角度である)配置されている。また、第2切り起こし部4e〜4hについては、第2切り起こし部4e〜4hの気流の流れ方向に対する各迎え角αe〜αhが正値であり、第2切り起こし部4e〜4hのうち気流の流れ方向の上流側に位置する第2上流側切り起こし部4e、4fが直線M2上に真っ直ぐ並んでおり(すなわち、迎え角αeと迎え角αfとは同じ角度である)、第2上流側切り起こし部4e、4fよりも気流の流れ方向の下流側に位置する第2下流側切り起こし部4g、4hが直線N2上に真っ直ぐ並んで(すなわち、迎え角αgと迎え角αhとは同じ角度である)配置されている。ここで、迎え角αa〜αhは、各切り起こし部4a〜4hの気流の流れ方向前端5a〜5hが各切り起こし部4a〜4hの気流の流れ方向後端6a〜6hよりも伝熱管3から遠い側に位置するように傾斜している場合を正値であるものとする。   The first cut-and-raised portions 4a to 4d and the second cut-and-raised portions 4e to 4h are arranged in the airflow direction so that the airflow in the vicinity of the heat transfer tube 3 is guided to the rear side in the airflow direction of the heat transfer tube 3. It arrange | positions so that it may incline with respect. More specifically, for the first cut and raised portions 4a to 4d, the angles of attack αa to αd with respect to the air flow direction of the first cut and raised portions 4a to 4d are positive values, and the first cut and raised portions 4a to 4d are used. 4d, the first upstream cut-and-raised portions 4a and 4b located on the upstream side in the airflow direction are arranged straight on the straight line M1 (that is, the attack angle αa and the attack angle αb are the same angle), The first downstream cut-and-raised portions 4c and 4d located downstream of the first upstream cut-and-raised portions 4a and 4b in the airflow direction are aligned straight on the straight line N1 (that is, the attack angle αc and the attack angle αd Are the same angle). Moreover, about 2nd cut-and-raised part 4e-4h, each angle of attack (alpha) e-αh with respect to the flow direction of the airflow of 2nd cut-and-raised part 4e-4h is a positive value, and airflow is the 2nd cut-and-raised part 4e-4h. The second upstream cut-and-raised portions 4e and 4f located on the upstream side in the flow direction are aligned straight on the straight line M2 (that is, the angle of attack αe and the angle of attack αf are the same angle), and the second upstream side The second downstream cut-and-raised parts 4g and 4h located downstream of the cut-and-raised parts 4e and 4f in the airflow direction are aligned straight on the straight line N2 (that is, the angle of attack αg and the angle of attack αh are the same angle). Is arranged). Here, the angles of attack αa to αh are such that the air flow front ends 5a to 5h of the cut and raised portions 4a to 4h are more from the heat transfer tubes 3 than the air flow rear ends 6a to 6h of the cut and raised portions 4a to 4h. The case where it inclines so that it may be located in a far side shall be a positive value.

また、本実施形態において、第1上流側切り起こし部4a、4bの気流の流れ方向に対する迎え角αa、αbよりも第1下流側切り起こし部4c、4dの気流の流れ方向に対する迎え角αc、αdのほうが小さくなっているため、第1上流側切り起こし部4a、4bの迎え角αa、αbが大きな角度で維持されている。また、第2上流側切り起こし部4e、4fの気流の流れ方向に対する迎え角αe、αfよりも第2下流側切り起こし部4e、4fの気流の流れ方向に対する迎え角αe、αfのほうが小さくなっているため、第2上流側切り起こし部4e、4fの迎え角αe、αfが大きな角度で維持されている。このため、上流側切り起こし部及び下流側切り起こし部のすべてを同一の直線上に並べる場合(例えば、第1切り起こし部4a〜4dのすべてを直線N1上に真っ直ぐに並べる場合や第2切り起こし部4e〜4hのすべてを直線N2上に真っ直ぐに並べる場合)に比べて、各第1切り起こし部4a〜4d間及び各第2切り起こし部4e〜4h間の隙間C4a、C4b、C4c、C4e、C4f、C4gを確保しやすくなっている。しかも、第1切り起こし部4a〜4d及び第2切り起こし部4e〜4hが、伝熱管3近傍の気流が伝熱管3の気流の流れ方向後側に案内されるように気流の流れ方向に対して傾斜するように配置されている場合には、第1切り起こし部4a〜4d及び第2切り起こし部4e〜4hと伝熱管3とによって挟まれた空間を通過する気流の流速が、気流の流れ方向の上流側に位置する上流側切り起こし部4a、4b、4e、4f付近よりも気流の流れ方向の下流側に位置する下流側切り起こし部4c、4d、4g、4h付近のほうが大きくなる傾向にあるが、このフィンチューブ型熱交換器1では、上流側切り起こし部4a、4b、4e、4fの迎え角αa、αb、αe、αfが大きな角度で維持されることになるため、風速が小さく通風抵抗の小さい領域に位置する上流側切り起こし部4a、4b、4e、4fについては、高い交換熱量が得られやすくなり、風速が大きく通風抵抗の大きい領域に位置する下流側切り起こし部4c、4d、4g、4hについては、通風抵抗当たりの伝熱促進効果が得られやすくなっている。   Further, in the present embodiment, the angle of attack αc with respect to the air flow direction of the first downstream cut-and-raised portions 4a and 4b is larger than the angle of attack αc with respect to the air flow direction of the first downstream-side cut and raised portions 4c and 4b. Since αd is smaller, the angles of attack αa and αb of the first upstream cut-and-raised parts 4a and 4b are maintained at a large angle. Also, the attack angles αe and αf of the second downstream cut-and-raised portions 4e and 4f with respect to the air flow direction are smaller than the angles of attack αe and αf of the second upstream cut-and-raised portions 4e and 4f with respect to the air flow direction. Therefore, the attack angles αe and αf of the second upstream cut-and-raised parts 4e and 4f are maintained at a large angle. Therefore, when all of the upstream cut and raised portions are arranged on the same straight line (for example, when all of the first cut and raised portions 4a to 4d are arranged straight on the straight line N1 or the second cut and raised portions Compared to a case where all the raised portions 4e to 4h are arranged straight on the straight line N2, the gaps C4a, C4b, C4c between the first cut and raised portions 4a to 4d and between the second cut and raised portions 4e to 4h, It is easy to secure C4e, C4f, and C4g. In addition, the first cut-and-raised portions 4a to 4d and the second cut-and-raised portions 4e to 4h are arranged so that the air flow in the vicinity of the heat transfer tube 3 is guided to the rear side in the flow direction of the air flow in the heat transfer tube 3. Are arranged so as to be inclined, the flow velocity of the airflow passing through the space sandwiched between the first cut and raised portions 4a to 4d and the second cut and raised portions 4e to 4h and the heat transfer tube 3 is The upstream cut-and-raised portions 4c, 4d, 4g, and 4h located on the downstream side in the airflow direction are larger than the upstream cut-and-raised portions 4a, 4b, 4e, and 4f located on the upstream side in the flow direction. In this fin tube type heat exchanger 1, the attack angles αa, αb, αe, αf of the upstream cut-and-raised portions 4a, 4b, 4e, 4f are maintained at a large angle. Small ventilation resistance For the upstream cut-and-raised parts 4a, 4b, 4e and 4f located in the region, it becomes easy to obtain a high exchange heat quantity, and the downstream cut-and-raised parts 4c, 4d, 4g located in the region where the wind speed is large and the ventilation resistance is large. About 4h, the heat transfer promotion effect per ventilation resistance is easy to be acquired.

また、本実施形態において、各切り起こし部4a〜4hは、気流の流れ方向下流側に向かって伝熱フィン面2bからの高さが漸増している。より具体的には、第1切り起こし部4aについては、前端5aの伝熱フィン面2bからの高さよりも後端6aの伝熱フィン面2bからの高さが高くなっており、第1切り起こし部4bについては、前端5bの伝熱フィン面2bからの高さよりも後端6bの伝熱フィン面2bからの高さが高くなっており、第1切り起こし部4cについては、前端5cの伝熱フィン面2bからの高さよりも後端6cの伝熱フィン面2bからの高さが高くなっており、第1切り起こし部4dについては、前端5dの伝熱フィン面2bからの高さよりも後端6dの伝熱フィン面2bからの高さが高くなっており、第2切り起こし部4eについては、前端5eの伝熱フィン面2bからの高さよりも後端6eの伝熱フィン面2bからの高さが高くなっており、第2切り起こし部4fについては、前端5fの伝熱フィン面2bからの高さよりも後端6fの伝熱フィン面2bからの高さが高くなっており、第2切り起こし部4gについては、前端5gの伝熱フィン面2bからの高さよりも後端6gの伝熱フィン面2bからの高さが高くなっており、第2切り起こし部4hについては、前端5hの伝熱フィン面2bからの高さよりも後端6hの伝熱フィン面2bからの高さが高くなっている。   Moreover, in this embodiment, each cut-and-raised part 4a-4h is gradually increasing the height from the heat-transfer fin surface 2b toward the flow direction downstream. More specifically, with respect to the first cut-and-raised portion 4a, the height from the heat transfer fin surface 2b of the rear end 6a is higher than the height from the heat transfer fin surface 2b of the front end 5a. For the raised portion 4b, the height of the rear end 6b from the heat transfer fin surface 2b is higher than the height of the front end 5b from the heat transfer fin surface 2b, and for the first cut and raised portion 4c, the height of the front end 5c. The height from the heat transfer fin surface 2b of the rear end 6c is higher than the height from the heat transfer fin surface 2b, and the first cut and raised portion 4d is higher than the height from the heat transfer fin surface 2b of the front end 5d. Also, the height of the rear end 6d from the heat transfer fin surface 2b is higher, and the second cut-and-raised portion 4e has a heat transfer fin surface of the rear end 6e that is higher than the height of the front end 5e from the heat transfer fin surface 2b. The height from 2b is high and the second cut For the ridge portion 4f, the height of the rear end 6f from the heat transfer fin surface 2b is higher than the height of the front end 5f from the heat transfer fin surface 2b. The height from the heat transfer fin surface 2b of the rear end 6g is higher than the height from the heat transfer fin surface 2b, and the second cut and raised portion 4h is higher than the height from the heat transfer fin surface 2b of the front end 5h. Also, the height of the rear end 6h from the heat transfer fin surface 2b is high.

(3)フィンチューブ型熱交換器の特徴
本実施形態のフィンチューブ型熱交換器1では、気流の流れ方向上流側から下流側に向かって並ぶ複数の切り起こし部4a〜4hが、伝熱管3近傍の気流が伝熱管3の気流の流れ方向後側に案内されるように気流の流れ方向に対して傾斜するように配置されているため、複数の切り起こし部を一直線上に並べる場合(図1参照)と同様に、伝熱フィン2における伝熱管3の気流の流れ方向下流側の部分に形成される死水域の低減や伝熱フィン2における境界層の更新等による伝熱促進効果を得ることができる。
(3) Features of Finned Tube Type Heat Exchanger In the finned tube type heat exchanger 1 of the present embodiment, the plurality of cut-and-raised parts 4a to 4h arranged from the upstream side to the downstream side in the airflow direction are provided in the heat transfer tube 3. When the adjacent airflow is arranged so as to be inclined with respect to the airflow direction so that the airflow in the vicinity is guided to the rear side in the airflow direction of the heat transfer tube 3, a plurality of cut-and-raised portions are arranged in a straight line (see FIG. 1), the heat transfer promotion effect is obtained by reducing the dead water area formed at the downstream side of the heat transfer tube 3 in the air flow direction of the heat transfer fin 2 or by updating the boundary layer in the heat transfer fin 2. be able to.

そして、本実施形態のフィンチューブ型熱交換器1では、各第1切り起こし部4a〜4dの気流の流れ方向に対する迎え角αa〜αdが、第1切り起こし部4a〜4dのうち気流の流れ方向の上流側に位置する第1上流側切り起こし部4a、4bよりも気流の流れ方向の下流側に位置する第1下流側切り起こし部4c、4dのほうが小さくなるように配置されることによって、第1上流側切り起こし部4a、4bの迎え角αa、αbが大きな角度で維持されており、また、各第2切り起こし部4e〜4hの気流の流れ方向に対する迎え角αe〜αhが、第2切り起こし部4e〜4hのうち気流の流れ方向の上流側に位置する第2上流側切り起こし部4e、4fよりも気流の流れ方向の下流側に位置する第2下流側切り起こし部4g、4hのほうが小さくなるように配置されることによって、第2上流側切り起こし部4e、4fの迎え角αe、αfが大きな角度で維持されており、各第1切り起こし部4a〜4d間及び各第2切り起こし部4e〜4h間の隙間C4a、C4b、C4c、C4e、C4f、C4gを確保しやすくなっているため、迎え角を小さくしつつ切り起こし部の数を増やす場合(例えば、図1の伝熱管の下側及び上側に3つの切り起こし部が形成された構成を伝熱管の下側及び上側に4つの切り起こし部が形成された構成にする場合)であっても、切り起こし部間の排水性を確保することができる。しかも、本実施形態のフィンチューブ型熱交換器1では、上流側切り起こし部4a、4b、4e、4fの迎え角αa、αb、αe、αfが大きな角度で維持されており、風速が小さく通風抵抗の小さい領域に位置する上流側切り起こし部4a、4b、4e、4fについては、高い交換熱量が得られやすくなり、風速が大きく通風抵抗の大きい領域に位置する下流側切り起こし部4c、4d、4g、4hについては、通風抵抗当たりの伝熱促進効果が得られやすくなっているため、迎え角を小さくしつつ切り起こし部の数を増やす場合(例えば、図1の伝熱管の下側及び上側に3つの切り起こし部が形成された構成を伝熱管の下側及び上側に4つの切り起こし部が形成された構成にする場合)であっても、伝熱フィンにおける風速分布を考慮して複数の切り起こし部の気流の流れ方向に対する迎え角を設定でき、伝熱促進効果が十分に発揮されるようにすることできる。   In the finned tube heat exchanger 1 of the present embodiment, the angles of attack αa to αd with respect to the airflow direction of the first cut-and-raised parts 4a to 4d are the airflow flows of the first cut-and-raised parts 4a to 4d. By arranging the first downstream cut-and-raised portions 4c and 4d located on the downstream side in the flow direction of the airflow to be smaller than the first upstream cut-and-raised portions 4a and 4b located on the upstream side in the direction. The angles of attack αa and αb of the first upstream cut-and-raised portions 4a and 4b are maintained at a large angle, and the angles of attack αe to αh with respect to the airflow direction of the second cut-and-raised portions 4e to 4h are Of the second cut-and-raised parts 4e to 4h, the second downstream cut-and-raised part 4g located on the downstream side in the airflow direction with respect to the second upstream cut-and-raised parts 4e and 4f located on the upstream side in the airflow direction. 4h is better By being arranged so as to be smaller, the attack angles αe and αf of the second upstream cut-and-raised portions 4e and 4f are maintained at a large angle, and between the first cut-and-raised portions 4a to 4d and each second cut and raised portion. Since it is easy to secure the gaps C4a, C4b, C4c, C4e, C4f, and C4g between the raised portions 4e to 4h, the number of the raised portions is increased while reducing the angle of attack (for example, the heat transfer tube of FIG. 1). Drainage between the cut-and-raised parts even if the configuration in which the three cut-and-raised parts are formed on the lower and upper sides of the heat transfer tube Sex can be secured. Moreover, in the finned tube heat exchanger 1 of the present embodiment, the attack angles αa, αb, αe, αf of the upstream cut-and-raised portions 4a, 4b, 4e, 4f are maintained at large angles, and the wind speed is low and ventilation is performed. For the upstream cut-and-raised portions 4a, 4b, 4e, and 4f located in the low resistance region, it becomes easy to obtain a high amount of exchange heat, and the downstream cut-and-raised portions 4c and 4d located in the region where the wind speed is large and the ventilation resistance is large. As for 4g and 4h, since the heat transfer promotion effect per ventilation resistance is easily obtained, the number of cut-and-raised portions is increased while reducing the angle of attack (for example, the lower side of the heat transfer tube in FIG. Even when the configuration in which three cut-and-raised portions are formed on the upper side is configured to have four cut-and-raised portions on the lower side and upper side of the heat transfer tube), the wind speed distribution in the heat transfer fins is taken into consideration. Can set angle of attack to the flow direction of the airflow in the number of cut-and-raised portions can be so that the heat transfer promoting effect can be sufficiently exhibited.

このように、本実施形態のフィンチューブ型熱交換器1では、切り起こし部間の排水性を確保し、かつ、各切り起こし部における伝熱促進効果が十分に発揮されるようにしながら、迎え角を小さくしつつ切り起こし部の数を増やすことで伝熱促進を図ることができる。   Thus, in the finned tube heat exchanger 1 of the present embodiment, the drainage between the cut and raised portions is ensured and the effect of promoting heat transfer in each cut and raised portion is sufficiently exhibited. Heat transfer can be promoted by increasing the number of cut and raised portions while reducing the corners.

また、本実施形態のフィンチューブ型熱交換器1では、各切り起こし部4a〜4hの形状を気流の流れ方向下流側に向かって伝熱フィン面2bからの高さが漸増した形状にすることによって、各切り起こし部4a〜4hの背後に縦渦を生じさせることができるため、切り起こし部4a〜4hによる伝熱促進効果をさらに高めることができるようになっている。   Moreover, in the fin tube type heat exchanger 1 of this embodiment, the shape of each cut-and-raised part 4a-4h is made into the shape where the height from the heat-transfer fin surface 2b gradually increased toward the flow direction downstream. Thus, a vertical vortex can be generated behind each cut-and-raised portion 4a to 4h, so that the heat transfer promotion effect by the cut-and-raised portions 4a to 4h can be further enhanced.

(4)変形例1
上述の実施形態(図4参照)では、第1上流側切り起こし部4a、4bに比べて迎え角が小さい第1下流側切り起こし部4c、4dが直線N1上に真っ直ぐ並んで配置されているため、第1下流側切り起こし部4c、4d間の隙間C4cが第1上流側切り起こし部4a、4b間の隙間C4aに比べて小さく、また、第2上流側切り起こし部4e、4fに比べて迎え角が小さい第2下流側切り起こし部4g、4hが直線N2上に真っ直ぐ並んで配置されているため、第2下流側切り起こし部4g、4h間の隙間C4gが第2上流側切り起こし部4e、4f間の隙間C4eに比べて小さくなる傾向にある。このため、第1下流側切り起こし部4c、4d間の隙間C4c及び第2下流側切り起こし部4g、4h間の隙間C4gが大きくなるようにすることが好ましい。
(4) Modification 1
In the above-described embodiment (see FIG. 4), the first downstream cut-and-raised portions 4c and 4d having a smaller angle of attack than the first upstream cut-and-raised portions 4a and 4b are arranged in a straight line on the straight line N1. Therefore, the gap C4c between the first downstream cut-and-raised portions 4c and 4d is smaller than the gap C4a between the first upstream cut-and-raised portions 4a and 4b, and compared with the second upstream cut-and-raised portions 4e and 4f. Since the second downstream cut-and-raised parts 4g and 4h having a small angle of attack are arranged in a straight line on the straight line N2, the gap C4g between the second downstream cut-and-raised parts 4g and 4h is cut and raised by the second upstream side. It tends to be smaller than the gap C4e between the portions 4e and 4f. For this reason, it is preferable to increase the gap C4c between the first downstream cut-and-raised parts 4c and 4d and the gap C4g between the second downstream cut-and-raised parts 4g and 4h.

そこで、本変形例では、図6に示されるように、上述の実施形態(図4参照)において、第1下流側切り起こし部14c、14dを、各第1下流側切り起こし部14c、14dの気流の流れ方向前端15c、15d同士を仮想的に結ぶ直線(本変形例においては、直線M11)が各第1下流側切り起こし部14c、14dの気流の流れ方向に対する迎え角α1c、α1dよりも大きな角度(本変形例においては、α1a、α1b)をなすように配置し、また、第2下流側切り起こし部14g、14hを、各第2下流側切り起こし部14g、14hの気流の流れ方向前端15g、15h同士を仮想的に結ぶ直線(本変形例においては、直線M12)が各第2下流側切り起こし部14g、14hの気流の流れ方向に対する迎え角α1g、α1hよりも大きな角度(本変形例においては、α1e、α1f)をなすように配置している。尚、本変形例における伝熱フィン12の各部については、上述の実施形態における1桁台の符号を10番台に置き換え、迎え角については、上述の実施形態における迎え角の符号に「1」を添え字として加えたものに置き換えるものとし、下流側切り起こし部14c、14d、14g、14h以外の伝熱フィン12の各部の説明については省略するものとする。   Therefore, in this modification, as shown in FIG. 6, in the above-described embodiment (see FIG. 4), the first downstream cut-and-raised portions 14c and 14d are replaced by the first downstream cut-and-raised portions 14c and 14d. A straight line (in this modification, a straight line M11) that virtually connects the front ends 15c and 15d of the airflow direction is more than the angle of attack α1c and α1d with respect to the airflow direction of the first downstream cut-and-raised portions 14c and 14d. It arrange | positions so that a big angle ((alpha) 1a, (alpha) 1b in this modification) may be made, and the flow direction of the airflow of each 2nd downstream cut-and-raised part 14g and 14h is made into each 2nd downstream cut-and-raised part 14g and 14h. A straight line that virtually connects the front ends 15g and 15h (in the present modification, a straight line M12) is more than the angle of attack α1g and α1h with respect to the airflow direction of the second downstream cut-and-raised portions 14g and 14h. (In this modification, α1e, α1f) Kina angle are arranged so as to form a. In addition, about each part of the heat-transfer fin 12 in this modification, the code | symbol of the 1 digit stand in the above-mentioned embodiment is replaced with the 10th stand, and about the angle of attack, "1" is set to the code | symbol of the angle of attack in the above-mentioned embodiment. It shall replace with what was added as a subscript, and shall abbreviate | omit description of each part of the heat transfer fins 12 other than the downstream cut-and-raised part 14c, 14d, 14g, 14h.

このような本変形例のフィンチューブ型熱交換器1では、各第1下流側切り起こし部4cの気流の流れ方向後端16cとその下流側の切り起こし部14dの気流の流れ方向前端5dとが直線M11からずれた状態で配置され、また、各第2下流側切り起こし部14gの気流の流れ方向後端16gとその下流側の切り起こし部14hの気流の流れ方向前端15hとが直線M12からずれた状態で配置されることになるため、上述の実施形態のように下流側切り起こし部を一直線上に並べる場合に比べて、第1下流側切り起こし部14c、14d間及び各第2下流側切り起こし部14g、14h間の隙間C14c、C14gを確保しやすくなっている。しかも、上述の実施形態のように下流側切り起こし部を一直線上に並べる場合に比べて、下流側切り起こし部14c、14gによって下流側に導かれる気流が、その下流側の切り起こし部14d、14hを通過しようとする気流に干渉しにくくなっている。これにより、本変形例のフィンチューブ型熱交換器1では、上述の実施形態と同様の作用効果を得ることができるとともに、上述の実施形態のように下流側切り起こし部を一直線上に並べる場合に比べて、下流側切り起こし部間の排水性をさらに確保しやすくでき、しかも、各下流側切り起こし部における伝熱促進効果がさらに発揮されやすくすることができる。   In such a finned tube heat exchanger 1 of this modification, the air flow direction rear end 16c of each first downstream cut-and-raised portion 4c and the air flow direction front end 5d of the downstream cut-and-raised portion 14d Are displaced from the straight line M11, and the air flow direction rear end 16g of each second downstream cut-and-raised portion 14g and the air flow direction front end 15h of the downstream cut-and-raised portion 14h are straight lines M12. Therefore, as compared with the case where the downstream cut-and-raised portions are arranged on a straight line as in the above-described embodiment, the first downstream cut-and-raised portions 14c and 14d and the second It is easy to secure gaps C14c and C14g between the downstream cut-and-raised portions 14g and 14h. In addition, as compared with the case where the downstream cut-and-raised portions are aligned on a straight line as in the above-described embodiment, the air flow guided downstream by the downstream cut-and-raised portions 14c and 14g is reduced to the downstream cut-and-raised portion 14d, It is difficult to interfere with the airflow that attempts to pass through 14h. Thereby, in the fin tube type heat exchanger 1 of this modification, while being able to acquire the same effect as the above-mentioned embodiment, when arranging a downstream cut-and-raised part on a straight line like the above-mentioned embodiment. Compared to the above, it is possible to further ensure the drainage between the downstream cut-and-raised portions, and to further enhance the heat transfer promotion effect in each downstream cut-and-raised portion.

また、本変形例のフィンチューブ型熱交換器1においても、各下流側切り起こし部14c、14d、14g、14hは、気流の流れ方向下流側に向かって伝熱フィン面12bからの高さが漸増しているため、上述の実施形態と同様に、各下流側切り起こし部14c、14d、14g、14hの背後に縦渦を生じさせて、伝熱促進効果をさらに高めることができるようになっているが、このような縦渦は、気流の流れ方向下流側に向かって成長することで、大きな伝熱促進効果をもたらすものであることから、その伝熱促進効果を確実に得るためには、この縦渦の成長が妨げられにくくすることが好ましく、その意味では、上述の実施形態のような複数の下流側切り起こし部が一直線上に並んだ構成では、この縦渦の成長がやや妨げられやすい状態になっている。しかし、本変形例のフィンチューブ型熱交換器1では、上述のように、各第1下流側切り起こし部14cの気流の流れ方向後端16cとその下流側の切り起こし部14dの気流の流れ方向前端15dとが直線M11からずれた状態で配置され、また、各第2下流側切り起こし部14gの気流の流れ方向後端16gとその下流側の切り起こし部14hの気流の流れ方向前端15hとが直線M12からずれた状態で配置されることによって、この縦渦の成長が妨げられにくくなるため、縦渦による伝熱促進効果を確実に得ることができる。   Also, in the finned tube heat exchanger 1 of this modification, each of the downstream cut-and-raised portions 14c, 14d, 14g, and 14h has a height from the heat transfer fin surface 12b toward the downstream side in the airflow direction. Since it is gradually increased, a vertical vortex is generated behind each of the downstream cut-and-raised portions 14c, 14d, 14g, and 14h as in the above-described embodiment, thereby further enhancing the heat transfer promotion effect. However, such a vertical vortex grows toward the downstream side in the flow direction of the airflow and brings about a large heat transfer promotion effect. Therefore, in order to reliably obtain the heat transfer promotion effect, The vertical vortex growth is preferably prevented from being hindered. In that sense, the vertical vortex growth is somewhat hindered in the configuration in which the plurality of downstream cut-and-raised portions are aligned in a straight line as in the above-described embodiment. Easy to get It has become the state. However, in the finned tube heat exchanger 1 of the present modification, as described above, the flow direction rear end 16c of each first downstream cut-and-raised portion 14c and the air flow of the downstream cut-and-raised portion 14d. The front end 15d of the direction is displaced from the straight line M11, and the rear end 16g of the air flow direction of each second downstream cut-and-raised portion 14g and the front end 15h of the air flow direction of the cut-and-raised portion 14h downstream thereof. Are arranged in a state deviated from the straight line M12, so that the growth of the vertical vortex is less likely to be hindered, so that the effect of promoting heat transfer by the vertical vortex can be reliably obtained.

尚、上述においては、各第1下流側切り起こし部14c、14dの気流の流れ方向前端15c、15d同士を仮想的に結ぶ直線や各第2下流側切り起こし部14g、14hの気流の流れ方向前端15g、15h同士を仮想的に結ぶ直線が、各第1下流側切り起こし部14c、14dの気流の流れ方向に対する迎え角α1c、α1dや各第2下流側切り起こし部14g、14hの気流の流れ方向に対する迎え角α1g、α1hよりも大きな角度をなすようにすることで、各第1下流側切り起こし部14cの気流の流れ方向後端16cとその下流側の切り起こし部14dの気流の流れ方向前端5dとが直線M11からずれた状態で配置され、また、各第2下流側切り起こし部14gの気流の流れ方向後端16gとその下流側の切り起こし部14hの気流の流れ方向前端15hとが直線M12からずれた状態で配置されるようにしているが、各第1下流側切り起こし部14c、14dの気流の流れ方向後端16c、16d同士を仮想的に結ぶ直線や各第2下流側切り起こし部14g、14hの気流の流れ方向後端16g、16h同士を仮想的に結ぶ直線が、各第1下流側切り起こし部14c、14dの気流の流れ方向に対する迎え角α1c、α1dや各第2下流側切り起こし部14g、14hの気流の流れ方向に対する迎え角α1g、α1hよりも大きな角度をなすようにしてもよい。   In the above description, the air flow direction front ends 15c of the first downstream cut-and-raised portions 14c and 14d and the air flow direction of the second downstream cut-and-raised portions 14g and 14h are virtually connected to each other. A straight line that virtually connects the front ends 15g and 15h is the angle of attack α1c and α1d with respect to the airflow direction of the first downstream cut-and-raised portions 14c and 14d and the airflow of the second downstream cut-and-raised portions 14g and 14h. By making the angle of attack α1g, α1h larger than the flow direction, the flow direction rear end 16c of each first downstream cut-and-raised portion 14c and the flow of air flow on the downstream cut-and-raised portion 14d. The direction front end 5d is arranged in a state shifted from the straight line M11, and the air flow direction rear end 16g of each second downstream cut-and-raised portion 14g and the downstream cut-and-raised portion 14h The front end 15h in the flow direction is displaced from the straight line M12, but the rear ends 16c and 16d in the air flow direction of the first downstream raised portions 14c and 14d are virtually connected to each other. The straight line that connects the rear ends 16g and 16h in the airflow direction of the second downstream cut-and-raised portions 14g and 14h with respect to the flow direction of the airflow in the first downstream-side cut and raised portions 14c and 14d. The angles of attack α1c and α1d and the second downstream cut-and-raised portions 14g and 14h may be larger than the angles of attack α1g and α1h with respect to the airflow direction.

(5)変形例2
上述の実施形態(図4及び図5参照)及び変形例1(図6参照)では、伝熱フィンとして平板状のフィンを採用しているが、これに限定されず、ワッフル形状の伝熱フィンを採用してもよい。
(5) Modification 2
In the above-described embodiment (see FIGS. 4 and 5) and Modification 1 (see FIG. 6), flat fins are employed as the heat transfer fins, but the present invention is not limited to this, and the waffle heat transfer fins are not limited thereto. May be adopted.

例えば、図7及び図8に示されるように、上述の変形例(図6参照)において、伝熱フィンとして鉛直方向に平行な折り目29a〜29cを有する伝熱フィン22を採用し、各伝熱管3の鉛直方向における下側において、気流の流れ方向上流側から下流側に向かって並ぶ4つの第1切り起こし部24a〜24dを、切り起こし加工により、伝熱フィン22の気流の流れ方向前端とその下流側の折り目29aとの間の伝熱フィン面22c、折り目29aとその下流側の折り目29bとの間の伝熱フィン面22d、折り目29bとその下流側の折り目29cとの間の伝熱フィン面22e、及び折り目29cと伝熱フィン22の気流の流れ方向後端との間の伝熱フィン面22fに形成し、各伝熱管3の鉛直方向における上側において、気流の流れ方向上流側から下流側に向かって並ぶ4つの第2切り起こし部24e〜24hを、伝熱フィン面22c〜22fに形成するようにしてもよい。ここで、折り目29a〜29cは、折り目29a、29cが山折りとなっており、折り目29bが谷折りとなっている。尚、本変形例における伝熱フィン22の各部については、上述の変形例1における10番台の符号を20番台に置き換え、迎え角については、上述の変形例における迎え角の符号に「2」を添え字として加えたものに置き換えるものとし、折り目29a〜29c及び伝熱フィン面22c〜22f以外の伝熱フィン22の各部の説明については省略するものとする。   For example, as shown in FIGS. 7 and 8, in the above-described modified example (see FIG. 6), the heat transfer fins 22 having folds 29 a to 29 c parallel to the vertical direction are adopted as the heat transfer fins, and each heat transfer tube is used. On the lower side in the vertical direction of 3, the four first cut-and-raised parts 24a to 24d arranged from the upstream side to the downstream side in the airflow direction are cut and raised to the front end of the heat transfer fin 22 in the airflow direction. Heat transfer fin surface 22c between the fold 29a on the downstream side, heat transfer fin surface 22d between the fold 29a and the fold 29b on the downstream side, heat transfer between the fold 29b and the fold 29c on the downstream side Formed on the fin surface 22e and the heat transfer fin surface 22f between the fold line 29c and the rear end of the heat transfer fin 22 in the air flow direction, and on the upper side of each heat transfer tube 3 in the vertical direction, The four second cut-and-raised portion 24e~24h arranged from upstream to downstream, may be formed on the heat transfer fin surface 22C~22f. Here, in the folds 29a to 29c, the folds 29a and 29c are mountain folds, and the fold 29b is a valley fold. In addition, about each part of the heat-transfer fin 22 in this modification, the code | symbol of the 10th level in the above-mentioned modification 1 is replaced with the 20th level, and about the angle of attack, "2" is set to the code | symbol of the angle of attack in the above-mentioned modification. It shall replace with what was added as a subscript, and it shall abbreviate | omit about description of each part of the heat-transfer fin 22 other than the creases 29a-29c and the heat-transfer fin surfaces 22c-22f.

本変形例のフィンチューブ型熱交換器1においても、上述の変形例1と同様の作用効果を得ることができる。   Also in the finned tube heat exchanger 1 of the present modification, the same operational effects as those of the first modification can be obtained.

(6)他の実施形態
以上、本発明の実施形態及びその変形例について図面に基づいて説明したが、具体的な構成は、これらの実施形態及びその変形例に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
(6) Other Embodiments While the embodiments of the present invention and the modifications thereof have been described with reference to the drawings, the specific configuration is not limited to these embodiments and the modifications thereof, and Changes can be made without departing from the scope of the invention.

本発明を利用すれば、板厚方向に間隔を空けて並べて気流中に配置される複数の伝熱フィンと、複数の伝熱フィンに挿入されており気流の流れ方向に略直交する方向に配置される複数の伝熱管とを備えており、伝熱フィン面の伝熱管の鉛直方向における両側において、気流の流れ方向上流側から下流側に向かって並ぶ複数の切り起こし部が切り起こし加工により形成されたフィンチューブ型熱交換器において、切り起こし部間の排水性を確保し、かつ、各切り起こし部における伝熱促進効果が十分に発揮されるようにすることができる。   If this invention is utilized, it arrange | positions in the direction substantially orthogonal to the flow direction of the airflow which is inserted in the several heat transfer fin arrange | positioned in the airflow by arranging at intervals in the plate | board thickness direction, and the several heat transfer fin. A plurality of heat transfer tubes formed on the both sides of the heat transfer fin surface in the vertical direction of the heat transfer tubes by the cut and raised processing. In the finned tube heat exchanger, the drainage between the cut and raised portions can be ensured, and the heat transfer promoting effect at each cut and raised portion can be sufficiently exhibited.

従来のフィンチューブ型熱交換器の断面図である。It is sectional drawing of the conventional fin tube type heat exchanger. 迎え角と交換熱量との関係を示す図である。It is a figure which shows the relationship between an angle of attack and exchange heat quantity. 迎え角と通風抵抗当たりの交換熱量との関係を示す図である。It is a figure which shows the relationship between an angle of attack and the amount of exchange heat per ventilation resistance. 本発明の一実施形態にかかるフィンチューブ型熱交換器の断面図である。It is sectional drawing of the fin tube type heat exchanger concerning one Embodiment of this invention. 図4のI−I断面図である。It is II sectional drawing of FIG. 変形例1にかかるフィンチューブ型熱交換器の断面図である。It is sectional drawing of the fin tube type heat exchanger concerning the modification 1. FIG. 変形例2にかかるフィンチューブ型熱交換器の断面図である。It is sectional drawing of the finned-tube type heat exchanger concerning the modification 2. 図7のI−I断面図である。It is II sectional drawing of FIG.

符号の説明Explanation of symbols

1 フィンチューブ型熱交換器
2、12、22 伝熱フィン
3 伝熱管
4a〜4h、14a〜14h、24a〜24h 切り起こし部
M11、M12、M21、M22 直線
αa〜αh、α1a〜α1h、α2a〜α2h 迎え角
DESCRIPTION OF SYMBOLS 1 Fin tube type heat exchanger 2, 12, 22 Heat transfer fin 3 Heat transfer tube 4a-4h, 14a-14h, 24a-24h Cut-and-raised part M11, M12, M21, M22 Straight line αa-αh, α1a-α1h, α2a- α2h angle of attack

Claims (3)

板厚方向に間隔を空けて並べて気流中に配置される複数の伝熱フィン(2、12、22)と、
前記複数の伝熱フィンに挿入されており、気流の流れ方向に略直交する方向に配置された複数の伝熱管(3)とを備え、
前記各伝熱フィンには、前記伝熱管の鉛直方向における両側において、気流の流れ方向上流側から下流側に向かって並ぶ複数の切り起こし部(4a〜4h、14a〜14h、24a〜24h)が、切り起こし加工により形成されており、
前記複数の切り起こし部は、前記伝熱管近傍の気流が、前記伝熱管の気流の流れ方向後側に案内されるように気流の流れ方向に対して傾斜するように、かつ、前記各切り起こし部の気流の流れ方向に対する迎え角(αa〜αh、α1a〜α1h、α2a〜α2h)が、前記複数の切り起こし部のうち気流の流れ方向の上流側に位置する上流側切り起こし部よりも気流の流れ方向の下流側に位置する下流側切り起こし部のほうが小さくなるように、配置されている、
フィンチューブ型熱交換器(1)。
A plurality of heat transfer fins (2, 12, 22) arranged in the air stream side by side in the thickness direction;
A plurality of heat transfer tubes (3) that are inserted into the plurality of heat transfer fins and arranged in a direction substantially perpendicular to the flow direction of the airflow;
Each heat transfer fin has a plurality of raised portions (4a to 4h, 14a to 14h, 24a to 24h) arranged from the upstream side to the downstream side in the airflow direction on both sides in the vertical direction of the heat transfer tube. Is formed by cutting and raising,
The plurality of cut-and-raised portions are arranged so that the airflow in the vicinity of the heat transfer tube is inclined with respect to the airflow direction so that the airflow in the vicinity of the heat transfer tube is guided to the rear side in the airflow direction. The angle of attack (αa to αh, α1a to α1h, α2a to α2h) with respect to the flow direction of the airflow of the portion is larger than the upstream cutout portion located on the upstream side of the flow direction of the airflow among the plurality of cutout portions. It is arranged so that the downstream cut-and-raised part located on the downstream side in the flow direction is smaller,
Fin tube heat exchanger (1).
前記複数の下流側切り起こし部(14c、14d、14g、14h、24c、24d、24g、24h)は、前記各下流側切り起こし部の気流の流れ方向前端又は後端同士を仮想的に結ぶ直線が、前記各下流側切り起こし部の気流の流れ方向に対する迎え角(α1c、α1d、α1g、α1h、α2c、α2d、α2g、α2h)よりも大きな角度をなすように配置されている、請求項1に記載のフィンチューブ型熱交換器(1)。   The plurality of downstream cut-and-raised portions (14c, 14d, 14g, 14h, 24c, 24d, 24g, and 24h) are straight lines that virtually connect the front ends or the rear ends in the air flow direction of the respective downstream cut-and-raised portions. Is arranged so as to form an angle larger than the angle of attack (α1c, α1d, α1g, α1h, α2c, α2d, α2g, α2h) with respect to the airflow direction of each downstream cut-and-raised portion. A finned tube heat exchanger (1). 前記各下流側切り起こし部(14c、14d、14g、14h、24c、24d、24g、24h)は、気流の流れ方向下流側に向かって前記伝熱フィン面からの高さが漸増している、請求項2に記載のフィンチューブ型熱交換器(1)。
Each of the downstream cut-and-raised parts (14c, 14d, 14g, 14h, 24c, 24d, 24g, 24h) gradually increases in height from the heat transfer fin surface toward the downstream side in the airflow direction. The finned tube heat exchanger (1) according to claim 2.
JP2008138147A 2008-05-27 2008-05-27 Finned tube heat exchanger Active JP5088236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008138147A JP5088236B2 (en) 2008-05-27 2008-05-27 Finned tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008138147A JP5088236B2 (en) 2008-05-27 2008-05-27 Finned tube heat exchanger

Publications (2)

Publication Number Publication Date
JP2009287799A JP2009287799A (en) 2009-12-10
JP5088236B2 true JP5088236B2 (en) 2012-12-05

Family

ID=41457185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008138147A Active JP5088236B2 (en) 2008-05-27 2008-05-27 Finned tube heat exchanger

Country Status (1)

Country Link
JP (1) JP5088236B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4169079B2 (en) * 2006-10-02 2008-10-22 ダイキン工業株式会社 Finned tube heat exchanger

Also Published As

Publication number Publication date
JP2009287799A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
CN101441047B (en) Heat exchanger of plate fin and tube type
US8613307B2 (en) Finned tube heat exchanger
JP5304024B2 (en) Finned tube heat exchanger
JP6186430B2 (en) Finned tube heat exchanger and refrigeration cycle apparatus
JP2014156990A5 (en)
JP2018025373A (en) Heat exchanger for refrigerator, and refrigerator
JP2013245884A (en) Fin tube heat exchanger
JP6375897B2 (en) Heat exchanger
JP2015004449A (en) Fin tube heat exchanger
JP6706839B2 (en) Fin tube heat exchanger
JP5088236B2 (en) Finned tube heat exchanger
JP2008116095A (en) Air heat exchanger
JP2012251719A (en) Drainage structure of corrugated fin type heat exchanger
JP4286120B2 (en) Air conditioner indoor unit
JP6379352B2 (en) Finned tube heat exchanger
JP4940871B2 (en) Finned tube heat exchanger
JP2010025482A (en) Heat exchanger
JP5266876B2 (en) Finned tube heat exchanger
JP5304025B2 (en) Finned tube heat exchanger
JP6194471B2 (en) Finned tube heat exchanger
JP2005201467A (en) Heat exchanger
JP5446379B2 (en) Finned heat exchanger
JPH1123179A (en) Heat exchanger with fin
JP2005308311A (en) Fin tube
JP5835907B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5088236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3