JP5081866B2 - Manufacturing method of secondary optical glass member homogenizer for concentrating solar power generation - Google Patents

Manufacturing method of secondary optical glass member homogenizer for concentrating solar power generation Download PDF

Info

Publication number
JP5081866B2
JP5081866B2 JP2009129099A JP2009129099A JP5081866B2 JP 5081866 B2 JP5081866 B2 JP 5081866B2 JP 2009129099 A JP2009129099 A JP 2009129099A JP 2009129099 A JP2009129099 A JP 2009129099A JP 5081866 B2 JP5081866 B2 JP 5081866B2
Authority
JP
Japan
Prior art keywords
glass
power generation
homogenizer
inner peripheral
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009129099A
Other languages
Japanese (ja)
Other versions
JP2010010672A (en
Inventor
寿国 伊藤
哲 山本
秀勝 両角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Glass Co Ltd
Original Assignee
Ishizuka Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Glass Co Ltd filed Critical Ishizuka Glass Co Ltd
Priority to JP2009129099A priority Critical patent/JP5081866B2/en
Publication of JP2010010672A publication Critical patent/JP2010010672A/en
Application granted granted Critical
Publication of JP5081866B2 publication Critical patent/JP5081866B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/75Arrangements for concentrating solar-rays for solar heat collectors with reflectors with conical reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/83Other shapes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、1次集光部材で集光した太陽光を発電素子に対して均一に照射するための集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法に関する。 The present invention relates to a method of manufacturing a secondary optical glass member homogenizer for concentrating solar power generation for uniformly irradiating a power generation element with sunlight condensed by a primary condensing member.

近年、太陽光を利用した発電装置では、複数の太陽電池が配置されたパネルを所定角度に傾斜させて太陽光発電を行うパネル式太陽光発電装置に代わって集光式太陽光発電装置が注目されている(例えば、特許文献1参照。)。この集光式太陽光発電装置では、レンズ状の1次集光部材と発電素子との間に2次光学系ガラス部材ホモジナイザーを配置し、前記1次集光部材によって収束された太陽光を前記ホモジナイザー内に入射させ、前記入射光がホモジナイザー内で全反射されて均質化された光が発電素子に照射される。これにより、パネル式太陽光発電装置に比して、約2.6倍の発電を行うことが可能となる。   In recent years, in photovoltaic power generation devices, concentrating solar power generation devices are attracting attention instead of panel type solar power generation devices that generate solar power by tilting a panel on which a plurality of solar cells are arranged at a predetermined angle. (For example, refer to Patent Document 1). In this concentrating solar power generation device, a secondary optical glass member homogenizer is disposed between the lens-shaped primary condensing member and the power generation element, and the sunlight converged by the primary condensing member is The power generation element is irradiated with light that is incident into the homogenizer and the incident light is totally reflected and homogenized in the homogenizer. Thereby, it becomes possible to perform about 2.6 times the power generation as compared with the panel type solar power generation device.

このような集光式太陽光発電装置の2次光学系ガラス部材ホモジナイザーとしては、水平な上面及び下面に対してそれぞれ同一の所定角度で連接する側面を有する角錐台形状のガラス材からなるものが使用され、ダイレクトプレスやモールドプレス等の公知のガラス成形方法によって所望する角錐台形状に近似した形状に成形した後、外表面を公知の研磨方法によって研磨することによって成形される。   As such a secondary optical system glass member homogenizer of the concentrating solar power generation apparatus, a glass material having a truncated pyramid shape having side surfaces connected to the horizontal upper surface and the lower surface at the same predetermined angle, respectively. After being formed into a shape approximate to the desired truncated pyramid shape by a known glass forming method such as direct press or mold press, the outer surface is molded by polishing by a known polishing method.

上記の如く構成された角錐台形状のホモジナイザーでは、太陽光がガラス材内部を通過して発電素子に照射されるものであり、内部に入射した際には入射光が表面近傍で反射を繰り返すように構成されている。そのため、ガラス体内部に欠陥があると内部を通過する太陽光の光路位相等が発生したり、外表面が粗れていると太陽光の漏洩によって光学効率が低下して発電効率の低下を招く等のおそれがあり、ガラス材を均質にするとともにその外表面を平滑に構成することが要求される。   In the truncated pyramid-shaped homogenizer configured as described above, sunlight passes through the inside of the glass material and irradiates the power generation element, and when incident on the inside, the incident light repeatedly reflects near the surface. It is configured. Therefore, if there is a defect inside the glass body, the optical path phase of sunlight passing through the inside of the glass body is generated, or if the outer surface is rough, the optical efficiency is reduced due to the leakage of sunlight, leading to a decrease in power generation efficiency. Therefore, it is required to make the glass material uniform and to make the outer surface smooth.

しかしながら、このホモジナイザーにあっては、発電装置が野外に設置されることから、外表面が常に外気に晒されることとなるため、環境によって表面汚染や表面劣化が生じることがある。また、このようなホモジナイザーは単独で自立させることが困難であり、設置する際にはアルミ製の支柱等の固定部材が必要となって、部品点数が増加して組立作業が繁雑になることも問題であった。   However, in this homogenizer, since the power generation device is installed outdoors, the outer surface is always exposed to the outside air, so surface contamination and surface deterioration may occur depending on the environment. In addition, it is difficult for such a homogenizer to stand on its own, and when installing, a fixing member such as an aluminum support is required, which increases the number of parts and makes assembly work complicated. It was a problem.

特開2006−278581号公報JP 2006-275881 A

本発明は前記の点に鑑みなされたものであり、設置が容易で光学効率や発電効率の低下を抑制することができ集光式太陽光発電用2次光学系ガラス部材ホモジナイザー容易に製造することができる製造方法を提供する The present invention has been made in view of the above, readily producing installation easy optical efficiency and power generation efficiency Atsumarihikarishiki photovoltaic secondary optical glass member homogenizer for that can be suppressed decrease in Provided is a manufacturing method that can .

請求項の発明は、上下面が水平なブロック状のガラス材からなり、内周面が逆角錐台または逆円錐台形状に形成された中空部を有するとともに、前記中空部の内周面に1次集光部材で集光した太陽光を反射するための反射膜を形成して発電素子に対して均一に照射する集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法において、凹部内に複数の角錐台または円錐台形状の突部が所定間隔で形成された下型に軟化したガラスを供給し、前記下型に対して上型を降下させて所定の加圧力でプレス成形してガラス成形材を成形し、該ガラス成形材の下部を前記凹部底面に沿った面で開口部を形成するように平滑処理するとともに上部を前記平滑処理された面に平行となる任意の面で平滑処理し、さらに前記ガラス成形材の各凹部間の任意の位置で切断及び研磨して複数の前記ブロック状のガラス材を得た後、該ガラス材の内周面に前記反射膜を形成することを特徴とする集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法に係る。 The invention of claim 1 is made of a block-like glass material whose upper and lower surfaces are horizontal , and has an inner peripheral surface having a hollow portion formed in an inverted truncated pyramid shape or an inverted truncated cone shape, and an inner peripheral surface of the hollow portion. In the method of manufacturing a secondary optical glass member homogenizer for concentrating solar power generation that forms a reflective film for reflecting the sunlight collected by the primary condensing member and uniformly irradiates the power generation element , Supply softened glass to a lower mold in which a plurality of truncated pyramids or truncated cone-shaped projections are formed at predetermined intervals in the recess, and lower mold the upper mold with respect to the lower mold and press molding with a predetermined pressure Then, the glass molding material is molded, and the lower surface of the glass molding material is smoothed so as to form an opening at the surface along the bottom surface of the recess, and the upper surface is parallel to the smoothed surface. Smoothing with, and further each concave of the glass molding material A plurality of block-shaped glass materials are obtained by cutting and polishing at arbitrary positions in between, and then the reflective film is formed on the inner peripheral surface of the glass materials. The present invention relates to a method for producing a secondary optical system glass member homogenizer.

請求項の発明は、上下面が水平なブロック状のガラス材からなり、内周面が逆角錐台または逆円錐台形状に形成された中空部を有するとともに、前記中空部の内周面に1次集光部材で集光した太陽光を反射するための反射膜を形成して発電素子に対して均一に照射する集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法において、凹部を有する下型に軟化したガラスを供給し、逆角錐台または逆円錐台形状の突部が形成された上型を前記下型に対して降下させて所定の加圧力でプレス成形してガラス成形材を成形し、該ガラス成形材の下部を前記凹部底面に沿った面で開口部を形成するように平滑処理するとともに上部を前記平滑処理された面に平行となる任意の面で平滑処理して前記ブロック状のガラス材を得た後、該ガラス材の内周面に前記反射膜を形成することを特徴とする集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法に係る。 In the invention of claim 2 , the upper and lower surfaces are made of a block-like glass material, the inner peripheral surface has a hollow portion formed in an inverted truncated pyramid shape or an inverted truncated cone shape, and the inner peripheral surface of the hollow portion In the method of manufacturing a secondary optical glass member homogenizer for concentrating solar power generation that forms a reflective film for reflecting the sunlight collected by the primary condensing member and uniformly irradiates the power generation element , The softened glass is supplied to the lower mold having the recesses, and the upper mold on which the inverted pyramid or the inverted frustoconical protrusion is formed is lowered with respect to the lower mold and press-molded with a predetermined pressure. A molding material is molded, and the lower portion of the glass molding material is smoothed so as to form an opening with a surface along the bottom surface of the recess, and the upper portion is smoothed with an arbitrary surface parallel to the smoothed surface. And after obtaining the block-shaped glass material, According to the manufacturing method of the condenser type solar photovoltaic secondary optical glass member homogenizer and forming the reflective film on the inner peripheral surface of the lath member.

請求項の発明は、上下面が水平なブロック状のガラス材からなり、内周面が逆角錐台または逆円錐台形状に形成された中空部を有するとともに、前記中空部の内周面に1次集光部材で集光した太陽光を反射するための反射膜を形成して発電素子に対して均一に照射する集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法において、凹部内に前記内周面の半内周面を形成するための突部を有する下型に軟化したガラスを供給し、前記下型に対して上型を降下させて所定の加圧力でプレス成形して半形状のガラス成形材を成形し、前記半形状のガラス成形材の前記半内周面に前記反射膜を形成して半形状のガラス材を得た後、同様にして得られた他の半形状のガラス材と前記半形状のガラス材との各半内周面とで逆角錐台または逆円錐台形状の前記内周面が形成されるように前記各半形状のガラス材を張り合わせたことを特徴とする集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法に係る。 According to the invention of claim 3 , the upper and lower surfaces are made of a block-like glass material, the inner peripheral surface has a hollow portion formed in an inverted truncated pyramid shape or an inverted truncated cone shape, and the inner peripheral surface of the hollow portion In the method of manufacturing a secondary optical glass member homogenizer for concentrating solar power generation that forms a reflective film for reflecting the sunlight collected by the primary condensing member and uniformly irradiates the power generation element , Supply softened glass to a lower mold having a projection for forming a semi-inner peripheral surface of the inner peripheral surface in a recess, and lower the upper mold with respect to the lower mold, and press molding with a predetermined pressure Then, after forming a semi-shaped glass forming material, forming the reflective film on the semi-inner peripheral surface of the semi-shaped glass forming material to obtain a semi-shaped glass material, Of the half-shaped glass material and each semi-inner peripheral surface of the half-shaped glass material, According to the condensing type method for producing a solar photovoltaic secondary optical glass member homogenizer, characterized in that laminated glass material of each half shaped as the inner peripheral surface of the inverted truncated cone shape is formed.

請求項の発明に係る集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法は、上下面が水平なブロック状のガラス材からなり、内周面が逆角錐台または逆円錐台形状に形成された中空部を有するとともに、前記中空部の内周面に1次集光部材で集光した太陽光を反射するための反射膜を形成して発電素子に対して均一に照射する集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法において、凹部内に複数の角錐台または円錐台形状の突部が所定間隔で形成された下型に軟化したガラスを供給し、前記下型に対して上型を降下させて所定の加圧力でプレス成形してガラス成形材を成形し、該ガラス成形材の下部を前記凹部底面に沿った面で開口部を形成するように平滑処理するとともに上部を前記平滑処理された面に平行となる任意の面で平滑処理し、さらに前記ガラス成形材の各凹部間の任意の位置で切断及び研磨して複数の前記ブロック状のガラス材を得た後、該ガラス材の内周面に前記反射膜を形成するため、多数のガラス材を簡易かつ効率的に形成することが可能であり、生産性に優れる。 A manufacturing method of a secondary optical glass member homogenizer for concentrating photovoltaic power generation according to the invention of claim 1 is made of a block-like glass material whose upper and lower surfaces are horizontal, and an inner peripheral surface thereof is an inverted truncated pyramid or an inverted truncated cone. In addition to having a hollow portion formed in a shape, a reflective film for reflecting the sunlight collected by the primary condensing member is formed on the inner peripheral surface of the hollow portion to uniformly irradiate the power generation element In the method of manufacturing a secondary optical glass member homogenizer for concentrating solar power generation, supplying softened glass to a lower mold in which a plurality of truncated pyramid or truncated cone-shaped protrusions are formed at predetermined intervals in the recess, The upper mold is lowered with respect to the lower mold and press-molded with a predetermined pressure to form a glass molding material, and the lower portion of the glass molding material is formed with a surface along the bottom surface of the recess. Smoothing and smoothing the upper part Smoothing is performed on an arbitrary surface parallel to the surface, and cutting and polishing at arbitrary positions between the concave portions of the glass molding material to obtain a plurality of the block-shaped glass materials, Since the reflective film is formed on the inner peripheral surface, a large number of glass materials can be easily and efficiently formed, and the productivity is excellent.

請求項の発明に係る集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法は、上下面が水平なブロック状のガラス材からなり、内周面が逆角錐台または逆円錐台形状に形成された中空部を有するとともに、前記中空部の内周面に1次集光部材で集光した太陽光を反射するための反射膜を形成して発電素子に対して均一に照射する集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法において、凹部を有する下型に軟化したガラスを供給し、逆角錐台または逆円錐台形状の突部が形成された上型を前記下型に対して降下させて所定の加圧力でプレス成形してガラス成形材を成形し、該ガラス成形材の下部を前記凹部底面に沿った面で開口部を形成するように平滑処理するとともに上部を前記平滑処理された面に平行となる任意の面で平滑処理して前記ブロック状のガラス材を得た後、該ガラス材の内周面に前記反射膜を形成するため、内周面を精度よく形成することができ、生産効率にも優れる。 The method of manufacturing a secondary optical glass member homogenizer for concentrating photovoltaic power generation according to the invention of claim 2 is made of a block-like glass material whose upper and lower surfaces are horizontal, and the inner peripheral surface thereof is an inverted truncated pyramid or an inverted truncated cone. In addition to having a hollow portion formed in a shape, a reflective film for reflecting the sunlight collected by the primary condensing member is formed on the inner peripheral surface of the hollow portion to uniformly irradiate the power generation element In the manufacturing method of the secondary optical glass member homogenizer for concentrating solar power generation, the softened glass is supplied to the lower mold having the concave portion, and the upper mold formed with the inverted pyramid-shaped or inverted truncated cone-shaped projection is formed. The lower mold is lowered and press-molded with a predetermined pressure to form a glass molding material, and the lower portion of the glass molding material is smoothed so that an opening is formed on the surface along the bottom surface of the recess. And the upper surface on the smoothed surface After obtaining the block-shaped glass material by smoothing on any surface to be a row, in order to form the reflective film on the inner peripheral surface of the glass material, the inner peripheral surface can be accurately formed, Excellent production efficiency.

請求項の発明に係る集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法は、上下面が水平なブロック状のガラス材からなり、内周面が逆角錐台または逆円錐台形状に形成された中空部を有するとともに、前記中空部の内周面に1次集光部材で集光した太陽光を反射するための反射膜を形成して発電素子に対して均一に照射する集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法において、凹部内に前記内周面の半内周面を形成するための突部を有する下型に軟化したガラスを供給し、前記下型に対して上型を降下させて所定の加圧力でプレス成形して半形状のガラス成形材を成形し、前記半形状のガラス成形材の前記半内周面に前記反射膜を形成して半形状のガラス材を得た後、同様にして得られた他の半形状のガラス材と前記半形状のガラス材との各半内周面とで逆角錐台または逆円錐台形状の前記内周面が形成されるように前記各半形状のガラス材を張り合わせたため、成膜処理を容易に行うことができる。 The method of manufacturing a secondary optical glass member homogenizer for concentrating photovoltaic power generation according to the invention of claim 3 is made of a block-like glass material whose upper and lower surfaces are horizontal, and the inner peripheral surface thereof is an inverted truncated pyramid or an inverted truncated cone. In addition to having a hollow portion formed in a shape, a reflective film for reflecting the sunlight collected by the primary condensing member is formed on the inner peripheral surface of the hollow portion to uniformly irradiate the power generation element In the method of manufacturing a secondary optical glass member homogenizer for concentrating solar power generation, supplying softened glass to a lower mold having a protrusion for forming a semi-inner peripheral surface of the inner peripheral surface in a recess, The upper mold is lowered with respect to the lower mold and press-molded with a predetermined pressure to form a half-shaped glass molding material, and the reflective film is formed on the semi-inner peripheral surface of the half-shaped glass molding material After obtaining a semi-shaped glass material, other obtained in the same way Because each semi-shaped glass material is laminated so that the inner peripheral surface of the inverted truncated pyramid or inverted frustoconical shape is formed with each semi-inner peripheral surface of the shape glass material and the semi-shaped glass material, The film forming process can be easily performed.

第一実施例に係る集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの斜視図である。It is a perspective view of the secondary optical system glass member homogenizer for condensing type photovoltaic power generation concerning a 1st example. 図1のホモジナイザーを用いた集光式太陽光発電装置の概略断面図である。It is a schematic sectional drawing of the concentrating solar power generation device using the homogenizer of FIG. 第一実施例のガラス材の成形前の製造工程を表す概略断面図である。It is a schematic sectional drawing showing the manufacturing process before shaping | molding of the glass material of a 1st Example. 図3の下型の平面図である。It is a top view of the lower mold | type of FIG. 第一実施例のガラス材のプレス成形工程を表す概略断面図である。It is a schematic sectional drawing showing the press molding process of the glass material of a 1st Example. 第一実施例のガラス材の平滑処理工程を表すの概略断面図である。It is a schematic sectional drawing of the smoothing process process of the glass material of a 1st Example. 第二実施例に係る集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの斜視図である。It is a perspective view of the secondary optical system glass member homogenizer for concentrating photovoltaic power generation concerning a 2nd Example. 図7のホモジナイザーを用いた集光式太陽光発電装置の概略断面図である。It is a schematic sectional drawing of the concentrating solar power generation device using the homogenizer of FIG. 第二実施例のガラス材の成形前の製造工程を表す概略断面図である。It is a schematic sectional drawing showing the manufacturing process before shaping | molding of the glass material of a 2nd Example. 第二実施例のガラス材のプレス成形工程を表す概略断面図である。It is a schematic sectional drawing showing the press molding process of the glass material of a 2nd Example. 第二実施例のガラス材の平滑処理工程を表す概略断面図である。It is a schematic sectional drawing showing the smooth treatment process of the glass material of a 2nd Example. 第三実施例に係る集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの斜視図である。It is a perspective view of the secondary optical system glass member homogenizer for concentrating photovoltaic power generation concerning a 3rd Example. 第三実施例のガラス材を成形するための下型の平面図である。It is a top view of the lower mold | type for shape | molding the glass material of a 3rd Example. 図13のB−B断面図である。It is BB sectional drawing of FIG. 第三実施例のガラス材のプレス成形工程を表す概略断面図である。It is a schematic sectional drawing showing the press molding process of the glass material of a 3rd Example. 半形状のガラス材の張り合わせ前の斜視図である。It is a perspective view before bonding of a half-shaped glass material.

図1及び図2に示集光式太陽光発電用2次光学系ガラス部材ホモジナイザー10は、集光式太陽光発電装置50に配置され、1次集光部材51で集光した太陽光Lを発電素子52に対して均一に照射するためのものであって、上下面が水平なブロック状のガラス材11からなり、内周面16が逆角錐台形状に形成された中空部15を有するとともに、中空部15の内周面16に太陽光を反射するための反射膜20を形成したものであるFigure 1 and shown to Atsumarihikarishiki solar photovoltaic secondary optical glass member homogenizer 10 in FIG. 2 is disposed Atsumarihikarishiki photovoltaic device 50, the sunlight L condensed in the primary condensing member 51 Is formed of a block-shaped glass material 11 whose upper and lower surfaces are horizontal and the inner peripheral surface 16 has a hollow portion 15 formed in an inverted truncated pyramid shape. together, and forming a reflection film 20 for reflecting sunlight to the inner circumferential surface 16 of the hollow portion 15.

図2において、符号53はホモジナイザー10の上面に配置されて中空部15を封止するスライドガラスからなる封止板、54は封止板53をホモジナイザー10の上面に固定するための固定板、55は固定板54に形成され集光された太陽光Lを通過させるための開口部、56は固定板54を固定するとともに放熱機能を有するネジ部材、57はリード線やバイパスダイオード等の周辺備品、58はホモジナイザー10が配置される発電装置50の機台である。なお、このでは、封止板53の上面側にMgF2やSiO2/TiO2の多層構造の反射防止膜が公知のスパッタリング処理によって膜厚約100nmで成膜されている。 In FIG. 2, reference numeral 53 is a sealing plate made of a slide glass disposed on the upper surface of the homogenizer 10 and sealing the hollow portion 15, 54 is a fixing plate for fixing the sealing plate 53 to the upper surface of the homogenizer 10, 55 Is an opening for passing the condensed sunlight L formed on the fixing plate 54, 56 is a screw member that fixes the fixing plate 54 and has a heat dissipation function, 57 is peripheral equipment such as lead wires and bypass diodes, 58 is a machine base of the power generation apparatus 50 on which the homogenizer 10 is disposed. In this example , an antireflection film having a multilayer structure of MgF 2 or SiO 2 / TiO 2 is formed on the upper surface side of the sealing plate 53 with a film thickness of about 100 nm by a known sputtering process.

第一実施例のホモジナイザー10において、ブロック状のガラス材11は、縦約19mm、横約19mm、高さ約20mmの直方体形状に形成されている。また、中空部15は、ガラス材11上面に一辺約11mmの正方形状に開口するとともに、下面に一辺約6.5mmの正方形状に開口するように4面の内周面16が連接されて、ガラス材11の上下面の中心部分を貫通する逆角錐台形状の空間を形成したものである。そして、中空部15を形成する各内周面16は、ガラス材11の下面との傾斜角が約83.6°で形成される。上記ブロック状のガラス材11は、ダイレクトプレス成形、ダイレクトプレス成形及びブロー成形、モールドプレス成形等の公知の製法によって製造することができる。   In the homogenizer 10 of the first embodiment, the block-shaped glass material 11 is formed in a rectangular parallelepiped shape having a length of about 19 mm, a width of about 19 mm, and a height of about 20 mm. In addition, the hollow portion 15 is opened in a square shape with a side of about 11 mm on the upper surface of the glass material 11, and four inner peripheral surfaces 16 are connected to the lower surface so as to open in a square shape with a side of about 6.5 mm. A space having an inverted truncated pyramid shape penetrating through the central portion of the upper and lower surfaces of the glass material 11 is formed. And each internal peripheral surface 16 which forms the hollow part 15 is formed in the inclination angle with the lower surface of the glass material 11 at about 83.6 degrees. The block-shaped glass material 11 can be manufactured by a known production method such as direct press molding, direct press molding and blow molding, or mold press molding.

このガラス材11は、自立可能な脚部12を備えている。この例の脚部12は、ガラス材11下面の四隅に一辺約3.5mm、高さ約4mmの角柱状に形成されており、ガラス材11を持ち上げるように構成される。これにより、ガラス材11をより安定して自立させることが可能となる。また、脚部12によって持ち上げられたガラス材11下面の下方に形成された空間部分を収納空間13としてもよい。このように収納空間13を形成することにより、発電素子52やリード線,バイパスダイオード等の周辺備品57を収納することが可能となり、発電素子52や周辺備品57を効果的かつ効率的に設置することができる。 The glass material 11 includes a leg portion 12 that can stand by itself. The leg portion 12 in this example is formed in a square column shape having a side of about 3.5 mm and a height of about 4 mm at the four corners of the lower surface of the glass material 11, and is configured to lift the glass material 11. Thereby, it becomes possible to make glass material 11 stand more stably. In addition, a space portion formed below the lower surface of the glass material 11 lifted by the legs 12 may be used as the storage space 13. By forming the storage space 13 in this manner, it becomes possible to store the peripheral elements 57 such as the power generation element 52, lead wires, and bypass diodes, and the power generation element 52 and the peripheral equipment 57 are installed effectively and efficiently. be able to.

ガラス材11の組成としては、SiO2:67〜70重量%、Na2O:9〜12重量%、K2O:9〜12重量%、Al23:2〜4重量%、TiO2:4〜7重量%、F:0.8〜2重量%、Sb23:0.02〜0.2重量%を含むものからなる。この例のガラス材11は、SiO2:67.2重量%、Na2O:11.0重量%、K2O:11.0重量%、Al23:3.0重量%、TiO2:6.0重量%、F:1.6重量%、Sb23:0.2重量%で構成され、軟化点が約655℃、徐冷点が約465℃、ガラス転移点(Tg)が464℃で、屈折率(nd)が1.5174である。また、このガラス材11では、成形後のヒケの発生や、成形時に使用する金型の酸化抑制のために、ガラスの屈伏点が比較的低いものを使用することが好ましい。この屈伏点は、例えば、510〜530℃であり、この例では522℃である。これにより、低温での成形性がよく研磨加工性にも優れたガラス材11とすることができる。 As the composition of the glass material 11, SiO 2: 67 to 70 wt%, Na 2 O: 9~12 wt%, K 2 O: 9~12 wt%, Al 2 O 3: 2~4 wt%, TiO 2 : 4-7 wt%, F: 0.8 to 2 wt%, Sb 2 O 3: consisting of those containing 0.02 to 0.2 wt%. Glass material 11 in this example, SiO 2: 67.2 wt%, Na 2 O: 11.0 wt%, K 2 O: 11.0 wt%, Al 2 O 3: 3.0 wt%, TiO 2 : 6.0 wt%, F: 1.6 wt%, Sb 2 O 3 : 0.2 wt%, softening point is about 655 ° C., annealing point is about 465 ° C., glass transition point (Tg) Is 464 ° C. and the refractive index (nd) is 1.5174. Moreover, it is preferable to use the glass material 11 having a relatively low yield point of glass in order to generate sink marks after molding and to suppress oxidation of a mold used at the time of molding. This yield point is, for example, 510 to 530 ° C., and in this example is 522 ° C. Thereby, it can be set as the glass material 11 which was excellent in the moldability in low temperature and was excellent also in polishing workability.

さらに、ガラス材11の性質としては、特に、日本光学硝子工業会規格の粉末法耐水性試験に基づく粉末ガラスの質量の減量率(wt%)が0.05未満であり、かつ、日本光学硝子工業会規格の粉末法耐酸性試験に基づく粉末ガラスの質量の減量率(wt%)が0.20未満であることが好ましい。   Further, as the properties of the glass material 11, in particular, the weight loss rate (wt%) of the powder glass based on the powder method water resistance test of the Japan Optical Glass Industry Association standard is less than 0.05, and the Japan Optical Glass It is preferable that the weight loss rate (wt%) of the powder glass based on the powder method acid resistance test of the industry association standard is less than 0.20.

(I)の粉末法耐水性試験は、粒度425〜600μmに粉砕されたガラスを比重グラムとり、白金篭の中に入れ、それをpH6.5〜7.5の純水の入った石英ガラス製丸底フラスコに入れて、沸騰水中で60分間処理し、処理後の粉末ガラスの質量の減量率を算出する試験である。   In the powder method water resistance test (I), a glass crushed to a particle size of 425-600 μm is taken in a specific gravity gram, placed in a platinum cage, and made of quartz glass containing pure water of pH 6.5-7.5. It is a test for putting in a round bottom flask, treating in boiling water for 60 minutes, and calculating the weight loss rate of the powder glass after the treatment.

(II)の粉末法耐酸性試験は、粒度425〜600μmに粉砕されたガラスを比重グラムとり、白金篭の中に入れ、それを0.01N硝酸水溶液の入った石英ガラス製丸底フラスコに入れて、沸騰水中で60分間処理し、処理後の粉末ガラスの質量の減量率を算出する試験である。   In the powder method acid resistance test of (II), a glass crushed to a particle size of 425-600 μm is taken in a specific gravity gram, placed in a platinum bowl, and placed in a quartz glass round bottom flask containing a 0.01N nitric acid aqueous solution. In this test, the weight loss of the powder glass after the treatment in boiling water for 60 minutes is calculated.

このようなガラス材11にあっては、耐水性や耐化学性等の耐久性に優れるため、高温高湿等の環境下で長期間外気に晒されても劣化等の悪影響を抑制することができ、メンテナンスにかかる手間等が低減されてコストパフォーマンスが高いガラス材11を製造することができる。   Since such a glass material 11 has excellent durability such as water resistance and chemical resistance, it can suppress adverse effects such as deterioration even when exposed to the outside air for a long time in an environment such as high temperature and high humidity. It is possible to manufacture the glass material 11 with high cost performance by reducing the labor and time required for maintenance.

反射膜20は、中空部15を構成する内周面16に形成され、1次集光部材51で集光した太陽光Lを反射または屈折させて光学的分散を図るものである。この反射膜20としては、集光した太陽光Lを効果的に反射させることや高温高湿の環境にも耐え得る耐久性を考慮して、Ag合金によって構成することが好ましい。この例では、Ag合金の成分がAg,0.7at%Nd,0.9at%Cuであり、膜厚120nmのSiO2を下地膜として公知のスパッタリング処理によって膜厚200nmに成膜される。この反射膜20によれば、反射率が約90%で、85℃,RH85%の環境に約1000時間晒した場合でも異常がなかった。 The reflection film 20 is formed on the inner peripheral surface 16 that constitutes the hollow portion 15, and reflects or refracts sunlight L collected by the primary light collecting member 51 to achieve optical dispersion. The reflective film 20 is preferably made of an Ag alloy in consideration of the ability to effectively reflect the concentrated sunlight L and the durability that can withstand high-temperature and high-humidity environments. In this example, the components of the Ag alloy are Ag, 0.7 at% Nd, and 0.9 at% Cu, and the film is formed to a thickness of 200 nm by a known sputtering process using SiO 2 with a thickness of 120 nm as a base film. According to this reflective film 20, the reflectance was about 90%, and there was no abnormality even when exposed to an environment of 85 ° C. and RH 85% for about 1000 hours.

また、反射膜20であるAg合金の耐久性をより向上させるために、図2に示すように、前記反射膜20に反射率劣化防止膜25を処理してもよい。反射率劣化防止膜25としては、例えば、膜厚200nmのシリカ膜を公知のスパッタリング処理によって成膜することができる。   Further, in order to further improve the durability of the Ag alloy that is the reflective film 20, as shown in FIG. 2, the reflective film 20 may be treated with a reflectance deterioration preventing film 25. As the reflectance deterioration preventing film 25, for example, a 200 nm-thick silica film can be formed by a known sputtering process.

ここで、図3〜図6を用いて、当該ホモジナイザー10の製造方法の一例を説明する。図示の成形装置60は、軟化されたガラスが供給される凹部62内に複数の角錐台形状の突部63が所定間隔で形成された下型61と、下型61に対して加圧力で加圧を行う上型65とを備えたプレス成形機である。この実施例において、角錐台形状の突部63は、各側面が底面に対して約83.6°で傾斜して形成されている。なお、この角錐台形状の突部63には、後述の平滑処理において切削される切代72を形成するために、底面に対して垂直な側面64が形成されている。   Here, an example of a method for manufacturing the homogenizer 10 will be described with reference to FIGS. The illustrated molding apparatus 60 includes a lower mold 61 in which a plurality of truncated pyramid-shaped projections 63 are formed at predetermined intervals in a recess 62 to which softened glass is supplied, and a pressure applied to the lower mold 61. It is a press molding machine provided with the upper mold | type 65 which performs a pressure. In this embodiment, the truncated pyramidal protrusion 63 is formed such that each side surface is inclined at about 83.6 ° with respect to the bottom surface. In addition, the side surface 64 perpendicular | vertical with respect to a bottom face is formed in this truncated pyramid-shaped protrusion 63 in order to form the cutting allowance 72 cut | disconnected in the smoothing process mentioned later.

まず、図3に示すように、下型61の凹部62内に1200〜1300℃に溶融されたガラス原料を所定量供給し、続いて、図5に示すように、下型61に対して上型65を下降させて所定の加圧力でプレス成形を行い、ガラス成形材70を成形する。   First, as shown in FIG. 3, a predetermined amount of glass raw material melted at 1200 to 1300 ° C. is supplied into the concave portion 62 of the lower mold 61, and then, as shown in FIG. The mold 65 is lowered and press molding is performed with a predetermined pressing force to mold the glass molding material 70.

このガラス成形材70は、図6に示すように、逆角錐台形状の凹部71が複数形成された形状となる。次いで、ガラス成形材70の下部を逆角錐台形状の凹部71底面に沿った面75で開口部を形成するように切削・切断・研磨等の適宜の平滑処理を実施するとともに、上部を前記平滑処理された面(平滑面)75に平行となる任意の面76(この例では切代72)で平滑処理を実施する。ここでは、平滑処理として切削及び研磨処理がそれぞれ実施される。このように平滑処理によって開口部が形成されたことにより、逆角錐台形状の凹部71を中空部15として形成することができる。さらに、ガラス成形材70の各凹部71間の任意の位置を平滑面75に対して垂直な面77で切断及び研磨し、ブロック状のガラス材11が複数得られる。そして、各ガラス材11の下面側を四隅に脚部12が残るように切削及び研磨した後、各ガラス材11の内周面16(凹部71)に対してAg合金をスパッタリング処理して反射膜20を形成し、本発明のホモジナイザー10は完成する。   As shown in FIG. 6, the glass forming material 70 has a shape in which a plurality of inverted pyramidal concave portions 71 are formed. Next, an appropriate smoothing process such as cutting, cutting, and polishing is performed so that the lower portion of the glass forming material 70 is formed with a surface 75 along the bottom surface of the concave truncated pyramidal recess 71, and the upper portion is smoothed. Smoothing processing is performed on an arbitrary surface 76 (in this example, the cutting margin 72) that is parallel to the processed surface (smooth surface) 75. Here, cutting and polishing are respectively performed as the smoothing process. Thus, by forming the opening by the smoothing process, the inverted pyramid-shaped concave portion 71 can be formed as the hollow portion 15. Further, a plurality of block-shaped glass materials 11 are obtained by cutting and polishing an arbitrary position between the concave portions 71 of the glass forming material 70 with a surface 77 perpendicular to the smooth surface 75. Then, the lower surface side of each glass material 11 is cut and polished so that the leg portions 12 remain at the four corners, and then the Ag alloy is sputtered on the inner peripheral surface 16 (recessed portion 71) of each glass material 11 to reflect the reflection film. 20, and the homogenizer 10 of the present invention is completed.

この製造方法にあっては、多数のガラス材11を簡易かつ効率的に形成することが可能であるため、生産性に優れる。なお、成形装置60において、上記の如く中空部15を形成するために下型61に突部63を形成したことにより、突部63の研削や研磨加工が容易となって、型の表面精度を容易に向上させることができる。また、ガラスとの濡れ性改善等を目的に成膜制御も容易となる。   This manufacturing method is excellent in productivity because a large number of glass materials 11 can be formed easily and efficiently. In the molding apparatus 60, since the protrusion 63 is formed on the lower mold 61 to form the hollow portion 15 as described above, the protrusion 63 can be easily ground and polished, and the surface accuracy of the mold can be improved. It can be improved easily. In addition, film formation can be easily controlled for the purpose of improving wettability with glass.

次にホモジナイザー10の作用について説明する。図2に示すように、このホモジナイザー10は、発電装置50の1次集光部材51によって集光された太陽光Lが所定の入射角で中空部15内に入射されると、中空部15を構成する内周面16に形成された反射膜20で前記入射された太陽光Lを反射することによって均一化し、中空部15最下部から発電素子52に対して照射するように構成される。すなわち、発電素子52に対して照射される太陽光Lは、1次集光部材51によって集光された後、ホモジナイザー10内を通過することなくその表面(反射面20)で反射して発電素子52に導かれる。 Next , the operation of the homogenizer 10 will be described. As shown in FIG. 2, when the sunlight L collected by the primary light collecting member 51 of the power generation device 50 is incident on the hollow portion 15 at a predetermined incident angle, the homogenizer 10 The incident sunlight L is reflected by the reflecting film 20 formed on the inner peripheral surface 16 to be uniformed, and the power generation element 52 is irradiated from the bottom of the hollow portion 15. That is, the sunlight L irradiated to the power generation element 52 is collected by the primary light collecting member 51 and then reflected by the surface (reflection surface 20) without passing through the homogenizer 10 to generate the power generation element. 52.

このように、当該ホモジナイザー10にあっては、太陽光Lがホモジナイザー10内を通過せずに発電素子52に照射されるものであるから、従来のように太陽光がホモジナイザー内を通過して発電素子に導かれる構成に比して光学効率に優れる。また、このホモジナイザー10は、太陽光Lを表面部分(反射面20)で反射させる構成であるため、ガラス材11全体の品位を高くする必要がなく、太陽光Lを反射する表面近傍(内周面16)の品位のみを高くすればよく、ガラス材11内部に気泡等が存在しても太陽光発電に影響せず、ガラス溶融での省エネ効果や製造工程の簡素化等も期待できる。さらに、このホモジナイザー10は、自立可能な構成であるため、固定部材の部品点数やその作業工程の低減を図ることができ、太陽光発電装置50への設置が容易となる。   Thus, in the said homogenizer 10, since sunlight L is irradiated to the electric power generation element 52, without passing through the inside of the homogenizer 10, sunlight passes through the inside of a homogenizer and is generated electric power conventionally. The optical efficiency is excellent as compared with the configuration led to the element. Further, since the homogenizer 10 is configured to reflect the sunlight L at the surface portion (reflecting surface 20), there is no need to increase the quality of the entire glass material 11, and the vicinity of the surface reflecting the sunlight L (inner circumference) Only the quality of the surface 16) needs to be increased. Even if bubbles or the like are present inside the glass material 11, solar power generation is not affected, and an energy saving effect by glass melting, simplification of the manufacturing process, and the like can be expected. Furthermore, since this homogenizer 10 is a self-supporting configuration, it is possible to reduce the number of parts of the fixing member and the work process thereof, and the installation to the photovoltaic power generator 50 is facilitated.

ここで、図2に示す上記ホモジナイザー10を用いた集光式太陽光発電装置50について説明すると、ホモジナイザー10は、公知のフレネルレンズからなる1次集光部材51によって集光された太陽光Lを中空部15内に受けることができるとともに発電素子52に対して前記太陽光Lを照射することができる所定の位置に自立され、その上面側に封止板53が配置されて固定板54によって固定されている。   Here, the concentrating solar power generation apparatus 50 using the homogenizer 10 shown in FIG. 2 will be described. The homogenizer 10 emits sunlight L collected by the primary condensing member 51 made of a known Fresnel lens. The power generation element 52 can be received in the hollow portion 15 and can stand on a predetermined position where the solar light L can be irradiated. A sealing plate 53 is disposed on the upper surface side of the power generation element 52 and is fixed by a fixing plate 54. Has been.

また、このホモジナイザー10では、中空部15(内周面16)最下部が均一化された太陽光を放出する部分であるから、上のように配置する際に中空部15(内周面16)最下部と発電素子52の上面52Aとの間に隙間が生じていると、発電素子52への照射時に隙間から太陽光が漏れて発電効率が低下するおそれがある。そこで、上のようにホモジナイザー10を固定するに際しては、太陽光を放出する部分と発電素子52上面52Aとの隙間を可能な限り小さくすることが重要となる。   Moreover, in this homogenizer 10, since the hollow part 15 (inner peripheral surface 16) lowest part is a part which discharge | releases the uniformed sunlight, when arrange | positioning as above, the hollow part 15 (inner peripheral surface 16) If there is a gap between the lowermost part and the upper surface 52A of the power generation element 52, sunlight may leak from the gap when the power generation element 52 is irradiated, and power generation efficiency may be reduced. Therefore, when fixing the homogenizer 10 as described above, it is important to make the gap between the portion that emits sunlight and the upper surface 52A of the power generation element 52 as small as possible.

太陽光を放出する部分と発電素子52上面52Aとの隙間を小さくする場合、従来のホモジナイザーを用いた発電装置では、太陽光がホモジナイザー内を通過してホモジナイザー下面から放出される構成であることから、前記下面と発電素子52の上面52Aとを当接させてホモジナイザーが配置される。しかしながら、従来のホモジナイザーでは、前記下面の平滑度や発電素子52上面52Aの凹凸等の関係から、前記下面と発電素子52上面52Aとを当接させても隙間を完全になくすことができない。   In the case where the gap between the portion that emits sunlight and the upper surface 52A of the power generation element 52 is reduced, the conventional power generator using the homogenizer has a configuration in which sunlight passes through the homogenizer and is emitted from the lower surface of the homogenizer. The homogenizer is disposed such that the lower surface and the upper surface 52A of the power generation element 52 are brought into contact with each other. However, in the conventional homogenizer, due to the smoothness of the lower surface and the unevenness of the upper surface 52A of the power generation element 52, the gap cannot be completely eliminated even if the lower surface and the upper surface 52A of the power generation element 52 are brought into contact with each other.

これに対し、当該ホモジナイザー10を用いた発電装置50では、ホモジナイザー10の中空部15の内周面16最下部と発電素子52の上面52Aとが同一平面となるように配置されている。すなわち、ホモジナイザー10では、太陽光を放出する部分が中空部15によって構成されていることから、下面の平滑度や発電素子52上面52Aの凹凸等の影響がなくなり、ホモジナイザー10の中空部15(内周面16)最下部と発電素子52上面52Aとの隙間を限りなく小さくすることができる。   On the other hand, in the power generation device 50 using the homogenizer 10, the lowermost part of the inner peripheral surface 16 of the hollow portion 15 of the homogenizer 10 and the upper surface 52A of the power generation element 52 are arranged on the same plane. That is, in the homogenizer 10, since the portion that emits sunlight is constituted by the hollow portion 15, there is no influence of the smoothness of the lower surface and the unevenness of the upper surface 52 </ b> A of the power generation element 52, and the hollow portion 15 (inner Circumferential surface 16) The gap between the lowermost portion and the power generating element 52 upper surface 52A can be reduced as much as possible.

そこで、発電装置50の具体的なについて説明する。以下のでは、ホモジナイザー10は、ガラス材11の一辺が19mm、高さが20mmであり、逆角錐台形状の中空部15の上部が一辺11mm、下部が一辺6.5mm、傾斜角が83.6°である。従来のホモジナイザーは、上面の一辺が11mm、下面の一辺が6.5mm、高さが20mmである逆角錐台形状のガラスブロックであり、各側面の傾斜角が83.6°である。なお、各ホモジナイザーを構成するガラス組成は同一とした。 Therefore, a specific example of the power generation device 50 will be described. In the following example , the homogenizer 10 has a glass material 11 having a side of 19 mm and a height of 20 mm, an inverted truncated pyramidal hollow portion 15 having an upper side of 11 mm, a lower side of 6.5 mm, and an inclination angle of 83 mm. 6 °. A conventional homogenizer is an inverted truncated pyramid-shaped glass block having an upper side of 11 mm, a lower side of 6.5 mm, and a height of 20 mm, and the inclination angle of each side is 83.6 °. In addition, the glass composition which comprises each homogenizer was made the same.

また、以下のの発電効率は、ホモジナイザーを設置していない集光式太陽光発電装置において、入射光の傾き(°)が0.0°の時の発電効率の値を1.0として対比した値である。なお、集光式太陽光発電装置では、雲等による散乱光では発電できず、太陽光の中の直達光で発電するため、太陽を追尾することが必須となる。その際、追尾誤差が0.6°程度生じるため、ホモジナイザーを設置していない発電装置での実際の発電効率は0.76である。また、ホモジナイザーを設置しない場合、太陽光の追尾不良による集光点ズレにより周辺部材の加熱損傷が発生するおそれがある。従って、ホモジナイザーを設置する目的は、発電効率の低下を抑制するとともに、周辺部材の加熱損傷を防止するものである。 Further, the power generation efficiency of the following example is compared with 1.0 as the value of the power generation efficiency when the inclination (°) of incident light is 0.0 ° in a concentrating solar power generation apparatus without a homogenizer. It is the value. In the concentrating solar power generation device, it is indispensable to track the sun because it cannot generate power with scattered light from clouds or the like but generates power with direct light in sunlight. At that time, since a tracking error is about 0.6 °, the actual power generation efficiency in the power generation apparatus in which the homogenizer is not installed is 0.76. Moreover, when a homogenizer is not installed, there is a possibility that the peripheral member may be damaged by heating due to a condensing point shift due to poor tracking of sunlight. Therefore, the purpose of installing the homogenizer is to suppress a decrease in power generation efficiency and prevent heat damage to peripheral members.

Figure 0005081866
Figure 0005081866

発電装置Aは、ホモジナイザー10を使用し、中空部15の内周面16最下部と発電素子52の上面52Aとが同一平面となるように配置した。公知の顕微鏡を用いてホモジナイザー10と発電素子52との隙間を測定したところ0mmであった。入射光の傾き(°)が0.0°の時、発電効率は0.88となった。以下、入射光の傾き(°)が0.1°である時の発電効率は0.88、入射光の傾き(°)が0.3°である時の発電効率は0.88、入射光の傾き(°)が0.6°である時の発電効率は0.87、入射光の傾き(°)が0.9°である時の発電効率は0.81となった。   The power generator A uses the homogenizer 10 and is arranged so that the lowermost portion of the inner peripheral surface 16 of the hollow portion 15 and the upper surface 52A of the power generating element 52 are in the same plane. It was 0 mm when the clearance gap between the homogenizer 10 and the electric power generation element 52 was measured using the well-known microscope. When the inclination (°) of incident light was 0.0 °, the power generation efficiency was 0.88. Hereinafter, the power generation efficiency when the inclination (°) of incident light is 0.1 ° is 0.88, the power generation efficiency when the inclination (°) of incident light is 0.3 °, and 0.88. The power generation efficiency when the inclination (°) of the light was 0.6 ° was 0.87, and the power generation efficiency when the inclination (°) of the incident light was 0.9 ° was 0.81.

発電装置Bは、従来のホモジナイザーを使用し、その下面と発電素子52の上面52Aとが当接するように配置した。従来のホモジナイザーと発電素子52との隙間を測定したところ1mmであった。入射光の傾き(°)が0.0°である時の発電効率は0.75、入射光の傾き(°)が0.1°である時の発電効率は0.75、入射光の傾き(°)が0.3°である時の発電効率は0.74、入射光の傾き(°)が0.6°である時の発電効率は0.71、入射光の傾き(°)が0.9°である時の発電効率は0.67となった。   The power generation device B is a conventional homogenizer, and is disposed so that the lower surface thereof and the upper surface 52A of the power generation element 52 are in contact with each other. The gap between the conventional homogenizer and the power generation element 52 was measured and found to be 1 mm. The power generation efficiency when the incident light tilt (°) is 0.0 ° is 0.75, the power generation efficiency when the incident light tilt (°) is 0.1 °, and the power generation efficiency is 0.75. When (°) is 0.3 °, the power generation efficiency is 0.74, and when the incident light inclination (°) is 0.6 °, the power generation efficiency is 0.71, and the incident light inclination (°) is The power generation efficiency at 0.9 ° was 0.67.

発電装置Cは、ホモジナイザー10を使用し、中空部15の内周面16最下部と発電素子52の上面52Aとの間隔が1mmとなるように配置した。入射光の傾き(°)が0.0°である時の発電効率は0.75、入射光の傾き(°)が0.1°である時の発電効率は0.75、入射光の傾き(°)が0.3°である時の発電効率は0.74、入射光の傾き(°)が0.6°である時の発電効率は0.71、入射光の傾き(°)が0.9°である時の発電効率は0.67となった。   The power generation device C uses the homogenizer 10 and is disposed so that the distance between the lowermost portion of the inner peripheral surface 16 of the hollow portion 15 and the upper surface 52A of the power generation element 52 is 1 mm. The power generation efficiency when the incident light tilt (°) is 0.0 ° is 0.75, the power generation efficiency when the incident light tilt (°) is 0.1 °, and the power generation efficiency is 0.75. When (°) is 0.3 °, the power generation efficiency is 0.74, and when the incident light inclination (°) is 0.6 °, the power generation efficiency is 0.71, and the incident light inclination (°) is The power generation efficiency at 0.9 ° was 0.67.

表1に示した結果から理解されるように、ホモジナイザーと発電素子52との隙間により、発電効率が大幅に低下する。特に、従来のホモジナイザーを使用した場合、入射光の傾きが増大することにより発電効率の低下が顕著に現れる。従って、本発明のホモジナイザー10は、従来のように太陽光がホモジナイザー内を通過して発電素子に導かれる構成に比して光学効率に優れ、発電装置50の如く中空部15の内周面16最下部と発電素子52の上面52Aとが同一平面となるように配置することにより発電効率の低下を大幅に抑制することができ、極めて実用的で効果的に太陽光発電を実施することができる。   As understood from the results shown in Table 1, the power generation efficiency is significantly reduced due to the gap between the homogenizer and the power generation element 52. In particular, when a conventional homogenizer is used, a decrease in power generation efficiency appears significantly due to an increase in the slope of incident light. Therefore, the homogenizer 10 of the present invention is superior in optical efficiency as compared with the conventional configuration in which sunlight passes through the homogenizer and is guided to the power generation element, and the inner peripheral surface 16 of the hollow portion 15 like the power generation device 50. By arranging the lowermost part and the upper surface 52A of the power generation element 52 to be in the same plane, a decrease in power generation efficiency can be greatly suppressed, and solar power generation can be carried out extremely practically and effectively. .

図7及び図8に示す第二実施例に係る集光式太陽光発電用2次光学系ガラス部材ホモジナイザー10Aは、上下面が水平な逆円錐台形状のガラス材11Aからなり、内周面16が逆角錐台形状に形成された中空部15を有するとともに、中空部15の内周面16に太陽光を反射するための反射膜20を形成したものである。なお、以下の説明において、第一実施例と同一の符号は同一の構成を表すものとして、その説明を省略する。   A secondary optical glass member homogenizer 10A for concentrating photovoltaic power generation according to the second embodiment shown in FIGS. 7 and 8 is composed of an inverted frustoconical glass material 11A whose upper and lower surfaces are horizontal, and has an inner peripheral surface 16. Has a hollow portion 15 formed in an inverted truncated pyramid shape, and a reflection film 20 for reflecting sunlight on the inner peripheral surface 16 of the hollow portion 15 is formed. In the following description, the same reference numerals as those in the first embodiment represent the same configuration, and the description thereof is omitted.

ここで、図9〜図11を用いて、ホモジナイザー10Aの製造方法の一例を説明すると、図示の成形装置60Aは、軟化されたガラスが供給される凹部62Aを有する下型61Aと、逆角錐台形状の突部66Aが形成され下型に対して所定の加圧力で加圧を行う上型65Aとを備えたプレス成形機である。この実施例において、逆角錐台形状の突部66Aは、前記成形装置60の突部63と同様に各側面が底面に対して約83.6°で傾斜して形成されている。   Here, an example of a method for manufacturing the homogenizer 10A will be described with reference to FIGS. 9 to 11. The illustrated molding apparatus 60A includes a lower mold 61A having a recess 62A to which softened glass is supplied, and an inverted truncated pyramid. This is a press molding machine including an upper die 65A in which a protruding portion 66A having a shape is formed and pressurizing the lower die with a predetermined pressure. In this embodiment, the inverted truncated pyramid shaped protrusion 66A is formed such that each side surface is inclined at about 83.6 ° with respect to the bottom surface, like the protrusion 63 of the molding device 60.

この製造方法では、図9に示すように、下型61Aの凹部62A内に1200〜1300℃に溶融されたガラス原料を所定量供給し、続いて、図10に示すように、下型61Aに対して上型65Aを下降させて所定の加圧力でプレス成形を行い、ガラス成形材70Aが成形される。この時、上型65Aの突部66A先端部分は下型61Aの凹部62A底面に到達せず、図11に示すような後述の平滑処理において切削される切代72Aを形成するように構成される。   In this manufacturing method, as shown in FIG. 9, a predetermined amount of glass raw material melted at 1200 to 1300 ° C. is supplied into the recess 62A of the lower mold 61A, and then, as shown in FIG. On the other hand, the upper mold 65A is lowered and press molding is performed with a predetermined pressure, whereby the glass molding material 70A is molded. At this time, the tip portion of the protrusion 66A of the upper die 65A does not reach the bottom surface of the recess 62A of the lower die 61A, and is configured to form a cutting margin 72A that is cut in a smoothing process described later as shown in FIG. .

このようにして形成されたガラス成形材70Aは、図11に示すように、逆円錐台形状の外形を有するとともに内部に逆角錐台形状の凹部71Aが形成された形状となる。次いで、このガラス成形材70Aの切代72Aを逆角錐台形状の凹部71A下面に沿った面(平滑面)75Aで開口部を形成するように平滑処理するとともに、上部を前記平滑面75Aと平行となる任意の面76Aで平滑処理して、中空部15を有する逆円錐台形状のガラス材11Aが得られる。ここでは、平滑処理として切削及び研磨処理がそれぞれ実施される。そして、ガラス材11Aの内周面16(凹部71A)に対してAg合金をスパッタリング処理して反射膜20を形成し、ホモジナイザー10Aが完成する。   As shown in FIG. 11, the glass forming material 70 </ b> A formed in this way has an inverted frustoconical outer shape and has an inverted pyramid-shaped recess 71 </ b> A formed therein. Next, the cutting margin 72A of the glass forming material 70A is smoothed so as to form an opening with a surface (smooth surface) 75A along the lower surface of the inverted truncated pyramid-shaped recess 71A, and the upper portion is parallel to the smooth surface 75A. By performing smooth processing on the arbitrary surface 76A, an inverted truncated cone-shaped glass material 11A having the hollow portion 15 is obtained. Here, cutting and polishing are respectively performed as the smoothing process. Then, the Ag alloy is sputtered on the inner peripheral surface 16 (concave portion 71A) of the glass material 11A to form the reflective film 20, and the homogenizer 10A is completed.

第二実施例の製造方法にあっては、軟化されたガラスに対して効果的に加圧力を伝達することができ、内周面16をより精度よく形成することができる。また、ガラス材を単体で形成するため、多数のガラス材を形成する場合に必要な側面加工を省略することができて、生産効率にも優れる。なお、この成形装置60Aにおいては、中空部15を形成するために上型65Aに突部66Aを形成したことにより、前記成形装置60と同様に突部66Aの研削や研磨加工が容易となって、型の表面精度を容易に向上させることができる。また、ガラスとの濡れ性改善等を目的に成膜制御も容易となる。   In the manufacturing method of the second embodiment, the applied pressure can be effectively transmitted to the softened glass, and the inner peripheral surface 16 can be formed more accurately. In addition, since the glass material is formed as a single body, the side processing necessary for forming a large number of glass materials can be omitted, and the production efficiency is also excellent. In the molding apparatus 60A, since the protrusion 66A is formed on the upper die 65A in order to form the hollow portion 15, the projection 66A can be easily ground and polished similarly to the molding apparatus 60. The surface accuracy of the mold can be easily improved. In addition, film formation can be easily controlled for the purpose of improving wettability with glass.

このホモジナイザー10Aにあっても、前記ホモジナイザー10と同様に太陽光Lがホモジナイザー10A内を通過せずに発電素子52に照射されるものであるから、従来のホモジナイザーに比して光学効率に優れ、ガラス溶融での省エネ効果や製造工程の簡素化等も期待できる。   Even in this homogenizer 10A, the sunlight L is irradiated to the power generation element 52 without passing through the homogenizer 10A as in the case of the homogenizer 10, so that the optical efficiency is excellent compared to the conventional homogenizer, Energy saving effect by melting glass and simplification of manufacturing process can be expected.

また、図8に示す第二実施例のホモジナイザー10Aを用いた集光式太陽光発電装置50Aでは、中空部15の内周面16最下部と機台58に埋設された発電素子52の上面52Aとが同一平面となるように前記ホモジナイザー10Aが配置されている。この発電装置50A前記発電装置50と同様に発電効率の低下を大幅に抑制することができ、実用的で効果的に太陽光発電を実施することができる。   In the concentrating solar power generation device 50A using the homogenizer 10A of the second embodiment shown in FIG. 8, the upper surface 52A of the power generation element 52 embedded in the lowermost inner peripheral surface 16 of the hollow portion 15 and the machine base 58. The homogenizer 10 </ b> A is arranged so that and are on the same plane. As with the power generation device 50A, the power generation efficiency can be significantly reduced, and solar power generation can be implemented practically and effectively.

図12に示す第三実施例に係る集光式太陽光発電用2次光学系ガラス部材ホモジナイザー10Bは、上下面が水平な角柱形状のガラス材11Bからなり、内周面16が逆角錐台形状に形成された中空部15を有するとともに、中空部15の内周面16に太陽光を反射するための反射膜20を形成したものである。このホモジナイザー10Bでは、図示のように、逆角錐台形状の内周面16の各頂点がガラス材11Bの各側面方向となるように形成されている。この図において、符号16a,16b,16c,16dは、内周面16を構成する各面部である。   The secondary optical glass member homogenizer 10B for concentrating photovoltaic power generation according to the third embodiment shown in FIG. 12 is composed of a glass material 11B having a prismatic shape with horizontal upper and lower surfaces, and an inner peripheral surface 16 having an inverted truncated pyramid shape. The reflection film 20 for reflecting sunlight is formed on the inner peripheral surface 16 of the hollow portion 15. In the homogenizer 10B, as shown in the drawing, each vertex of the inner peripheral surface 16 having the inverted truncated pyramid shape is formed so as to be directed to each side surface of the glass material 11B. In this figure, reference numerals 16 a, 16 b, 16 c, and 16 d denote surface portions constituting the inner peripheral surface 16.

ここで、図13〜図16を用いて、ホモジナイザー10Bの製造方法の一例を説明する。図13〜図15に示す成形装置60Bは、軟化されたガラスが供給される凹部62B内に内周面16の半内周面16a,16b(16c,16d)を形成するための突部63Bを有する下型61Bと、下型61Bに対して所定の加圧力で加圧を行う上型65Bとを備えたプレス成形機である。   Here, an example of a method for manufacturing the homogenizer 10B will be described with reference to FIGS. The forming apparatus 60B shown in FIGS. 13 to 15 includes a protrusion 63B for forming the semi-inner peripheral surfaces 16a and 16b (16c and 16d) of the inner peripheral surface 16 in the recess 62B to which the softened glass is supplied. The press molding machine includes a lower die 61B having an upper die 65B that pressurizes the lower die 61B with a predetermined pressure.

この製造方法では、図14に示すように、下型61Bの凹部62B内に1200〜1300℃に溶融されたガラス原料を所定量供給し、続いて、図15に示すように、下型61Bに対して上型65Bを下降させて所定の加圧力でプレス成形を行い、半形状のガラス成形材80が成形される。   In this manufacturing method, as shown in FIG. 14, a predetermined amount of glass raw material melted at 1200 to 1300 ° C. is supplied into the recess 62B of the lower mold 61B, and then, as shown in FIG. On the other hand, the upper die 65B is lowered and press molding is performed with a predetermined pressure, whereby a half-shaped glass molding material 80 is molded.

半形状のガラス成形材80は、図16に示すように、角柱状のガラス材11Bの一側半分を構成するブロック体81と、一側面82に形成された内周面16の半内周面16a,16bを構成する凹面部83とからなる。この半形状のガラス成形材80では、下部を前記凹部62Bの端面64Bに沿った面(平滑面)で平滑処理するとともに上部を前記平滑面に平行となる任意の面で平滑処理した後、半内周面16a,16b(凹面部83)に対してAg合金をスパッタリング処理して半周分の反射膜20Bを形成して半形状のガラス材80Aが得られる。ここでは、平滑処理として切削及び研磨処理がそれぞれ実施される。   As shown in FIG. 16, the half-shaped glass molding material 80 includes a block body 81 constituting one half of the prismatic glass material 11 </ b> B and a semi-inner circumferential surface of the inner circumferential surface 16 formed on the one side surface 82. It consists of a concave portion 83 constituting 16a and 16b. In this half-shaped glass molding material 80, the lower part is smoothed with a surface (smooth surface) along the end surface 64B of the recess 62B, and the upper part is smoothed with an arbitrary surface parallel to the smooth surface. A half-shaped glass material 80A is obtained by sputtering the Ag alloy on the inner peripheral surfaces 16a and 16b (concave surface portion 83) to form a semicircular reflection film 20B. Here, cutting and polishing are respectively performed as the smoothing process.

次いで、同様の手順で他の半形状のガラス材80Bを得た後、半形状のガラス材80Aの半内周面16a,16bと他の半形状のガラス材80Bの半内周面16c,16dとで内周面16の全周が形成されるように、各一側面82,82を公知の接合方法を用いて張り合わせて角柱形状のガラス材11Bを形成し、ホモジナイザー10Bが完成する。   Then, after obtaining another half-shaped glass material 80B in the same procedure, the semi-inner peripheral surfaces 16a and 16b of the half-shaped glass material 80A and the semi-inner peripheral surfaces 16c and 16d of the other half-shaped glass material 80B. In order to form the entire circumference of the inner peripheral surface 16, the side surfaces 82 and 82 are bonded together using a known joining method to form the prismatic glass material 11 </ b> B, thereby completing the homogenizer 10 </ b> B.

第三実施例の製造方法にあっては、半形状のガラス成形材80に形成された半内周面16a,16b(16c,16d)に対して反射膜20を形成するため、中空部15を構成した状態の内周面16に対して反射膜20を形成する場合に比して成膜処理を容易に行うことができる。また、この成形装置60Bにおいても、前記成形装置60と同様に突部63Bの研削や研磨加工が容易となって、型の表面精度を容易に向上させることができ、ガラスとの濡れ性改善等を目的に成膜制御も容易となる。   In the manufacturing method of the third embodiment, in order to form the reflective film 20 on the semi-inner peripheral surfaces 16a and 16b (16c and 16d) formed in the semi-shaped glass molding material 80, the hollow portion 15 is formed. Compared with the case where the reflective film 20 is formed on the inner peripheral surface 16 in the configured state, the film forming process can be easily performed. Also in this molding apparatus 60B, as in the molding apparatus 60, the protrusion 63B can be easily ground and polished, the surface accuracy of the mold can be easily improved, and wettability with glass is improved. Therefore, film formation can be easily controlled.

このホモジナイザー10Bにあっても、前記ホモジナイザー10,10Aと同様に太陽光Lがホモジナイザー10B内を通過せずに発電素子52に照射されるものであるから、従来のホモジナイザーに比して光学効率に優れ、ガラス溶融での省エネ効果や製造工程の簡素化等も期待できる。   Even in the homogenizer 10B, the sunlight L is irradiated to the power generating element 52 without passing through the homogenizer 10B, similarly to the homogenizer 10, 10A. Excellent, energy saving effect by melting glass and simplification of manufacturing process can be expected.

なお、本発明の集光式太陽光発電用2次光学系ガラス部材ホモジナイザー製造方法、前述の実施例のみに限定されるものではなく、発明の趣旨を逸脱しない範囲において構成の一部を適宜に変更して実施することができる。例えば、実施例のホモジナイザーでは、中空部を逆角錐台状に形成したが、これに限らず、逆円錐台形状とすることもできる。 In addition, the manufacturing method of the secondary optical system glass member homogenizer for concentrating solar power generation according to the present invention is not limited to the above-described embodiments, and a part of the configuration is within the scope of the invention. It can be implemented with appropriate changes. For example, in the homogenizer of the embodiment, the hollow portion is formed in an inverted truncated pyramid shape, but the present invention is not limited to this, and an inverted truncated cone shape may be used.

さらに、第三実施例のホモジナイザーの製造方法において、実施例では、半形状のガラス成形材の上部及び下部を平滑処理した後、他の半径状のガラス成形材と張り合わせるように構成したが、上記平滑処理は、半径状のガラス成形材を他の半径状のガラス成形材と張り合わせた後に実施する等、適宜の手順で行うことができる。   Furthermore, in the method of manufacturing the homogenizer of the third embodiment, in the embodiment, the upper and lower portions of the semi-shaped glass molding material are smoothed, and then configured to be bonded to another radial glass molding material. The smoothing treatment can be performed by an appropriate procedure, for example, after the radial glass molding material is bonded to another radial glass molding material.

10 ホモジナイザー
11 ガラス材
12 脚部
13 収納空間
15 中空部
16 内周面
20 反射面
50 集光式太陽光発電装置
51 1次集光部材
52 発電素子
L 太陽光
DESCRIPTION OF SYMBOLS 10 Homogenizer 11 Glass material 12 Leg part 13 Storage space 15 Hollow part 16 Inner peripheral surface 20 Reflecting surface 50 Condensing solar power generation device 51 Primary condensing member 52 Power generation element L Sunlight

Claims (3)

上下面が水平なブロック状のガラス材からなり、内周面が逆角錐台または逆円錐台形状に形成された中空部を有するとともに、前記中空部の内周面に1次集光部材で集光した太陽光を反射するための反射膜を形成して発電素子に対して均一に照射する集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法において、
凹部内に複数の角錐台または円錐台形状の突部が所定間隔で形成された下型に軟化したガラスを供給し、前記下型に対して上型を降下させて所定の加圧力でプレス成形してガラス成形材を成形し、該ガラス成形材の下部を前記凹部底面に沿った面で開口部を形成するように平滑処理するとともに上部を前記平滑処理された面に平行となる任意の面で平滑処理し、さらに前記ガラス成形材の各凹部間の任意の位置で切断及び研磨して複数の前記ブロック状のガラス材を得た後、該ガラス材の内周面に前記反射膜を形成することを特徴とする集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法。
The upper and lower surfaces are made of a block-like glass material having a horizontal shape, and the inner peripheral surface has a hollow portion formed in the shape of an inverted truncated pyramid or an inverted frustoconical shape. In the manufacturing method of the secondary optical system glass member homogenizer for concentrating solar power generation that forms a reflective film for reflecting the sunlight that has been irradiated and uniformly irradiates the power generation element ,
Supply softened glass to a lower mold in which a plurality of truncated pyramids or truncated cone-shaped projections are formed at predetermined intervals in the recess, and lower mold the upper mold with respect to the lower mold and press molding with a predetermined pressure Then, the glass molding material is molded, and the lower surface of the glass molding material is smoothed so as to form an opening at the surface along the bottom surface of the recess, and the upper surface is parallel to the smoothed surface. And then cutting and polishing at any position between the concave portions of the glass molding material to obtain a plurality of the block-shaped glass materials, and then forming the reflective film on the inner peripheral surface of the glass material A method for producing a secondary optical glass member homogenizer for concentrating solar power generation, characterized in that:
上下面が水平なブロック状のガラス材からなり、内周面が逆角錐台または逆円錐台形状に形成された中空部を有するとともに、前記中空部の内周面に1次集光部材で集光した太陽光を反射するための反射膜を形成して発電素子に対して均一に照射する集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法において、
凹部を有する下型に軟化したガラスを供給し、逆角錐台または逆円錐台形状の突部が形成された上型を前記下型に対して降下させて所定の加圧力でプレス成形してガラス成形材を成形し、該ガラス成形材の下部を前記凹部底面に沿った面で開口部を形成するように平滑処理するとともに上部を前記平滑処理された面に平行となる任意の面で平滑処理して前記ブロック状のガラス材を得た後、該ガラス材の内周面に前記反射膜を形成することを特徴とする集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法。
The upper and lower surfaces are made of a block-like glass material having a horizontal shape, and the inner peripheral surface has a hollow portion formed in the shape of an inverted truncated pyramid or an inverted frustoconical shape. In the manufacturing method of the secondary optical system glass member homogenizer for concentrating solar power generation that forms a reflective film for reflecting the sunlight that has been irradiated and uniformly irradiates the power generation element ,
The softened glass is supplied to the lower mold having the recesses, and the upper mold on which the inverted pyramid or the inverted frustoconical protrusion is formed is lowered with respect to the lower mold and press-molded with a predetermined pressure. A molding material is molded, and the lower portion of the glass molding material is smoothed so as to form an opening with a surface along the bottom surface of the recess, and the upper portion is smoothed with an arbitrary surface parallel to the smoothed surface. And after obtaining the said block-shaped glass material, the said reflecting film is formed in the internal peripheral surface of this glass material, The manufacturing method of the secondary optical system glass member homogenizer for concentrating solar power generation characterized by the above-mentioned.
上下面が水平なブロック状のガラス材からなり、内周面が逆角錐台または逆円錐台形状に形成された中空部を有するとともに、前記中空部の内周面に1次集光部材で集光した太陽光を反射するための反射膜を形成して発電素子に対して均一に照射する集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法において、
凹部内に前記内周面の半内周面を形成するための突部を有する下型に軟化したガラスを供給し、前記下型に対して上型を降下させて所定の加圧力でプレス成形して半形状のガラス成形材を成形し、前記半形状のガラス成形材の前記半内周面に前記反射膜を形成して半形状のガラス材を得た後、同様にして得られた他の半形状のガラス材と前記半形状のガラス材との各半内周面とで逆角錐台または逆円錐台形状の前記内周面が形成されるように前記各半形状のガラス材を張り合わせたことを特徴とする集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法。
The upper and lower surfaces are made of a block-like glass material having a horizontal shape, and the inner peripheral surface has a hollow portion formed in the shape of an inverted truncated pyramid or an inverted frustoconical shape. In the manufacturing method of the secondary optical system glass member homogenizer for concentrating solar power generation that forms a reflective film for reflecting the sunlight that has been irradiated and uniformly irradiates the power generation element ,
Supply softened glass to a lower mold having a projection for forming a semi-inner peripheral surface of the inner peripheral surface in a recess, and lower the upper mold with respect to the lower mold, and press molding with a predetermined pressure Then, after forming a semi-shaped glass forming material, forming the reflective film on the semi-inner peripheral surface of the semi-shaped glass forming material to obtain a semi-shaped glass material, The half-shaped glass material and the half-shaped glass material are bonded to each other so that the inner peripheral surface of the inverted truncated pyramid or the inverted truncated cone shape is formed by the half-shaped glass material. The manufacturing method of the secondary optical system glass member homogenizer for concentrating solar power generation characterized by the above-mentioned.
JP2009129099A 2008-05-30 2009-05-28 Manufacturing method of secondary optical glass member homogenizer for concentrating solar power generation Expired - Fee Related JP5081866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009129099A JP5081866B2 (en) 2008-05-30 2009-05-28 Manufacturing method of secondary optical glass member homogenizer for concentrating solar power generation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008142728 2008-05-30
JP2008142728 2008-05-30
JP2009129099A JP5081866B2 (en) 2008-05-30 2009-05-28 Manufacturing method of secondary optical glass member homogenizer for concentrating solar power generation

Publications (2)

Publication Number Publication Date
JP2010010672A JP2010010672A (en) 2010-01-14
JP5081866B2 true JP5081866B2 (en) 2012-11-28

Family

ID=41590744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009129099A Expired - Fee Related JP5081866B2 (en) 2008-05-30 2009-05-28 Manufacturing method of secondary optical glass member homogenizer for concentrating solar power generation

Country Status (1)

Country Link
JP (1) JP5081866B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910851B2 (en) * 2011-07-26 2016-04-27 日本電気硝子株式会社 Glass used for optical element for concentrating solar power generation apparatus, optical element for concentrating solar power generation apparatus and concentrating solar power generation apparatus using the same
JP7128403B1 (en) * 2021-04-15 2022-08-31 株式会社インターアクション Pupil module and inspection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280595A (en) * 2001-03-22 2002-09-27 Canon Inc Solar light condenser
JP2003069069A (en) * 2001-08-24 2003-03-07 Daido Steel Co Ltd Light-condensed photovoltaic power generation device
JP2004170484A (en) * 2002-11-18 2004-06-17 Yuji Matsuura Beam homogenizer

Also Published As

Publication number Publication date
JP2010010672A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
EP2762930B1 (en) Light-condensing film, solar cell module, and transfer mold
JP3199750U (en) Solar reflective concentrator using thin film
US9139461B2 (en) Solar concentrator
CN203747745U (en) High light-concentrated solar lighting module group
JP2007201109A (en) Concentrating sunlight power generation unit and its pillar-shaped optical glass member
TW201110386A (en) Non-imaging light concentrator
CN1983642A (en) Superhigh multiplying-power focusing solar battery
US20200091863A1 (en) Solar pv generator with dish reflector and fly&#39;s eye receiver
WO2022183691A1 (en) High-acceleration aging test device and method for high polymer material
JP5081866B2 (en) Manufacturing method of secondary optical glass member homogenizer for concentrating solar power generation
CN201409099Y (en) Solar energy condensing power generation system with cooling device
CN113725345A (en) Double-sided micro-lens array preparation method and ultraviolet LED packaging device
TW201323800A (en) Optical element for light-concentrating solar power generation device, method for producing same, and light-concentrating solar power generation device
CN102903779A (en) Optic coupler for non-tracking type solar concentrator cells and preparation method thereof
CN101169287A (en) Solar energy condenser lens production method and solar condensing device
Mohedano et al. CPV optics
CN102866439A (en) High-molecular-polymer-based gradient refractive index lens for concentrating photovoltaic (CPV) technology and preparation method thereof
WO2012057073A1 (en) Solar thermal collector member and manufacturing method thereof
KR101102461B1 (en) Concentrated lens for High Concentrative Photovoltaic solar power system and Manufacturing method thereof
CN103713374B (en) A kind of method for manufacturing different heliostat mirror face curvatures
CN102034886B (en) Secondary spotlighting solar photovoltaic device
CN103359919A (en) Glass hot-bending die as well as manufacturing method and application thereof
CN202183404U (en) Spotlight photovoltaic glass used for solar power photovoltaic cell
JP5838608B2 (en) Manufacturing method of concentrating solar power generation device
CN105811870B (en) Spiral Fresnel concentrating photovoltaic assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees