JP5080727B2 - 燃料電池の排出ガス処理装置 - Google Patents

燃料電池の排出ガス処理装置 Download PDF

Info

Publication number
JP5080727B2
JP5080727B2 JP2005185239A JP2005185239A JP5080727B2 JP 5080727 B2 JP5080727 B2 JP 5080727B2 JP 2005185239 A JP2005185239 A JP 2005185239A JP 2005185239 A JP2005185239 A JP 2005185239A JP 5080727 B2 JP5080727 B2 JP 5080727B2
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
diluter
pipe
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005185239A
Other languages
English (en)
Other versions
JP2007005176A (ja
Inventor
周治郎 野崎
英雄 沼田
正博 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005185239A priority Critical patent/JP5080727B2/ja
Publication of JP2007005176A publication Critical patent/JP2007005176A/ja
Application granted granted Critical
Publication of JP5080727B2 publication Critical patent/JP5080727B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池から排出された水素を希釈して外部に排出する燃料電池の排出ガス処理装置に関する。
近年、水素がアノードに、酸素がカソードにそれぞれ供給されることで、電気化学反応が生じて発電する燃料電池の開発が盛んである。このような燃料電池では、その出力を高めるために、アノードに消費される量以上の水素が供給される場合が多く、アノードから反応で使用されなかった未反応の水素が排出される。そこで、水素の利用効率を高めるべく、この排出された未反応の水素を水素供給側に戻し、水素を循環させる水素循環系が採用される技術が提案されている。
また、燃料電池が発電すると、カソードで水が生成し、この生成水の一部が固体高分子電解質膜(以下、電解質膜)をアノード側に透過する。その他、電解質膜の湿潤状態を確保して、電解質膜のプロトン(水素イオン)の拡散性を高めるため、例えば、燃料電池のカソード側またはアノード側に供給されるガス(水素、酸素を含む空気など)を加湿する方法が採用されている。
したがって、水素循環系を採用する燃料電池システムの場合、燃料電池のアノード側では、発電に伴って、循環する水素に同伴する水分量が高くなり、燃料電池の発電効率が低下する場合がある。そこで、このように循環する水素に同伴する水分量が高くなった場合、これを一時的に排出する(これを水素パージという)とともに、水素パージされた水素を希釈器(混合部)で希釈して、外部に排出する技術が提案されている(例えば、特許文献1参照)。
この燃料電池システムでは、水素パージ時に、高圧で多量の水素が直接水素エア混合容器中に吹き込むようになっており、エア導入用配管からアノードオフガスが、カソードオフガスの上流側または下流側に流れ出して、高濃度の水素がカソードオフガスに混入していた。従来は、その高濃度の水素が外部に排出されるのを防止するために、カソードオフガス経路内に圧損を設けたり、あるいは逆止弁を設けたりして、水素の逆流を抑制している。
特開2002−289237号公報(段落0013〜0020、図2、図8)
しかしながら、特許文献1に記載の技術では、水素パージの際に、水素を含んだアノードオフガスが希釈器に一気に流れ込んで外部に排出されるという問題点があった。
また、アノードオフガスは、水素パージ時に一気に排出されるのに伴って水素濃度が一時的に上昇した後、混合室内でカソードオフガスとゆっくりと混合しながら排出されるため、混合室内の水素が全て排出されるまでに時間がかかるという問題点があった。
そこで、本発明は、燃料電池から排出される水素が希釈器から一気に水素排出流路に排出されるのを抑制した燃料電池の排出ガス処理装置を提供することを課題とする。
前記課題を解決するための手段として、請求項1に記載の燃料電池の排出ガス処理装置の発明は、燃料電池のアノードから排出された水素が流れ、分岐点で分岐した水素希釈ラインと分岐ラインとを有する水素排出流路と、前記分岐点の上流側の前記水素排出流路に設けられ、水素を排出する場合に開くパージ弁と、前記水素希釈ラインに設けられ、水素と希釈用ガスとを混合することで、前記水素を希釈する希釈器と、前記分岐ラインに設けられ、水素を蓄える水素リザーバと、前記水素リザーバの下流側の前記分岐ラインに設けられ、その上流側の圧力とその下流側の圧力との差圧が第1所定圧力以上の場合に開くばね力を有する第1リード弁と、前記水素リザーバの上流側の前記分岐ラインに設けられ、その上流側の圧力とその下流側の圧力との差圧が第2所定圧力以上の場合に開くばね力を有する第2リード弁と、を備え、前記分岐ラインの前記分岐点における向きは、前記分岐点に向かう前記水素排出流路に直線的であり、前記分岐点と前記希釈器との間における前記水素希釈ラインの最小断面積は、前記分岐点と前記水素リザーバとの間における前記分岐ラインの最小断面積よりも小さく、前記分岐ラインの下流端は、前記希釈器又は前記希釈器の下流側の前記水素希釈ラインに接続され、前記第1所定力は、前記第2所定圧力よりも高いことを特徴とする。
請求項1に記載の燃料電池の排出ガス処理装置の発明によれば、燃料電池のアノードから排出された水素は、希釈器の上流側の水素排出流路に分岐ラインを備え、この分岐ラインに水素リザーバが連結されていることにより、水素排出流路の途中で水素リザーバと希釈器とに分かれて流れるようになる。燃料電池から排出されて分岐ラインへ流れる水素は、分岐ラインの分岐点における向きが、分岐点に向かう水素排出流路に直線的であることにより、流動抵抗が小さくなるため、水素排出流路の主流方向にスムーズに流れるようになる。さらに、燃料電池から排出される水素は、分岐点と希釈器との間の水素排出流路の最小断面積が、分岐点と水素リザーバとの間の水素リザーバ入口流路の最小断面積より小さいので、最小断面積が大きいリザーバ側に多く流れるようになる。その結果、燃料電池から排出される水素は、水素リザーバに一時的に貯留されて、ダイレクトに外部に排出される水素の流量が減少するとともに、希釈器に流れる流量が規制されて減少されるようになる。このため、パージ時に、水素が希釈器に流れ込んで、一気にその下流の水素排出流路に排出されることを抑制することができるようになる。
このため、水素パージ時には、その水素の一部が一時的に水素リザーバに蓄えられることにより、多量の水素が、希釈器に一気に流れ込んで水素排出流路から外部に排出されないようになる。希釈器に流れる水素は、水素排出流路に分岐ラインと水素リザーバとが備えられたことにより、流量が減少されてゆっくりと流れるようになるため、希釈処理効率が向上される。その結果、高濃度の水素が、希釈器の下流側から大気中などの外部に排出されないようになるとともに、希釈器内に送り込まれた水素が、カソード上流側に逆流することが解消される。
また、請求項1に記載の発明によれば、燃料電池から排出された水素は、希釈器または希釈器の下流側配管に接続された水素リザーバ出口流路に第1リード弁を設けたことにより、水素リザーバから水素リザーバ出口流路の出口方向に向けてのみ流れるように抑制される。その水素リザーバ出口流路は、希釈器またはこの希釈器の下流に接続されて、上流側の圧力とその下流側の圧力との差圧が第1所定圧力以上の場合に開くばね力を有する第1リード弁を設けたことにより、新しいガスが水素リザーバに導入されて、水素リザーバ内の圧力が第1所定圧力以上になったときにのみ希釈流路に水素が排出されるようになる。このため、水素パージ時に、水素が一気に希釈流路に流れ込んで、水素濃度の高い水素が水素排出流路から外部に排出されないようにすることができる。
また、請求項1に記載の発明によれば、燃料電池から排出された水素は、水素リザーバの上流側の前記分岐ラインで、その上流側の圧力とその下流側の圧力との差圧が第2所定圧力以上の場合に開くばね力を有する第2リード弁を設けるとともに、第1所定圧力を、第2所定圧力よりも高くした。その結果、水素リザーバに流れ込んだ水素を、第2所定圧力未満の高圧な状態に貯留することができるので、水素リザーバから流れ出る水素の流量の調整が可能となるため、水素リザーバから外部にダイレクトに排出される水素の流量を減少させることができるようになる。
本発明の燃料電池の排出ガス処理装置によれば、燃料電池から排出される水素が希釈器から一気に水素排出流路に排出されるのを抑制するとともに、カソード上流側に逆流することを防止することができる。
以下、本発明の一実施形態について、図1から図5を参照して説明する。
図1は、本実施形態に係る燃料電池の排出ガス処理装置の構成を示すブロック図である。
≪燃料電池システムの構成≫
まず、図1を参照し、本発明の実施形態に係る燃料電池10の排出ガス処理装置40を備えた燃料電池システムSについて説明する。燃料電池システムSは、例えば、燃料電池10の発電電力によって走行用の電動モータ(走行モータ)を回転させて走行する燃料電池自動車に搭載されている。
燃料電池システムSは、燃料電池10と、燃料電池10のアノード12に水素(燃料ガス、反応ガス)を供給および排出するアノード系20と、燃料電池10のカソード13に空気(酸化剤ガス、反応ガス)を供給および排出するカソード系30と、アノード系20およびカソード系30の下流位置で燃料電池10から排出される水素を燃料電池自動車の外部に排出する排出ガス処理装置40と、イグニッションスイッチ52(以下、IG)等のその他機器と、これらを制御する制御部60と、を主に備えている。
<燃料電池の構成>
燃料電池10(燃料電池スタック)は、主として、一価の陽イオン交換型の電解質膜11の両面を触媒(Ptなど)が担持されたアノード12(燃料極)およびカソード13(空気極)で挟持してなる膜電極接合体(MEA:Membrane Electrode Assembly、膜電極複合体)と、MEAを挟持するセパレータとからなる単セルが、複数積層されることで構成された固体高分子電解質型燃料電池(Polymer Electrolyte Fuel Cell、PEFC)である。そして、アノード12に水素が、カソード13に加湿空気がそれぞれ供給されると、前記MEAにおいて電位差が発生し、燃料電池10の出力端子に接続した走行モータなど外部負荷からの電力要求に応じて、燃料電池10が発電するようになっている。また、各単セルには、制御部60と電気的に接続されて、その出力電圧(以下、セル電圧)を検知するセル電圧検知モニタ(図示しない)が接続されている。
<アノード系−水素供給側の配管接続関係>
アノード系20の水素供給側は、下流側(燃料電池10側)に向かって、水素が貯蔵された水素タンク21と、この水素タンク21からの水素の流出を調整する遮断弁22と、水素を含むアノードオフガス(水素オフガス)を循環させるためのエゼクタ23とを主に備えている。水素タンク21は配管21aを介して遮断弁22に接続されている。遮断弁22は、後記する制御部60と電気的に接続されており、制御部60は、遮断弁22を適宜に開閉するようになっている。また、遮断弁22は、配管22aを介してエゼクタ23に接続されており、エゼクタ23は、配管23aを介して燃料電池10のアノード12に接続されている。さらに、配管22aには、減圧弁(図示しない)が設けられている。したがって、制御部60が遮断弁22を開くと、水素タンク21から、減圧弁によって水素が所定に減圧された後、燃料電池10のアノード12に供給されるようになっている。
<アノード系−水素排出側の配管接続関係>
アノード系20の水素排出側には、水素パージ弁24と、希釈器41と、第2リード弁42と、水素リザーバ43と、第1リード弁44とが備えられている。このアノード系20の水素排出側には、燃料電池10から排出された水素を含むアノードオフガスをエゼクタ23に循環する水素循環流路(配管24b)と、燃料電池10のアノード12から排出された水素を流して外部に排出するための水素排出流路Pとを備えている。
この水素排出流路Pは、後記する水素パージ弁24の下流の分岐点cにおいて、アノードオフガスが水素パージ弁24と希釈器41とを介して排出される流路でなる水素希釈ライン(配管24d)と、アノードオフガスが前記水素パージ弁24を通過した後に分岐して水素リザーバ43を介して排出される流路でなる分岐ライン(配管24e,42a,43a,44a)と、に2つに分かれるように接続されている。なお、分岐ラインは、希釈器41の上流側の水素排出流路Pに接続されて、備えられている。
水素パージ弁24の上流側は、配管24aを介して、燃料電池10のアノード12の下流側に接続されており、燃料電池10のアノード12から排出された未反応の水素を含むアノードオフガスが、配管24aを水素パージ弁24に向かって流れるようになっている。また、配管24aの下流側の途中位置には、エゼクタ23に接続するための配管24bが設けられて、前記水素循環流路を形成している。さらに、水素パージ弁24は、制御部60と電気的に接続されており、制御部60は、水素パージ弁24を適宜に開閉するようになっている。その水素パージ弁24には、後記する水素排出流路Pの流路方向の途中の分岐点cで、配管24dと配管24eとに分岐する配管24cが接続されている。
配管24dは、上流側端部が分岐点cに接続され、下流側端部が希釈器41に接続されて、前記水素希釈ラインを形成している。配管24eは、上流側端部が分岐点cに接続され、下流側端部が第2リード弁42に接続されて、前記配管24dから分岐して設けられ、配管42a,43a,44aとで前記分岐ラインを形成している。その配管24eの水素リザーバ入口流路(配管24e,42a)の分岐点cにおける向きは、例えば、T字型継手によって、分岐点cにおける水素排出流路Pの流路方向(アノードオフガスの主流の流れ方向)に沿って略直線的に配設されて、水素リザーバ43の水素リザーバ入口流路上の第2リード弁42に接続されている。
第2リード弁42は、配管42aを介して水素リザーバ43に接続されている。
水素リザーバ43は、配管43aを介して第1リード弁44に接続されている。第1リード弁44は、配管44aによって、希釈器41の排気用の配管41aに接続して大気中などの外部に排出されるようになっている。
さらに説明すると、燃料電池10を構成するいずれかの単セルのセル電圧が低いことにより、アノードオフガス中の水分量(つまり、アノード12内の水分量)が高いと推定される場合(水素パージ時)、制御部60は、水素パージ弁24を開き、この水分量の高いアノードオフガスが配管24cを介して排出ガス処理装置40の希釈器41および水素リザーバ43に送られるようになっている。なお、水素パージ時に、排出ガス処理装置40に送られるアノードオフガスには、水素、水分の他、窒素なども含まれている。
一方、各単セルのセル電圧が良好な値であることにより、アノードオフガス中の水分量が低いと推定される場合(水素循環時)、制御部60は、水素パージ弁24を閉じ、未反応の水素を含むアノードオフガスがエゼクタ23に戻され、水素が循環して効率的よく利用されるようになっている。
ただし、水素パージの方式は、このようにセル電圧に基づく方式に限定されず、その他に例えば、所定時間で間欠的に水素パージ弁24を開く方式であってもよい。
<カソード系−空気供給側の配管接続関係>
カソード系30の空気供給側は、コンプレッサ31(ポンプ、スーパーチャージャ)と、加湿器32と、開閉弁33とを主に備えている。コンプレッサ31は、外気を取り込んで圧縮し、酸化剤ガスとして、カソード13に向けて送る機器であり、配管31aを介して加湿器32に接続している。また、コンプレッサ31は、後記する制御部60と電気的に接続されている。さらに、コンプレッサ31は、燃料電池10と、燃料電池10とは別に搭載された蓄電器(キャパシタ、二次電池など)とに電気的の接続されており、燃料電池10が発電していない場合や、燃料電池10の発電量が少ない場合は、蓄電器から電力が供給されて作動するようになっている。
加湿器32は、例えば、中空糸膜32aを内蔵しており、この中空糸膜32aによって、コンプレッサ31からの空気と、カソード13から排出された水分量の高いカソードオフガスとの間で水分交換し、コンプレッサ31からの空気を加湿空気とする機器である。そして、加湿器32は、配管32bを介してカソード13に接続されており、加湿空気がカソード13に送られるようになっている。
また、配管31aの途中位置には、配管31bが分岐して設けられ、その配管31bから開閉弁33および配管33aを介して希釈器41に接続されている。開閉弁33は、制御部60と電気的に接続されており、その制御部60は、例えば、水素パージ弁24の開閉/開に連動して、開閉弁33を開/閉するようになっている。すなわち、コンプレッサ31の作動中に、制御部60が開閉弁33を開くと、カソード13に供給される酸化剤ガスの一部であって、加湿器32で加湿される前の乾燥した空気(以下、ドライエア)が、希釈器41に供給されるようになっている。さらに説明すると、アノード系20の水素パージ弁24が閉じられる水素循環時に、開閉弁33は開かれる。一方、水素パージ弁24が開かれる水素パージ時に、開閉弁33は閉じられる。
ただし、開閉弁33を設けず、コンプレッサ31が作動中は、ドライエアが希釈器41に連続的に供給される構成としてもよい。その他、開閉弁33の代わりに、ドライエアの流量を抑える絞り(オリフィス)や、流量を調整可能な流量調整弁を設けて、ドライエアの流量を調整して希釈器41に連続的に供給する構成としてもよい。
<カソード系−空気排出側の配管接続関係>
燃料電池10のカソード13は、配管32cを介して加湿器32に接続しており、カソード13から排出された水分量の高いカソードオフガスが加湿器32に送られるようになっている。そして、加湿器32は、配管32dを介して希釈器41に接続されている。これにより、加湿器32における水分交換により、その水分量が若干低下したカソードオフガスが、配管32dを介して希釈器41に供給されるようになっている。
また、配管32cには、背圧弁(図示しない)が設けられており、その背圧を調整することで、燃料電池10におけるアノード12側の水素の圧力と、カソード13側の空気の圧力とをバランスさせるようになっている。
<燃料電池の排出ガス処理装置の構成>
前記排出ガス処理装置40は、図1に示すように、燃料電池10のアノードから排出された水素が流れる水素排出流路Pと、分岐ラインに備えられて燃料電池10から排出された水素の一部を蓄える水素リザーバ43と、水素排出流路Pに接続され、前記排出された水素と希釈ガスとを混合することで、水素を希釈する希釈器41と、を少なくとも備えている。その他に、排出ガス処理装置40には、水素パージ弁24と、水素リザーバ43の入口および出口に、それぞれ設けられた第2リード弁42および第1リード弁44と、それらをそれぞれ連結する配管24a,24c,24d,24e,42a,43a,44a,41aとが備えられている。
<水素排出流路の構成>
前記水素排出流路Pは、燃料電池10から排出された水素を、燃料電池自動車の外部に排出するまでの流路を形成するものであり、途中の分岐点cで水素希釈ラインと、分岐ラインとに分かれた後に接続点dで合流して外部に排出するように接続されている。この水素排出流路Pは、前記配管24a,24c,24d,24e,41a,42a,43a,44aと、希釈器41と、第2リード弁42と、水素リザーバ43と、第1リード弁44とから構成されている。なお、前記配管24a,24c,24d,24e,41a,42a,43a,44aは、円筒形、角筒形など特に形状は限定されないが、以下、円筒形状の場合を例に挙げて説明する。
図2は、本発明の実施形態に係る燃料電池の排出ガス処理装置における水素リザーバの設置状態を示す概略図である。
図2に示すように、水素排出流路Pにおける水素希釈ラインと分岐ラインとの分岐点cには、水素リザーバ43とを接続し、水素の一部を水素リザーバ43に導く配管(水素リザーバ入口流路)24e,42aが接続されている。その水素排出流路Pの分岐点cにおいて、水素リザーバ43の水素リザーバ入口流路を構成する配管24e,42aが水素排出流路Pの流路方向(アノードオフガスの主流の流れ方向)に沿って設けられている。そして、分岐点cにある配管24c,24e,42aが略直線状に配設されて、流動抵抗を小さくすることによって、アノードオフガスが主流の流路方向にスムーズに流れるように設けられている。そして、希釈器41に連通する配管24dは、例えば、その流路方向に直交するように設けられている。なお、その配管24e,42aは、特許請求の範囲に記載の「水素リザーバ入口流路」に相当する。
配管24c,24eから分岐する分岐点cにおいて、その分岐点cと希釈器41との間の水素排出流路P(配管24d)の最小断面積s1は、分岐点cと水素リザーバ43との間の水素リザーバ入口流路(配管24e,42a)の最小断面積s2より小さく形成されている。すなわち、分岐ラインの配管24e,42aは、最小内径部の内径bが、希釈ラインの配管24dの最小内径部の内径aより大きく形成されて、水素パージ弁24から流れて来たアノードオフガスが、動圧により第2リード弁42側に流れ易いように形成されている。
なお、配管24dの最小断面積s1は、特許請求の範囲に記載の「水素排水流路の最小断面積」に相当し、配管24e,42aの最小断面積s2は、特許請求の範囲に記載の「水素リザーバ入口流路の最小断面積」に相当する。
<第1リード弁および第2リード弁の構成>
図2に示すように、第1および第2リード弁44,42は、アノードオフガスを燃料電池10側(システム側)から燃料電池自動車の外部に排出される側(水素リザーバ側)の方向の一方向に流れるように燃料電池10に通じる水素排出流路P上に設置されている。第1および第2リード弁44,42は、アノードオフガスの流れに対して下流方向の一方向のみの流れを許容する逆流防止弁からなる。
第2リード弁42は、水素リザーバ43の入口の水素リザーバ入口流路(配管24e,42a)に配設され、水素リザーバ43への水素の流れ込みを規制するバルブである。この第2リード弁42は、後記のように、その上流側の圧力とその下流側の圧力との差圧が第2所定圧力以上の場合に開くように構成されている。
第1リード弁44は、水素リザーバ43の出口の水素リザーバ出口流路(配管43a,44a)に配設されて、後記のように、その上流側の圧力とその下流側の圧力との差圧が第1所定圧力以上の場合に開くように構成されている
図3は、本発明の実施形態に係る燃料電池の排出ガス処理装置における第2リード弁の一例を示す概略図である。
前記第2リード弁42は、例えば、図3に示すように、ハウジング42bの内部に、隔壁42cを挟んで燃料電池10側(システム側)の配管24eに連通する第1連通孔42dと、水素リザーバ43側の配管42aに連通する第2連通孔42eが形成され、隔壁42cに、第1連通孔42dを開閉する第2弁体42fが設置されている。
例えば、第2リード弁42は、第1連通孔42d内の圧力P1と、第2連通孔42e内の圧力P2との差圧ΔP(差圧ΔP=P1−P2)が第2弁体42fのばね力(第2所定圧力)より大きくなったときに、第1連通孔42dを閉塞していた第2弁体42fが弾性変形して開口するようになっている。そして、第2リード弁42は、差圧ΔPが前記ばね力より低くなれば、第2弁体42fがばね力によって第1連通孔42dを閉塞して、アノードオフガスが水素リザーバ43側から希釈器41側に逆流することを防止するとともに、水素リザーバ43内に入り込んだアノードオフガスがその水素リザーバ43に貯留されるように入口を閉める機能を果している。
図1に示すように、前記第1リード弁44は、上流側端部が水素リザーバ43の出口に設けられた配管43aに接続され、下流側端部が希釈器41の下流側に設けた排気用の配管41aに連通した配管44aに接続された逆流防止弁からなる。第1リード弁44の第1弁体(図示せず)は、第2リード弁42の第2弁体42f(図3参照)のばね力より大きなばね力を備え、第2弁体42fとはばね定数が相違する弁体からなる。なお、第1リード弁44は、アノードオフガスを第1所定圧力以内の圧力で水素リザーバ43に貯留するためと、水素リザーバ43に貯留されたアノードオフガスを一気に排出せず、第1リード弁44の上流側の圧力が第1所定圧力以上になったときに、第1弁体が開いて少しずつ流れ出るようにするためと、この第1リード弁44から流れ出たアノードオフガスが水素リザーバ43側へ逆流するのを防止するためと、希釈器41の下流側の配管41aからカソードオフガスが水素リザーバ43に流れ込むのを防止するために設置されている。
<水素リザーバの構成>
水素リザーバ43は、水素を含んだ多量のアノードオフガスが排気用の配管41aから一気に外部へ流れ出ないように、アノードオフガスを一時的に貯留して少しずつ排出するためのタンクである。この水素リザーバ43は、前記分岐ラインに設けられ、入口が前記第2リード弁42に連結され、出口が前記第1リード弁44を介して希釈器41の下流の配管41aに連結されている。水素リザーバ43は、出口側の第1リード弁44の開閉する第1所定圧力が、入口側の第2リード弁42が開閉する第2所定圧力より高い弁圧に設定されていることにより、アノードオフガスを高圧で貯留できるようになっている。すなわち、水素リザーバ43内に吹かれたアノードオフガスは、水素リザーバ43内において、第2リード弁42によって逆流が防止されるとともに、出口側の第1リード弁44の開圧力になるまで貯留されて高圧となり、第1弁体(図示せず)のばね力を超えたときに配管44a側に流れるようになっている。
<希釈器の構成>
図4は、希釈器の一例を示す一部断面を有する斜視図である。
図4に示すように、希釈器41は、滞留器41bと、滞留器41b内を所定に仕切る仕切板41cと、配管24dのパージ水素導入部と、配管33aのドライエア導入部と、配管32dのカソードオフガス入口部とを、主に備えている。
滞留器41bは、外形が横向きの円柱状の筐体であって、内部空間を有している。仕切板41cは、滞留器41bに内設され、前記内部空間を滞留器41bの軸方向に不完全に仕切られている。さらに説明すると、仕切板41cによって、滞留器41bの内部空間は、上流側の滞留室41eと下流側の滞留室41fとに区画されており、滞留室41eと滞留室41fとは仕切板41cの上方で連通している。
水素パージ時に未反応の水素を含むアノードオフガスが流通する配管24dの下流端部分は、滞留器41bの上流側の端板を貫通し、その先端が滞留室41e内に延びている。そして、配管24dの先端から吹き出すアノードオフガスが、仕切板41cに吹き付けられるように構成されている。
ドライエア(酸化剤ガス)が流通する配管33aの下流端部分(ドライエア導入部)は、ドライエアを滞留器41b内に導く部分であって、滞留器41bの上流側の端板を貫通し、その先端が滞留室41e内に延びている。そして、配管33aの先端から吹き出すドライエアが、仕切板41cに吹き付けられるように構成されている。
希釈用のカソードオフガス(希釈用ガス)が流通する配管(希釈用ガス流通部)32dは、滞留器41bの下部を軸方向に貫通している。そして、滞留器41b内の配管32dには、滞留器41b内に滞留したアノードオフガスとドライエアとの混合ガスを、カソードオフガス流路(配管32d)に排出する水素排出口32d1と、滞留器41b内の水を外部に排出するための複数の水抜孔32d2,32d2と、が適所に形成されている。
そして、滞留器41b内を滞留し、ドライエアと混合することにより水素を希釈したアノードオフガスは、その後から導入されるドライエアによって、水素排出口32d1を介して配管32dに押し出され、水素排出口32d1の下流側の配管32dで、カソードオフガスによってさらに希釈された後、外部に排気されるようになっている。
なお、前記配管32dを流通するカソードオフガスは、特許請求の範囲に記載の「希釈ガス」に相当する。
<その他機器の構成>
IG52は、燃料電池自動車の起動スイッチであるとともに、燃料電池システムSの起動スイッチである。そして、IG52は、制御部60と電気的に接続しており、制御部60は、IG52のON/OFFに連動している。なお、IG52がOFFされると、燃料電池10は発電を停止するようになっている。
制御部60は、例えば、CPU、ROM、RAM、各種インタフェイス、電子回路などから構成されている。制御部60は、遮断弁22と、水素パージ弁24と、コンプレッサ31と、開閉弁33と電気的に接続しており、これらを適宜に制御するようになっている。
≪排出ガス処理装置の動作≫
次に、図1を主に参照して、燃料電池10の排出ガス処理装置40の動作について説明する。
図1に示す水素パージ弁24が開かれて水素パージがあると、高圧のアノードオフガスが、燃料電池10から配管24aと、水素パージ弁24と、配管24cと、配管24eと、第2リード弁42を介して水素リザーバ43に流れるとともに、前記配管24cから分岐した配管24dを介して希釈器41に流れる。
このとき、アノードオフガスは、図2に示すように、分岐点cと希釈器41との間の水素排出流路P(配管24d)の最小断面積s1が、分岐点cと水素リザーバ43との間の水素リザーバ入口流路(配管24e)の最小断面積s2より小さく形成されていることにより、第2リード弁42がある水素リザーバ43側に多量に流れる。さらに、アノードオフガスは、水素リザーバ入口流路の分岐点cにおける向きが、分岐点cにおける水素排出流路P(配管24e)の流路方向の向きに沿って設けられていることにより、主流と同じ方向に流れるため、流動抵抗が小さく、第2リード弁42側にスムーズに流れる。
アノードオフガスは、図3に示すように、第2リード弁42の第1連通孔42d内の圧力P1と第2連通孔42e内の圧力P2との差圧ΔPが、第2弁体42fのばね力により大きくなると、第1連通孔42dを閉塞していた第2弁体42fが開いて、水素リザーバ43内に流れ込む。
この水素リザーバ43内に流れ込んだアノードオフガスは、出口側の第1リード弁44の第1弁体(図示せず)のばね力が、入口側の第2リード弁42の第2弁体42fのばね力より大きく設定されていることにより、第1リード弁44の開閉圧が、第2リード弁42の開閉圧より高いため、第1リード弁44の第1所定圧力分だけ高圧の状態に貯留される。
そして、水素リザーバ43内に貯留されたアノードオフガスは、第1リード弁44の開圧力になるまで貯留され続けて高圧となり、水素リザーバ43の内圧が第1弁体(図示せず)のばね力を超えたときに、配管44aからゆっくりと少量ずつ配管41a内のカソードオフガス内に排出された後、燃料電池自動車の外部に排出される。
このように、水素リザーバ43内のアノードオフガスは、その水素リザーバ43の出口側(下流側)の第1リード弁44が開閉する弁圧を高く設定したことにより、水素パージ時に、少しずつ第1リード弁44から流れ出るようになる。このため、分岐ラインにおける高濃度の水素を含んだアノードオフガスは、直接配管41a内のカソードオフガス内に排出されて、水素濃度を低くしてから大気中に排出されるようになる。
一方、配管24dから希釈器41内へ流れるアノードオフガスは、分岐点cと希釈器41との間の配管24dの最小断面積s1が、分岐点cと水素リザーバ43の間の配管24eの最小断面積bより小さく、かつ、水素リザーバ43に貯留されることにより、多量のアノードオフガスが分岐ライン側に流れるように抑制される。このため、希釈器41内へ流れる流量が少なくなっている。水素パージの際に、希釈器41内へ入ったアノードオフガスは、滞留器41b内の水素濃度が一時的に高くなるが、その後、水素が希釈されるため、滞留器41b内の水素濃度が低くなる(図5参照)。
また、滞留器41b内には、配管33aからドライエアが送り込まれ、さらに、配管32d内には、カソードオフガスが流通する。このため、滞留器41b内に送り込まれた水素は、滞留室41e,41fに滞留し、ドライエアによって混合および希釈された後、水素排出口32d1を通って、配管32dに流れ込み、配管32d内のカソードオフガスによって希釈されて燃料電池自動車の外部に排気される。
図5は、パージ時の希釈器内と希釈器の下流とにおける水素濃度の変化を示すグラフであって、水素リザーバがある場合と水素リザーバがない場合とにおける水素濃度の変化を比較したグラフである。なお、図5に示す希釈器41の下流の水素濃度Bは、図1に示す配管41aと配管44aと合流する接続点dより下流側の測定点で計測したデータである。
前記のように水素パージ弁24が開くと、アノードオフガスが希釈器41に流れ込んで水素が希釈される(図1参照)。そのアノードオフガスは、水素パージ弁24が作動するパージフラグに追随するように希釈器41内に流れ込むため、図5に示すように、一時期的に希釈器41内の水素濃度Aが上昇する。
その希釈器41内の水素濃度Aは、分岐ラインを備えていない比較例の希釈器41内の水素濃度Cと比較して、水素リザーバ43を分岐ラインに設けたことにより、希釈器41に流れる流量が抑制されて少なくなるため、効率よく希釈されるようになる。その結果、希釈器41で希釈される時間が短時間に縮小される。
また、希釈器41の下流の配管41aから燃料電池自動車の外部に排出される水素濃度Bは、図5に示すように、水素リザーバ43および分岐ラインを備えていない比較例の希釈器の下流の排気水素濃度Dと比較して、希釈処理効率が向上されたことにより、減少され、カソードオフガスによって希釈された後、排出される時間も短縮される。これにより、高濃度の水素が燃料電池自動車の外部に排出されることが防止される。
なお、本発明は、前記実施形態に限定されるものではなく、その技術的思想の範囲内で種々の改造および変更が可能であり、本発明はこれら改造および変更された発明にも及ぶことは勿論である。
前記した実施形態では、希釈器41と、第2リード弁42と、水素リザーバ43と、第1リード弁44とを備えた燃料電池10の排出ガス処理装置40が組み付けられた燃料電池システムSが燃料電池自動車に搭載された場合について例示したが、燃料電池システムSの使用態様はこれに限定されず、その他に例えば、家庭用の据え置き型の燃料電池システムであってもよい。
また、図1に示す第1リード弁44の下流側に設置された配管44aは、接続点dで配管41aに接続することに限定されるものではなく、例えば、上流側端部を第1リード弁44に接続して、下流側端部を希釈器41に接続してもよい。このようにすることにより、分岐ラインを通って水素リザーバ43に貯留されたアノードオフガスが、パージ時後に、配管24dからアノードオフガスが希釈器41に流れ込むタイミングと、時間をずらして少量ずつ希釈器41に流れるようになるので、一気に外部に排出されることが防止されるとともに、水素が効率よく希釈されてから配管41aを介して外部に排出されるようになる。
また、前記した実施形態では、第1リード弁44と第2リード弁42と水素リザーバ44とを設けた分岐ライン(配管24e,42a,43a,44a)を、水素排出流路Pに1つ備えた場合を説明したが、分岐ラインは複数であってもよい。このようにすることにより、希釈器41に流れる流量を適宜に調整することができる。
図2に示すように、水素排出流路Pが水素希釈ラインの配管24dと分岐ラインの配管24eとに分かれる分岐点cは、配管24cに対して配管24eを直線状に設けて、その配管24c,24eに対して配管24eが直交するようにT字型継手によって接続される一例を挙げて説明したがこれに限定されるものではない。例えば、配管24eは、配管24cに対して円弧状に曲げた状態に設けてもよく、また、配管24dは、Y字型継手などによって配管24c,24eに対して斜めに配置してもよい。
本実施形態に係る燃料電池の排出ガス処理装置の構成を示すブロック図である。 本発明の実施形態に係る燃料電池の排出ガス処理装置における水素リザーバの設置状態を示す概略図である。 本発明の実施形態に係る燃料電池の排出ガス処理装置における第2リード弁の一例を示す概略図である。 本発明の実施形態に係る燃料電池の排出ガス処理装置における希釈器の一例を示す一部断面を有する斜視図である パージ時の希釈器内と希釈器の下流とにおける水素濃度の変化を示すグラフであって、水素リザーバがある場合と水素リザーバがない場合とにおける水素濃度の変化を比較したグラフである。
符号の説明
10 燃料電池
12 アノード
24 水素パージ弁
24a,24c 配管
24d 配管(希釈器流入流路)(水素希釈ライン)
24e,42a 配管(水素リザーバ入口流路)(分岐ライン)
40 排出ガス処理装置
41 希釈器
41a 配管(希釈器の下流側配管)
42 第2リード
43 水素リザーバ
43a,44a 配管(水素リザーバ出口流路)(分岐ライン)
44 第1リード
c 分岐点
P 水素排出流路
S 燃料電池システム
s1 最小断面積(分岐点と希釈器との間の水素排出流路の最小断面積)
s2 最小断面積(分岐点と水素リザーバとの間の水素リザーバ入口流路の最小断面積)

Claims (1)

  1. 燃料電池のアノードから排出された水素が流れ、分岐点で分岐した水素希釈ラインと分岐ラインとを有する水素排出流路と、
    前記分岐点の上流側の前記水素排出流路に設けられ、水素を排出する場合に開くパージ弁と、
    前記水素希釈ラインに設けられ、水素と希釈用ガスとを混合することで、前記水素を希釈する希釈器と、
    前記分岐ラインに設けられ、水素を蓄える水素リザーバと、
    前記水素リザーバの下流側の前記分岐ラインに設けられ、その上流側の圧力とその下流側の圧力との差圧が第1所定圧力以上の場合に開くばね力を有する第1リード弁と、
    前記水素リザーバの上流側の前記分岐ラインに設けられ、その上流側の圧力とその下流側の圧力との差圧が第2所定圧力以上の場合に開くばね力を有する第2リード弁と、
    を備え、
    前記分岐ラインの前記分岐点における向きは、前記分岐点に向かう前記水素排出流路に直線的であり、
    前記分岐点と前記希釈器との間における前記水素希釈ラインの最小断面積は、前記分岐点と前記水素リザーバとの間における前記分岐ラインの最小断面積よりも小さく、
    前記分岐ラインの下流端は、前記希釈器又は前記希釈器の下流側の前記水素希釈ラインに接続され、
    前記第1所定力は、前記第2所定圧力よりも高い
    ことを特徴とする燃料電池の排出ガス処理装置。
JP2005185239A 2005-06-24 2005-06-24 燃料電池の排出ガス処理装置 Expired - Fee Related JP5080727B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005185239A JP5080727B2 (ja) 2005-06-24 2005-06-24 燃料電池の排出ガス処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005185239A JP5080727B2 (ja) 2005-06-24 2005-06-24 燃料電池の排出ガス処理装置

Publications (2)

Publication Number Publication Date
JP2007005176A JP2007005176A (ja) 2007-01-11
JP5080727B2 true JP5080727B2 (ja) 2012-11-21

Family

ID=37690584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005185239A Expired - Fee Related JP5080727B2 (ja) 2005-06-24 2005-06-24 燃料電池の排出ガス処理装置

Country Status (1)

Country Link
JP (1) JP5080727B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028030B1 (ko) * 2007-09-06 2011-04-13 현대자동차주식회사 연료전지용 가습장치
KR100957375B1 (ko) 2008-07-16 2010-05-11 현대자동차주식회사 연료전지 시스템의 수소 퍼징 및 물 배출을 겸비한밸브장치 및 그 제어 방법
EP3000146B1 (en) 2013-05-23 2020-01-15 Teknologian Tutkimuskeskus VTT Oy Methods relating to monitoring fuel cells
CN112397753B (zh) * 2020-10-27 2021-11-02 智新科技股份有限公司 燃料电池氢气尾气净化***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038736A (ja) * 2003-07-16 2005-02-10 Nissan Motor Co Ltd 燃料電池発電システム及び排ガス処理方法
JP4649861B2 (ja) * 2003-09-09 2011-03-16 トヨタ自動車株式会社 燃料電池システム

Also Published As

Publication number Publication date
JP2007005176A (ja) 2007-01-11

Similar Documents

Publication Publication Date Title
US8221923B2 (en) Stop method for fuel cell system and fuel cell system
JP4644064B2 (ja) 燃料電池システム
JP5504293B2 (ja) 燃料電池システムの運転停止方法および燃料電池システム
JP2009170209A (ja) 燃料電池システム
US7662494B2 (en) Fuel cell system
JP2006318821A (ja) 排出ガス処理装置
JP5080727B2 (ja) 燃料電池の排出ガス処理装置
JP2006294341A (ja) 燃料電池システム
JP2010244778A (ja) 燃料電池システム
JP5872315B2 (ja) 燃料電池システムの起動方法および起動装置
JP4914036B2 (ja) 燃料電池の排出ガス処理装置
JP5082790B2 (ja) 燃料電池システム
KR20090106295A (ko) 연료전지 차량의 수소 퍼지 장치
JP4843279B2 (ja) 水素希釈装置
JP2007018910A (ja) 車載用燃料電池システム
JP5097016B2 (ja) 燃料電池システム及び遮断弁の開閉状態判定方法
JP2006344470A (ja) 燃料電池の排出ガス処理装置
JP2005108698A (ja) 燃料電池システム
JP2007087692A (ja) 燃料電池の排出ガス処理装置
JP2010177166A (ja) 燃料電池システム
JP2007018837A (ja) 燃料電池の水素ガス希釈装置
JP2005158523A (ja) 希釈器及び燃料電池システム
JP5161650B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
KR101558355B1 (ko) 연료 전지의 응축수 및 불순물 배출 방법
JP2007018857A (ja) 燃料電池の水素ガス希釈装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees