JP5079218B2 - Negative electrode active material and alkaline battery using the same - Google Patents

Negative electrode active material and alkaline battery using the same Download PDF

Info

Publication number
JP5079218B2
JP5079218B2 JP2005125455A JP2005125455A JP5079218B2 JP 5079218 B2 JP5079218 B2 JP 5079218B2 JP 2005125455 A JP2005125455 A JP 2005125455A JP 2005125455 A JP2005125455 A JP 2005125455A JP 5079218 B2 JP5079218 B2 JP 5079218B2
Authority
JP
Japan
Prior art keywords
alloy powder
ppm
negative electrode
electrode active
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005125455A
Other languages
Japanese (ja)
Other versions
JP2006302774A (en
Inventor
潤 布目
治成 島村
誠治 渕野
恒好 鎌田
直樹 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005125455A priority Critical patent/JP5079218B2/en
Publication of JP2006302774A publication Critical patent/JP2006302774A/en
Application granted granted Critical
Publication of JP5079218B2 publication Critical patent/JP5079218B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、亜鉛合金粉末からなる負極活物質およびそれを用いたアルカリ電池に関する。   The present invention relates to a negative electrode active material made of zinc alloy powder and an alkaline battery using the same.

従来から、アルカリ電池の保存中における負極亜鉛の腐食による水素ガス発生を抑制するために、水銀を含む亜鉛粉末を用いて水素過電圧を高める方法が採用されている。
しかし、近年、環境負荷の低減が要求されているところから、環境に有害な水銀の含有量を低減することを目的としてアルカリ電池の亜鉛合金の耐食性向上や防食剤の検討が種々に行われている。
Conventionally, in order to suppress hydrogen gas generation due to corrosion of negative electrode zinc during storage of alkaline batteries, a method of increasing hydrogen overvoltage using mercury-containing zinc powder has been employed.
However, in recent years, since environmental load reduction has been required, various studies have been conducted on improving the corrosion resistance of zinc alloys for alkaline batteries and anticorrosive agents in order to reduce the content of mercury harmful to the environment. Yes.

例えば、特許文献1では、亜鉛にIn、Bi、Al、Ga等の元素を添加する方法が提案されている。また、特許文献2では、Ca、Ba、Sr等のアルカリ土類金属を添加する方法が提案されている。
しかし、Al、Ca、Ba、Sr等は亜鉛合金中に多く含まれると、耐食性は向上するが、亜鉛の電極反応が妨害されて、高負荷放電特性が低下するという問題があった。
For example, Patent Document 1 proposes a method of adding elements such as In, Bi, Al, and Ga to zinc. Patent Document 2 proposes a method of adding an alkaline earth metal such as Ca, Ba, or Sr.
However, when a large amount of Al, Ca, Ba, Sr, etc. is contained in the zinc alloy, the corrosion resistance is improved, but there is a problem that the electrode reaction of zinc is disturbed and the high-load discharge characteristics are deteriorated.

また、近年アルカリ電池は、デジタルカメラ等の電子機器の電源に用いられることが多く、優れた高負荷放電特性が要求されている。
アルカリ電池の高負荷放電特性を向上させる方法としては、負極性能の改善が挙げられる。負極活物質である亜鉛の電極反応を改善させるために、例えば、特許文献3では、亜鉛合金粉末中における微粉率を増加させて、反応に寄与する亜鉛粉末の総反応面積を増大させることが提案されている。また、特許文献4では、150メッシュ未満の球状亜鉛粉末を用いることが提案されている。
In recent years, alkaline batteries are often used as power sources for electronic devices such as digital cameras, and excellent high-load discharge characteristics are required.
As a method for improving the high-load discharge characteristics of the alkaline battery, improvement of negative electrode performance can be mentioned. In order to improve the electrode reaction of zinc, which is a negative electrode active material, for example, in Patent Document 3, it is proposed to increase the total reaction area of zinc powder contributing to the reaction by increasing the fine powder rate in the zinc alloy powder Has been. Patent Document 4 proposes to use a spherical zinc powder of less than 150 mesh.

しかし、高負荷放電特性を向上させるために亜鉛合金粉末中の微粉率を一定以上に増加させると、耐食性の高い亜鉛合金粉末でも、水素ガスの発生量が増大し、電解液が漏出する可能性がある。また、上記のように亜鉛合金粉末への高耐食性を有する異種元素の添加量が増大すると、高負荷放電特性が低下するという問題があった。
特開昭61−077259号公報 特開昭62−040157号公報 特表2001−512284号公報 特開2003−317714号公報
However, if the fine powder ratio in the zinc alloy powder is increased above a certain level in order to improve the high-load discharge characteristics, even if the zinc alloy powder has high corrosion resistance, the amount of hydrogen gas generated may increase and the electrolyte may leak out. There is. In addition, as described above, when the amount of the different element having high corrosion resistance added to the zinc alloy powder is increased, there is a problem that the high-load discharge characteristics are deteriorated.
JP 61-077759 A Japanese Patent Laid-Open No. 62-040157 Special table 2001-512284 gazette JP 2003-317714 A

そこで、本発明は、上記の問題を解決するため、亜鉛合金粉末の組成および粒度分布を最適化することにより、耐食性および電極反応性に優れた亜鉛合金粉末からなる負極活物質を提供することを目的とする。また、上記の負極活物質を用いて保存特性および高負荷放電特性に優れたアルカリ電池を提供することを目的とする。   Accordingly, the present invention provides a negative electrode active material composed of a zinc alloy powder excellent in corrosion resistance and electrode reactivity by optimizing the composition and particle size distribution of the zinc alloy powder in order to solve the above problems. Objective. It is another object of the present invention to provide an alkaline battery excellent in storage characteristics and high-load discharge characteristics using the above negative electrode active material.

本発明の負極活物質は、150メッシュ未満の微粉末および150メッシュ以上の粗粉末を含む亜鉛合金粉末からなり、前記亜鉛合金粉末は、Inを300ppm〜800ppmおよびBiを100ppm〜500ppm含み、前記微粉末は、Al、Ca、Ba、Sr、Mg、およびGaからなる群より選ばれる少なくとも一種を合計で80ppm〜400ppm含み、前記粗粉末は、Al、Ca、Ba、Sr、Mg、およびGaからなる群より選ばれる少なくとも一種を合計で50ppm以下含むことを特徴とする。   The negative electrode active material of the present invention comprises a zinc alloy powder containing a fine powder of less than 150 mesh and a coarse powder of 150 mesh or more. The zinc alloy powder contains 300 ppm to 800 ppm of In and 100 ppm to 500 ppm of Bi. The powder contains at least one selected from the group consisting of Al, Ca, Ba, Sr, Mg, and Ga in a total of 80 ppm to 400 ppm, and the coarse powder is made of Al, Ca, Ba, Sr, Mg, and Ga. A total of 50 ppm or less of at least one selected from the group is included.

前記微粉末と前記粗粉末との混合重量比が20:80〜70:30であるのが好ましい。
前記微粉末における粒子の最短径に対する粒子の最長径の比の平均値が1〜2であるのが好ましい。
また、本発明は、上記の負極活物質を用いたアルカリ電池に関する。上記の負極活物質を用いることにより、低負荷および高負荷放電特性ならびに保存特性に優れたアルカリ電池が得られる。
The mixing weight ratio of the fine powder and the coarse powder is preferably 20:80 to 70:30.
The average value of the ratio of the longest diameter of the particles to the shortest diameter of the particles in the fine powder is preferably 1 to 2.
The present invention also relates to an alkaline battery using the above negative electrode active material. By using the negative electrode active material, an alkaline battery excellent in low load and high load discharge characteristics and storage characteristics can be obtained.

本発明によれば、亜鉛合金粉末の組成および粒度分布を最適化することにより、耐食性および電極反応性に優れた亜鉛合金粉末が得られる。
また、上記の亜鉛合金粉末を負極活物質として用いたアルカリ電池では、亜鉛合金の腐食による水素ガスの発生が抑制され、保存特性が改善されるとともに、高負荷放電特性が向上する。
According to the present invention, a zinc alloy powder having excellent corrosion resistance and electrode reactivity can be obtained by optimizing the composition and particle size distribution of the zinc alloy powder.
Further, in an alkaline battery using the above zinc alloy powder as a negative electrode active material, generation of hydrogen gas due to corrosion of the zinc alloy is suppressed, storage characteristics are improved, and high load discharge characteristics are improved.

本発明者らは、負極活物質(亜鉛合金粉末)の腐食による水素ガス発生を抑制し、かつ電極反応性を改善するために、亜鉛合金粉末の組成および粒度分布について種々検討した。
その結果、負極活物質としての亜鉛合金粉末が、150メッシュ未満の微粉末(以下、合金粉末Aと表す)および150メッシュ以上の粗粉末(以下、合金粉末Bと表す)からなり、前記亜鉛合金粉末が、In(インジウム)を300ppm〜800ppmおよびBi(ビスマス)を100ppm〜500ppm含み、前記合金粉末Aが、Al(アルミニウム)、Ca(カルシウム)、Ba(バリウム)、Sr(ストロンチウム)、Mg(マグネシウム)、およびGa(ガリウム)からなる群より選ばれる少なくとも一種(以下、異種元素と表す)を80ppm〜400ppm含み、前記合金粉末Bが、上記の異種元素を50ppm以下含む場合に、耐食性が向上して、水素ガス発生が抑制され、かつ電極反応性が向上することを見出した。そして、上記の亜鉛合金粉末を負極活物質に用いたアルカリ電池では、優れた保存特性および高負荷放電特性が得られることを見出した。
In order to suppress hydrogen gas generation due to corrosion of the negative electrode active material (zinc alloy powder) and improve electrode reactivity, the present inventors have made various studies on the composition and particle size distribution of the zinc alloy powder.
As a result, the zinc alloy powder as the negative electrode active material consists of a fine powder of less than 150 mesh (hereinafter referred to as alloy powder A) and a coarse powder of 150 mesh or more (hereinafter referred to as alloy powder B). The powder contains 300 ppm to 800 ppm of In (indium) and 100 ppm to 500 ppm of Bi (bismuth), and the alloy powder A contains Al (aluminum), Ca (calcium), Ba (barium), Sr (strontium), Mg ( Corrosion resistance is improved when 80 ppm to 400 ppm of at least one kind selected from the group consisting of magnesium) and Ga (gallium) (hereinafter referred to as a different element) is contained and the alloy powder B contains 50 ppm or less of the different element. The inventors have found that hydrogen gas generation is suppressed and electrode reactivity is improved. And in the alkaline battery which used said zinc alloy powder for the negative electrode active material, it discovered that the outstanding storage characteristic and high load discharge characteristic were acquired.

亜鉛合金粉末における150メッシュ以上の粗粉末とは、亜鉛合金粉末を篩いにかけた際に、150メッシュの篩網の篩上に残る亜鉛合金粉末を示す。好ましくは、36メッシュの篩網を通過し、150メッシュの篩網の篩上に残る亜鉛合金粉末を示す。また、亜鉛合金粉末における150メッシュ未満の微粉末とは、亜鉛合金粉末を篩いにかけた際に、150メッシュの篩網を通過する亜鉛合金粉末を示す。好ましくは、亜鉛合金粉末を篩いにかけた際に、150メッシュの篩網を通過し、330メッシュの篩網の篩上に残る亜鉛合金粉末を示す。   The coarse powder of 150 mesh or more in the zinc alloy powder refers to the zinc alloy powder remaining on the sieve of the 150 mesh screen when the zinc alloy powder is sieved. Preferably, zinc alloy powder that passes through a 36 mesh screen and remains on the 150 mesh screen is shown. The fine powder of less than 150 mesh in the zinc alloy powder indicates a zinc alloy powder that passes through a 150 mesh screen when the zinc alloy powder is sieved. Preferably, the zinc alloy powder that passes through the 150 mesh screen and remains on the screen of the 330 mesh screen when the zinc alloy powder is sieved is shown.

亜鉛合金粉末が水素過電圧の高いInおよびBiを上記の範囲で含むことにより、亜鉛合金粉末の腐食が抑制される。亜鉛合金粉末中のIn含有量が300ppm未満であり、かつ亜鉛合金粉末中のBi含有量が100ppm未満であると、水素ガスの発生を抑制する効果が十分に得られない。一方、亜鉛合金粉末中のIn含有量が800ppmを超え、かつ亜鉛合金粉末中のBi含有量が500ppmを超えると、高負荷放電特性が低下する傾向がある。
水素ガス発生の抑制の効果と、優れた高負荷放電特性とを適度に兼ね備えるため、亜鉛合金粉末中のIn含有量は、300ppm〜500ppmが好ましい。
同様に、水素ガス発生の抑制の効果と、優れた高負荷放電特性とを適度に兼ね備えるため、亜鉛合金粉末中のBi含有量は、150ppm〜300ppmが好ましい。
When the zinc alloy powder contains In and Bi having a high hydrogen overvoltage in the above range, corrosion of the zinc alloy powder is suppressed. When the In content in the zinc alloy powder is less than 300 ppm and the Bi content in the zinc alloy powder is less than 100 ppm, the effect of suppressing the generation of hydrogen gas cannot be sufficiently obtained. On the other hand, when the In content in the zinc alloy powder exceeds 800 ppm and the Bi content in the zinc alloy powder exceeds 500 ppm, the high-load discharge characteristics tend to deteriorate.
The In content in the zinc alloy powder is preferably 300 ppm to 500 ppm in order to appropriately combine the effect of suppressing the generation of hydrogen gas and the excellent high load discharge characteristics.
Similarly, the Bi content in the zinc alloy powder is preferably 150 ppm to 300 ppm in order to appropriately combine the effect of suppressing the generation of hydrogen gas and the excellent high load discharge characteristics.

InおよびBiの含有量は、合金粉末AとBとを混合した負極活物質として用いられる亜鉛合金粉末全体に対する量であり、亜鉛合金粉末全体でInおよびBiを上記の範囲で含んでいればよい。したがって、合金粉末AおよびB中のInおよびBiの含有量は、同じでも異なっていてもよい。   The contents of In and Bi are amounts relative to the entire zinc alloy powder used as the negative electrode active material in which the alloy powders A and B are mixed, and the entire zinc alloy powder only needs to contain In and Bi within the above range. . Therefore, the contents of In and Bi in the alloy powders A and B may be the same or different.

合金粉末A中の異種元素の含有量が80ppm未満であると、水素ガスの発生量が多くなる。一方、合金粉末A中の異種元素の含有量が400ppmを超えると、低負荷および高負荷放電特性が低下する。
水素ガス発生の抑制の効果と、優れた低負荷および高負荷放電特性とを適度に兼ね備えるため、合金粉末A中の異種元素の含有量は、100ppm〜200ppmが好ましい。
また、上記合金粉末A中の異種元素としては、水素ガス発生が少なく、優れた放電特性が得られるため、AlとBaとを組み合わせて用いるのが好ましい。
When the content of the different element in the alloy powder A is less than 80 ppm, the amount of hydrogen gas generated increases. On the other hand, when the content of the different elements in the alloy powder A exceeds 400 ppm, the low load and high load discharge characteristics deteriorate.
The content of the different element in the alloy powder A is preferably 100 ppm to 200 ppm in order to appropriately combine the effect of suppressing the generation of hydrogen gas and the excellent low load and high load discharge characteristics.
Further, as the different elements in the alloy powder A, it is preferable to use a combination of Al and Ba, since hydrogen gas generation is small and excellent discharge characteristics are obtained.

合金粉末B中の異種元素の含有量が50ppmを超えると、低負荷放電特性が低下する。合金粉末B中の異種元素の含有量は40ppm以下であるのが好ましく、さらに、合金粉末Bは異種元素を含まないのがより好ましい。
また、上記合金粉末B中の異種元素としては、優れた放電特性が得られるため、AlとBaとを組み合わせて用いるのが好ましい。
When the content of the different element in the alloy powder B exceeds 50 ppm, the low-load discharge characteristics deteriorate. The content of the different element in the alloy powder B is preferably 40 ppm or less, and more preferably, the alloy powder B does not contain the different element.
Further, as the dissimilar element in the alloy powder B, it is preferable to use a combination of Al and Ba because excellent discharge characteristics can be obtained.

高負荷放電特性の向上と水素ガス発生の抑制とのバランスの観点から、亜鉛合金粉末中における合金粉末Aの混合比率が20重量%〜70重量%であるのが好ましい。亜鉛合金粉末中の合金粉末Aの混合比率が20重量%未満であると、高負荷放電特性が低下する。一方、亜鉛合金粉末中の合金粉末Aの混合比率が70重量%を越えると、水素ガスの発生量が多くなる。さらに、亜鉛合金粉末中における合金粉末Aの混合比率が30重量%〜60重量%であるのがより好ましい。   From the viewpoint of a balance between improvement of high-load discharge characteristics and suppression of hydrogen gas generation, the mixing ratio of the alloy powder A in the zinc alloy powder is preferably 20% by weight to 70% by weight. When the mixing ratio of the alloy powder A in the zinc alloy powder is less than 20% by weight, the high load discharge characteristics are deteriorated. On the other hand, when the mixing ratio of the alloy powder A in the zinc alloy powder exceeds 70% by weight, the amount of hydrogen gas generated increases. Furthermore, the mixing ratio of the alloy powder A in the zinc alloy powder is more preferably 30% by weight to 60% by weight.

合金粉末Aにおける、粒子の最短径に対する粒子の最長径の比(以下、最長径/最短径と表す)の平均値が1〜2であるのが好ましい。最長径/最短径の平均値が2以下であると、粒子形状は球状に近くなり、水素ガスの発生量が減少する。なお、最短径に対する最長径の比が1であるとは、最長径と最短径とが等しく、粒子形状が球形であることを意味する。さらに、最長径/最短径の平均値が1.0〜1.8であるのがより好ましい。   In the alloy powder A, the average value of the ratio of the longest diameter of the particles to the shortest diameter of the particles (hereinafter referred to as the longest diameter / shortest diameter) is preferably 1 to 2. When the average value of the longest diameter / shortest diameter is 2 or less, the particle shape becomes nearly spherical, and the amount of hydrogen gas generated decreases. Note that the ratio of the longest diameter to the shortest diameter being 1 means that the longest diameter and the shortest diameter are equal and the particle shape is spherical. Furthermore, it is more preferable that the average value of the longest diameter / shortest diameter is 1.0 to 1.8.

合金粉末Aにおける、粒子の最短径に対する粒子の最長径の比は、例えば、高圧窒素ガスを用いて亜鉛合金溶湯を噴霧して粉末化する際に、雰囲気中の酸素濃度を調整することにより、制御することができる。亜鉛合金溶湯が噴霧され、液滴になった際に、雰囲気中の酸素濃度が高いと、理由は明確ではないものの不定形状に固定されやすくなるため、粒子の最短径に対する粒子の最長径の比の大きなものができやすい。一方、酸素雰囲気中の酸素濃度が低いと、表面張力により球状に近い形状になりやすい。   In the alloy powder A, the ratio of the longest diameter of the particles to the shortest diameter of the particles is, for example, by adjusting the oxygen concentration in the atmosphere when spraying the molten zinc alloy using high-pressure nitrogen gas and pulverizing. Can be controlled. When the molten zinc alloy is sprayed into droplets, if the oxygen concentration in the atmosphere is high, the reason is not clear, but it tends to be fixed in an indefinite shape, so the ratio of the longest diameter of the particles to the shortest diameter of the particles It is easy to make a big thing. On the other hand, when the oxygen concentration in the oxygen atmosphere is low, the shape tends to be nearly spherical due to surface tension.

最長径/最短径の平均値は、例えば、偏りなく採取した合金粉末試料を光学顕微鏡またはマイクロスコープによって二次元画像としてデータ化し、少なくとも30個以上の粒子(例えば50個の粒子)についてそれぞれ最長径および最短径を測定して最長径/最短径を算出し、これらの値の平均値を求めることにより得られる。   The average value of the longest diameter / shortest diameter is obtained by, for example, converting an alloy powder sample collected without deviation into a two-dimensional image using an optical microscope or a microscope, and measuring the longest diameter for at least 30 particles (for example, 50 particles). The shortest diameter is measured to calculate the longest diameter / shortest diameter, and the average value of these values is obtained.

負極活物質に用いる亜鉛合金粉末の粒度範囲は36メッシュ〜330メッシュであるのが好ましい。さらに好ましくは、亜鉛合金粉末の粒度範囲は40メッシュ〜300メッシュである。
また、合金粉末AおよびB中には、少量(例えば30ppm以下)のPb(鉛)や、不純物としてのFe(鉄)を少量(例えば5ppm以下)含んでいてもよい。
The particle size range of the zinc alloy powder used for the negative electrode active material is preferably 36 mesh to 330 mesh. More preferably, the particle size range of the zinc alloy powder is 40 mesh to 300 mesh.
The alloy powders A and B may contain a small amount (for example, 30 ppm or less) of Pb (lead) or a small amount (for example, 5 ppm or less) of Fe (iron) as an impurity.

次に、本発明の負極活物質の製造方法について以下に説明する。但し、本発明の負極活物質の製造方法はこれに限定されない。
例えば、高純度亜鉛地金(純度99.9%以上)を加熱溶解し、所定の異種金属を所定量添加して合金化した溶湯を、アトマイズ法により粉末化する。そして、得られた亜鉛合金粉末を、150メッシュの篩にかけ、篩を通過する150メッシュ未満の微粉末(合金粉末A)を得る。
Next, the manufacturing method of the negative electrode active material of this invention is demonstrated below. However, the manufacturing method of the negative electrode active material of this invention is not limited to this.
For example, a high-purity zinc ingot (purity 99.9% or more) is melted by heating, and a molten metal obtained by adding a predetermined amount of a predetermined dissimilar metal to form an alloy is pulverized by an atomizing method. The obtained zinc alloy powder is passed through a 150 mesh sieve to obtain a fine powder (alloy powder A) of less than 150 mesh that passes through the sieve.

一方、高純度亜鉛地金(純度99.9%以上)を加熱溶解し、所定の異種金属を所定量添加して合金化した溶湯をアトマイズ法により粉末化する。得られた亜鉛合金粉末を、150メッシュの篩にかけ、篩上に残る150メッシュ以上の粗粉末(合金粉末B)を得る。
そして、合金粉末Aと合金粉末Bとを所定の比率で混合することにより本発明の負極活物質である亜鉛合金粉末を得ることができる。
On the other hand, a high-purity zinc ingot (purity 99.9% or more) is heated and melted, and a molten metal obtained by adding a predetermined amount of a predetermined dissimilar metal to form an alloy is pulverized by an atomizing method. The obtained zinc alloy powder is passed through a 150 mesh sieve to obtain a coarse powder (alloy powder B) of 150 mesh or more remaining on the sieve.
Then, by mixing the alloy powder A and the alloy powder B at a predetermined ratio, the zinc alloy powder that is the negative electrode active material of the present invention can be obtained.

150メッシュを基準とした亜鉛合金粉末の分級は、例えば、RO−TAP法による篩振盪機と、JIS Z 2510に基づくSUS製のJIS標準篩網とを用いて行うことができる。
ただし、最終的に本発明の負極活物質が得られるのであれば、分級する基準は上記のように150メッシュに必ずしも限定されない。亜鉛合金粉末の作製が容易である点で150メッシュの篩で分級するのが好ましいが、例えば100メッシュ〜200メッシュの篩やそれ以外の篩を用いて分級してもよい。
Classification of zinc alloy powder based on 150 mesh can be performed using, for example, a sieve shaker by RO-TAP method and a JIS standard sieve mesh made of SUS based on JIS Z 2510.
However, as long as the negative electrode active material of the present invention is finally obtained, the classification standard is not necessarily limited to 150 mesh as described above. Although it is preferable to classify with a 150 mesh sieve in terms of easy production of the zinc alloy powder, for example, classification may be performed using a 100 mesh to 200 mesh sieve or other sieves.

合金粉末Aおよび合金粉末Bを製造する具体的方法および上記以外の条件については、現在公知の方法および条件(例えば、特開昭50−48427号公報の229ページ右上段7行目〜右下段16行目、特許第3434961号明細書の段落[0012]等参照)の技術常識に基づいて適宜設計すればよい。分級する前段階までの合金粉末Aおよび合金粉末Bの製造方法は、同じであっても、異なっていてもよい。ただし、収率の面から、合金粉末Aについては合金粉末Aが多くなるように製造するのが好ましく、合金粉末Bについては合金粉末Bが多くなるように作製するのが好ましい。合金粉末Aがより多くなるように製造するには、例えば、合金粉末Aに噴霧する圧縮空気の噴霧圧力を高くすればよく、合金粉末Bがより多くなるように製造するには、例えば、合金粉末Bに噴霧する圧縮空気の噴霧圧力を低くすればよい。   For specific methods for producing alloy powder A and alloy powder B and conditions other than those described above, currently known methods and conditions (for example, JP-A-50-48427, page 229, upper right column, line 7 to lower right column 16) The design may be made as appropriate based on the common general knowledge of the line, paragraph [0012] of Japanese Patent No. 3434961). The manufacturing method of alloy powder A and alloy powder B up to the previous stage of classification may be the same or different. However, from the viewpoint of yield, the alloy powder A is preferably manufactured so that the amount of the alloy powder A increases, and the alloy powder B is preferably manufactured so that the amount of the alloy powder B increases. In order to produce the alloy powder A in a larger amount, for example, the spray pressure of the compressed air sprayed onto the alloy powder A may be increased. To produce the alloy powder B in a larger amount, for example, the alloy powder A What is necessary is just to make the spraying pressure of the compressed air sprayed on the powder B low.

また、本発明のアルカリ電池は、上記の亜鉛合金粉末からなる負極活物質を含む負極、二酸化マンガンを含む正極、および前記正極と負極とを隔離するセパレータとを具備する。
負極には、例えば、上記の亜鉛合金粉末と、少量の酸化亜鉛を含む水酸化カリウム水溶液からなる電解液と、ポリアクリル酸ナトリウムからなるゲル化剤とを混合したゲル状負極が用いられる。
Moreover, the alkaline battery of this invention comprises the negative electrode containing the negative electrode active material which consists of said zinc alloy powder, the positive electrode containing manganese dioxide, and the separator which isolates the said positive electrode and negative electrode.
As the negative electrode, for example, a gelled negative electrode is used in which the above zinc alloy powder, an electrolytic solution composed of a potassium hydroxide aqueous solution containing a small amount of zinc oxide, and a gelling agent composed of sodium polyacrylate are mixed.

正極には、例えば、二酸化マンガン等の正極活物質、黒鉛等の導電剤、および上記の電解液とを混合した正極合剤が用いられる。
正極活物質は、二酸化マンガン以外に、例えば、酸化銀やオキシ水酸化ニッケルなどの金属酸化物系活物質を用いてもよく、それらの少なくとも1種を二酸化マンガンと混合して用いてもよい。また、空気を還元する触媒極を正極としてもよい。
For the positive electrode, for example, a positive electrode mixture obtained by mixing a positive electrode active material such as manganese dioxide, a conductive agent such as graphite, and the above electrolytic solution is used.
As the positive electrode active material, in addition to manganese dioxide, for example, a metal oxide active material such as silver oxide or nickel oxyhydroxide may be used, or at least one of them may be mixed with manganese dioxide. The catalyst electrode that reduces air may be used as the positive electrode.

以下、本発明の実施例を詳細に説明する。
《実施例1》
(1)負極活物質の作製
純度99.97%の亜鉛を約500℃で溶解し、In含有量が450ppm、Bi含有量が250ppm、およびAl含有量が150ppmとなるようにIn、Bi、およびAlを添加し、均一に溶解させた。圧縮空気(噴射圧:50kg/cm、酸素濃度:21容量%)で亜鉛合金溶湯を噴霧して粉末化し、亜鉛合金粉末を得た。そして、得られた亜鉛合金粉末を150メッシュの篩で分級して篩下(150メッシュ未満)の亜鉛合金粉末A(微粉末)を得た。
Hereinafter, embodiments of the present invention will be described in detail.
Example 1
(1) Production of negative electrode active material Indium, Bi, and 99.97% pure zinc were dissolved at about 500 ° C. so that the In content was 450 ppm, the Bi content was 250 ppm, and the Al content was 150 ppm. Al was added and dissolved uniformly. The molten zinc alloy was sprayed with compressed air (injection pressure: 50 kg / cm 2 , oxygen concentration: 21 vol%) to obtain a zinc alloy powder. Then, the obtained zinc alloy powder was classified with a 150 mesh sieve to obtain a zinc alloy powder A (fine powder) under the sieve (less than 150 mesh).

一方、純度99.97%の亜鉛を約500℃で溶解し、In含有量が450ppm、Bi含有量が250ppm、およびAl含有量が20ppmとなるようにIn、Bi、およびAlを添加し、均一に溶解させた。圧縮空気(噴射圧:50kg/cm)で亜鉛合金溶湯を噴霧して粉末化し、亜鉛合金粉末を得た。そして、得られた亜鉛合金粉末を150メッシュの篩で分級して篩上(150メッシュ以上)の亜鉛合金粉末B(粗粉末)を得た。
上記で得られた亜鉛合金粉末AおよびBを重量比50:50の割合で混合し、負極活物質用の亜鉛合金粉末を得た。
On the other hand, zinc with a purity of 99.97% was dissolved at about 500 ° C., and In, Bi, and Al were added uniformly so that the In content was 450 ppm, the Bi content was 250 ppm, and the Al content was 20 ppm. Dissolved in. Zinc alloy molten metal was sprayed with compressed air (injection pressure: 50 kg / cm 2 ) to obtain a zinc alloy powder. The obtained zinc alloy powder was classified with a 150 mesh sieve to obtain a zinc alloy powder B (coarse powder) on the sieve (150 mesh or more).
The zinc alloy powders A and B obtained above were mixed at a weight ratio of 50:50 to obtain a zinc alloy powder for a negative electrode active material.

(2)ゲル状負極の作製
電解液、ならびにゲル化剤としてポリアクリル酸ナトリウムおよびカルボキシメチルセルロースを重量比100:3:1の割合で混合し、ゲル状電解液を得た。このゲル状電解液および上記で得られた亜鉛合金粉末を重量比1:2の割合で混合しゲル状負極を得た。なお、電解液には、37重量%の水酸化カリウムおよび3重量%の酸化亜鉛を含むアルカリ水溶液を用いた。
(2) Preparation of gelled negative electrode An electrolytic solution and sodium polyacrylate and carboxymethylcellulose as a gelling agent were mixed at a weight ratio of 100: 3: 1 to obtain a gelled electrolytic solution. This gel electrolyte and the zinc alloy powder obtained above were mixed at a weight ratio of 1: 2 to obtain a gelled negative electrode. Note that an alkaline aqueous solution containing 37% by weight of potassium hydroxide and 3% by weight of zinc oxide was used as the electrolytic solution.

(3)正極合剤の作製
正極活物質としての二酸化マンガン粉末および導電剤としての黒鉛粉末を重量比94:6の割合で混合し、この混合物100重量部あたり上記と同様の電解液を2重量部添加し、充分に攪拌した後、フレーク状に圧縮成型した。ついでフレーク状の正極合剤を粉砕して顆粒状とし、これを篩によって分級し、10メッシュ〜100メッシュのものを中空円筒状に加圧成型してペレット状の正極合剤を得た。
(3) Preparation of positive electrode mixture Manganese dioxide powder as the positive electrode active material and graphite powder as the conductive agent were mixed at a weight ratio of 94: 6, and 2 weights of the same electrolyte solution was added per 100 parts by weight of the mixture. After adding a portion and stirring sufficiently, it was compression molded into flakes. Next, the flaky positive electrode mixture was pulverized into granules, which were classified by a sieve, and those having a mesh size of 10 to 100 mesh were pressure-molded into a hollow cylinder to obtain a pellet-like positive electrode mixture.

(4)アルカリ電池の組み立て
以下に示す手順で、図1に示す構造の単3形アルカリ電池を作製した。図1は、アルカリ電池の一部を断面とした正面図である。
電池ケース1内に上記で得られた正極合剤を2個挿入し、加圧治具により正極合剤2を再成型して電池ケース1の内壁に密着させた。そして、電池ケース1内に配置された正極合剤2の中央に有底円筒形のセパレータ4を配置し、セパレータ4内へ上記と同様の電解液を所定量注入した。所定時間経過した後、上記で得られたゲル状負極3をセパレータ4内へ充填した。なお、セパレータ4には、ポリビニルアルコール繊維とレーヨン繊維を主体として混抄した不織布を用いた。
(4) Assembly of alkaline battery AA alkaline batteries having the structure shown in FIG. FIG. 1 is a front view with a cross section of a part of an alkaline battery.
Two pieces of the positive electrode mixture obtained above were inserted into the battery case 1, and the positive electrode mixture 2 was remolded with a pressure jig and brought into close contact with the inner wall of the battery case 1. And the bottomed cylindrical separator 4 was arrange | positioned in the center of the positive mix 2 arrange | positioned in the battery case 1, and predetermined amount electrolyte solution similar to the above was inject | poured into the separator 4. FIG. After a predetermined time had elapsed, the gelled negative electrode 3 obtained above was filled into the separator 4. In addition, the separator 4 used the nonwoven fabric which mixed and mixed mainly the polyvinyl alcohol fiber and the rayon fiber.

続いて、負極集電子6をゲル状負極3の中央に挿入した。なお、負極集電子6には、ガスケット5および負極端子を兼ねる底板7を予め一体化させた。そして、電池ケース1の開口端部を、ガスケット5の端部を介して、底板7の周縁部にかしめつけ、電池ケース1の開口部を封口した。最後に、外装ラベル8で電池ケース1の外表面を被覆して、アルカリ電池(以下、電池と表す)を得た。   Subsequently, the negative electrode current collector 6 was inserted into the center of the gelled negative electrode 3. The negative electrode current collector 6 was previously integrated with a gasket 5 and a bottom plate 7 that also served as a negative electrode terminal. And the opening edge part of the battery case 1 was crimped to the peripheral part of the bottom plate 7 via the edge part of the gasket 5, and the opening part of the battery case 1 was sealed. Finally, the outer surface of the battery case 1 was covered with the exterior label 8 to obtain an alkaline battery (hereinafter referred to as a battery).

《実施例2〜61》
表1〜3に示すように合金粉末AおよびBの組成および混合比率を変えた以外は実施例1と同様の方法により負極活物質2〜61を作製した。そして、実施例1の負極活物質1の代わりに負極活物質2〜61を用いた以外は実施例1と同様の方法により電池2〜61を作製した。
<< Examples 2 to 61 >>
As shown in Tables 1 to 3, negative electrode active materials 2 to 61 were produced in the same manner as in Example 1 except that the compositions and mixing ratios of the alloy powders A and B were changed. Then, batteries 2 to 61 were produced in the same manner as in Example 1 except that the negative electrode active materials 2 to 61 were used instead of the negative electrode active material 1 of Example 1.

Figure 0005079218
Figure 0005079218

Figure 0005079218
Figure 0005079218

Figure 0005079218
Figure 0005079218

《比較例1〜24》
表4に示すように合金粉末AおよびBの組成および混合比率を変えた以外は実施例1と同様の方法により負極活物質62〜85を作製した。そして、実施例1の負極活物質1の代わりに負極活物質62〜85を用いた以外は実施例1と同様の方法により電池62〜85を作製した。
<< Comparative Examples 1-24 >>
As shown in Table 4, negative electrode active materials 62 to 85 were produced in the same manner as in Example 1 except that the compositions and mixing ratios of the alloy powders A and B were changed. Then, batteries 62 to 85 were produced in the same manner as in Example 1 except that the negative electrode active materials 62 to 85 were used instead of the negative electrode active material 1 of Example 1.

Figure 0005079218
Figure 0005079218

《実施例62》
合金粉末Aの作製において、酸素濃度0.02容量%の雰囲気中で直接高圧窒素ガスを用いて粉体化した以外は、実施例1と同様の方法により負極活物質86を作製した。そして、負極活物質86を用いた以外は実施例1と同様の方法により電池86を作製した。
Example 62
A negative electrode active material 86 was produced in the same manner as in Example 1 except that the alloy powder A was pulverized directly using high-pressure nitrogen gas in an atmosphere having an oxygen concentration of 0.02% by volume. A battery 86 was produced in the same manner as in Example 1 except that the negative electrode active material 86 was used.

《実施例63》
合金粉末Aの作製において、酸素濃度0.05容量%の雰囲気中で直接高圧窒素ガスを用いて粉体化した以外は、実施例1と同様の方法により負極活物質87を作製した。そして、負極活物質87を用いた以外は実施例1と同様の方法により電池87を作製した。
Example 63
A negative electrode active material 87 was produced in the same manner as in Example 1, except that the alloy powder A was pulverized directly using high-pressure nitrogen gas in an atmosphere having an oxygen concentration of 0.05% by volume. A battery 87 was produced in the same manner as in Example 1 except that the negative electrode active material 87 was used.

《実施例64》
合金粉末Aの作製において、酸素濃度0.1容量%の雰囲気中で直接高圧窒素ガスを用いて粉体化した以外は、実施例1と同様の方法により負極活物質88を作製した。そして、負極活物質88を用いた以外は実施例1と同様の方法により電池88を作製した。
<< Example 64 >>
A negative electrode active material 88 was produced in the same manner as in Example 1 except that in the production of the alloy powder A, powdering was performed directly using high-pressure nitrogen gas in an atmosphere having an oxygen concentration of 0.1% by volume. A battery 88 was produced in the same manner as in Example 1 except that the negative electrode active material 88 was used.

《実施例65》
合金粉末Aの作製において、酸素濃度0.2容量%の雰囲気中で直接高圧窒素ガスを用いて粉体化した以外は、実施例1と同様の方法により負極活物質89を作製した。そして、負極活物質89を用いた以外は実施例1と同様の方法により電池89を作製した。
Example 65
A negative electrode active material 89 was produced in the same manner as in Example 1, except that the alloy powder A was pulverized directly using high-pressure nitrogen gas in an atmosphere having an oxygen concentration of 0.2% by volume. A battery 89 was produced in the same manner as in Example 1 except that the negative electrode active material 89 was used.

《実施例66》
合金粉末Aの作製において、酸素濃度10容量%の雰囲気中で直接高圧窒素ガスを用いて粉体化した以外は、実施例1と同様の方法により負極活物質90を作製した。そして、負極活物質90を用いた以外は実施例1と同様の方法により電池90を作製した。
Example 66
A negative electrode active material 90 was produced in the same manner as in Example 1 except that in the production of the alloy powder A, powdering was performed directly using high-pressure nitrogen gas in an atmosphere having an oxygen concentration of 10% by volume. And the battery 90 was produced by the method similar to Example 1 except having used the negative electrode active material 90. FIG.

《実施例67》
合金粉末Aの作製において、酸素濃度21容量%の雰囲気中で直接高圧窒素ガスを用いて粉体化した以外は、実施例1と同様の方法により負極活物質91を作製した。そして、負極活物質91を用いた以外は実施例1と同様の方法により電池91を作製した。
Example 67
A negative electrode active material 91 was produced in the same manner as in Example 1 except that in the production of the alloy powder A, powder was directly pulverized using high-pressure nitrogen gas in an atmosphere having an oxygen concentration of 21% by volume. And the battery 91 was produced by the method similar to Example 1 except having used the negative electrode active material 91. FIG.

[評価]
負極活物質1〜91における合金粉末Aおよび作製後10日間静置した電池1〜91について以下に示す評価を行った。
(イ)放電特性の評価
20℃環境下、1A(高負荷)または100mA(低負荷)の電流値で0.9Vまで放電し、放電時間を計測した。
[Evaluation]
The following evaluation was performed on the alloy powder A in the negative electrode active materials 1 to 91 and the batteries 1 to 91 which were allowed to stand for 10 days after the production.
(A) Evaluation of discharge characteristics In a 20 ° C. environment, the battery was discharged to 0.9 V at a current value of 1 A (high load) or 100 mA (low load), and the discharge time was measured.

(ロ)保存特性の評価
封口体を取り外した状態の電池を、流動パラフィンを充填したガス捕集用ガラス治具内にセットし、45℃の環境下で20日間保存した。そして、保存期間中に発生した水素ガス量を測定した。
(B) Evaluation of storage characteristics The battery with the sealing body removed was set in a glass jig for gas collection filled with liquid paraffin, and stored for 20 days in an environment of 45 ° C. Then, the amount of hydrogen gas generated during the storage period was measured.

(ハ)合金粉末Aにおける粒子の最短径に対する最長径の比の平均値の測定
偏りなく採取した合金粉末試料を光学顕微鏡によって二次元画像としてデータ化し、50個の粒子についてそれぞれ最長径および最短径を測定して、最長径/最短径を算出し、これらの値の平均値を求めた。
(C) Measurement of the average value of the ratio of the longest diameter to the shortest diameter of the particles in the alloy powder A An alloy powder sample collected without bias is converted into a two-dimensional image by an optical microscope, and the longest diameter and the shortest diameter for 50 particles, respectively Was measured to calculate the longest diameter / shortest diameter, and the average of these values was obtained.

これらの評価結果を表1〜5に示す。なお、表1〜5中の放電時間は、高負荷放電および低負荷放電のいずれも電池1の放電時間を100とした指数で表した。また、ガス発生量は、電池1のガス発生量を100とした指数で表した。
電池を評価した結果より、低負荷放電時間が95以上であり、かつ高負荷放電時間が90以上であり、かつガス発生量が200未満のものを、低負荷放電特性、高負荷放電特性、および保存特性が良好であると判断した。
These evaluation results are shown in Tables 1-5. In addition, the discharge time in Tables 1 to 5 was expressed as an index with the discharge time of the battery 1 being 100 for both high load discharge and low load discharge. Further, the gas generation amount was expressed as an index with the gas generation amount of the battery 1 as 100.
As a result of evaluating the battery, the low load discharge characteristic is 95 or more, the high load discharge period is 90 or more, and the gas generation amount is less than 200. The storage characteristics were judged to be good.

Figure 0005079218
Figure 0005079218

(A)合金粉末AおよびBへの異種元素(Al、Ca、Ba、Sr、Mg、またはGa)の添加について
Al、Ca、Ba、Sr、Mg、またはGaを150ppm含む合金粉末AおよびAl、Ca、Ba、Sr、Mg、またはGaを20ppm含む合金粉末Bを用いた本発明の電池1〜6では、良好な低負荷および高負荷放電特性ならびに保存特性が得られた。また、2種類の異種元素を含む合金粉末AおよびBを用いた本発明の電池7〜9においても、良好な放電特性および保存特性が得られた。
(A) Regarding addition of different elements (Al, Ca, Ba, Sr, Mg, or Ga) to alloy powders A and B Alloy powders A and Al containing 150 ppm of Al, Ca, Ba, Sr, Mg, or Ga, In the batteries 1 to 6 of the present invention using the alloy powder B containing 20 ppm of Ca, Ba, Sr, Mg, or Ga, good low load and high load discharge characteristics and storage characteristics were obtained. Also, good discharge characteristics and storage characteristics were obtained in the batteries 7 to 9 of the present invention using the alloy powders A and B containing two kinds of different elements.

一方、合金粉末AおよびBのBa含有量が40ppmと同じである電池66では、合金粉末A中におけるBa含有量が少ないため、ガス発生量が増大した。また、合金粉末AおよびBのBa含有量が80ppmと同じである電池67では、合金粉末B中におけるBa含有量が多いため、低負荷および高負荷放電特性が低下した。
以上のことから、亜鉛合金粉末の粒度に応じて各異種元素の含有量を適宜変えることにより、保存特性の向上と、低負荷および高負荷放電特性の向上とを同時に実現できることがわかった。
On the other hand, in the battery 66 in which the Ba contents of the alloy powders A and B are the same as 40 ppm, the amount of gas generated increased because the Ba content in the alloy powder A was small. Further, in the battery 67 in which the Ba contents of the alloy powders A and B are the same as 80 ppm, the Ba load in the alloy powder B is large, so that the low load and high load discharge characteristics are deteriorated.
From the above, it was found that improvement of storage characteristics and improvement of low load and high load discharge characteristics can be realized simultaneously by appropriately changing the content of each different element according to the particle size of the zinc alloy powder.

(B)亜鉛合金粉末(合金粉末AおよびB)中のIn含有量について
亜鉛合金中のIn含有量が300ppm〜800ppmである本発明の電池10〜13では、良好な高負荷および低負荷放電特性ならびに保存特性が得られた。亜鉛合金中のIn含有量が300ppm未満である電池62では、ガス発生量が多くなった。In含有量が800ppmを超える電池63では、低負荷および高負荷放電特性が低下した。
(B) About In Content in Zinc Alloy Powder (Alloy Powders A and B) In the batteries 10 to 13 of the present invention in which the In content in the zinc alloy is 300 ppm to 800 ppm, good high load and low load discharge characteristics As well as storage properties. In the battery 62 in which the In content in the zinc alloy is less than 300 ppm, the amount of gas generated increased. In the battery 63 having an In content exceeding 800 ppm, the low-load and high-load discharge characteristics deteriorated.

(C)亜鉛合金粉末(合金粉末AおよびB)中のBi含有量について
亜鉛合金中のBi含有量が100ppm〜500ppmである本発明の電池14〜17では、良好な高負荷および低負荷放電特性ならびに保存特性が得られた。亜鉛合金中のBi含有量が100ppm未満である電池64では、ガス発生量が多くなった。Bi含有量が500ppmを超える電池65では、低負荷および高負荷放電特性が低下した。
(C) Bi content in zinc alloy powder (alloy powders A and B) In batteries 14 to 17 of the present invention in which the Bi content in the zinc alloy is 100 ppm to 500 ppm, good high load and low load discharge characteristics As well as storage properties. In the battery 64 in which the Bi content in the zinc alloy is less than 100 ppm, the amount of gas generated increased. In the battery 65 having a Bi content exceeding 500 ppm, the low-load and high-load discharge characteristics deteriorated.

(D)合金粉末A中の異種元素(Ba、Al、Sr、Ca、Mg、またはGa)の含有量について
合金粉末A中の異種元素の含有量が80ppm〜400ppmである本発明の電池18〜31では、良好な高負荷および低負荷放電特性ならびに保存特性が得られた。合金粉末A中の異種元素の含有量が80ppm未満である電池68、70、72、74、76、および78では、ガス発生量が多くなった。一方、異種元素の含有量が400ppmを超える電池69、71、73、75、77、および79では、低負荷および高負荷放電特性が低下した。
(D) Content of foreign element (Ba, Al, Sr, Ca, Mg, or Ga) in alloy powder A Battery 18 of the present invention in which the content of foreign element in alloy powder A is 80 ppm to 400 ppm In No. 31, good high load and low load discharge characteristics and storage characteristics were obtained. In the batteries 68, 70, 72, 74, 76, and 78 in which the content of the different elements in the alloy powder A is less than 80 ppm, the amount of gas generation increased. On the other hand, in the batteries 69, 71, 73, 75, 77, and 79 in which the content of the different elements exceeds 400 ppm, the low load and high load discharge characteristics deteriorated.

(E)合金粉末B中の異種元素(Ba、Al、Sr、Ca、Mg、またはGa)の含有量について
合金粉末B中の異種元素の含有量が0ppm〜50ppmである本発明の電池32〜43では、良好な高負荷および低負荷放電特性ならびに保存特性が得られた。異種元素の含有量が50ppmを超える電池80〜85では、低負荷放電特性が低下した。
(E) Content of foreign element (Ba, Al, Sr, Ca, Mg, or Ga) in alloy powder B Battery 32 of the present invention in which the content of foreign element in alloy powder B is 0 ppm to 50 ppm In No. 43, good high load and low load discharge characteristics and storage characteristics were obtained. In the batteries 80 to 85 in which the content of the different elements exceeds 50 ppm, the low load discharge characteristics are deteriorated.

(F)合金粉末Aと合金粉末Bの混合比率について、
合金粉末Aの混合比率が20重量%〜70重量%である電池45〜48、51、52、55、56、59、および60の場合に良好な低負荷および高負荷放電特性ならびに保存特性が得られた。合金粉末Aの混合比率が20重量%未満の電池49、53、57、および61では、高負荷放電特性が低下し、合金粉末Aの混合比率が70重量%を超える電池44、50、54、および58では、ガス発生量が多くなった。
(F) About the mixing ratio of the alloy powder A and the alloy powder B,
Good low load and high load discharge characteristics and storage characteristics are obtained in the case of batteries 45 to 48, 51, 52, 55, 56, 59, and 60 in which the mixing ratio of the alloy powder A is 20 wt% to 70 wt%. It was. In the batteries 49, 53, 57, and 61 in which the mixing ratio of the alloy powder A is less than 20% by weight, the high load discharge characteristics are deteriorated, and the batteries 44, 50, 54, in which the mixing ratio of the alloy powder A exceeds 70% by weight. And 58, the amount of gas generation increased.

(G)合金粉末Aの粒子形状について
合金粉末Aの粒子における最長径/最短径の平均値が1.0〜2.0である電池86〜89では、ガス発生がさらに抑制されて、優れた保存特性が得られた。これより、合金粉末Aの粒子形状は球形に近いほどガス発生が抑制されることがわかった。
なお、負極活物質1〜85では、合金粉末Aにおける粒子の最長径/最短径の平均値は3.0以上であった。
(G) Particle shape of alloy powder A In batteries 86 to 89 in which the average value of the longest diameter / shortest diameter in the particles of alloy powder A is 1.0 to 2.0, gas generation is further suppressed and excellent. Storage characteristics were obtained. From this, it was found that gas generation is suppressed as the particle shape of the alloy powder A is closer to a spherical shape.
In the negative electrode active materials 1 to 85, the average value of the longest diameter / shortest diameter of the particles in the alloy powder A was 3.0 or more.

以上のように、本発明のアルカリ電池は高負荷放電特性および保存特性に優れているため、デジタルカメラ等の電子機器や携帯機器に好適に用いられる。   As described above, since the alkaline battery of the present invention is excellent in high-load discharge characteristics and storage characteristics, it is suitably used for electronic devices such as digital cameras and portable devices.

本発明のアルカリ電池の一例の一部を断面にした正面図である。It is the front view which made a part of one example of the alkaline battery of the present invention into the section.

符号の説明Explanation of symbols

1 電池ケース
2 正極合剤
3 ゲル状負極
4 セパレータ
5 ガスケット
6 負極集電子
7 底板
8 外装ラベル
DESCRIPTION OF SYMBOLS 1 Battery case 2 Positive electrode mixture 3 Gel-like negative electrode 4 Separator 5 Gasket 6 Negative electrode current collector 7 Bottom plate 8 Exterior label

Claims (4)

150メッシュ未満の微粉末および150メッシュ以上の粗粉末を含む亜鉛合金粉末からなり、
前記亜鉛合金粉末は、Inを300ppm〜800ppmおよびBiを100ppm〜500ppm含み、
前記微粉末は、Al、Ca、Ba、Sr、Mg、およびGaからなる群より選ばれる少なくとも一種を合計で80ppm〜400ppm含み、
前記粗粉末は、Al、Ca、Ba、Sr、Mg、およびGaからなる群より選ばれる少なくとも一種を合計で50ppm以下含むことを特徴とするアルカリ電池用負極活物質。
A zinc alloy powder comprising fine powder of less than 150 mesh and coarse powder of 150 mesh or more,
The zinc alloy powder contains 300 ppm to 800 ppm of In and 100 ppm to 500 ppm of Bi,
The fine powder contains at least one selected from the group consisting of Al, Ca, Ba, Sr, Mg, and Ga in a total of 80 ppm to 400 ppm,
The coarse powder contains at least one selected from the group consisting of Al, Ca, Ba, Sr, Mg, and Ga in a total amount of 50 ppm or less.
前記微粉末と前記粗粉末との混合重量比が20:80〜70:30である請求項1記載のアルカリ電池用負極活物質。   The negative electrode active material for an alkaline battery according to claim 1, wherein the mixing weight ratio of the fine powder and the coarse powder is 20:80 to 70:30. 前記微粉末における粒子の最短径に対する粒子の最長径の比の平均値が1〜2である請求項1記載のアルカリ電池用負極活物質。   2. The negative electrode active material for an alkaline battery according to claim 1, wherein an average value of a ratio of the longest diameter of the particles to the shortest diameter of the particles in the fine powder is 1 to 2. 請求項1〜3のいずれかに記載の負極活物質を用いたアルカリ電池。   The alkaline battery using the negative electrode active material in any one of Claims 1-3.
JP2005125455A 2005-04-22 2005-04-22 Negative electrode active material and alkaline battery using the same Expired - Fee Related JP5079218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005125455A JP5079218B2 (en) 2005-04-22 2005-04-22 Negative electrode active material and alkaline battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005125455A JP5079218B2 (en) 2005-04-22 2005-04-22 Negative electrode active material and alkaline battery using the same

Publications (2)

Publication Number Publication Date
JP2006302774A JP2006302774A (en) 2006-11-02
JP5079218B2 true JP5079218B2 (en) 2012-11-21

Family

ID=37470812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005125455A Expired - Fee Related JP5079218B2 (en) 2005-04-22 2005-04-22 Negative electrode active material and alkaline battery using the same

Country Status (1)

Country Link
JP (1) JP5079218B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115642244A (en) * 2022-12-07 2023-01-24 福建南平南孚电池有限公司 Alkaline zinc-manganese battery cathode material
CN115642245A (en) * 2022-12-07 2023-01-24 福建南平南孚电池有限公司 Negative electrode material of leakage-proof alkaline zinc-manganese battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3545985B2 (en) * 2000-02-18 2004-07-21 三井金属鉱業株式会社 Zinc alloy powder and alkaline battery using the same
JP2001250544A (en) * 2000-03-07 2001-09-14 Dowa Mining Co Ltd Zinc alloy powder for alkaline battery and its preparation method
JP2003317715A (en) * 2002-04-24 2003-11-07 Mitsui Mining & Smelting Co Ltd Zinc alloy powder for alkali manganese battery and alkali manganese battery using it
JP2003317716A (en) * 2002-04-24 2003-11-07 Mitsui Mining & Smelting Co Ltd Zinc alloy powder for alkali manganese battery and alkali manganese battery using it
JP2003272615A (en) * 2002-03-14 2003-09-26 Mitsui Mining & Smelting Co Ltd Zinc alloy powder and alkaline battery using the same
JP4565222B2 (en) * 2003-02-20 2010-10-20 Dowaエレクトロニクス株式会社 Zinc alloy powder for alkaline battery and alkaline battery using the same

Also Published As

Publication number Publication date
JP2006302774A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
EP0882309B1 (en) Zinc anode for an electrochemical cell
US7524582B2 (en) Zinc powder or zinc alloy powder for alkaline batteries
CN1681149A (en) Alkaline battery
CN1960031B (en) Alkaline battery
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JP5079218B2 (en) Negative electrode active material and alkaline battery using the same
JP2006040887A (en) Alkaline battery
JPWO2019181538A1 (en) Alkaline battery
JP2004253276A (en) Zinc alloy powder for alkaline battery, and alkaline battery using it
JP3561299B2 (en) Zinc alloy powder for alkaline batteries
JPH10116612A (en) Negative electrode material for alkaline manganese battery and manufacture of negative electrode material
JP3369226B2 (en) Metal oxide / hydrogen secondary batteries
JP2007273406A (en) Alkaline battery
JP5097357B2 (en) Method for producing zinc powder for alkaline battery, method for producing negative electrode gel for alkaline battery
JP4327586B2 (en) Aluminum primary battery
JPS62123653A (en) Zinc-alkaline battery
JP2006164862A (en) Alkaline battery
US20140186711A1 (en) Alkaline secondary battery
JPH03230476A (en) Negative electrode active material for alkaline battery
JPH1032002A (en) Negative electrode zinc alloy powder for alkaline storage battery
JPH0582129A (en) Zinc alloy powder for alkaline battery and manufacture thereof
JP2005071985A (en) Zinc alloy powder and alkaline battery using same
JPH02213050A (en) Manufacture of negative active material for alkaline battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110929

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees