JP5078442B2 - 光伝送基板およびその製造方法、並びに光電子混載基板および光モジュール - Google Patents

光伝送基板およびその製造方法、並びに光電子混載基板および光モジュール Download PDF

Info

Publication number
JP5078442B2
JP5078442B2 JP2007142126A JP2007142126A JP5078442B2 JP 5078442 B2 JP5078442 B2 JP 5078442B2 JP 2007142126 A JP2007142126 A JP 2007142126A JP 2007142126 A JP2007142126 A JP 2007142126A JP 5078442 B2 JP5078442 B2 JP 5078442B2
Authority
JP
Japan
Prior art keywords
substrate
optical transmission
hole
optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007142126A
Other languages
English (en)
Other versions
JP2008107781A (ja
Inventor
啓一郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007142126A priority Critical patent/JP5078442B2/ja
Publication of JP2008107781A publication Critical patent/JP2008107781A/ja
Application granted granted Critical
Publication of JP5078442B2 publication Critical patent/JP5078442B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Description

本発明は、光インターコネクション等に使用される光伝送基板およびその製造方法に関するものであり、特に、基板の貫通孔に設けられる光伝搬体の伝送特性を良好かつ均一としたものに関する。また、本発明は、その光伝送基板を用いた光モジュールに関するものである。
情報処理における処理量を増加させ処理スピードを向上させるために、半導体デバイスの動作速度および電気信号の入出力端子数は、将来にわたって増加の傾向にある。同時にその半導体デバイスを搭載する回路基板の信号配線数も著しく増大しており、電気配線密度も高くなる傾向にある。それに従って、実装基板に形成された電気配線における信号の減衰および隣接する配線間のクロストークが顕著に増加し、深刻な問題となっている。とりわけマイクロプロセッサに代表される大規模な半導体集積回路においては、GHzレベルの信号を低消費電力で安定して入出力させることが大きな課題である。
その課題を解決するために、半導体デバイスに入出力される電気信号を信号光に変換し、その信号光に対応する光を、実装基板に形成した光導波路等の光配線によって伝送させる光伝送技術が検討されている。
その信号光と電気信号との変換を行なう光電変換部では、送信出力側において主に化合物半導体で構成される半導体レーザ(LD)や発光ダイオード(LED)等の発光用の光半導体素子が、受信入力側においてシリコン(Si)や化合物半導体によるフォトダイオード(PD)等の受光用の光半導体素子が用いられる。
ところで、半導体レーザーには各種のタイプがあるが、近年ではその結晶成長面で良好な結晶が得られることから、発光部が素子基板の主面に対して垂直方向に光を出射させる面発光レーザ(VCSEL)が、高性能かつ低コストである送信用光源として広く用いられつつある。一方、フォトダイオードも、受光部がその結晶面上にある面受光型のものが一般的に用いられている。
従来の光伝送基板では、基板面に対し平行に基板上または基板内部に配置された光配線として、高屈折率の材料から構成されるコア部の周囲を低屈折率の材料から構成されるクラッド部で覆うことにより形成した光導波路を設けたものが知られている。そのような光導波路は、光学ガラスまたは単結晶もしくは高分子の光学材料を用いて作製されている。
また、光配線と電気配線を混載した従来の光モジュールでは、上記の光半導体素子と光導波路との光結合構造を有したものが知られている。このような光モジュールにおいては、信号光の入出力方向と実装基板上に形成された光導波路とがおおよそ直交する位置関係にあるため、高い結合光量を得るために様々な提案がなされている。
特許文献1には、基板の両主面間を貫通する円柱状の貫通孔の内部に、円柱状のコア部と、前記コア部よりも屈折率の低い周囲部(クラッド部)とから構成される光伝搬体を有する光モジュールが開示されている。
国際公開第2001/1176号パンフレット
特許文献1に記載されているようなコア部とクラッド部とを有する光伝搬体は、コア部よりも屈折率の低いクラッド部によりコア部の周囲が覆われており、入射された信号光の多くはコア部を伝搬して出射されることになる。
しかし、信号光は完全にコア部に閉じ込められるわけではなく、コア部からクラッド部に漏れ、クラッド部を伝搬する信号光も存在している。そして、そのような信号光は、コア部を伝搬する信号光とは定在波のモードが異なるため、出射される信号光としては、まず、コア部を伝搬した信号光が出射され、それから遅れてクラッド部を伝搬した信号光がノイズとして出射されるため、信号の信頼性が十分に得られない傾向があった。
本発明は上記のような従来の技術における問題点を考慮してなされたものであり、その目的は、貫通孔に設けられる光伝搬体の前記ノイズを大きく低減させた光伝送基板およびその製造方法ならびにそれを用いた光電子混載基板および光モジュールを提供することにある。
本発明は、両主面間を貫通し、中心軸が前記両主面の少なくとも一方の主面に対して垂直であり、一方の主面から他方の主面側に単調減少する第一領域と、該第一領域以外の第領域とが境界部で接続された貫通孔を具える基板と、前記第領域の前記貫通孔の内部に設けられた、クラッド部、および前記基板の一方の主面側に第一端面を有するとともに前記クラッド部よりも屈折率が高くなったコア部を有する光伝搬体と、を具備し、前記コア部が前記境界部の内周と接している光伝送基板に関する。ここで、「単調減少している」とは増加傾向とならないことを意味する。
前記光伝搬体は、前記第二領域において、前記貫通孔の径方向において屈折率が周囲部よりも高くなったコア部を有していることが好ましい。
前記貫通孔の前記第二領域には、前記コア部と同じ材料が充填されていることが好ましい。
また、本発明は、両主面間を貫通し、中心軸が前記両主面の少なくとも一方の主面に対して垂直な貫通孔を具える基板と、前記貫通孔の内部に設けられ、クラッド部、および前記基板の一方の主面側の第一端面と前記基板の他方の主面側の第二端面とを具え、前記クラッド部よりも屈折率が高くなったコア部を具え、前記貫通孔は、前記第一端面から前記第二端面に向かって直径が単調減少しているとともに、前記第2端面の内周が前記コア部と接している光伝搬体と、を具備する光伝送基板に関する。
前記貫通孔と前記光伝搬体との間に、金属膜、または前記光伝搬体よりも低屈折率の膜をさらに具備することが好ましい。
前記光伝搬体の端部において、前記貫通孔の開口周縁から前記貫通孔内に陥没する凹部をさらに具え、前記凹部内に設けられ、屈折率がコア部の屈折率以上の透光性部材をさらに具備したことが好ましい。
前記基板の少なくとも一方の主面上に形成され、前記光伝搬体と光学的に結合された光導波路をさらに有することが好ましい。
本発明は、基板の両主面からそれぞれ基板の内側に向けて直径が単調減少するように穿孔して、前記両主面の少なくとも一方の主面に対して中心軸が垂直な一つの貫通孔を形成する工程Aと、前記貫通孔のうち、直径が最小となる最小直径部から一方の主面までの孔部内に、光硬化性を有する第一の透明樹脂を充填する工程Bと、他方の主面側から前記第一の透明樹脂を露光して硬化させることにより、前記貫通孔のうち前記最小直径部から一方の主面側まで、前記第一の透明樹脂から構成されるコア部を形成する工程Cと、前記貫通孔内において、前記コア部の周囲に、前記コア部よりも低い屈折率を有する周囲部を形成する工程Dと、を含む光伝送基板の製造方法に関する。
前記工程Bよりも後に、前記貫通孔に充填された前記第一の透明樹脂の前記一方の主面側の端部に凹部を設ける工程Eと、前記工程Cおよび前記工程Eよりも後に、前記凹部内に、屈折率が前記コア部の屈折率以上の透光性部材を充填する工程Fと、をさらに含むことが好ましい。
基板の両主面のうち、一方の主面から他方の主面に向けて直径が単調減少するように穿孔して、前記両主面の少なくとも一方の主面に対して中心軸が垂直な一つの貫通孔を形成する工程A’と、前記貫通孔内に、光硬化性を有する第一の透明樹脂を充填する工程B’と、前記他方の主面側から前記第一の透明樹脂を露光して硬化させることにより、前記一方の主面側から他方の主面側まで、前記第一の透明樹脂から構成されるコア部を形成する工程C’と、前記貫通孔内において、前記コア部の周囲に、前記コア部よりも低い屈折率を有する周囲部を形成する工程D’と、を含むことが好ましい。
前記工程B’よりも後に、前記貫通孔に充填された前記第一の透明樹脂の少なくとも一つの主面側の端部に凹部を設ける工程E’と、前記工程C’および前記工程E’よりも後に、前記凹部内に、屈折率が前記コア部の屈折率以上の透光性部材を充填する工程F’と、
をさらに含むことが好ましい。
本発明は、前記光伝送基板が複数積層され、隣接する2層の前記光伝送基板の各々における前記光伝搬体の端面同士が互いに対向し、かつ光学的に結合されている多層光伝送基板に関する。
本発明は、前記光伝送基板と、前記光伝送基板の一方の面上に形成された導体パターンと、を具備する光電子混載基板に関する。
本発明は、前記光電子混載基板と、前記光電子混載基板の一方の面上にて前記導体パターンに電気的に接続される光半導体素子と、を具備する光モジュールに関する。
本発明は、前記多層光伝送基板と、前記多層光伝送基板の一方の露出面上に形成された導体パターンと、を具備する光電子混載基板に関する。
本発明は、前記多層光電子混載基板と、前記光電子混載基板の一方の露出面上にて前記導体パターンに電気的に接続される光半導体素子と、を具備する光モジュールに関する。
また、本発明は、上記いずれかに記載の光伝送基板と、前記光伝送基板と平行に配置された第2の基板と、前記第2の基板における前記光伝送基板に対向する面上に形成された光導波路とを有し、前記光伝送基板における前記光伝搬体のコア部が前記光導波路に光学的に結合される複合光伝送基板に関する。
本発明の光伝送基板によれば、両主面間を貫通し、中心軸が前記両主面の少なくとも一方の主面に対して垂直な貫通孔を具える基板と、前記貫通孔の内部に設けられ、前記基板の一方の主面側の第一端面を有するとともに前記貫通孔の径方向において屈折率が周囲部よりも高くなったコア部を有する第一領域と、前記基板の他方の主面側の第二端面を有する第二領域と、前記第一領域と前記第二領域との境界部とを具え、前記第一領域および第二領域がそれぞれ前記第一端面および前記第二端面から前記境界部に向かって直径が単調減少している光伝搬体と、を具備していることによって、光を第一領域側から照射した場合、コア部の周囲部(クラッド部)が境界部において大きく絞り込まれることから、コア部よりも屈折率の低い周囲部を伝搬してノイズとして出射される信号光を減少させることができる。
前記光伝搬体が、前記第二領域において、前記貫通孔の径方向において屈折率が周囲部よりも高くなったコア部を有することにより、信号光が前記コア部において閉じ込められて伝搬する。そして、その結果、光伝搬体の第一領域および第二領域において高効率の信号光伝搬を実現することができる。
前記コア部の外周は、前記貫通孔の内周と等しいことにより、境界部にて周囲部(クラッド部)が途切れているため、第一端面から入射され、コア部から周囲部に漏れた信号光を境界部で遮断し、前記信号光の出射を抑制することができる。
本発明の光伝送基板によれば、両主面間を貫通し、中心軸が前記両主面の少なくとも一方の主面に対して垂直な貫通孔を具える基板と、
前記貫通孔の内部に設けられ、前記基板の一方の主面側の第一端面と前記基板の他方の主面側の第二端面とを具え、前記貫通孔の径方向において屈折率が周囲部よりも高くなったコア部を具え、前記第一端面から前記第二端面に向かって直径が単調減少している光伝搬体と、を具備することにより、前記周囲部が前記第二端面において大きく絞り込まれるため、コア部よりも屈折率の低い周囲部(クラッド部)に伝搬してノイズとして出射される信号光を減少させることができる。
前記コア部の直径は、前記第二端面の直径と一致していることにより、他方の主面には前記コア部のみが露出していることになるため、コア部の位置が明白である。よって、コア部と、受光素子や発光素子などの光素子、他の光伝送基板、光導波路、および光ファイバなどの本発明の光伝送基板と光結合されうる材料との位置合わせが容易になる。
前記貫通孔と前記光伝搬体との間に、金属膜、または前記光伝搬体よりも低屈折率の膜をさらに具備することにより、光伝搬体の外部への信号光の漏れを抑制して、高効率の信号光伝搬を実現することができる。
前記光伝搬体の端部において、前記貫通孔の開口周縁から前記貫通孔内に陥没する凹部をさらに具え、前記凹部内に設けられ、屈折率がコア部の屈折率以上の透光性部材をさらに具備したことにより、光伝搬体に入射した信号光は、拡散が抑制され、前記透光性部材と前記屈折率分布体との界面において光軸に近づくように集光される。そして、それにより、コア部を伝搬する信号光の割合が増え、コア部よりも屈折率の低い周囲部(クラッド部)を伝搬してノイズとして出射される信号光を低減させることができる。
前記基板の少なくとも一方の主面上に形成され、前記光伝搬体と光学的に結合された光導波路をさらに具備することにより、前記基板の少なくとも一方の主面上に形成され、前記光伝搬体と光学的に結合された光導波路をさらに有することにより、伝搬損失の小さい良好な状態で、信号光の三次元的な伝送が可能となる。
本発明の光伝送基板の製造方法によれば、基板の両主面からそれぞれ基板の内側に向けて直径が単調減少するように穿孔して、前記両主面の少なくとも一方の主面に対して中心軸が垂直な一つの貫通孔を形成する工程Aと、前記貫通孔のうち、直径が最小となる最小直径部から一方の主面までの孔部内に、光硬化性を有する第一の透明樹脂を充填する工程Bと、他方の主面側から前記第一の透明樹脂を露光して硬化させることにより、前記貫通孔のうち前記最小直径部から一方の主面側まで、前記第一の透明樹脂から構成されるコア部を形成する工程Cと、前記貫通孔内において、前記コア部の周囲に、前記コア部よりも低い屈折率を有する周囲部を形成する工程Dと、を含むことにより、マスクパターンを形成せずとも、周囲部よりも屈折率の高いコア部を有する光伝搬体を形成することができる。また、製造工程中において、現像時の表面張力によるコアの傾きや倒れを抑制することも可能である。
前記工程Bよりも後に、前記貫通孔に充填された前記第一の透明樹脂の前記一方の主面側に端部に凹部を設ける工程Eと、前記工程Cおよび前記工程Eよりも後に、前記凹部内に、屈折率が前記コア部の屈折率以上の透光性部材を充填する工程Fと、をさらに含むことにより、光伝搬体に入射した信号光の拡散が抑制され、前記透光性部材と前記屈折率分布体との界面において光軸に近づくように集光され、それにより、コア部を伝搬する信号光の割合が増え、コア部よりも屈折率の低い周囲部(クラッド部)中を伝搬してノイズとして出射される信号光を低減させた光伝送基板を製造することができる。
本発明の光伝送基板の製造方法によれば、基板の両主面のうち、一方の主面から他方の主面に向けて直径が単調減少するように穿孔して、前記両主面の少なくとも一方の主面に対して中心軸が垂直な一つの貫通孔を形成する工程A’と、前記貫通孔内に、光硬化性を有する第一の透明樹脂を充填する工程B’と、前記他方の主面側から前記第一の透明樹脂を露光して硬化させることにより、前記一方の主面側から他方の主面側まで、前記第一の透明樹脂から構成されるコア部を形成する工程C’と、前記貫通孔内において、前記コア部の周囲に、前記コア部よりも低い屈折率を有する周囲部を形成する工程D’と、を含むことにより、マスクパターンを形成せずとも、周囲部よりも屈折率の高いコア部を有する光伝搬体を形成することができる。
本発明の多層光伝送基板によれば、前記光伝送基板が複数積層され、隣接する2層の前記光伝送基板の各々における前記光伝搬体の端面同士が互いに対向し、かつ光学的に結合されていることにより、多層間においても、伝搬損失の低い信号光の伝送が可能となる。
本発明の光モジュールによれば、光伝送基板と前記光伝送基板の一方の面上に形成された導体パターンとを具備する光電子混載基板と、前記光電子混載基板の一方の面上にて前記導体パターンに電気的に接続される光半導体素子と、を具備することにより、伝搬損失の低い信号光の伝送が可能となる。
本発明の複合光伝送基板によれば、上記いずれかに記載の光伝送基板と、前記光伝送基板と平行に配置された第2の基板と、前記第2の基板における前記光伝送基板に対向する面上に形成された光導波路とを有し、前記光伝送基板における前記光伝搬体のコア部が前記光導波路に光学的に結合されることから、光伝送基板と別の第2の基板との間における光伝搬の伝送損失を低減し、良好な伝搬特性が得られる。
[第一の態様における光伝送基板]
本発明の第一の態様における光伝送基板について、図1をもとにして以下に説明する。なお、図1は本発明の第一の態様における光伝送基板の実施形態の一例に過ぎず、図1のみに限定されるものではない。
図1において、光伝送基板1は、基板2と光伝搬体3とを具備しており、基板2の一方の主面から他方の主面に光を導通させるはたらきを有する光ビア構造を形成したものである。
基板2は、一方の主面2Aおよび他方の主面2Bの間を貫通されている。そして、中心軸が前記主面に対して垂直である貫通孔を有している。このような貫通孔は、一方の主面2Aおよび他方の主面2Bからそれぞれ基板の内側に向かって単調減少した直径を有している。なお、前記貫通孔は、通常のプリント板の穿孔工程に使用されるドリルやレーザーを用いてそれぞれ適切な条件において穿孔を行うことにより得られる。
基板2は、誘電体シートから形成されている。なお、誘電体シートとしては、電子工業用のプリント基板に使用されるガラスエポキシ樹脂等の周知の材料や、アルミナ等のセラミックスを積層したものが用いられる。
基板2における前記貫通孔は、第一領域4が設けられる貫通孔(以下、第一貫通孔)と第二領域5が設けられる貫通孔(以下、第二貫通孔)とから構成される。ここで、貫通孔の開口部の形状は略円状を示している。
光伝搬体3は、前記貫通孔の内部に設けられており、第一領域4と、第二領域5と、それらの境界部6と、を具備している。ここで、光伝搬体3は貫通孔内部に隙間なく設けられていることが好ましい。
光伝搬体3としては、一方の主面から他方の主面まで信号光を導通させるために、透明樹脂が好ましい。ここで、透明樹脂としては、具体的にアクリル系樹脂、シラン系樹脂、イミド系樹脂、エポキシ系樹脂などがあげられる。
第一領域4は、前記貫通孔の径方向において屈折率が周囲部よりも高くなったコア部12Aと、コア部12Aの周囲部に同心状に設けられたクラッド部13Aと、を有している。ここで、コア部とは、前記貫通孔の径方向において屈折率が周囲部よりも高い部位をいい、そのような屈折率の分布を形成していることによって、信号光をコア部に閉じこめつつ、中心軸に沿って伝搬させることができる。
第一の態様における光伝搬体のコア部は、屈折率がコア部と周囲部との境界で階段状に低くなっている屈折率を有したもの(階段状屈折率分布体)であっても、コア部における屈折率が中心軸から周囲に向かって漸次低下したもの(傾斜状屈折率分布体)であってもよい。
前記階段状屈折率分布体である場合、信号光は屈折率の境界で反射されて中心部の高屈折率領域に閉じ込められて伝搬するので、光伝搬体が一様な屈折率を持つ場合に比べて高効率な信号光伝搬を実現することができる。
また、前記傾斜状屈折率分布体である場合、信号光は光伝搬体の中心部分を蛇行しながら閉じ込められて伝搬するので、より広帯域の信号光伝搬を実現することができる。
第一領域4は第一端面3Aから境界部6に向かってテーパー形状を示している。なお、本発明の第一領域はテーパー形状に限られず、第一端面から境界部に向かって、第一領域の直径が単調減少していればよい。
ここで、第一領域の基板主面方向における断面形状が楕円形状である場合、第一領域の直径とは、前記楕円形状の長径を指すこととする。「単調減少している」とは増加傾向とならないことを意味し、例えば、この場合、第一端面3Aから前記境界部6の間に、前記第一領域4において第一端面3Aの直径と均一な部分があってもよい。
また、第一領域4の直径が単調減少しているかどうかの確認は、例えば、第一領域4をその中心軸にそって切断し、その切断面において、第一端面3Aに該当する辺の長さと境界部6に該当する辺の長さとを比較することからも確認できる。例えば、図1の第一領域4の直径が単調減少していることは、第一領域4の断面形状が、第一端面3Aを長辺とし、境界台6を短辺とする台形を示していることからも確認される。なお、ここでは、第一領域で説明したが、第二領域、境界部でも全く同様である。
前記第一領域4におけるコア部12Aの外周は、貫通孔の内周と等しいことが望ましい。このように前記コア部の外周と前記貫通孔の内周とが等しいことにより、境界部6においてクラッド部13Aが途切れているため、第一端面3Aから入射され、コア部12Aからクラッド部13Aに漏れた信号光を境界部6にて遮断させるという効果が得られる。
第二領域5は、前記基板2の他方の主面側2Bの第二端面3Bを含み、第二端面3Bから境界部6に向かって直径が単調減少している。なお、前記貫通孔と光伝搬体との間に、金属膜、または前記光伝搬体よりも低屈折率の膜のような光反射膜を具備する場合、コア部12Aの内周は、前記光反射膜を含めることとする。
第二領域5は、第一領域4におけるコア部12Aと同一の部材(コア部)12Bを有している。
図1において境界部6は、第一領域4と第二領域5との界面を示している。前記第一領域4および第二領域5がそれぞれ、第一端面3Aおよび第二端面3Bからこの境界部6に向かって直径が単調減少しているため、境界部6における直径は、光伝搬体3の断面の直径のなかで最も小さくなっている。
第一領域4のコア部12Aと第二領域のコア部12Bとは、境界部6で連結されていることにより光学的に結合されている。
図1の光伝送基板1において、例えば、第一領域4における第一端面3Aから光を入射させる場合、光の直径を、コア部12Aの第一端面3Aにおける直径12Adからコア部12Bの第二端面3Bにおける直径12Bdに拡大させることができる。また逆に、第二端面3Bから光を入射させる場合、直径12Bdから直径12Adに縮小させることができる。
図1の光伝搬体における第一領域4は、貫通孔の径方向において屈折率が周囲部よりも高くなったコア部12Aによる屈折率分布を有し、第二領域5は均一な屈折率を有している。また、基板端面においては、直径12Adよりも直径12Bdの方が大きくなっている。これらにより、前記のように信号光のノイズを低減させるとともに、入射光の直径と出射光の直径を変化させることができる。
次に、図3、図5、図11および図14を用いて、本発明の第一の態様における光伝送基板の変形例について説明する。
図3に示す光伝送基板1は、図1に示した光伝送基板1における光伝搬体3と基板2との間に、金属膜または低屈折率高分子から構成される光反射膜14をさらに具備したものである。これにより、入射光と反射光の直径を変化させるとともに、光の閉じ込め効果を大幅に向上させることができる。
第一の態様における光伝搬体の前記反射膜としては、金属膜、または前記光伝搬体よりも低屈折率の膜が挙げられる。
金属膜としては、例えば、信号光の波長において高い反射率を有する金属膜、例えば600から1500nmの波長では金(Au)、銀(Ag)、アルミニウム(Al)等の金属膜などがあげられる。
また、前記低屈折率膜としては、コア部13Bよりも小さな屈折率を有していることが好ましい。前記低屈折率膜としては、例えば、アクリル系樹脂、シラン系樹脂、イミド系樹脂、エポキシ系樹脂等があげられる。
前記光反射膜4は、前記第二領域5が単一の屈折率を有する場合に、前記第二領域5を覆うようにして、第二領域5の光閉じ込め効果を向上させ、光の伝搬損失を大きく減少させることができる。
図5に示す光伝送基板1の境界部6Aは、第一領域4と第二領域5との間に介在している。また、境界部6Aの構造は円柱状を示している。このような構造を形成することにより、基板2の厚さが大きい場合であっても、図1に示す光伝送基板1と同様の効果を有するものとなる。
図11に示す光伝送基板1の第二領域5Aは、コア部12Bを有するとともにクラッド部13Bを有しており、この点でコア部のみを有する図1に示す第二領域5とは相違する。図11に示す光伝送基板1は、境界部6をもとに第一領域4のコア部12Aおよびクラッド部13Aと対称の形状を形成するものである。なお、図11では、前記のようにコア部12Aおよびクラッド部13Aは対称の形状を形成している。
図11において、第一領域および第二領域はそれぞれ、コア部(12A,12B)とクラッド部(13A,13B)とを有している。これにより、第二領域においても光の閉じ込め効果が十分に得られ、光の伝搬損失を最小限に抑制できる。
図14に示す光伝送基板1は、第一端面3Aから基板2の内側に向けて凹部を設け、さらに、第二端面3Bから基板2の内側に向けて凹部を設けたうえで、それらの凹部に透光性部材15を設けたものである。
透光性部材15としては、コア部12Aおよび12Bの屈折率以上の屈折率を有するものが用いられる。具体的な材料としては、アクリル系、シラン系、エポキシ系、石英、セラミック、イミド系などが挙げられる。
なお、図14では第一端面3Aおよび第二端面3Bの両方に凹部を設けているが、いずれか一方だけに設けられていてもかまわない。
図14に示す光伝送基板1は、透光性部材15を有していることにより、コア部12Aおよび12Bよりも屈折率の低い周囲部を伝搬し、ノイズとして出射される信号光を減少させるとともに、光を十分に集光させるという効果を奏しており、伝搬損失をさらに抑制することができる。
[第二の態様における光伝送基板]
本発明の第二の態様における光伝送基板について、図7をもとにして以下に説明する。なお、図7は本発明の第二の態様における光伝送基板の実施形態の一例に過ぎず、図7のみに限定されるものではない。
図7において、光伝送基板23は、基板2と光伝搬体23とを具備しており、基板2の一方の主面から他方の主面に光を導通させるはたらきを有する光ビア構造を形成したものである。
基板2は、一方の主面2Aおよび他方の主面2Bの間を貫通し、中心軸が前記主面に対して垂直である貫通孔を具えている。前記貫通孔は、一方の主面2Aから他方の主面2Bに向かって単調減少した直径を有している。基板2における前記貫通孔の開口部の形状は略円状を示している。
光伝搬体23は、前記貫通孔の内部に設けられており、前記貫通孔の径方向において屈折率が周囲部よりも高くなったコア部32と、コア部32の周囲部に同心状に設けられたクラッド部33と、から構成されている。
光伝搬体23は第一端面23Aから第二端面23Bに向かってテーパー形状を示している。なお、図7の場合は前記のように、テーパー形状となっているが、本発明の光伝搬体はこれに限られず、第一端面23Aから第二端面23Bに向かって、光伝搬体の直径が単調減少していればよい。
第二の態様における光伝送基板により得られる効果としては、コア部よりも屈折率の低い周囲部(クラッド部)が第二端面23Bにおいて大きく絞り込まれるため、ノイズとして出射される信号光を減少させることが挙げられる。さらに、主面2Bにおける光伝搬体の端面23Bとコア部32とはそれぞれ直径が同じであるため、例えば、主面2B側に光素子などを光結合させる場合、2Bに露出している箇所がコア部に等しいため、位置合わせが容易である。
〔本発明の多層光伝送基板〕
第一の態様および第二の態様における光伝送基板はそれぞれ複数積層され、隣接する2層の前記光伝送基板の各々の光伝搬体の端面同士が互いに対向し、さらに光学的に結合されていることで、多層間においても信号光の伝搬損失を低くすることが可能となる。
本発明の多層光伝送基板について、図9および図10をもとにして以下に説明する。なお、図9および図10は、本発明の多層光伝送基板の実施形態の一例に過ぎず、図9および図10のみに限定されるものではない。
図9は、本発明の第一の形態における光伝送基板の実施形態の他の例を模式的に示す要部断面図である。図9の光伝送基板は、第一領域および第二領域の両方にコア部を有する光伝送基板(図11の光伝送基板)が複数枚、積層されたものである。そして、図9に示される構造は、隣接する光伝送基板に設けられた光伝搬体の端面3Aおよび3B同士が互いに対向し、光伝搬体同士が光学的に接続されて積層されている。これにより、多層間においての信号光の伝搬損失を低下することができる。
また、別の実施の形態として、例えば、図10のように、光伝搬体と貫通孔の内壁との間に、金属膜または低屈折率高分子から構成される反射膜をさらに具備した光伝送基板(図4の光伝送基板)を複数枚、積層したものである。図10に示す多層光伝送基板は、光伝送基板が多層構造をとることにより、各層ごとにノイズとなる信号光の抑制が可能となり、ノイズが十分に抑制された光が出射される。
図9および図10に示す多層光伝送基板の他に好ましい多層伝送基板としては、たとえば、第二端面から基板の内側に向けて、透光性部材を設けた凹部を有する光伝送基板(図14の光伝送基板)を複数枚積層したものがあげられる。
〔光導波路を有する本発明の光伝送基板〕
第一の態様および第二の態様における光伝送基板はそれぞれ、光導波路を付加することにより3次元的に光を伝送させることが可能となる。
図16に示す光伝送基板1は、図1に示した光伝送基板に対して、基板2の両主面2Aおよび2Bにそれぞれ光導波路10Aおよび10Bをさらに形成したものである。なお、光導波路10Aおよび10Bは、基板2の面に平行に設けられているが、屈折率分布体2と光学的に結合させることができれば基板の面に平行でなくてもよい。光導波路10Aは、コア部10A2と、これを取り囲むクラッド部10A1とから構成される。
図16の光伝送基板1において、基板2を貫通する光伝搬体3と光導波路10Aとは、光導波路10Aの端部に設けられた光路変換体11Aによって光学的に結合されている。
同様に、光伝搬体3と光導波路10Bとは、光導波路11Bの端部に設けられた光路変換体11Bによって光学的に結合されている。
光導波路10Aは、コア部10A2と、これを取り囲む上部クラッド部10A1および下部クラッド部10A3とから構成される。光路変換体11Aは、透光性部材から構成される基体11A1と、基体11A1に形成された反射面(光路変換面)11A2とを具備する。
ここで、反射面11A2は、信号光の波長において高い反射率を有する金属膜、例えば600nm〜1500nmの波長では金(Au)、銀(Ag)、アルミニウム(Al)などの金属膜をコーティングすることで得られる。
図16の光伝送基板1は、ノイズとして出射される信号光を減少させたものであるため、それら一方の主面2Aおよび他方の主面2Bの光導波路10Aと10Bの間で良好な光伝送をすることができる。
なお、図16には光導波路10Aおよび10Bを形成したものを例示しているが、光導波路10Aまたは10Bのいずれか一方が形成されたものでもよい。
また、図16には光伝搬体3として、図1に記載した光伝搬体3を用いているが、それ以外の光伝搬体でもよく、例えば、図3の光伝搬体3、図5の光伝搬体3、図7の光伝搬体23、図14の光伝搬体3などが挙げられる。なかでも、伝搬損失が小さいことから、図14の光伝搬体が好ましい。
図17は、本発明の光伝送基板を用いた複合光電子基板の実施形態の一例を模式的に示す要部断面図である。図17に示す複合光伝送基板は、図1に示した光伝送基板1と、光伝送基板1に対して平行に配置された第2の基板22とを備えている。一実施例では、光伝送基板1をドーターボードとし、第2の基板22をマザーボードとし、双方の基板上に電気配線が設けられる場合は、図示しない適宜の半田接続部を介して互いに電気的に接続されている。図17において、光伝送基板1は、基板の他方の主面2Bが第2の基板20と対向するようにして、第2の基板20上に設けられている。別の例では、光伝送基板1をマザーボードとし、第2の基板22をドーターボードとしてもよい。なお、図1に示した光伝送基板の替わりに、図3、図5、図7、図11または図14に示した光伝送基板を用いて図17のように複合光伝送基板を構成してもよい。また、図18に示すように、基板の一方の主面2Aと第2の基板20とが対向するように、光伝送基板1が第2の基板20上に設けられていてもよい。
さらに、第2の基板22において光伝送基板1に対向する面22A上には、光導波路40が形成されている。光伝送基板1に形成した光伝搬体3と、第2の基板に形成した光導波路40とは、光導波路40の端部に設けられた光路変換体41によって光学的に結合されている。直接的には、光伝送基板1に設けられた光伝搬体のコア部12Aおよび12Bが、光路変換体41を介して光導波路40と光学的に結合されている。
光導波路40は、コア部40Bと、これを取り囲む上部クラッド部40Aおよび下部クラッド部40Cとから構成される。光路変換体41は、基体に形成された反射面(光路変換面)41Aを具備する。反射面41Aは、信号光の波長において高い反射率を有する金属膜、例えば600から1500nmの波長では金(Au)、銀(Ag)、アルミニウム(Al)等の金属膜をコーティングする。反射面41Aは、光導波路40の光伝送方向(基板に平行な方向)と、光伝搬体3の光伝送方向(基板に垂直な方向に対しやや傾斜した方向)との間で光路変換させる適宜の角度で設けられる。図17の複合光伝送基板の作製方法は、例えば次の通りである。
第1工程では、第2の基板22(例えばマザーボード)の一方の面42A上に光導波路40を作製する。第2工程では、光伝送基板1の基板2(例えばドーターボード)に光伝搬体3を作製する。なお、第1工程と第2工程は、独立して行えるため順不同である。第3工程では、光伝送基板1に適宜の光半導体素子を実装する。最後に、第4工程で、光伝送基板1を第2の基板22上に搭載する。
図17および18においては、光半導体素子として、例えば、第一端面3Aのコア部12A上に発光素子または受光素子を設けることができる。
図17において、第一端面3Aのコア部12A上に受光素子が設けられた場合、光導波路40から伝搬して光路変換体41の反射面にて光路変換された光は、光伝搬体3中の伝搬において、光の直径が12Bdから12Adに絞りこまれることになる。そのため、十分に集光させた光を受光素子に入射させることができる。
また、図18において、第二端面3B上に発光素子が設けられた場合、発光素子から出射された光は、光伝搬体3中の伝搬において、光の直径が12Bdから12Adに絞り込まれることになる。そして、光路変換体41における反射面に対して十分に光の直径を小さくできることから、接続損失を低く保ちながら光導波路40のコア部40B中に光を伝搬させることができる。
〔第一の態様における光伝送基板の製造方法]
本発明の第一の態様における光伝送基板の製造方法について、図2をもとにして以下に説明する。なお、図2は本発明の第一の態様における光伝送基板の製造方法の実施形態の一例に過ぎず、図2のみに限定されるものではない。
図2(a)〜(f)は、図1に示す光伝送基板の製造方法の実施形態の一例を工程順に示した要部断面図である。本発明の第一の態様における光伝送基板の製造方法について、工程Aの一例が図2(a)および(b)に該当し、工程Bの一例が図2(c)に該当し、工程Cの一例が図2(d)および(e)に該当し、工程Dの一例が図2(f)に該当する。なお、図2において、図1の符号と同じ符号は同じ部材を表す。
工程Aは、基板の両主面からそれぞれ基板の内側に向けて直径が単調減少するように穿孔して、中心軸が前記主面に対して垂直である一つの貫通孔を形成する工程をいう。ここで「単調減少する」とは、増加傾向にならないことを意味し、形成された貫通孔の直径が均一
な部分があってもよいことをいう。
図2(a)に示すように、基板2の主面2Bから基板2の内側に向けて基板2を穿孔することにより、基板2には、基板の主面2Bから基板2の内側に向けて直径が狭まったテーパー形状の孔7Bが形成されている。孔7Bの形成は、通常のプリント板の穿孔工程等に使用されるドリルやレーザーを用いて、適切な条件下にておこなわれる。また、金型を用いてもよい。
図2(b)に示すように、基板2の主面2Aから基板2の内側に向けて孔7Bと反対の位置において基板2を穿孔して、基板の主面2Aから基板2の内側に向けて直径が狭まったテーパー形状の孔7Aを形成することにより、基板2には、孔7Bと同心軸上に位置する孔7Aが形成される。孔7Aの形成は、孔7Bの形成法と同様におこなわれる。
図2(a)および図2(b)の工程によって、孔7Aと孔7Bとから構成された貫通孔7が形成される。貫通孔7の中心軸19は、基板の主面2Aおよび2Bに対して垂直である。
なお、図2(a)に記載の穿孔工程は、図2(b)に記載の穿孔工程前におこなわれているが、工程Aにおいて、図2(a)に記載の穿孔工程および図2(b)に記載の穿孔工程を併せて、一方の主面2Aおよび他方の主面2Bの両主面から同時に穿孔をおこなってもよい。
工程Bは、前記貫通孔のうち、直径が最小となる最小直径部7Cから一方の主面までの孔部内に、光硬化性を有する第一の透明樹脂を充填する工程をいう。
図2(c)に示すように、基板2には、貫通孔7内に、光硬化性を有する第一の透明樹脂8が充填される。第一の透明樹脂8は、図1における光伝搬体3のコア部12Aおよびコア部12Bを形成するための材料であり、光の照射により硬化するものをいう。例えば、アクリル樹脂、エポキシ系樹脂、イミド系樹脂、シラン系樹脂などが挙げられる。また、第一の透明樹脂8としては他に、光の照射により硬化するとともに、その屈折率が増加するものでもよい。
なお、図2(c)では貫通孔7内に第一の透明樹脂8が充填されているが、工程Bはそれに限定されるものではなく、工程Cにおいて露光される主面側とは反対の主面側から、前記貫通孔のうち直径が最小となる最小直径部7Cまでの範囲内において第一の透明樹脂8が充填されていればよい。
前記第一の透明樹脂8の充填には、シリンジによる注入法や真空吸引による吸引法を用いればよい。第一の透明樹脂8を貫通孔7に充填する際には、貫通孔7から溢れ出たり、逆に不足したりすることがないように、その上下端面が基板2の上下の両主面2Aおよび2Bとそれぞれほぼ同一平面となるように充填する。
第一の透明樹脂8が液状である場合は、約100℃で数分間加熱(プリベーク)することにより、溶媒を除去する。
工程Cは、他方の主面側から前記第一の透明樹脂を露光して硬化させることにより、前記貫通孔のうち前記最小直径部から一方の主面側まで、前記第一の透明樹脂から構成されるコア部を形成する工程をいう。
図2(d)において、第一の透明樹脂8は、基板の主面2Bに向かって垂直な方向から光を照射されている。基板の主面2B側から紫外光の照射を行なうことにより、第一の透明樹脂8のうち孔7Bに充填されたものは全体に光の照射がなされ、硬化する。ここで、光の照射により硬化した第一の透明樹脂8のうち、光照射側の基板主面2Bから最小直径部7Cまでの領域を硬化部8a1とする。
最小直径部7Cがマスクパターンとしての役割を果たすことにより、第一の透明樹脂8のうち孔7Aに充填されたものは、まず、7B側から伝搬された光により照射され、最小直径部7Cを底面とする円柱状に硬化する。ここで、光の照射により硬化した第一の透明樹脂8のうち、光照射側とは逆側の基板主面2Aから最小直径部7Cまでの領域を硬化部8a2とする。
一方、最小直径部7Cから主面2Aまでの間において、第一の透明樹脂8aの周囲部は、最小直径部7Cがマスクパターンとしての役割を果たすことにより、光が照射されていないため、第一の透明樹脂8は硬化されない(非硬化部8b)。
工程Dは、前記貫通孔内において、前記コア部の周囲に、前記コア部よりも低い屈折率を有する周囲部を形成する工程をいう。
図2(e)に示すように、図2(d)の工程をおこなった後に、紫外光による露光後に現像をおこなうことにより、非硬化部8bは除去され、除去部分に空隙部16が形成される。
そして、図2(f)に示すように、第二の透明樹脂9が空隙部16に充填される。第二の透明樹脂9の充填後、基板全体を約100℃で数10分間加熱して、いわゆるポストベークを行なうことにより、第一の透明樹脂8a1がコア部12Aに、また、第二の透明樹脂9がクラッド部13となる。クラッド部13が、得られたコア部12Aよりも低い屈折率を有するように第一の透明樹脂8および第二の透明樹脂9を選択する。
なお、図2(e)および(f)に示す工程において、現像により設けた空隙部16に第一の透明樹脂8とは異なる第二の透明樹脂9を新たに充填しているが、工程Dはそれに限定されるものではない。例えば、第一の透明樹脂として、光照射により屈折率が上昇する透明樹脂を使用することで、光照射された部分と光照射されていない部分との間に屈折率の差が得られる。その後、現像をおこなわず、照射後にポストベークをおこなうことでも工程Dは達成される。
以上より、図2に示した製造方法を用いることで、マスクパターンの形成工程をおこなうことなく、円滑に図1の光伝送基板を形成することができる。
次に、図4、図6、図12、図13および図15を用いて、本発明の第一の態様における光伝送基板の製造方法の変形例について説明する。
図4(a)〜(g)は、図3に示す光伝送基板の製造方法の実施形態の一例を工程順に示した要部断面図である。図4に示す光伝送基板の製造方法は、図2(b)と図2(c)との工程の間に、反射膜14を形成する工程(図4(c))を設けた以外は、図2と同様の工程によりおこなう。なお、図4(a)〜(b)に示す工程は、図2(a)〜(b)に示す工程と同様であり、図4(d)〜(g)に示す工程は、図2(c)〜(f)に示す工程と同様である。図4(c)の工程において、反射膜の形成は、例えば、コーティングにより行われる。ここで、コーティングは、具体的にメッキ、蒸着、スパッタリング、塗布等によりおこなわれる。
図6(a)〜(g)は、図5に示す光伝送基板の製造方法の実施形態の一例を工程順に示した要部断面図である。図6に示す光伝送基板の製造方法は、図2(a)に示す工程の前に、円柱状の貫通孔を設ける工程(図6(a)に示す工程)を設けた以外は、図2と同様の工程によりおこなう。なお、図6(b)〜(g)に示す工程は図2(a)〜(f)に示す工程とそれぞれ同様である。図6(a)に示す工程において、基板2に対して、ドリルまたはレーザーを適切な条件下にて使用することにより、円柱状の貫通孔7dを形成する。図6に示す製造方法によれば、基板の厚みが大きい場合であっても、最初に直径の一定な円柱状の貫通孔を穿孔し、その後に、本発明の光伝送基板の製造方法をおこなうことにより、基板の厚みに依存せずに優れた性能を有する光伝搬体を作製することが可能である。
図12(a)〜(f)は、図11に示す光伝送基板の製造方法の実施形態の一例を工程順に示した要部断面図である。図12に示す光伝送基板の製造方法において、図12(a)〜(c)に示す工程は、図2(a)〜(c)に示す工程とそれぞれ同様である。また、図12(e)〜(f)に示す工程は、図2(e)〜(f)に示す工程とそれぞれ同様である。図12(d)では、フォトマスク30を用いて、第一の透明樹脂8が紫外線露光される。フォトマスク30には、例えば、貫通孔7より小さい径の円形の遮光部30aをマスクパターンとして形成したものを用いることができる。なお、30bは透光部である。この遮光部30aは、完成後の屈折率分布体の中心部に対応するマスクパターンとして形成する。そして、露光をおこなうことにより、透光部30bに光が照射され、透光部30bを底面とする円柱状のコア部が形成される。
図13(a)〜(i)は、図11に示す光伝送基板の製造方法の実施形態の一例を工程順に示した要部断面図であり、図12に示す製造方法とは異なるものである。図13(c)に示す工程は、貫通孔7のうち孔7Aのみを第一の透明樹脂8により充填する工程を示している。なお、図13(d)および(e)に示す工程は、図2(d)および(e)に示す工程とそれぞれ同様である。図13(f)に示す工程は、孔7Bに第一の透明樹脂8を充填する工程を示している。図13(g)に示す工程は、基板の主面2Aから紫外光の照射する工程を示している。これによって紫外光は第一領域と前記第二領域との最小直径部7Cを通って、孔へ入射する。最小直径部10C3はマスクパターンとしての役割を果たし、紫外光を最小直径部7Cの内部の第一の透明樹脂12A1を露光する。
以上のように図12または図13に示す工程をおこなうことにより、図11に示す光伝送基板を作製することができる。また、図12(e)および図13(h)において、最小直径部7Cは前記第一の透明樹脂8の硬化部8aの土台としてはたらく。具体的には、現像時の表面張力により生じる前記硬化部8aの倒れを、最小直径部7Cにより抑制することができる。
図15(a)〜(h)は、図2に示す光伝送基板の製造方法の実施形態の一例を模式的に示す工程ごとの要部断面図である。図15(a)〜(c)に示す工程は、図2(a)〜(c)に示す工程と同様である。図15(d)では、透光性部材を使用し、約100で数分間加熱し、いわゆるプリベークを行なうことによって、前記貫通孔に充填された前記光硬化性樹脂の端部に凹部34を設けている(工程E)。この工程は、本発明の第一の態様における光伝送基板の製造方法において、工程Dに該当し、工程Bと工程Cとの間におこなわれるものである。図15(e)〜(g)は、図2(d)〜(f)と同様におこなう。図15(h)は、前記凹部34内に、透光性部材15を充填し、ポストベークをおこなうことにより図13の光伝送基板が形成される(工程F)。
〔第二の態様における光伝送基板の製造方法]
本発明の第二の態様における光伝送基板の製造方法について、図8をもとにして以下に説明する。なお、図8は本発明の第一の態様における光伝送基板の製造方法の実施形態の一例に過ぎず、図8のみに限定されるものではない。
図8(a)〜(e)は、図7に示す光伝送基板の製造方法の実施形態の一例を工程順に示した要部断面図である。本発明の第二の態様における光伝送基板の製造方法について、工程A’の一例が図8(a)に該当し、工程Bの一例が図8(b)に該当し、工程Cの一例が図8(c)および(d)に該当し、工程Dの一例が図8(e)に該当する。なお、図7の符号と同じ符号は同じ部材を表す。
ここで、図8(b)は図2(c)と、図8(d)は図2(e)と、また、図8(e)は図2(f)と同一の工程であるので、これらの説明は省略し、図8(a)および図8(c)のみ説明する。
図8(a)に示すように、基板2の主面2Aから基板2の主面2Bに向けて基板2を穿孔することにより、基板2には、基板の主面23Bから基板2の内側に向けて直径が狭まったテーパー形状の貫通孔7が形成される。
また、図8(c)に示すように、基板の主面2Bからの光の照射により、透明樹脂8を硬化させ、最小直径部7Cを底面とする円柱状の硬化部8aを形成する。
図8(a)〜(e)をおこなうことにより、図7に示す光伝送基板を作製することができる。
[光電子混載基板および光モジュール]
本発明の光電子混載基板は、光伝送基板と導体パターンとを具備するものである。また、本発明の光モジュールは、前記光電子混載基板と、光半導体素子と、を具備するものである。
前記光モジュールについて図19および図20をもとにして説明するが、本発明の光電子混載基板および光モジュールはこれらに限定されるものではない。
図19は本発明の光モジュールの実施形態の一例を示す模式的な要部断面図である。図19に示す本発明の光モジュール20は、図1の光伝送基板と、それに対してさらに基板を重ねあわせた二層基板構成である。また、図19において、光電子混載基板は、光半導体素子18を除いた部分を指す。光モジュールに用いられる光伝送基板としては、前記第一の態様および第二の態様の光伝送基板が挙げられる。
光モジュール20における光伝送基板1側の面上には第一の導体パターン17aおよび17bが形成され、光モジュール20の面下には第二の導体パターン17cが形成されている。さらに、光モジュール20を貫通して第一の導体パターン17bと第二の導体パターン17cとを接続する貫通導体17dが形成されている。さらに、光伝送基板1側の面上にて第一の導体パターン17aおよび17bに電気的に接続される光半導体素子18を設け、また、光導波路基板2と第二の基板2Aの間に光導波路10Cとを形成している。そして、光モジュール20中の光伝送基板1側におけるコア部12Aが光半導体素子18に光学的に結合する。また、光伝送基板1の光導波路10Cと光伝搬体3は光路変換体11C2によって光学的に結合されている。
図20は本発明の光モジュールの実施形態の他の例を示す模式的な要部断面図である。図20に示す本発明の光モジュール20は、一方の面上に第一の導体パターン17aおよび17bが形成され、他方の面上に第二の導体パターン17cが形成されている。さらに、光伝送基板1を貫通して第一の導体パターン17bと第二の導体パターン17cとを接続する貫通導体17dが形成されている。さらに、光伝送基板1の一方の面上には、第一の導体パターン17a、17bに電気的に接続される光半導体素子18を設けている。そして、光伝送基板1の一方の面における屈折率分布体のコア部12Aが光半導体素子18に光学的に結合する。また、光伝送基板1の光導波路10Cと光伝搬体3は光路変換体11C2によって光学的に結合されている。
本発明の光モジュールにおいて、光半導体素子としては、発光デバイスである半導体レーザーや発光ダイオード等、あるいは受光デバイスであるフォトダイオード等が具体的に挙げられる。光半導体素子18は、光伝送基板1上に形成された第一の導体パターン上において、活性領域である発光点(図示せず)を光伝送基板1に向けて搭載され、その電極が第一の導体パターンに接合される。接合材料には、ハンダ合金や、導電性接着剤や、Auなどの金属などを用いることができる。光半導体素子を搭載する際は、その電極が第一の導体パターンに接合されるとともに、光伝搬体を介して発光点が光路変換面と光学的に結合するよう、画像処理装置等を使って所定の位置に精密に位置決めされる。
光半導体素子18に対しては、導体パターン17a,17bを通して、そのアノード電極からカソード電極への順方向に電流が印加される。そしてそれにより、発光デバイスである光半導体素子18の活性領域から光が出射される。
光モジュールを構成する光伝送基板には、光半導体素子18の発光点が対向する位置に、コア部12Aが設けられている。屈折率分布体を連結して構成される光伝搬体3は、光半導体素子18の発光点と光路変換面11C2との間で光伝送基板1を貫通するように設けられている。各光伝送基板の光伝搬体3は、光半導体素子18の発光点のサイズおよびそこから放射される出射光に対して十分大きな直径をもつようなサイズとされている。また、光伝搬体3は、光路変換面11C2にも対応する大きさとされる。
光半導体素子18が面受光型デバイスの場合は、信号光の光路が逆方向となる。すなわち、光導波路10Cを伝搬してきた信号光はそのコア部から出射し、光路変換面11C2で反射されて光路変換され、光伝搬体3に入射する。そして、その信号光は、面受光型フォトダイオード等の面受光型デバイス18の活性領域へと達して受光される。
ここで、本発明の光モジュール20においては、光半導体素子18が面発光型レーザダイオードまたは面受光型フォトダイオードである場合、基板上にこれらのデバイスの活性領域を対向させて実装するだけで光結合が容易に構成できるので、特別な部品を用いずとも高効率な光結合構造を容易に実現できる。
図19または図20の光モジュール20の応用例として、面発光型デバイスの光半導体素子と面受光型デバイスの光半導体素子とを、光伝送基板1の一方の面上にそれぞれ搭載固定し、それぞれの光半導体素子に対応させて光伝送基板1内に光伝搬体3を内在させ、光伝送基板1の他方の面上に設けた光導波路を介して光結合することにより、光伝送基板1内での良好な信号光の伝送が可能となる。
図19および図20には、光伝搬体3として、図1に記載した光伝搬体3を用いているが、それ以外の光伝搬体でもよく、例えば、図3の光伝搬体3、図5の光伝搬体3、図7の光伝搬体23、図11の光伝搬体3、図14の光伝搬体3などが挙げられる。
また、本発明の光モジュールは、光伝送基板に替えて、前記多層光伝送基板を用いてもよい。多層光伝送基板としては、具体的に、図9または図10などがあげられるが、これらに限定されるものではない
図19または図20に示す本発明の光モジュールの実施の形態の一例によれば、コア部よりも屈折率の低い周囲部を伝搬しノイズとして出射される信号光を減少させるものであるから、受信側の受信レベルが向上し、それにより光半導体素子間で高速かつ誤り率の小さい良好な情報アクセスをすることができる。
本発明の第一の態様の光伝送基板の実施の形態の一例を模式的に示す要部断面図である。 図1に示す光伝送基板の製造方法の実施の形態の一例を模式的に示す要部断面図である。 本発明の第一の態様の光伝送基板の実施の形態の一例を模式的に示す要部断面図である。 図3に示す光伝送基板における製造方法の実施の形態の一例を模式的に示す要部断面図である。 本発明の第一の態様の光伝送基板の実施の形態の一例を模式的に示す要部断面図である。 (a)〜(g)は、図5に示す光伝送基板における製造方法の実施の形態の一例を工程毎に模式的に示す要部断面図である。 本発明の第二の態様の光伝送基板の実施の形態の一例を模式的に示す要部断面図である。 (a)〜(e)は、図7に示す光伝送基板における製造方法の実施の形態の一例を工程毎に模式的に示す要部断面図である。 本発明の多層光伝送基板の実施の形態の一例を模式的に示す要部断面図である。 本発明の多層光伝送基板の実施の形態の一例を模式的に示す要部断面図である。 本発明の第一の態様の光伝送基板の実施の形態の一例を模式的に示す要部断面図である。 (a)〜(f)は、図11に示す光伝送基板における製造方法の実施の形態の一例を工程毎に模式的に示す要部断面図である。 (a)〜(i)は、図11に示す本発明の第一の光伝送基板における製造方法の実施の形態の一例を工程毎に模式的に示す工程ごとの要部断面図である。 本発明の第一の光伝送基板の実施の形態の一例を模式的に示す要部断面図である。 (a)〜(h)は、図14に示す光伝送基板における製造方法の実施の形態の一例を工程毎に模式的に示す要部断面図である。 光導波路をさらに有する本発明の光伝送基板の実施の形態の一例を模式的に示す要部断面図である。 本発明の複合光伝送基板の実施形態の一例を模式的に示す要部断面図である。 本発明の複合光伝送基板の実施形態の一例を模式的に示す要部断面図である。 本発明の光モジュールの実施の形態の一例を模式的に示す要部断面図である。 本発明の光モジュールの実施の形態の一例を模式的に示す要部断面図である。
符号の説明
1 光伝送基板
2 基板
2A 基板の一方の主面
2B 基板の他方の主面
3 光伝搬体
3A 第一端面
3B 第二端面
4 第一領域
5 第二領域
5A 図11における光伝送基板1の第二領域
6 境界部
6A 円柱状の境界部
7 貫通孔
8 第一の透明樹脂
9 第二の透明樹脂
10A 2Aに形成された光導波路
10A1 光導波路10A中における上部クラッド部
10A2 光導波路10A中におけるコア部
10A3 光導波路10A中における下部クラッド部
10B 2Bに形成された光導波路
10B1 光導波路10B中における下部クラッド部
10B2 光導波路10B中におけるコア部
10B3 光導波路10B中における上部クラッド部
10C 光モジュール20中における光導波路
11A1 2Aに形成された透光性部材から構成される基体
11A2 基体11A1に形成された反射面
11B1 2Bに形成された透光性部材から構成される基体
11B2 基体11B1に形成された反射面
11C2 光路変換面
12A 第一領域4におけるコア部
12B 第二領域におけるコア部
13A 第一領域におけるクラッド部
13B 第二領域におけるクラッド部
14 光反射膜
15 透光性部材
16 空隙部
17 導体パターン
18 光半導体素子
19 貫通孔の中心軸
20 光モジュール
22 第2の基板
22A 第2の基板において光伝送基板1に対向する面
23 光伝搬体
30 フォトマスク
32 コア部
33 クラッド部
34 凹部
40 面22A上に形成された光導波路
40A 光導波路40における上部クラッド部
40B 光導波路40におけるコア部
40C 光導波路40における下部クラッド部
41 光路変換体
41A 光路変換体41における反射面

Claims (17)

  1. 両主面間を貫通し、中心軸が前記両主面の少なくとも一方の主面に対して垂直であり、一方の主面から他方の主面側に単調減少する第一領域と、該第一領域以外の第領域とが境界部で接続された貫通孔を具える基板と、
    前記第領域の前記貫通孔の内部に設けられた、クラッド部、および前記一方の主面側に第一端面を有するとともに前記クラッド部よりも屈折率が高くなったコア部を有する光伝搬体と、を具備し、
    前記コア部が前記境界部の内周と接している光伝送基板。
  2. 前記第二領域において、前記貫通孔の径方向において屈折率が周囲部よりも高くなったコア部を有している請求項1に記載の光伝送基板。
  3. 前記貫通孔の前記第二領域には、前記コア部と同じ材料が充填されている請求項1に記載の光伝送基板。
  4. 両主面間を貫通し、中心軸が前記両主面の少なくとも一方の主面に対して垂直な貫通孔を具える基板と、
    前記貫通孔の内部に設けられ、クラッド部、および前記基板の一方の主面側の第一端面と前記基板の他方の主面側の第二端面とを具え、前記クラッド部よりも屈折率が高くなったコア部を具え、前記貫通孔は、前記第一端面から前記第二端面に向かって直径が単調減少しているとともに、前記第2端面の内周が前記コア部と接している光伝送基板。
  5. 前記貫通孔表面に、金属膜、または前記光伝搬体よりも低屈折率の膜をさらに具備する請求項1乃至のいずれかに記載の光伝送基板。
  6. 前記光伝搬体の端部において、前記貫通孔の開口周縁から前記貫通孔内に陥没する凹部をさらに具え、
    前記凹部内に設けられ、屈折率がコア部の屈折率以上の透光性部材をさらに具備する請求項1乃至のいずれかに記載の光伝送基板。
  7. 前記基板の少なくとも一方の主面上に形成され、前記光伝搬体と光学的に結合された光導波路をさらに具備する請求項1乃至のいずれかに記載の光伝送基板。
  8. 基板の両主面からそれぞれ基板の内側に向けて直径が単調減少するように穿孔して、前
    記両主面の少なくとも一方の主面に対して中心軸が垂直な一つの貫通孔を形成する工程Aと、
    前記貫通孔のうち、直径が最小となる最小直径部から一方の主面までの孔部内に、光硬化性を有する第一の透明樹脂を充填する工程Bと、
    他方の主面側から前記第一の透明樹脂を露光して硬化させることにより、前記貫通孔のうち前記最小直径部から一方の主面側まで、前記第一の透明樹脂から構成されるコア部を形成する工程Cと、
    前記貫通孔内において、前記コア部の周囲に、前記コア部よりも低い屈折率を有する周囲部を形成する工程Dと、
    を含む光伝送基板の製造方法。
  9. 前記工程Bよりも後に、前記貫通孔に設けられた前記第一の透明樹脂の前記一方の主面側の端部に凹部を設ける工程Eと、
    前記工程Cおよび前記工程Eよりも後に、前記凹部内に、屈折率が前記コア部の屈折率以上の透光性部材を充填する工程Fと、
    をさらに含む請求項記載の光伝送基板の製造方法。
  10. 基板の両主面のうち、一方の主面から他方の主面に向けて直径が単調減少するように穿孔して、前記両主面の少なくとも一方の主面に対して中心軸が垂直な一つの貫通孔を形成する工程A’と、
    前記貫通孔内に、光硬化性を有する第一の透明樹脂を充填する工程B’と、
    前記他方の主面側から前記第一の透明樹脂を露光して硬化させることにより、前記一方の主面側から他方の主面側まで、前記第一の透明樹脂から構成されるコア部を形成する工程C’と、
    前記貫通孔内において、前記コア部の周囲に、前記コア部よりも低い屈折率を有する周囲部を形成する工程D’と、
    を含む光伝送基板の製造方法。
  11. 前記工程B’よりも後に、前記貫通孔に設けられた前記第一の透明樹脂の少なくとも一つの主面側の端部に凹部を設ける工程E’と、
    前記工程C’および前記工程E’よりも後に、前記凹部内に、屈折率が前記コア部の屈折率以上の透光性部材を充填する工程F’と、
    をさらに含む請求項10記載の光伝送基板の製造方法。
  12. 請求項1乃至のいずれかに記載の光伝送基板が複数積層され、隣接する2層の前記光伝送基板の各々における前記光伝搬体の端面同士が互いに対向し、かつ光学的に結合されている多層光伝送基板。
  13. 請求項1乃至のいずれかに記載の光伝送基板と、
    前記光伝送基板の一方の面上に形成された導体パターンと、
    を具備する光電子混載基板。
  14. 請求項13記載の光電子混載基板と、
    前記光電子混載基板の一方の面上にて前記導体パターンに電気的に接続される光半導体素子と、
    を具備する光モジュール。
  15. 請求項12に記載の多層光伝送基板と、
    前記多層光伝送基板の一方の露出面上に形成された導体パターンと、
    を具備する光電子混載基板。
  16. 請求項15記載の多層光電子混載基板と、
    前記光電子混載基板の一方の露出面上にて前記導体パターンに電気的に接続される光半導体素子と、
    を具備する光モジュール。
  17. 請求項1乃至のいずれかに記載の光伝送基板と、前記光伝送基板と平行に配置された第2の基板と、前記第2の基板における前記光伝送基板に対向する面上に形成された光導波路とを有し、
    前記光伝送基板における前記光伝搬体のコア部が前記光導波路に光学的に結合される複合光伝送基板。
JP2007142126A 2006-09-27 2007-05-29 光伝送基板およびその製造方法、並びに光電子混載基板および光モジュール Expired - Fee Related JP5078442B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142126A JP5078442B2 (ja) 2006-09-27 2007-05-29 光伝送基板およびその製造方法、並びに光電子混載基板および光モジュール

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006262487 2006-09-27
JP2006262487 2006-09-27
JP2007142126A JP5078442B2 (ja) 2006-09-27 2007-05-29 光伝送基板およびその製造方法、並びに光電子混載基板および光モジュール

Publications (2)

Publication Number Publication Date
JP2008107781A JP2008107781A (ja) 2008-05-08
JP5078442B2 true JP5078442B2 (ja) 2012-11-21

Family

ID=39441135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142126A Expired - Fee Related JP5078442B2 (ja) 2006-09-27 2007-05-29 光伝送基板およびその製造方法、並びに光電子混載基板および光モジュール

Country Status (1)

Country Link
JP (1) JP5078442B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267426B2 (ja) * 2009-11-04 2013-08-21 住友ベークライト株式会社 光素子搭載基板、光電気混載基板および電子機器
JP5477041B2 (ja) * 2010-02-22 2014-04-23 住友ベークライト株式会社 光素子搭載基板、光電気混載基板および電子機器
JP5505140B2 (ja) 2010-07-05 2014-05-28 富士通株式会社 光モジュールおよび製造方法
JP5760365B2 (ja) * 2010-10-01 2015-08-12 住友ベークライト株式会社 光導波路モジュールおよび電子機器
JP2012145743A (ja) * 2011-01-12 2012-08-02 Nippon Telegr & Teleph Corp <Ntt> 光モジュール
US11585981B2 (en) * 2020-04-15 2023-02-21 Hirose Electric Co., Ltd. Multi-mode waveguide system and connector for photonic integrated circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940750A (ja) * 1972-08-23 1974-04-16
JP3715425B2 (ja) * 1998-03-06 2005-11-09 ブラザー工業株式会社 光導波路付基板の製造方法
JP2002258081A (ja) * 2001-02-28 2002-09-11 Fujitsu Ltd 光配線基板、光配線基板の製造方法及び多層光配線
JP2004279687A (ja) * 2003-03-14 2004-10-07 Tetsuzo Yoshimura オプトエレクトロニックマイクロシステム、導波路素子、バリアブルウエルオプティカルic、オプトエレクトロニックマイクロ/ナノシステム、
JP2005070573A (ja) * 2003-08-27 2005-03-17 Sony Corp 光導波路、光源モジュール、並びに光情報処理装置
JP2006047764A (ja) * 2004-08-05 2006-02-16 Mitsui Chemicals Inc 突起状光導波路,その製造方法およびそれを用いた光電気混載基板

Also Published As

Publication number Publication date
JP2008107781A (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
JP5532929B2 (ja) 光配線プリント基板の製造方法
JP4690870B2 (ja) 光電気集積配線基板及び光電気集積配線システム
KR101390137B1 (ko) 위치 결정 구조체를 갖는 광도파로 기판 및 그 제조 방법, 및 광전기 혼재 기판의 제조 방법
JP5670169B2 (ja) 光導波路の製造方法
KR20020038594A (ko) 광·전기배선기판, 실장기판 및 광전기배선기판의 제조방법
JP5078442B2 (ja) 光伝送基板およびその製造方法、並びに光電子混載基板および光モジュール
JP5014855B2 (ja) 光電気集積配線基板およびその製造方法並びに光電気集積配線システム
US7986862B2 (en) Optical transmission substrate, method for fabricating the same, and optoelectronic hybrid substrate
JP4969711B2 (ja) 光伝送体およびその製造方法、ならびに光伝送モジュール
JP2011237503A (ja) 光電気複合基板及びその製造方法
JP2006330697A (ja) 光結合構造並びに光伝送機能内蔵基板およびその製造方法
JP5328095B2 (ja) 光伝送基板、光電子混載基板、光モジュールおよび光電気回路システム
JP5244585B2 (ja) 光伝送基板及びその製造方法並びに光伝送装置
JP2007086367A (ja) 光ピン、光ピンコネクタ及び光路変換用モジュール
JP4511291B2 (ja) 光接続装置の製造法及びその光接続装置
JP5976769B2 (ja) 光導波路及び光導波路装置
WO2012029370A1 (ja) 光伝送構造体およびその製造方法、ならびに光伝送モジュール
JP2008275770A (ja) 光路変換体、光路変換構造、複合光伝送基板および光モジュール
JP4698728B2 (ja) 光電気集積配線基板および光電気集積配線システム
US10928598B2 (en) Optical waveguide mounting substrate and optical communication device
WO2024075496A1 (ja) 光導波路
JP2005070142A (ja) 光路変換部品付きの光導波路構造体、光路変換部品及びその製造方法
JP4691196B2 (ja) 光電気集積配線基板及び光電気集積配線システム
JP2012150279A (ja) 光伝送構造体および光伝送モジュール
JP2009133967A (ja) 光伝送基板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5078442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees