JP5077863B2 - Fine processing method and apparatus for carbon-based materials using low vacuum scanning electron microscope - Google Patents

Fine processing method and apparatus for carbon-based materials using low vacuum scanning electron microscope Download PDF

Info

Publication number
JP5077863B2
JP5077863B2 JP2005001888A JP2005001888A JP5077863B2 JP 5077863 B2 JP5077863 B2 JP 5077863B2 JP 2005001888 A JP2005001888 A JP 2005001888A JP 2005001888 A JP2005001888 A JP 2005001888A JP 5077863 B2 JP5077863 B2 JP 5077863B2
Authority
JP
Japan
Prior art keywords
carbon
electron beam
sample
vacuum state
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005001888A
Other languages
Japanese (ja)
Other versions
JP2006190578A (en
Inventor
隆史 関口
潤一 新妻
聡 小泉
佳彦 中山
宏征 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, National Institute for Materials Science filed Critical Hitachi High Technologies Corp
Priority to JP2005001888A priority Critical patent/JP5077863B2/en
Publication of JP2006190578A publication Critical patent/JP2006190578A/en
Application granted granted Critical
Publication of JP5077863B2 publication Critical patent/JP5077863B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、カーボンナノチューブ(以下CNTと呼ぶ)、ダイヤモンド、黒鉛などの炭素系材料の微細加工方法に関する。詳しくは、電子顕微鏡を用いた黒鉛などの炭素系材料のナノメートルスケールからミクロンスケールレベルのエッチングないしは切断状態をその場で確認しながら加工することのできる、加工方法に関する。   The present invention relates to a fine processing method for carbon-based materials such as carbon nanotubes (hereinafter referred to as CNT), diamond, and graphite. More specifically, the present invention relates to a processing method capable of performing processing while confirming an etching or cutting state on a nanometer scale to micron scale level of a carbon-based material such as graphite using an electron microscope on the spot.

さらに詳しくは、この加工方法は、前記電子顕微鏡内を、オリフィスあるいは排気弁と排気ポンプからなる差動排気室によって、電子銃の置かれた電子線出射室と炭素材料が設置された試料室とを分け、試料の状態を観察、確認するときは、試料室をも高真空とし、試料を加工する際には、試料室に雰囲気ガスを導入し、低真空に切換えられるようにした、炭素材料の微細加工方法に関する。   More specifically, in this processing method, an electron beam emitting chamber in which an electron gun is placed and a sample chamber in which a carbon material is placed are arranged in the electron microscope by a differential exhaust chamber comprising an orifice or an exhaust valve and an exhaust pump. When observing and checking the state of the sample, the sample chamber is also set to a high vacuum, and when processing the sample, an atmospheric gas is introduced into the sample chamber so that it can be switched to a low vacuum. The present invention relates to a fine processing method.

さらに詳しくは、炭素材料の加工を行うときには、試料室の圧力を低真空に調整し、電子銃より試料に向けて電子線を正確に照射するとともに、試料室の雰囲気ガスをプラズマ化し、このプラズマ化したガスと、電子ビームの作用によって、前記電子線が照射された領域の炭素材料をナノレベルの精度でエッチングないしは切断、穴あけする、低真空電子線照射による炭素系材料の微細加工方法に関する。 More specifically, when processing the carbon material, the pressure in the sample chamber is adjusted to a low vacuum, the electron beam is accurately irradiated from the electron gun toward the sample, and the atmosphere gas in the sample chamber is converted into plasma, and this plasma The present invention relates to a fine processing method of a carbon-based material by low-vacuum electron beam irradiation, in which a carbon material in a region irradiated with an electron beam is etched, cut, or drilled with nano-level accuracy by the action of an activated gas and an electron beam.

近年、ナノレベルの技術が盛んに研究されている。なかでも、カーボンナノチューブを使えば電気伝導や電子放出がナノスケールで実現できることから、非常に注目され、研究されている。さらに、ダイヤモンド、黒鉛なども、様々の分野への応用が期待されている。カーボンナノチューブをはじめ、炭素材料を一層利用しようとするにおいては、ナノレベルの超微細加工技術が必要とされ、再現性のある超高精度加工手段の開発が求められている。 In recent years, nano-level technology has been actively studied. In particular, carbon nanotubes are attracting much attention and research because they can realize electrical conduction and electron emission at the nanoscale. Furthermore, diamond and graphite are expected to be applied in various fields. In order to further use carbon materials such as carbon nanotubes, nano-level ultra-fine processing technology is required, and development of reproducible ultra-high precision processing means is required.

しかしながら、通常の大きさの領域での加工手段は枚挙する暇がないほど、多数開発されているものの、この手段を前記した超微細レベルの領域での加工手段に適用することはできない。このようにナノレベルの加工法は非常に立ち遅れ、所望とする加工を行うのに必要な手段は、実際にはまだ開発されていないのが実情である。 However, although a large number of processing means in a normal size region have been developed to the extent that there is no time to enumerate, this means cannot be applied to the processing means in the ultra-fine region described above. As described above, the nano-level processing method is very late, and the means necessary for performing the desired processing has not been developed yet.

カーボンナノチューブについていえば、接着あるいは接合方法に関しては数種類の方法が提唱されているものの、切断については十分に満足のいく方法は開発されていない。例えば、カーボンナノチューブの切断方法としては、(1)酸溶液中で超音波処理する、(2)STMなどの微小針を用いて電圧を印加し切断する、あるいは、(3)高温に加熱した上で、電子ビームを用いて焼き切る、などの方法が提案されてきた(非特許文献1参照)。 Regarding carbon nanotubes, several methods have been proposed for bonding or bonding, but no sufficiently satisfactory method has been developed for cutting. For example, as a method for cutting carbon nanotubes, (1) ultrasonic treatment in an acid solution, (2) cutting by applying a voltage using a micro needle such as STM, or (3) heating to a high temperature Thus, a method of burning off using an electron beam has been proposed (see Non-Patent Document 1).

しかしながら、(1)の超音波法による手段は、長さの揃ったカーボンナノチューブを得る方法だといわれているものの、実際には、所望とする任意の長さに高精度で切断し得る手段とはいえない。また、(2)、(3)の手段についても、加工の良否、精度が大きく加工技術者の技術レベルに依存しているのが現実である。すなわち、これら従来技術では、精密な加工精度が要求される場合、その何れも、対応することが困難であり、これに代わる確実で新しい加工手段が求められていた。   However, although the ultrasonic method of (1) is said to be a method of obtaining carbon nanotubes having a uniform length, in practice, a means capable of cutting with high accuracy to any desired length I can't say that. Further, the means (2) and (3) also have a high quality and high accuracy of processing, and are actually dependent on the technical level of the processing engineer. That is, in these conventional techniques, when precise machining accuracy is required, it is difficult to cope with any of them, and there has been a demand for reliable and new machining means instead.

一方、ダイヤモンドの加工は、金属などのマスクを使い、反応性ガスエッチングで行いうるが、この方法だとせいぜい1ミクロン程度のパターンまでは応ずることができるものの、それ以上に精度を上げることは困難である。また、加熱しながら電子ビームを照射するなど、様々な手法も提案されているが、この方法も、その精度と仕上がりの良否は、熟練者に大きく依存しているとともに、材料の状態を高温に維持するため、材料に大きなストレスを与えないように加工することが難しく、応用に限界があった。
「カーボンナノチューブ」 99−108ページ (田中一義編、化学同人、2001年1月30日発行)
On the other hand, diamond can be processed by reactive gas etching using a mask made of metal or the like, but this method can handle patterns of about 1 micron at most, but it is difficult to increase the accuracy beyond that. It is. Various methods have also been proposed, such as irradiating an electron beam while heating. However, the accuracy and quality of this method are also highly dependent on skilled workers, and the state of the material is increased to a high temperature. In order to maintain the material, it is difficult to process the material without giving a large stress, and the application is limited.
“Carbon Nanotubes”, pages 99-108 (Kazuyoshi Tanaka, Kagaku Dojin, published on January 30, 2001)

本発明は、CNTを始め、ダイヤモンド、黒鉛などのミクロンサイズからナノサイズまでの炭素系材料を、加工する者の熟練度に依存することなく、また、材料にストレスを与えずに、室温で、容易にナノメートルスケールあるいはミクロンスケールで超高精度に加工することができる加工方法を提供するものである。 The present invention does not depend on the skill level of a person who processes carbon-based materials such as CNT, diamond, graphite, and the like from micron size to nano size, and without stressing the material at room temperature. It is an object of the present invention to provide a processing method capable of easily processing with nanometer scale or micron scale with ultra-high accuracy.

すなわち、対象物自体の大きさに関わらず炭素系材料に対して適用可能なナノレベルの超高精度加工方法を提供する。さらに、本発明は、上記した微細な対象物の加工技術を狙いとすることから、ナノメートルレベルをも含む超微細レベルな加工幅の加工切断状況を、その場で確実に確認しうる信頼性に富んだ加工方法を提供する。 That is, the present invention provides a nano-level ultra-high precision processing method applicable to a carbon-based material regardless of the size of the object itself. Furthermore, since the present invention aims at the processing technology of the above-mentioned minute object, it is reliable that the processing cutting state of the processing width of the ultra-fine level including the nanometer level can be surely confirmed on the spot. Provide a variety of processing methods.

そのため本発明者らにおいては、鋭意研究した結果、試料を電子顕微鏡で観測し、確認して加工することを想到し、電子銃から炭素材料に電子線を照射することによって加工する手段について研究した。しかしながら、電子顕微鏡の観察は、高真空状態で行なわれるため、この状態で電子線を照射しただけでは、加工することは不可能であった。そこで、さらに鋭意研究を重ねた結果、走査型電子顕微鏡に差動排気システムを導入し、加工処理する際に、試料室を空気や酸素ガスなどによって低真空状態に切換え、電子線を照射した。その結果、炭素試料は、電子線が照射された領域のみが高精度に加工され得ることを知見した。   Therefore, in the present inventors, as a result of earnest research, the inventors observed the sample with an electron microscope, conceived that the sample should be processed, and studied the means for processing by irradiating the electron beam from the electron gun to the carbon material. . However, since observation with an electron microscope is performed in a high vacuum state, it has been impossible to process only by irradiation with an electron beam in this state. Therefore, as a result of further earnest research, a differential pumping system was introduced into the scanning electron microscope, and when processing, the sample chamber was switched to a low vacuum state with air, oxygen gas, etc. and irradiated with an electron beam. As a result, it was found that the carbon sample can be processed with high accuracy only in the region irradiated with the electron beam.

この現象を、さらに検討した結果、電子線が照射された領域が選択的に加工されていることから、電子線によって励起された雰囲気ガスのプラズマ化により、イオン化したガスが電子線照射部に衝突して研削が行われた結果によるものであることが確認された。すなわち、電子線が低真空の試料雰囲気をプラズマ化し、イオン化したガス原子が、電子線照射によって帯電した領域に衝突し、その炭素材料表面上で、材料のスパッターや酸化燃焼反応が局部的に進行した結果によるものであると考えられる。さらに、電子線のビームサイズ(直径)を絞ることによって、この炭素の加工される領域を絞り、加工幅をさらに小さく制御することができること、電子ビーム源として電界放射型電子銃を用いれば、ナノサイズのプローブによるナノメートルレベルの加工が容易に実現できることを知見した。   As a result of further examination of this phenomenon, the region irradiated with the electron beam has been selectively processed, so that the ionized gas collides with the electron beam irradiation unit due to the plasma of the atmospheric gas excited by the electron beam. It was confirmed that this was due to the result of grinding. In other words, the sample atmosphere in which the electron beam is low-vacuum is turned into plasma, and ionized gas atoms collide with the charged area by electron beam irradiation, and the sputtering of the material and the oxidation combustion reaction proceed locally on the surface of the carbon material. It is thought that this is due to the results. Further, by narrowing the beam size (diameter) of the electron beam, the region where the carbon is processed can be narrowed and the processing width can be further reduced, and if a field emission electron gun is used as the electron beam source, We found that nanometer level processing with a size probe can be easily realized.

本発明は、以上の知見に基づいてなされたものであり、炭素材料の超微細加工を達成するための構成は、以下(1)から(7)に記載するとおりである。
(1) 差動排気機構を有し、試料を高真空状態で観察できるとともに、10Paから100Paまでの低真空状態で加工できる差動排気システムを有した走査型電子顕微鏡(以下、低真空走査型電子顕微鏡と呼ぶ)を用い、試料室に炭素系材料を設置し、前記高真空状態を前記低真空状態に切換えて、前記炭素系材料に電子線を照射することを特徴とした、炭素系材料の超微細加工方法。
(2) 前記電子ビームを照射する炭素系材料が設置される試料室の雰囲気ガスに、大気あるいは酸素、窒素などの気体を使用し、電子ビーム照射によって雰囲気ガスがプラズマ化され、イオン化したガス原子が、電子ビーム照射領域の帯電を中和すると同時に、ラジ
カルとして、炭素材料表面を研削あるいは燃焼させることによって、電子ビームを照射している微小領域に対して、ナノメートルレベルからミクロンレベルの高精度で切断ないしはエッチング加工しうるようにしたことを特徴とする、(1)記載の炭素系材料の超微細
加工方法。
(3) 前記雰囲気ガスと、電子線加速電圧−電流条件などの加工条件を最適化することを特徴とした、(1)または(2)記載の炭素系材料の超微細加工方法。
(4) 上記低真空走査型電子顕微鏡が炭素系材料の位置や方位を正確に制御できるステージを備えている、(1)ないし(3)記載のいずれか1項に記載の炭素系材料の超微細加工方法。
(5) 試料を高真空状態で観察できるとともに、10Paから100Paまでの低真空状態で加工できる差動排気システムを有した低真空走査型電子顕微鏡を用い、炭素系材料が設置された試料室の圧力を高真空から低真空に、またはその逆に、切換え可能とするとともに、前記炭素系材料に、電子線を正確に照射しうるようにしたことを特徴とする、炭素系材料の超微細加工装置。
(6) 前記電子線が発射される電子銃室が高真空状態に設定され、それより真空度が下げられた中間真空室、さらに前記試料が収められている前記低真空状態の試料室の三室構造で構成されたことを特徴とする、請求項5記載の炭素系材料の超微細加工装置。
(7) 前記試料室の試料近傍にガス噴出ノズルを設置し、試料室全体を雰囲気ガスで満たすことなく、試料周辺のみの雰囲気を調整しうるようにしたことを特徴とする、(5)または(6)記載の炭素系材料の超微細加工装置。
The present invention has been made on the basis of the above knowledge, and the configurations for achieving the ultrafine processing of the carbon material are as described in (1) to (7) below.
(1) A scanning electron microscope (hereinafter referred to as a low vacuum scanning type) having a differential pumping mechanism and having a differential pumping system capable of observing a sample in a high vacuum state and processing in a low vacuum state of 10 Pa to 100 Pa. A carbon-based material characterized in that a carbon-based material is placed in a sample chamber using an electron microscope, the high-vacuum state is switched to the low-vacuum state, and the carbon-based material is irradiated with an electron beam. Ultra fine processing method.
(2) The atmosphere gas in the sample chamber in which the carbon-based material for irradiating the electron beam is used is air or a gas such as oxygen, nitrogen, etc., and the atmosphere gas is turned into plasma by the electron beam irradiation and ionized gas atoms However, by neutralizing the charge in the electron beam irradiation area and simultaneously grinding or burning the surface of the carbon material as radicals, high accuracy from the nanometer level to the micron level is applied to the minute area irradiated with the electron beam. The method for ultra-fine processing of a carbon-based material according to (1), characterized in that it can be cut or etched with.
(3) The ultrafine processing method for a carbon-based material according to (1) or (2), wherein the processing conditions such as the atmospheric gas and electron beam acceleration voltage-current conditions are optimized.
(4) The low-vacuum scanning electron microscope includes a stage that can accurately control the position and orientation of the carbon-based material, and the superposition of the carbon-based material according to any one of (1) to (3) Fine processing method.
(5) Using a low vacuum scanning electron microscope having a differential evacuation system capable of observing a sample in a high vacuum state and processing in a low vacuum state from 10 Pa to 100 Pa, a sample chamber in which a carbon-based material is installed The ultrafine processing of the carbon-based material, wherein the pressure can be switched from high vacuum to low vacuum or vice versa, and the carbon-based material can be accurately irradiated with an electron beam. apparatus.
(6) An electron gun chamber in which the electron beam is emitted is set to a high vacuum state, an intermediate vacuum chamber in which the degree of vacuum is lowered, and three chambers of the low vacuum state sample chamber in which the sample is stored 6. The ultrafine processing apparatus for carbon-based material according to claim 5, wherein the apparatus is structured.
(7) A gas jet nozzle is installed in the vicinity of the sample in the sample chamber, and the atmosphere around the sample can be adjusted without filling the entire sample chamber with the atmospheric gas. (6) The ultrafine processing apparatus for a carbon-based material according to (6).

本発明は、走査型電子顕微鏡を用い、電子顕微鏡を差動排気機構によって、真空度、雰囲気ガスを自在に調整可能とし、電子線を照射することによって被検体炭素材料を高真空下で高分解能に観察することができるとともに、加工の際には、高真空を低真空に切換えて、炭素材料に電子線を照射し、プラズマイオンによって電子線照射された限定された帯電領域をスパッターあるいは酸化燃焼させ、加工領域をナノメートルからミクロンの広範な領域に適宜調整しうる炭素材料の加工方法と装置を提供することができるものであり、これによって、今最も注目され、期待されているカーボンナノチューブの有効利用に道を開き、大いに利用され寄与するものと期待される。その対象は、カーボンナノチューブに限定されず、ダイヤモンド、黒鉛等炭素材料の微細加工にも適用され、今後、これらの材料からなる微細素子の開発にも大きく貢献し、産業の発展に寄与するものと期待される。   The present invention uses a scanning electron microscope, and the electron microscope can be freely adjusted in the degree of vacuum and the atmospheric gas by a differential pumping mechanism. By irradiating an electron beam, the subject carbon material is high resolution under high vacuum. At the time of processing, the high vacuum is switched to the low vacuum, the carbon material is irradiated with an electron beam, and the limited charged region irradiated with the electron beam by plasma ions is sputtered or oxidized and burned. Therefore, it is possible to provide a carbon material processing method and apparatus capable of appropriately adjusting the processing region from a wide range of nanometers to micron, and this makes it possible to provide carbon nanotubes that are currently attracting the most attention and expectation. It is expected to pave the way for effective use and be used and contributed greatly. The target is not limited to carbon nanotubes, but can also be applied to microfabrication of carbon materials such as diamond and graphite. In the future, it will contribute greatly to the development of microelements made of these materials and contribute to industrial development. Be expected.

以下本発明を、図面と実施例に基づいて説明する。
図1(a)は、本発明で使用する走査型電子顕微鏡の真空設計を模式的に示した図である。このような電子顕微鏡において、電子銃を安定に動作するためには、10-8Pa程度に高真空にする必要がある。すなわち、電子顕微鏡は、差動排気機構(オリフィスあるいは排気弁と排気ポンプ、図示せず)によって、電子線が発射される電子銃室が高真空(10-8Pa)に設定され、それより真空度が下げられた中間真空室(10-3Pa)、さらに試料が収められている低真空試料室(100Pa)の三室構造で構成され、電子銃から試料に向けて電子線が照射可能である。低真空試料室は、図示外の差動排気システムによってその真空度が可変に調節可能であり、試料観察をする際は、高真空度になるよう調節され、また、加工するときには、試料室に雰囲気ガスを満たし、部屋の圧力を100Pa程度にまで低真空になるよう調節される。試料ステージを制御することによって、電子線を試料の任意の位置に照射する。電子線が照射されると、その周辺の気体はプラズマ化され、イオンが帯電した領域に作用して中和するとともに、プラズマ化したガスの衝突によって電子線照射位置の材料がスパッター(研削)され、あるいは酸素ガスとの反応によって酸化、燃焼し、炭素材料が表面側から消費され、炭素材料がエッチング、あるいは切断され、または穿孔される等、微細加工が施される。電子線の強度は電子銃にかける電圧や電流、絞りの大きさによって制御し、その大きさは照射レンズや対物レンズによって、変化させることができる。また、雰囲気圧力や酸素分圧を最適に設定することによって、適宜、加工精度を選択することができる。
Hereinafter, the present invention will be described based on the drawings and examples.
FIG. 1A is a diagram schematically showing a vacuum design of a scanning electron microscope used in the present invention. In such an electron microscope, in order to operate the electron gun stably, it is necessary to make a high vacuum of about 10 −8 Pa. That is, in the electron microscope, an electron gun chamber in which an electron beam is emitted is set to a high vacuum (10 −8 Pa) by a differential exhaust mechanism (an orifice or an exhaust valve and an exhaust pump, not shown), and a vacuum is thereby generated. It has a three-chamber structure consisting of a low-pressure intermediate vacuum chamber (10 −3 Pa) and a low-vacuum sample chamber (100 Pa) in which a sample is stored, and an electron beam can be irradiated from the electron gun toward the sample. . The vacuum level of the low vacuum sample chamber can be variably adjusted by a differential evacuation system (not shown). When observing the sample, the vacuum level is adjusted to a high vacuum level. The atmosphere gas is filled and the room pressure is adjusted to a low vacuum of about 100 Pa. By controlling the sample stage, an electron beam is irradiated onto an arbitrary position of the sample. When the electron beam is irradiated, the surrounding gas is turned into plasma, which acts on the ion charged region to neutralize it, and the material at the electron beam irradiation position is sputtered (ground) by the collision of the plasmad gas. Alternatively, the carbon material is oxidized and burned by reaction with oxygen gas, the carbon material is consumed from the surface side, and the carbon material is etched, cut or perforated. The intensity of the electron beam is controlled by the voltage and current applied to the electron gun and the size of the diaphragm, and the size can be changed by the irradiation lens and the objective lens. Further, the processing accuracy can be appropriately selected by setting the atmospheric pressure and the oxygen partial pressure optimally.

これに対して、図1(b)は、電子顕微鏡の部屋構造を、高真空室の電子銃室と、試料のおかれている試料室の、従来型二室構造に設定した場合である。このような従来型に設定した場合、電子顕微鏡として機能しうる真空条件に設定すれば、試料の高分解能の像を得ることができるが、その結果、試料室の真空度は、図1(a)に示したような、低真空(100Pa、すなわち、約1000分の1気圧)にまで下げることができず、10-3Pa程度の高真空となる。しかしながらこの真空レベルでは、電子線を試料に照射しても、ガスが希薄であり、加工は実質的には行うことはできないことが明らかになった。 On the other hand, FIG. 1B shows a case where the room structure of the electron microscope is set to a conventional two-chamber structure of an electron gun chamber of a high vacuum chamber and a sample chamber in which a sample is placed. When such a conventional type is set, a high-resolution image of the sample can be obtained by setting the vacuum condition that can function as an electron microscope. As a result, the degree of vacuum in the sample chamber is as shown in FIG. ) Cannot be reduced to a low vacuum (100 Pa, that is, about 1/1000 atm), and a high vacuum of about 10 −3 Pa is obtained. However, at this vacuum level, it became clear that even if the sample was irradiated with an electron beam, the gas was dilute and processing could not be performed substantially.

すなわち、本発明は、高真空の下で電子線を照射するだけでは、加工することはできず、電子線照射と雰囲気ガスの存在とが不可欠であり、通常の高真空走査型電子顕微鏡では実施不可能である。電子顕微鏡は、もとより電子線の自由行程を確保するため、また解像度を上げるため、高真空に設定されて作動するよう設定されており、そこに雰囲気ガスによって、低真空に設定するようなことは、到底考えられないことであるといっても過言ではない。   That is, the present invention cannot be processed only by irradiating an electron beam under a high vacuum, and the electron beam irradiation and the presence of an atmospheric gas are indispensable. Impossible. The electron microscope is originally set to operate at a high vacuum in order to ensure the free path of the electron beam and to increase the resolution, and there is no such thing as setting it to a low vacuum by the atmospheric gas. It is no exaggeration to say that this is an unthinkable thing.

本発明は、電子顕微鏡を差動排気機構によって、低真空室に設定し、電子線照射とガス雰囲気とによって、超微細な炭素材料に対しても、高精度のレベルの加工を施すことに成功したのである。希薄なガスによって炭素材料が加工できるという、思いもよらない作用効果であると考えられる。その意義、作用効果は極めて大きい。   The present invention succeeded in setting a high-accuracy level of processing to an ultrafine carbon material by setting an electron microscope in a low vacuum chamber by a differential pumping mechanism and irradiating with an electron beam and a gas atmosphere. It was. This is considered to be an unexpected effect that a carbon material can be processed with a dilute gas. Its significance and effect are extremely large.

すなわち、試料観察時には高真空とし、加工時には雰囲気の圧力を上げれば、観察と加工は同一装置にて行うことができる。また、両操作の切替に要する時間は、試料周りに反応室を設け、この領域だけ真空の制御を行えるようにすることによって時間短縮を図ることもできる。この構成により、試料室内全てを同じ真空度に保持するよりも短時間で、雰囲気ガス圧の調整ができる。   That is, if a high vacuum is used during sample observation and the atmospheric pressure is increased during processing, observation and processing can be performed with the same apparatus. In addition, the time required for switching between the two operations can be shortened by providing a reaction chamber around the sample so that the vacuum can be controlled only in this region. With this configuration, the atmospheric gas pressure can be adjusted in a shorter time than when the entire sample chamber is kept at the same degree of vacuum.

図2は、カーボンナノチューブを切断加工したときの走査型電子顕微鏡像であり、(a)は、加工前の像であり、(b)は、加速電圧:10kV、酸素分圧:10Pa、ビーム照射時間:5sec、で加工した後の電子顕微鏡像を示す。像は、霞んでいるが、中央の部分を狙い通り切断することに成功したことを示している。   FIG. 2 is a scanning electron microscope image when carbon nanotubes are cut and processed, (a) is an image before processing, and (b) is an acceleration voltage: 10 kV, oxygen partial pressure: 10 Pa, beam irradiation. An electron microscope image after processing at time: 5 sec is shown. The statue is stunning, but shows that it succeeded in cutting the center part as intended.

図3は、ダイヤモンド基板の穴あけ加工したときの状態を示す図である。(a)
は、AFM像であり、黒い部分は、加速電圧:30kV、酸素分圧:50Pa、ビーム照射時間:1minで、電子線を照射したときにできた穴である。(b)は、 (a)の線に沿った穴の断面プロファイルを示す。これらの図から、本発明は、炭素材料の微細加工に有効な手段であることが確認された。
FIG. 3 is a diagram showing a state when a diamond substrate is drilled. (A)
Is an AFM image, and the black portion is a hole formed when an electron beam is irradiated at an acceleration voltage of 30 kV, an oxygen partial pressure of 50 Pa, and a beam irradiation time of 1 min. (B) shows the cross-sectional profile of the hole along the line (a). From these figures, it was confirmed that the present invention is an effective means for fine processing of a carbon material.

実施例1;
シリコン基板上にpn接合を作り、エッチングによって柱状に切り出し、シリコンと酸化シリコンの歪みエネルギーの差を利用して側面を酸化させ、多数の柱状pn接合トランジスタを形成した。配線するトランジスタを決定し、その間の距離を測定した。一方、ナノ配線素材として製造したカーボンナノチューブを用意し、本発明で開発した低真空走査型電子顕微鏡による切断方法を用い、図2で説明した切断条件、切断要領に準じて所要の長さに切断した。トランジスタ間距離に相当する長さに切断されたカーボンナノチューブを、走査型プローブ顕微鏡の探針で捕獲し、2つのトランジスタ間に運び移し、これらを接続する。図4はこの概念図であり、柱状物体がトランジスタ、そのうちの2つを接続する線がカーボンナノチューブを示している。
Example 1;
A pn junction was formed on a silicon substrate, cut into a columnar shape by etching, and side surfaces were oxidized using a difference in strain energy between silicon and silicon oxide to form a large number of columnar pn junction transistors. The transistors to be wired were determined, and the distance between them was measured. On the other hand, carbon nanotubes manufactured as nano-wiring materials are prepared and cut to the required length according to the cutting conditions and cutting procedure described in FIG. 2 using the cutting method by the low vacuum scanning electron microscope developed in the present invention. did. The carbon nanotubes cut to a length corresponding to the distance between the transistors are captured by the probe of the scanning probe microscope, transferred between the two transistors, and connected. FIG. 4 is a conceptual diagram showing a columnar object as a transistor and a line connecting two of them as a carbon nanotube.

実施例2;
ダイヤモンドをナノスケールのレベルでフォトマスクと反応性ガスエッチングによって加工することを試みた。その結果を、電子顕微鏡で観察した結果、設計どおりにはエッチングが行われていなかったことが判明した。したがって、その状態では、完成品として扱うことができないものであった。そこで、観測に使用した電子顕微鏡の試料室を低真空に切換えて、圧力50Paのガス雰囲気下において前記ダイヤモンドの加工すべき特定の領域に加速電圧30kVの電子ビームを繰り返し照射し、この部分を研削し、1個の素子からサブミクロンサイズの多数の素子を作製した。その後、試料室を高真空に切換えて、再度電子顕微鏡により観察した結果、設計どおりに微細な研削加工が施されたことが確認された。
Example 2;
We tried to process diamond by photomask and reactive gas etching at nano-scale level. As a result of observing the result with an electron microscope, it was found that etching was not performed as designed. Therefore, in that state, it could not be handled as a finished product. Therefore, the sample chamber of the electron microscope used for observation was switched to a low vacuum, and a specific region to be processed of the diamond was repeatedly irradiated with an electron beam with an acceleration voltage of 30 kV in a gas atmosphere at a pressure of 50 Pa, and this portion was ground. A large number of sub-micron elements were fabricated from a single element. Thereafter, the sample chamber was switched to a high vacuum and observed again with an electron microscope. As a result, it was confirmed that fine grinding was performed as designed.

実施例3;
反応性ガスエッチング法によってダイヤモンド素子を作製した。エッチング操作終了後、エッチング状態を観測した結果、正常なレベルにエッチングされた部分と不正常な部分、すなわち、部分的にエッチングされずに、突起として残った加工不良部分、とが共に混在していることが確認された。この加工不良部分は、素子の動作不良を引き起こす原因となることから、本発明で開発した低真空走査型電子顕微鏡による電子線照射加工法を適用することによって、この加工不良部分を取り除いた。その操作要領は、実施例2と同様の手法に基づいて行った。最後に、得られた素子を検査した結果、正常に動作することが確認された。
Example 3;
A diamond element was fabricated by reactive gas etching. As a result of observing the etching state after completion of the etching operation, a portion etched to a normal level and an abnormal portion, that is, a part that is not partially etched and remains as a protrusion, are mixed together. It was confirmed that Since this defective processing part causes a malfunction of the element, this defective processing part was removed by applying an electron beam irradiation processing method using a low vacuum scanning electron microscope developed in the present invention. The operation procedure was performed based on the same method as in Example 2. Finally, the obtained device was inspected and confirmed to operate normally.

以上説明したように、本発明は、現在盛んに研究され、その高度加工技術が求められているカーボンナノチューブをはじめ、ダイヤモンド等の超微細加工に対し、確実に加工を可能とする手段を提供したものであり、今後、カーボンナノチューブの利用技術の進展に、あるいはダイヤモンド等炭素材料の素子化等微細加工技術の進展に大きく貢献し、以って産業の発展に寄与するものと考えられる。また、本発明の解決手段とする構成は、走査型電子顕微鏡を差動排気機構によって、試料室の真空度を簡単に高低自在に転換しうるようにするものであり、1台の装置によって電子顕微鏡装置として利用する以外に、炭素材料加工装置として使用しうるようにするもので、これまでのようにそれぞれの機能を、各専用の装置を設計することによって行っていた開発パターンによらず、1台が複数の装置を兼用するもので、極めて実効性、実用に富んだ発明を提言するもので、経済的であり、今後炭素材料の微細加工技術において大いに利用されるものと期待される。   As described above, the present invention has provided means for reliably processing ultra-fine processing of diamond and the like, including carbon nanotubes that are currently being actively researched and whose advanced processing technology is required. In the future, it is thought that it will contribute greatly to the progress of the utilization technology of carbon nanotubes or to the advancement of microfabrication technology such as elementization of carbon materials such as diamond, thereby contributing to the development of industry. In addition, the configuration as the solution means of the present invention is such that the vacuum degree of the sample chamber can be easily and freely changed by a differential evacuation mechanism in the scanning electron microscope, and the electronic device can be changed by a single device. In addition to using as a microscope device, it can be used as a carbon material processing device, each function as before, regardless of the development pattern that was performed by designing each dedicated device, One unit also serves as a plurality of devices, suggests an invention that is extremely effective and practical, is economical, and is expected to be used greatly in the fine processing technology of carbon materials in the future.

本発明で使用する低真空走査型電子顕微鏡を模式的に示すブロック図。The block diagram which shows typically the low vacuum scanning electron microscope used by this invention. 通常の電子顕微鏡では低真空に設定することができないことを模式的に示すブロック図。The block diagram which shows typically that it cannot set to a low vacuum with a normal electron microscope. カーボンナノチューブの切断前の状態を示す電子顕微鏡像。The electron microscope image which shows the state before the cutting | disconnection of a carbon nanotube. 本発明の低真空走査型顕微鏡による、カーボンナノチューブ切断を示す電子顕微鏡像。The electron microscope image which shows carbon nanotube cutting | disconnection by the low vacuum scanning microscope of this invention. 本発明の低真空走査型顕微鏡による、ダイヤモンド基板の穴あけ加工を示す、AFM像。The AFM image which shows the drilling process of a diamond substrate by the low vacuum scanning microscope of this invention. (a)の図面に引かれた補助線に沿った穴の断面プロファイル。Cross-sectional profile of a hole along an auxiliary line drawn in the drawing of (a). 2つのトランジスタを切断カーボンナノチューブによって接続した配線図。The wiring diagram which connected two transistors by the cutting | disconnection carbon nanotube.

Claims (7)

差動排気機構を有し、試料を高真空状態で観察できるとともに、10Paから100Paまでの低真空状態で加工できる差動排気システムを有した走査型電子顕微鏡(以下、低真空走査型電子顕微鏡と呼ぶ)を用い、試料室に炭素系材料を設置し、前記高真空状態を前記低真空状態に切換えて、前記炭素系材料に電子線を照射することを特徴とした、炭素系材料の超微細加工方法。 A scanning electron microscope (hereinafter referred to as a low-vacuum scanning electron microscope) having a differential evacuation mechanism and capable of observing a sample in a high vacuum state and having a differential evacuation system capable of processing in a low vacuum state from 10 Pa to 100 Pa The carbon material is placed in a sample chamber, the high vacuum state is switched to the low vacuum state, and the carbon material is irradiated with an electron beam. Processing method. 前記電子ビームを照射する炭素系材料が設置される試料室の雰囲気ガスに、大気あるいは酸素、窒素などの気体を使用し、電子ビーム照射によって雰囲気ガスがプラズマ化され、イオン化したガス原子が、電子ビーム照射領域の帯電を中和すると同時に、ラジカルとして、炭素材料表面を研削あるいは燃焼させることによって、電子ビームを照射している微小領域に対して、ナノメートルレベルからミクロンレベルの高精度で切断ないしはエッチング加工しうるようにしたことを特徴とする、請求項1記載の炭素系材料の超微細加工方法。   The atmosphere gas in the sample chamber in which the carbon-based material for irradiating the electron beam is used is air or a gas such as oxygen or nitrogen. The atmosphere gas is turned into plasma by the electron beam irradiation, and the ionized gas atoms are converted into electrons. At the same time as neutralizing the charging of the beam irradiation area, the surface of the carbon material is ground or burned as radicals, thereby cutting or finely irradiating the minute area irradiated with the electron beam with nanometer to micron level precision. 2. The ultrafine processing method for a carbon-based material according to claim 1, wherein etching is possible. 前記雰囲気ガスと、電子線の加工制御条件とを最適化することを特徴とした、請求項1または2記載の炭素系材料の超微細加工方法。   3. The ultrafine processing method for a carbon-based material according to claim 1, wherein the atmosphere gas and the electron beam processing control conditions are optimized. 上記低真空走査型電子顕微鏡が炭素系材料の位置や方位を正確に制御できるステージを備えている、請求項1ないし3記載のいずれか1項に記載の炭素系材料の超微細加工方法。   4. The ultrafine processing method for a carbon-based material according to claim 1, wherein the low-vacuum scanning electron microscope includes a stage capable of accurately controlling the position and orientation of the carbon-based material. 5. 試料を高真空状態で観察できるとともに、10Paから100Paまでの低真空状態で加工できる差動排気システムを有した低真空走査型電子顕微鏡を用い、炭素系材料が設置された試料室の圧力を前記高真空状態から前記低真空状態に、またはその逆に、切換え可能とするとともに、前記炭素系材料に、電子線を正確に照射しうるようにしたことを特徴とする、炭素系材料の超微細加工装置。 Using a low vacuum scanning electron microscope having a differential evacuation system capable of observing the sample in a high vacuum state and processing in a low vacuum state from 10 Pa to 100 Pa, the pressure in the sample chamber in which the carbon-based material is installed is It is possible to switch from a high vacuum state to the low vacuum state or vice versa, and the carbon-based material can be accurately irradiated with an electron beam. Processing equipment. 前記電子線が発射される電子銃室が高真空状態に設定され、それより真空度が下げられた中間真空室、さらに前記試料が収められている前記低真空状態の試料室の三室構造で構成されたことを特徴とする、請求項5記載の炭素系材料の超微細加工装置。   The electron gun chamber in which the electron beam is emitted is set to a high vacuum state, and is composed of a three-chamber structure including an intermediate vacuum chamber in which the degree of vacuum is lowered, and the low vacuum state sample chamber in which the sample is stored. The ultrafine processing apparatus for carbon-based materials according to claim 5, wherein 前記試料室の試料近傍にガス噴出ノズルを設置し、試料室全体を雰囲気ガスで満たすことなく、試料周辺のみの雰囲気を調整しうるようにしたことを特徴とする、請求項5または6記載の炭素系材料の超微細加工装置。   The gas jet nozzle is installed near the sample in the sample chamber so that the atmosphere around the sample can be adjusted without filling the entire sample chamber with the atmospheric gas. Ultra-fine processing equipment for carbon-based materials.
JP2005001888A 2005-01-06 2005-01-06 Fine processing method and apparatus for carbon-based materials using low vacuum scanning electron microscope Expired - Fee Related JP5077863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005001888A JP5077863B2 (en) 2005-01-06 2005-01-06 Fine processing method and apparatus for carbon-based materials using low vacuum scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005001888A JP5077863B2 (en) 2005-01-06 2005-01-06 Fine processing method and apparatus for carbon-based materials using low vacuum scanning electron microscope

Publications (2)

Publication Number Publication Date
JP2006190578A JP2006190578A (en) 2006-07-20
JP5077863B2 true JP5077863B2 (en) 2012-11-21

Family

ID=36797578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005001888A Expired - Fee Related JP5077863B2 (en) 2005-01-06 2005-01-06 Fine processing method and apparatus for carbon-based materials using low vacuum scanning electron microscope

Country Status (1)

Country Link
JP (1) JP5077863B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6302702B2 (en) * 2014-02-27 2018-03-28 株式会社日立ハイテクノロジーズ Scanning electron microscope and image generation method
CN107796789B (en) * 2017-08-29 2021-05-07 南京航空航天大学 Preparation method of gecko-like end charged oriented carbon nanotube dry adhesion array

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513319A (en) * 1991-06-28 1993-01-22 Toshiba Corp Pattern formation
JPH0684493A (en) * 1992-04-17 1994-03-25 Toyota Central Res & Dev Lab Inc Fine structure observation device
JPH08329876A (en) * 1995-05-30 1996-12-13 Hitachi Ltd Method and device for preparing observation specimen
JP3714810B2 (en) * 1998-12-28 2005-11-09 株式会社日立製作所 Electron beam equipment
JP2001196296A (en) * 2000-01-13 2001-07-19 Advantest Corp Charged particle beam exposure apparatus
JP2001343308A (en) * 2000-06-01 2001-12-14 Jeol Ltd Sample processing device
JP3723846B2 (en) * 2002-04-15 2005-12-07 独立行政法人産業技術総合研究所 Electron beam equipment
JP2004058194A (en) * 2002-07-26 2004-02-26 Fujikura Ltd Working process of carbon nanotube

Also Published As

Publication number Publication date
JP2006190578A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
Spinney et al. Nanopore formation by low-energy focused electron beam machining
US8070920B2 (en) Nanometer-scale sharpening of conductor tips
Wanzenboeck et al. Focused ion beam lithography
JP5010766B2 (en) Method and apparatus for statistically characterizing nanoparticles
US11977097B2 (en) Methods and devices for extending a time period until changing a measuring tip of a scanning probe microscope
CN105895489A (en) Device and method for parallel mask-less scanning micro-nano processing based on atmospheric pressure plasma jet tube
US6419752B1 (en) Structuring device for processing a substrate
JP5559431B2 (en) Particle source and manufacturing method thereof
JP5564689B2 (en) Emitter of field ionization type gas ion source, focused ion beam apparatus including the same, and method for manufacturing emitter of field ionization type gas ion source
JP2013528915A (en) Particle source and device using the particle source
CN108538765B (en) Etching device and pattern transfer method
JP5077863B2 (en) Fine processing method and apparatus for carbon-based materials using low vacuum scanning electron microscope
Kolomiytsev et al. Fabrication of probes for scanning near-field optical microscopy using focused ion beam
JPH07169679A (en) Process device
JP2006272374A (en) Cutting/machining method of carbon fiber and its apparatus
Majumdar et al. Microconical structure formation and field emission from atomically heterogeneous surfaces created by microwave plasma–based low-energy ion beams
EP1682445B1 (en) Method for patterning structures on a substrate
Navitski Scanning field emission investigations of structured CNT and MNW cathodes, niobium surfaces and photocathodes
Hafeez et al. Atomic and close-to-atomic scale manufacturing: status and challenges
Guo et al. Development of UHV dynamic nanostencil for surface patterning
KR20150006417A (en) Method for processing graphene, method for producing graphene nanoribbons, and graphene nanoribbons
US20060093750A1 (en) Method for patterning nano-sized structure
JP4672534B2 (en) Micro electron emitter fabrication method and micro electron emitter fabricated using the same
JP2004345071A (en) Writing device and writing method
Kotosonova et al. Studying the accuracy of the pattern transfer during electron-and ion-induced deposition of tungsten

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees