JP5077779B2 - Method for producing composite semipermeable membrane and composite semipermeable membrane module - Google Patents

Method for producing composite semipermeable membrane and composite semipermeable membrane module Download PDF

Info

Publication number
JP5077779B2
JP5077779B2 JP2009158406A JP2009158406A JP5077779B2 JP 5077779 B2 JP5077779 B2 JP 5077779B2 JP 2009158406 A JP2009158406 A JP 2009158406A JP 2009158406 A JP2009158406 A JP 2009158406A JP 5077779 B2 JP5077779 B2 JP 5077779B2
Authority
JP
Japan
Prior art keywords
semipermeable membrane
composite semipermeable
water
aqueous solution
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009158406A
Other languages
Japanese (ja)
Other versions
JP2009269028A (en
Inventor
章浩 有地
一成 丸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2009158406A priority Critical patent/JP5077779B2/en
Publication of JP2009269028A publication Critical patent/JP2009269028A/en
Application granted granted Critical
Publication of JP5077779B2 publication Critical patent/JP5077779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、流体を処理するための複合半透膜、複合半透膜モジュール、およびその製造方法に関するものである。本発明による複合半透膜及び複合半透膜モジュールは海水の淡水化、かん水の脱塩、上水の製造、食品プロセス、排水の処理や濃縮、有価物の回収などに用いられる。特に、飲用に供する水の製造に有効である。   The present invention relates to a composite semipermeable membrane for treating fluid, a composite semipermeable membrane module, and a method for manufacturing the same. The composite semipermeable membrane and the composite semipermeable membrane module according to the present invention are used for desalination of seawater, desalination of brackish water, production of clean water, food processing, wastewater treatment and concentration, recovery of valuable materials, and the like. In particular, it is effective for producing water for drinking.

選択分離性と水透過性に優れた複合半透膜として、界面重合法を用い、多孔質支持体の表面に分離活性能を有するポリアミド薄膜を形成させた複合半透膜が考案されている。具体的には米国特許第3191815号明細書、同第3744642号明細書、特開昭55−147106号公報、特表昭56−500062号公報、PBレポート83−191775、特開平2−78428公報などが開示されている。これら複合半透膜の製造においては、多孔質支持体に、多官能アミンを含む水溶液を塗布し、ついで多官能酸ハライドを含む有機溶液に接触させる、いわゆるin−situ界面重合法がしばしば用いられる。このような界面重合法では多くの場合、多孔質支持体の濡れ性の向上や、相間移動触媒としての働きから、多官能アミンを含む水溶液中に陰イオン界面活性剤を混在させることが行われている。   As a composite semipermeable membrane excellent in selective separation and water permeability, a composite semipermeable membrane in which a polyamide thin film having separation activity is formed on the surface of a porous support using an interfacial polymerization method has been devised. Specifically, U.S. Pat. Nos. 3,191,815, 3,744,642, JP-A-55-147106, JP-T56-500062, PB Report 83-191775, JP-A-2-78428, etc. Is disclosed. In the production of these composite semipermeable membranes, a so-called in-situ interfacial polymerization method in which an aqueous solution containing a polyfunctional amine is applied to a porous support and then contacted with an organic solution containing a polyfunctional acid halide is often used. . In many cases of such interfacial polymerization, an anionic surfactant is mixed in an aqueous solution containing a polyfunctional amine in order to improve the wettability of the porous support and to serve as a phase transfer catalyst. ing.

かかる複合半透膜はその優れた選択分離性と水透過性から、逆浸透処理あるいはナノろ過、限外ろ過等に用いられる。具体的には、海水の淡水化、かん水の脱塩、河川水や地下水の浄水などの上水製造、純水製造、家庭用もしくは業務用浄水器、食品プロセス、排水の処理や濃縮、有価物の回収などに用いられる。   Such a composite semipermeable membrane is used for reverse osmosis treatment, nanofiltration, ultrafiltration or the like because of its excellent selective separation property and water permeability. Specifically, desalination of seawater, desalination of brine, clean water production such as river water and groundwater purification, pure water production, household or commercial water purifiers, food processes, wastewater treatment and concentration, valuable resources Used for recovery of

これら膜分離プロセスの目的は、不純物あるいは有価物を含む被処理液体をろ過し、浄化された透過水と、濃縮された不純物あるいは有価物とに分離することにある。しかるに、これら膜分離プロセスの運転初期にはしばしば透過水中に不純物が混入することが起こる。複合半透膜の選択分離性は十分に高く、被処理液体に含まれる不純物は除去するが、運転初期には複合半透膜モジュール自身から不純物が溶出し、結果として浄化された透過水が得られない場合があった。   The purpose of these membrane separation processes is to filter the liquid to be treated containing impurities or valuables and separate them into purified permeated water and concentrated impurities or valuables. However, impurities often enter the permeate during the initial operation of these membrane separation processes. The selective separation property of the composite semipermeable membrane is sufficiently high, and impurities contained in the liquid to be treated are removed, but at the initial stage of operation, the impurities are eluted from the composite semipermeable membrane module itself, resulting in purified permeated water. There were cases where it was not possible.

このような欠点を解決する方策として、複合半透膜を酸水溶液で処理する方法(特開昭60−156507公報、特開平7−80259号公報)、複合半透膜をアルカリ水溶液で処理する方法(特開昭55−159807公報、PBレポ−ト83−191775、特開平7−80259号公報)、複合半透膜を熱水で処理する方法(特開昭63−287507公報、特開平1−168306公報、特開平7−80260号公報)、塩素含有水溶液で処理する方法(特開平7−80261号公報)などが開示されている。かかる処理により、複合半透膜から出る不純物が大幅に低減できることが記載されている。   As a measure for solving such drawbacks, a method of treating a composite semipermeable membrane with an acid aqueous solution (JP-A-60-156507, JP-A-7-80259), a method of treating a composite semipermeable membrane with an alkaline aqueous solution. (JP 55-159807 A, PB Report 83-191775, JP 7-80259 A), a method of treating a composite semipermeable membrane with hot water (JP 63-287507 A, JP 1-A 168306, JP-A-7-80260), a method of treating with a chlorine-containing aqueous solution (JP-A-7-80261), and the like. It is described that the impurities emitted from the composite semipermeable membrane can be greatly reduced by such treatment.

しかしながら、上記逆浸透膜の処理方法では、界面重合反応時の未反応物である多官能アミンや多官能酸ハライドは十分に洗浄・除去できるが、陰イオン界面活性剤は複合半透膜中に残留し十分には除去できない。陰イオン界面活性剤は、膜分離プロセスの運転中に極微量ではあるが、長期間にわたって透過水中に徐放されるという問題点がある。   However, in the above reverse osmosis membrane treatment method, polyfunctional amines and polyfunctional acid halides that are unreacted during the interfacial polymerization reaction can be sufficiently washed and removed, but the anionic surfactant is not contained in the composite semipermeable membrane. It remains and cannot be removed sufficiently. Although an anionic surfactant is a trace amount during the operation of the membrane separation process, there is a problem that it is gradually released into permeated water over a long period of time.

陰イオン界面活性剤は、水道水の水質基準により0.2mg/L以下と定められ、発泡や異臭味を生じさせない濃度レベルであり、人体には無害であると考えられているが、一方で、ガンや奇形の原因になると主張する学者もおり、膜モジュールからの溶出は極力少ないことが望ましい。   An anionic surfactant is determined to be 0.2 mg / L or less according to tap water quality standards, and is considered to be harmless to the human body at a concentration level that does not cause foaming or off-flavor, Some scholars claim to cause cancer and malformations, and it is desirable that the elution from the membrane module be as small as possible.

本発明は、前記問題を解決するため、陰イオン界面活性剤の残留量が少ない複合半透膜、複合半透膜モジュールおよびその製造方法を提供することを目的とする。   In order to solve the above problems, an object of the present invention is to provide a composite semipermeable membrane, a composite semipermeable membrane module, and a method for producing the same, in which the residual amount of anionic surfactant is small.

前記目的を達成するための本発明における第1番目の発明は、多孔質支持体の表面をポリアミド薄膜で被覆した複合半透膜において、該複合半透膜から抽出される陰イオン界面活性剤の量が、複合半透膜重量1kg当たり9g以下であり、より好ましくは複合半透膜重量1kg当たり5g以下であり、さらに好ましくは複合半透膜重量1kg当たり2.5g以下であることを特徴とする複合半透膜である。   In order to achieve the above object, the first invention in the present invention is a composite semipermeable membrane in which the surface of the porous support is coated with a polyamide thin film, and an anionic surfactant extracted from the composite semipermeable membrane. The amount is 9 g or less per kg of the composite semipermeable membrane weight, more preferably 5 g or less per kg of the composite semipermeable membrane weight, and further preferably 2.5 g or less per kg of the composite semipermeable membrane weight. It is a composite semipermeable membrane.

第1番目の発明の複合半透膜の製造方法としては、多孔質支持体の表面にポリアミド薄膜を形成させた後、アルコール水溶液で浸漬処理することを特徴とする。さらに続けて、50℃以上の熱水、酸水溶液、アルカリ水溶液のうち少なくとも一つ以上の溶液で処理してもよい。   The method for producing a composite semipermeable membrane of the first invention is characterized in that a polyamide thin film is formed on the surface of a porous support and then immersed in an aqueous alcohol solution. Furthermore, you may process with at least 1 or more solution among hot water of 50 degreeC or more, acid aqueous solution, and alkaline aqueous solution.

第2番目の発明は、多孔質支持体の表面をポリアミド薄膜で被覆した複合半透膜を構成要素とする複合半透膜モジュールにおいて、該複合半透膜から抽出される陰イオン界面活性剤の量が、複合半透膜重量1kg当たり9g以下であり、より好ましくは複合半透膜重量1kg当たり5g以下であり、さらに好ましくは複合半透膜重量1kg当たり2.5g以下であることを特徴とする複合半透膜モジュールである。   According to a second aspect of the present invention, there is provided a composite semipermeable membrane module comprising a composite semipermeable membrane whose surface is covered with a polyamide thin film as a constituent element, and an anionic surfactant extracted from the composite semipermeable membrane. The amount is 9 g or less per kg of the composite semipermeable membrane weight, more preferably 5 g or less per kg of the composite semipermeable membrane weight, and further preferably 2.5 g or less per kg of the composite semipermeable membrane weight. This is a composite semipermeable membrane module.

第2番目の発明の複合半透膜モジュールの製造方法としては、多孔質支持体の表面にポリアミド薄膜を形成させた複合膜形成物を構成要素とする複合半透膜組立体の内部を、アルコール水溶液で満たす、もしくは加圧通水することを特徴とする。さらに続けて、50℃以上の熱水、酸水溶液、アルカリ水溶液のうち少なくとも一つ以上の溶液で該複合半透膜組立体内部を満たし、もしくは加圧通水してもよい。   In the method of manufacturing the composite semipermeable membrane module of the second invention, the interior of the composite semipermeable membrane assembly comprising a composite membrane formed by forming a polyamide thin film on the surface of a porous support is used as an alcohol. It is characterized by being filled with an aqueous solution or passing under pressure. Further, the inside of the composite semipermeable membrane assembly may be filled with pressurized water or at least one of hot water at 50 ° C. or higher, an acid aqueous solution, or an alkaline aqueous solution.

本発明を以下に詳細に説明する。本発明における第1番目の発明は、多孔質支持体の表面にin−situ界面重合法により、陰イオン界面活性剤の存在下に多官能アミンと多官能酸ハライドからなる架橋ポリアミド薄膜を形成させた複合半透膜において、該複合半透膜から抽出される陰イオン界面活性剤の量が、複合半透膜重量1kg当たり9g以下であり、より好ましくは複合半透膜重量1kg当たり5g以下であり、さらに好ましくは複合半透膜重量1kg当たり2.5g以下であることを特徴とする複合半透膜である。   The present invention is described in detail below. In the first aspect of the present invention, a crosslinked polyamide thin film comprising a polyfunctional amine and a polyfunctional acid halide is formed on the surface of a porous support by an in-situ interfacial polymerization method in the presence of an anionic surfactant. In the composite semipermeable membrane, the amount of the anionic surfactant extracted from the composite semipermeable membrane is 9 g or less per kg of the composite semipermeable membrane weight, more preferably 5 g or less per kg of the composite semipermeable membrane weight. The composite semipermeable membrane is more preferably 2.5 g or less per kg of the composite semipermeable membrane weight.

第1番目の発明の複合半透膜の製造方法としては、多孔質支持体の表面にin−situ界面重合法により、陰イオン界面活性剤の存在下に多官能アミンと多官能酸ハライドからなる架橋ポリアミド薄膜を形成させた後、アルコール水溶液で浸漬処理することを特徴とする。さらに続けて、50℃以上の熱水、酸水溶液、アルカリ水溶液のうち少なくとも一つ以上の溶液で処理してもよい。   The method for producing a composite semipermeable membrane according to the first invention comprises a polyfunctional amine and a polyfunctional acid halide in the presence of an anionic surfactant by an in-situ interfacial polymerization method on the surface of a porous support. After forming the crosslinked polyamide thin film, it is characterized by being immersed in an aqueous alcohol solution. Furthermore, you may process with at least 1 or more solution among hot water of 50 degreeC or more, acid aqueous solution, and alkaline aqueous solution.

第2番目の発明は、多孔質支持体の表面にin−situ界面重合法により、陰イオン界面活性剤の存在下に多官能アミンと多官能酸ハライドからなる架橋ポリアミド薄膜を形成させた複合半透膜を構成要素とする複合半透膜モジュールにおいて、該複合半透膜から抽出される陰イオン界面活性剤の量が、複合半透膜重量1kg当たり9g以下であり、より好ましくは複合半透膜重量1kg当たり5g以下であり、さらに好ましくは複合半透膜重量1kg当たり2.5g以下であることを特徴とする複合半透膜モジュールである。   The second invention is a composite semi-solid film in which a crosslinked polyamide thin film comprising a polyfunctional amine and a polyfunctional acid halide is formed on the surface of a porous support by an in-situ interfacial polymerization method in the presence of an anionic surfactant. In the composite semipermeable membrane module having a permeable membrane as a component, the amount of the anionic surfactant extracted from the composite semipermeable membrane is 9 g or less per kg of the composite semipermeable membrane, more preferably the composite semipermeable membrane. The composite semipermeable membrane module is characterized in that it is 5 g or less per kg of membrane weight, and more preferably 2.5 g or less per kg of composite semipermeable membrane weight.

第2番目の発明の複合半透膜モジュールの製造方法としては、多孔質支持体の表面にin−situ界面重合法により、陰イオン界面活性剤の存在下に多官能アミンと多官能酸ハライドからなる架橋ポリアミド薄膜を形成させた複合半透膜を構成要素とする複合半透膜組立体の内部を、アルコール水溶液で満たす、もしくは加圧通水することを特徴とする。さらに続けて、50℃以上の熱水、酸水溶液、アルカリ水溶液のうち少なくとも一つ以上の溶液で該複合半透膜組立体内部を満たし、もしくは加圧通水してもよい。   As a method for producing the composite semipermeable membrane module of the second invention, an in-situ interfacial polymerization method is used on the surface of a porous support, from a polyfunctional amine and a polyfunctional acid halide in the presence of an anionic surfactant. The composite semipermeable membrane assembly comprising the composite semipermeable membrane formed with the cross-linked polyamide thin film as a constituent element is filled with an alcohol aqueous solution or pressurized water is passed. Further, the inside of the composite semipermeable membrane assembly may be filled with pressurized water or at least one of hot water at 50 ° C. or higher, an acid aqueous solution, or an alkaline aqueous solution.

本発明において、多孔質支持体とは実質的に分離活性能を持たない層であり、該多孔質支持体表面に形成された実質的に分離活性能を有する超薄膜に機械的強度を付与するものである。多孔質支持体の形態は特に限定されないが、平膜もしくは中空糸状膜の形態がよく用いられる。中空糸状膜の場合、内圧型、外圧型のいずれであってもよい。   In the present invention, the porous support is a layer having substantially no separation activity, and imparts mechanical strength to the ultrathin film formed on the surface of the porous support and having the substantially separation activity. Is. The form of the porous support is not particularly limited, but a flat membrane or a hollow fiber membrane is often used. In the case of a hollow fiber membrane, either an internal pressure type or an external pressure type may be used.

多孔質支持体の素材は特に限定されないが、ポリスルホン、スルホン化ポリスルホン、ポリエーテルスルホン、スルホン化ポリエーテルスルホン、ポリアミド、酢酸セルロース、ポリアクリロニトリル、ポリイミド等を単独、もしくは複数ブレンドしたものを使用することができる。これら素材の中では、機械的強度や耐熱性、耐薬品性に優れたポリスルホン、あるいはポリエーテルスルホンなどが好適に用いられる。   The material of the porous support is not particularly limited, but polysulfone, sulfonated polysulfone, polyethersulfone, sulfonated polyethersulfone, polyamide, cellulose acetate, polyacrylonitrile, polyimide, etc. should be used alone or in combination. Can do. Among these materials, polysulfone or polyethersulfone having excellent mechanical strength, heat resistance, and chemical resistance is preferably used.

多孔質支持体の製造方法は特に限定されないが、例えばポリマー、良溶媒、貧溶媒、界面活性剤を混合溶解した製膜原液を、吐出ノズルを介して気体雰囲気下に押し出し続いて凝固液中に導く乾湿式法、もしくは吐出ノズルから直接凝固液中に導く湿式法が好適に用いられる。一例を示すと、チューブインオリフィス型紡糸ノズルを用いて外周部から製膜原液(ポリスルホン20重量部、トリエチレングリコール4重量部、N,N−ジメチルアセトアミド(DMAc)75.5重量部、ラウリルベンゼンスルホン酸ナトリウム0.5重量部)、内周部から芯液(DMAc30重量部、水70重量部)を同時に空気中に吐出し、続いて凝固液中(DMAc5重量部、水95重量部)へ導くことによって、外表面に数十nmの微細孔を有する多孔質支持体が得られる。得られた多孔質支持体は、50℃から100℃の熱水処理を施してもよい。   The method for producing the porous support is not particularly limited, but for example, a film-forming stock solution in which a polymer, a good solvent, a poor solvent, and a surfactant are mixed and dissolved is extruded into a coagulating liquid through a discharge nozzle in a gas atmosphere. Suitably used is a wet / dry method that leads or a wet method that leads directly from the discharge nozzle into the coagulation liquid. As an example, a membrane-forming stock solution (polysulfone 20 parts by weight, triethylene glycol 4 parts by weight, N, N-dimethylacetamide (DMAc) 75.5 parts by weight, lauryl benzene) from the outer periphery using a tube-in-orifice type spinning nozzle. Sodium sulfonate (0.5 parts by weight) and core liquid (DMAc 30 parts by weight, water 70 parts by weight) are simultaneously discharged into the air from the inner periphery, and then into the coagulation liquid (DMAc 5 parts by weight, water 95 parts by weight). By guiding, a porous support having fine pores of several tens of nm on the outer surface can be obtained. The obtained porous support may be subjected to hot water treatment at 50 ° C. to 100 ° C.

本発明においては、上記多孔質支持体に、一分子中に2個以上の反応性アミノ基を有する多官能アミンおよび陰イオン界面活性剤を含有する、多官能アミン水溶液を被覆・含浸する。   In the present invention, the porous support is coated and impregnated with a polyfunctional amine aqueous solution containing a polyfunctional amine having two or more reactive amino groups in one molecule and an anionic surfactant.

本発明における多官能アミンは特に限定されるものではないが、例えば、脂環族多官能アミン、脂肪族多官能アミン、芳香族多官能アミンを含み、具体的には、ピペラジン、2,5−ジメチルピペラジン、アミノメチルピペリジン、エチレンジアミン、1,2−ジアミノプロパン、1,2 ジアミノ−2−メチルプロパン、2,2 ジメチル−1,3−プロパンジアミン、2−エチル−2−メチル−1,3−プロパンジアミン、ジアミノベンゼン、トリアミノベンゼン、フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルエーテル、ジアミノジフェニルスルホン、ジアミノ安息香酸等が挙げられる。これらアミノ化合物を単独で、もしくは複数ブレンドして用いてもよい。   The polyfunctional amine in the present invention is not particularly limited, and includes, for example, an alicyclic polyfunctional amine, an aliphatic polyfunctional amine, and an aromatic polyfunctional amine, specifically, piperazine, 2,5- Dimethylpiperazine, aminomethylpiperidine, ethylenediamine, 1,2-diaminopropane, 1,2 diamino-2-methylpropane, 2,2 dimethyl-1,3-propanediamine, 2-ethyl-2-methyl-1,3- Examples include propanediamine, diaminobenzene, triaminobenzene, phenylenediamine, diaminodiphenylmethane, diaminodiphenyl ether, diaminodiphenyl sulfone, and diaminobenzoic acid. These amino compounds may be used alone or in combination.

また、陰イオン界面活性剤としては特に限定されるものではないが、代表的にはLAS (直鎖アルキルベンゼンスルホン酸ナトリウム)、ABS(アルキルベンゼンスルホン酸ナトリウム)、AS(アルキル硫酸ナトリウム)、アルキルジフェニルエーテルジスルフィドなどが含まれる。   The anionic surfactant is not particularly limited, but typically LAS (linear alkylbenzene sulfonate sodium), ABS (sodium alkylbenzene sulfonate), AS (sodium alkyl sulfate), alkyl diphenyl ether disulfide Etc. are included.

LASおよびABSは一般式:C2n+1−Ar−SONaで表され、式中nは任意であるが、優れた界面活性能と相間移動触媒能からn=8〜14が好ましい。特に好ましくは、工業的に利用可能なラウリルベンゼンスルホン酸ナトリウムであるが、これはn=12化合物を主成分とするn=8〜14混合物として安価に入手可能である。 LAS and ABS general formula: C n is represented by H 2n + 1 -Ar-SO 3 Na, but n is an arbitrary wherein preferably n = 8 to 14 from the superior surface activity and phase transfer catalytic activity. Particularly preferred is industrially available sodium lauryl benzene sulfonate, which is inexpensively available as an n = 8-14 mixture based on n = 12 compounds.

LSは一般式:C2n+1−O−SONaで表され、式中nは任意であるが、優れた界面活性能と相間移動触媒能からn=8〜18が好ましい。特に好ましくは、n=12化合物を主成分とするラウリル硫酸ナトリウムが、工業的に安価に利用可能である。 LS is represented by the general formula: C n H 2n + 1 —O—SO 3 Na, where n is arbitrary, but n = 8 to 18 is preferable from the viewpoint of excellent surface activity and phase transfer catalytic ability. Particularly preferably, sodium lauryl sulfate mainly composed of an n = 12 compound can be used industrially at low cost.

また、前記多官能アミンと陰イオン界面活性剤を含む水溶液には、酸捕捉剤として、水酸化ナトリウム、炭酸水素ナトリウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム等の無機アルカリ、トリエチルアミン、トリエチレンジアミン等の3級アミンを添加してもよい。   The aqueous solution containing the polyfunctional amine and the anionic surfactant is used as an acid scavenger as an inorganic alkali such as sodium hydroxide, sodium hydrogen carbonate, sodium dihydrogen phosphate, disodium hydrogen phosphate, triethylamine, A tertiary amine such as ethylenediamine may be added.

前記多官能アミンと反応しうる多官能酸ハライドは特に限定されるものではないが、例えば、脂環族多官能酸ハライド、脂肪族多官能酸ハライド、芳香族多官能酸ハライドを含み、具体的には、シクロヘキサントリカルボン酸ハライド、テレフタル酸ハライド、イソフタル酸ハライド、トリメシン酸ハライド、トリメリット酸ハライド、ピロメリット酸ハライド、ベンゾフェノンテトラカルボン酸ハライド等が挙げられる。これら酸ハロゲン化物を単独で、もしくは複数ブレンドして用いてもよい。   The polyfunctional acid halide that can react with the polyfunctional amine is not particularly limited, and includes, for example, an alicyclic polyfunctional acid halide, an aliphatic polyfunctional acid halide, and an aromatic polyfunctional acid halide. Examples thereof include cyclohexanetricarboxylic acid halide, terephthalic acid halide, isophthalic acid halide, trimesic acid halide, trimellitic acid halide, pyromellitic acid halide, benzophenone tetracarboxylic acid halide, and the like. These acid halides may be used alone or in combination.

上記多官能酸ハライドを溶解する溶媒は、水と非混和性で、多官能酸ハライドを溶解し多孔質支持体を溶解しないものであればよい。たとえば、n−ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン等である。   The solvent that dissolves the polyfunctional acid halide may be any solvent that is immiscible with water and that dissolves the polyfunctional acid halide and does not dissolve the porous support. For example, n-hexane, heptane, octane, nonane, decane, undecane, dodecane and the like.

分離活性能を有する架橋ポリアミド薄膜の形成方法を以下に例示する。前記多孔質支持体を、前記多官能アミン水溶液中に浸漬し、余分な水溶液を液切り・乾燥する。続いて前記多官能酸ハライドを含む有機溶液に接触させ、in−situ界面重合法により該多孔質支持体の表面を架橋ポリアミド薄膜で被覆する。これを乾燥させて余分な有機溶媒を除去した後、純水中で洗浄する。   A method for forming a crosslinked polyamide thin film having a separating activity is exemplified below. The porous support is immersed in the polyfunctional amine aqueous solution, and the excess aqueous solution is drained and dried. Subsequently, it is brought into contact with an organic solution containing the polyfunctional acid halide, and the surface of the porous support is coated with a crosslinked polyamide thin film by an in-situ interfacial polymerization method. This is dried to remove excess organic solvent, and then washed in pure water.

上記で得られた複合膜形成物は、すでに十分な分離活性能を有しており、該複合膜形成物をケーシングに収納し、被処理水の流入口と、濃縮水の排出口と、複合半透膜透過水の取水口とを有する分離膜モジュールとして組立て、膜分離プロセスに組み込み、使用することは可能である。   The composite membrane formation obtained above already has sufficient separation activity, and the composite membrane formation is housed in a casing, and the inlet of treated water, the outlet of concentrated water, and the composite It can be assembled as a separation membrane module having a semipermeable membrane permeated water intake, and can be incorporated into a membrane separation process.

しかしながら、このようにして得られた膜分離モジュールでは、膜分離プロセスの運転初期においては、水道水質基準である0.2mg/Lを上回る量の陰イオン界面活性剤を含有する膜透過水が得られる。水道水質基準に合致する膜透過水を得るためには、少なくとも3時間以上、好ましくは10時間以上の加圧通水下における膜分離モジュールの洗浄が必要である。また、このような洗浄を実施したとしても、依然として0.1mg/Lを上回る量の陰イオン界面活性剤を含有する膜透過水が長期間にわたって得られる。   However, in the membrane separation module thus obtained, membrane permeated water containing an anionic surfactant in an amount exceeding 0.2 mg / L, which is a tap water quality standard, is obtained in the initial operation of the membrane separation process. It is done. In order to obtain membrane permeate that meets tap water quality standards, it is necessary to wash the membrane separation module under pressurized water flow for at least 3 hours, preferably 10 hours or more. Even if such washing is performed, membrane permeated water containing an anionic surfactant in an amount exceeding 0.1 mg / L can be obtained over a long period of time.

本発明におけるアルコール水溶液は特に限定されるものではないが、たとえば、メタノール、エタノール、iso−プロパノール、tert−ブタノール等が使用できる。アルコール水溶液の濃度は、アルコールの種類や処理時間、処理方法により異なるが10〜80重量部、より好ましくは30〜70重量部水溶液を使用することができる。   Although the alcohol aqueous solution in this invention is not specifically limited, For example, methanol, ethanol, iso-propanol, tert-butanol etc. can be used. Although the density | concentration of alcohol aqueous solution changes with the kind of alcohol, process time, and a processing method, 10-80 weight part, More preferably, 30-70 weight part aqueous solution can be used.

本発明における酸水溶液は特に限定されるものではく、塩酸、硫酸、硝酸、リン酸等の無機酸、酢酸、クエン酸等の有機酸のごとく、水に可溶で、水溶液としたときに酸性を示すものであればよい。酸水溶液はpH1〜4、より好ましくはpH2〜3の水溶液が好適に用いられる。これは、酸水溶液がpH1未満では酸加水分解により複合半透膜自が劣化する恐れがあり、pH4以上では十分な洗浄効果が得られないためである。 The acid aqueous solution in the present invention is not particularly limited, and is soluble in water, such as inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, and organic acids such as acetic acid and citric acid, and acidic when made into an aqueous solution. As long as it shows. As the acid aqueous solution, an aqueous solution having a pH of 1 to 4, more preferably a pH of 2 to 3 is preferably used. This is by acid hydrolysis with aqueous acid is less than pH1 there is a risk that the composite semipermeable membrane itself is deteriorated, because a sufficient cleaning effect can not be obtained at pH4 or more.

本発明におけるアルカリ水溶液は特に限定されるものではないが、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア等のごとく、水に可溶で、水溶液としたときにアルカリ性を示すものであればよい。アルカリ水溶液はpH9〜12の水溶液が好適に用いられる。分離活性能を有する架橋ポリアミド薄膜は特にアルカリ加水分解を受けやすく、該ポリアミドを構成するモノマー成分にもよるが、アルカリ水溶液がpH12以上ではアルカリ加水分解により複合半透膜自体が劣化する恐れがある。また、pH9未満では十分な洗浄効果が得られない。   The alkaline aqueous solution in the present invention is not particularly limited, but is soluble in water, such as sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia, etc., and exhibits alkalinity when made into an aqueous solution. Good. As the alkaline aqueous solution, an aqueous solution having a pH of 9 to 12 is preferably used. The crosslinked polyamide thin film having separation activity is particularly susceptible to alkali hydrolysis, and depending on the monomer component constituting the polyamide, the composite semipermeable membrane itself may be deteriorated by alkali hydrolysis when the alkaline aqueous solution has a pH of 12 or more. . Further, if the pH is less than 9, sufficient cleaning effect cannot be obtained.

本発明における熱水は特に限定されるものではないが、前記複合膜形成物や複合半透膜組立体と接触したときに、それらと反応しうる基質を含まない水を使用し、好適には逆浸透ろ過水やイオン交換水等が使用できる。また、該熱水の温度は50℃以上、より好ましくは60℃以上のものを好適に用いることができる。   Hot water in the present invention is not particularly limited, but water that does not contain a substrate that can react with the composite membrane-forming product or the composite semipermeable membrane assembly is preferably used. Reverse osmosis filtered water or ion exchange water can be used. Moreover, the temperature of this hot water can use 50 degreeC or more, More preferably, the thing of 60 degreeC or more can be used conveniently.

アルコール水溶液による複合膜形成物の処理方法は、簡便な方法として浸漬法、充填法もしくは加圧通水法が用いられる。   As a method for treating a composite film formed product with an aqueous alcohol solution, a dipping method, a filling method, or a pressurized water passing method is used as a simple method.

浸漬法では、前記in−situ界面重合法により得られた複合膜形成物を前記アルコール水溶液に1分〜5時間、より好ましくは5分〜3時間浸漬し、次いで純水で洗浄することにより本発明の複合半透膜が得られる。   In the immersion method, the composite film-formed product obtained by the in-situ interfacial polymerization method is immersed in the aqueous alcohol solution for 1 minute to 5 hours, more preferably 5 minutes to 3 hours, and then washed with pure water. The inventive composite semipermeable membrane is obtained.

また、前記複合膜形成物をケーシングに収納し、被処理水の流入口と、濃縮水の排出口と、複合半透膜透過水の取水口とを有する複合半透膜組立体として組立て、該複合半透膜組立体の内部に前記アルコール水溶液を充填する、充填法を用いることができる。処理時間は1分〜5時間、より好ましくは5分〜3時間静置もしくはゆっくりと振とうすることで、前記浸漬法と同様の効果がある。次いで純水で洗浄することにより本発明の複合半透膜モジュールが得られる。   Further, the composite membrane formed product is housed in a casing and assembled as a composite semipermeable membrane assembly having an inlet for water to be treated, a discharge port for concentrated water, and a water intake for composite semipermeable membrane permeated water, A filling method in which the aqueous alcohol solution is filled into the composite semipermeable membrane assembly can be used. The treatment time is 1 minute to 5 hours, more preferably 5 minutes to 3 hours, and the same effect as that of the immersion method can be obtained by shaking gently. Subsequently, the composite semipermeable membrane module of the present invention is obtained by washing with pure water.

本発明の複合半透膜モジュールを得るもう一つの方法として、アルコール水溶液を前記複合半透膜組立体の被処理水流入口より導入し、膜間圧力差を生じせしめ、濃縮水と膜透過水とを得る加圧通水法を利用できる。加圧通水法による場合は、前記濃縮水と膜透過水を放流するワンパス運転を行ってもよく、また浴比を適切に設定した上で前記濃縮水と膜透過水を供給側へ戻す循環運転を行ってもよい。膜間圧力差は、アルコール水溶液が透過側へ流れ出ればよく、例えば、ポンプにより0.05〜5M Pa程度の加圧給水を行う。処理時間は浸漬法よりも短時間でよく、1分〜3時間加圧通水すればよい。加圧通水法では、アルコール水溶液が複合半透膜内部にまで十分に侵入し、陰イオン界面活性剤を除去する効果が高まるが、ポンプを駆動するためのエネルギーコストを考慮すると、1時間以内がより好ましい。加圧通水処理の後、純水に置換して再度加圧通水・洗浄することで本発明の複合半透膜モジュールが得られる。   As another method of obtaining the composite semipermeable membrane module of the present invention, an alcohol aqueous solution is introduced from the treated water inlet of the composite semipermeable membrane assembly to cause a transmembrane pressure difference, and The pressurized water flow method can be used. In the case of the pressurized water flow method, one-pass operation for discharging the concentrated water and the membrane permeated water may be performed, and circulation is performed to return the concentrated water and the membrane permeated water to the supply side after appropriately setting the bath ratio. You may drive. The intermembrane | transmembrane pressure difference should just flow out alcohol aqueous solution to the permeation | transmission side, for example, pressurization water supply of about 0.05-5MPa is performed with a pump. The treatment time may be shorter than that of the dipping method, and the pressurized water may be passed for 1 minute to 3 hours. In the pressurized water flow method, the alcohol aqueous solution sufficiently penetrates into the composite semipermeable membrane and the effect of removing the anionic surfactant is enhanced. However, in consideration of the energy cost for driving the pump, it is within 1 hour. Is more preferable. After the pressurized water passing treatment, the composite semipermeable membrane module of the present invention is obtained by substituting with pure water and performing pressurized water passing and washing again.

本発明においてはさらに、前記アルコール水溶液で処理した複合半透膜形成物および、複合半透膜組立体を酸水溶液、アルカリ水溶液、熱水のいずれか一つ、もしくは複数の組合せで処理してもよい。処理方法は前記アルコール水溶液による処理の場合のごとく、浸漬法、充填法、加圧通水法のいずれも用いることができる。   In the present invention, the composite semipermeable membrane formed product and the composite semipermeable membrane assembly treated with the alcohol aqueous solution and the composite semipermeable membrane assembly may be treated with any one of acid aqueous solution, alkaline aqueous solution, hot water, or a combination thereof. Good. As the treatment method, as in the case of the treatment with the aqueous alcohol solution, any of an immersion method, a filling method, and a pressurized water flow method can be used.

また本発明の複合半透膜および複合半透膜モジュールの用途は、限外ろ過、ナノろ過、逆浸透がある。特に、飲用に供する海水淡水化、かん水の脱塩、河川水や地下水からの上水製造、純水製造、家庭用もしくは業務用浄水器、食品プロセスに有効である。さらには、排水の処理や濃縮、有価物の回収に用いてもよい。しかしながら、本発明はこれらの膜の用途に限定されるものではない。   Moreover, the use of the composite semipermeable membrane and the composite semipermeable membrane module of the present invention includes ultrafiltration, nanofiltration, and reverse osmosis. In particular, it is effective for seawater desalination for drinking, desalination of brackish water, water production from river water and groundwater, pure water production, household or commercial water purifiers, and food processes. Further, it may be used for wastewater treatment and concentration, and collection of valuable resources. However, the present invention is not limited to the use of these membranes.

以下に実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において、複合半透膜に残留する陰イオン界面活性剤の抽出はソクスレー抽出法により行い、該抽出液中の陰イオン界面活性剤量は高速液体クロマトグラフによる分離・定量により測定した。抽出に用いた複合半透膜は絶乾ののち秤量し、残留陰イオン界面活性剤の量を単位膜重量当たりに換算した。ソクスレー抽出は、複合半透膜片を細断し、メタノールを抽出溶媒として、一昼夜かけて実施した。上記高速液体クロマトグラフの測定条件については、逆相系カラムPRP−1(ハミルトン社製)を用い、移動相をアセトニトリル40重量部、0.2M 過塩素酸ナトリウム溶液60重量部の混合水溶液、移動相流量1.0mL/min、カラム温度50℃とし、検出器にはUV検出器(波長225nm)を用いた。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In the examples, the extraction of the anionic surfactant remaining in the composite semipermeable membrane was performed by the Soxhlet extraction method, and the amount of the anionic surfactant in the extract was measured by separation and quantification using a high performance liquid chromatograph. . The composite semipermeable membrane used for extraction was weighed after being completely dried, and the amount of residual anionic surfactant was converted per unit membrane weight. The Soxhlet extraction was carried out over a whole day and night by chopping the composite semipermeable membrane piece and using methanol as the extraction solvent. Regarding the measurement conditions of the high performance liquid chromatograph, a reversed phase column PRP-1 (manufactured by Hamilton) was used, the mobile phase was a mixed aqueous solution of 40 parts by weight of acetonitrile, and 60 parts by weight of a 0.2M sodium perchlorate solution. The phase flow rate was 1.0 mL / min, the column temperature was 50 ° C., and a UV detector (wavelength 225 nm) was used as the detector.

参考例1)
ポリスルホン20重量部、トリエチレングリコール4重量部、N,N−ジメチルアセトアミド(DMAc)75.5重量部、ラウリルベンゼンスルホン酸ナトリウム0.5重量部からなる製膜原液を、チューブインオリフィス型紡糸ノズルを用いて外周部から、DMAc30重量部、水70重量部からなる芯液を内周部から、それぞれ同時に押し出し、6cmの空気中を走行した後、DMAc5重量部、水95重量部からなる凝固液中に15m/minの速度で引き取り、水洗工程を経て、中空糸型多孔質支持体(外径350μm/内径200μm)を得た。該多孔質支持体を、ピペラジン2重量部、トリエチレンジアミン1重量部、ラウリルベンゼンスルホン酸ナトリウム0.07重量部からなるアミン水溶液中に1分間接触させ、該多孔質支持体を引き上げた後、余分なアミン水溶液を液切りし、トリメシン酸クロリド1重量部を含むヘキサン溶液、フッ素系溶媒(フロリナートFC−70、住友3M社製)、1重量部酢酸水溶液に順次接触させることで、該多孔質支持体の外表面にポリアミド薄膜を形成させた、複合膜形成物を得た。該複合膜形成物を、50重量部のエタノ−ル水溶液中に15分間浸漬し、純水で十分に水洗することで複合半透膜を得た。該複合半透膜に残留するラウリルベンゼンスルホン酸ナトリウムを、ソクスレー抽出、高速液体クロマトグラフにより定量し、単位膜重量当たりの残留量を決定した。結果を表1に示す。
( Reference Example 1)
A tube-in-orifice type spinning nozzle is prepared by using a membrane-forming stock solution comprising 20 parts by weight of polysulfone, 4 parts by weight of triethylene glycol, 75.5 parts by weight of N, N-dimethylacetamide (DMAc), and 0.5 parts by weight of sodium laurylbenzenesulfonate. The core solution consisting of 30 parts by weight of DMAc and 70 parts by weight of water was extruded from the inner periphery at the same time, and was run in 6 cm of air, and then coagulated liquid consisting of 5 parts by weight of DMAc and 95 parts by weight of water. The hollow fiber type porous support (outside diameter 350 μm / inside diameter 200 μm) was obtained through a water washing step. The porous support was brought into contact with an aqueous amine solution consisting of 2 parts by weight of piperazine, 1 part by weight of triethylenediamine, and 0.07 part by weight of sodium laurylbenzene sulfonate for 1 minute. The aqueous solution of amine is drained and contacted with a hexane solution containing 1 part by weight of trimesic acid chloride, a fluorinated solvent (Fluorinert FC-70, manufactured by Sumitomo 3M), and 1 part by weight of an acetic acid aqueous solution, thereby supporting the porous support. A composite film-formed product having a polyamide thin film formed on the outer surface of the body was obtained. The composite membrane formed product was immersed in an aqueous solution of 50 parts by weight of ethanol for 15 minutes and sufficiently washed with pure water to obtain a composite semipermeable membrane. Sodium laurylbenzenesulfonate remaining in the composite semipermeable membrane was quantified by Soxhlet extraction and high performance liquid chromatography to determine the residual amount per unit membrane weight. The results are shown in Table 1.

参考例2〜3)
参考例1において、該複合膜形成物を、エタノール処理に続き、pH3またはpH2の塩酸水溶液に1時間浸漬し、純水で十分に水洗した以外は全く同一の操作を行った。結果を表1に示す。
( Reference Examples 2-3)
In Reference Example 1, following the ethanol treatment, the same operation was performed except that the composite film formation was immersed in an aqueous hydrochloric acid solution of pH 3 or pH 1 for 1 hour and thoroughly washed with pure water. The results are shown in Table 1.

(実施例
参考例1において、該複合膜形成物を、エタノール処理に続き、pH9またはpH10の水酸化ナトリウム水溶液に1時間浸漬し、純水で十分に水洗した以外は全く同一の操作を行った。結果を表1に示す。
(Examples 1 and 2 )
In Reference Example 1, following the ethanol treatment, the same operation was performed except that the composite film formation was immersed in an aqueous sodium hydroxide solution at pH 9 or pH 1 for 1 hour and thoroughly washed with pure water. The results are shown in Table 1.

(実施例
参考例1において、該複合膜形成物を、エタノール処理に続き、70℃の熱水に3時間浸漬した以外は全く同一の操作を行った。結果を表1に示す。
(Example 3 )
In Reference Example 1, the same operation was performed except that the composite film-formed product was immersed in hot water at 70 ° C. for 3 hours following the ethanol treatment. The results are shown in Table 1.

(比較例1)
参考例1において、該複合膜形成物を、エタノール処理を施さず、純水のみで洗浄した以外は全く同一の操作を行った。結果を表1に示す。
(Comparative Example 1)
In Reference Example 1, the same operation was performed except that the composite film-formed product was washed with pure water only without being subjected to ethanol treatment. The results are shown in Table 1.

参考例4
参考例1で得た中空糸状の該複合膜形成物を多数本束ね、側面に液体流入口と排出口を有する、人工透析器型の円筒状ケースに、該膜束を該ケースの両端部からわずかにはみ出すように挿入し、ケース外部と内部とを仕切るように、該ケース両端部を該膜束と共にポッティング樹脂で封止した。封止した端部の一方のみ、ケースからはみ出している膜束と接着樹脂とをカッターで切断し、中空部を開口した。このようにして得られた複合半透膜組立体を膜分離装置に装着し、50重量部のメタノール水溶液を送液ポンプにより操作圧力0.3M Pa、液温25℃で、濃縮水と膜透過水を供給液タンクに戻す循環運転(加圧通水)を15分間行った。次いで、純水で十分にすすぎ、複合半透膜モジュールを得た。該複合半透膜モジュールを解体し、内部の複合半透膜を取り出し、該複合半透膜に残留するラウリルベンゼンスルホン酸ナトリウムを、ソクスレー抽出、高速液体クロマトグラフにより定量し、単位膜重量当たりの残留量を決定した。結果を表2に示す。
( Reference Example 4 )
A number of hollow fiber-like composite membrane formations obtained in Reference Example 1 are bundled, and the membrane bundle is placed from both ends of the case into an artificial dialyzer-type cylindrical case having a liquid inlet and outlet on the side. The case was inserted so as to protrude slightly, and both ends of the case were sealed together with the membrane bundle with a potting resin so as to partition the outside and inside of the case. The membrane bundle protruding from the case and the adhesive resin were cut with a cutter at only one of the sealed end portions, and the hollow portion was opened. The composite semipermeable membrane assembly thus obtained was mounted on a membrane separation apparatus, and 50 parts by weight of an aqueous methanol solution was fed by a feed pump at an operating pressure of 0.3 MPa and a liquid temperature of 25 ° C. A circulation operation (pressurized water flow) for returning water to the supply liquid tank was performed for 15 minutes. Next, the composite semipermeable membrane module was obtained by sufficiently rinsing with pure water. The composite semipermeable membrane module is disassembled, the internal composite semipermeable membrane is taken out, and sodium laurylbenzenesulfonate remaining in the composite semipermeable membrane is quantified by Soxhlet extraction and high performance liquid chromatograph. Residual amount was determined. The results are shown in Table 2.

参考例5〜6
参考例4において、該複合半透膜組立体を、エタノール処理に続き、pH3またはpH2の塩酸水溶液で、同様の条件で1時間の加圧通水を行い、純水で十分に水洗した以外は全く同一の操作を行った。結果を表2に示す。
( Reference Examples 5-6 )
In Reference Example 4 , the composite semipermeable membrane assembly was subjected to ethanol treatment, followed by pH 3 or pH 2 hydrochloric acid aqueous solution under pressure under the same conditions for 1 hour, and thoroughly washed with pure water. The exact same operation was performed. The results are shown in Table 2.

(実施例
参考例4において、該複合半透膜組立体を、エタノール処理に続き、pH9またはpH10の水酸化ナトリウム水溶液で、同様の条件で1時間の加圧通水を行い、純水で十分に水洗した以外は全く同一の操作を行った。結果を表2に示す。
(Examples 4 to 5 )
In Reference Example 4 , the composite semipermeable membrane assembly was subjected to ethanol treatment, followed by pressurized water passage for 1 hour with a sodium hydroxide aqueous solution at pH 9 or pH 10 under the same conditions, and sufficiently washed with pure water. Except for the above, the same operation was performed. The results are shown in Table 2.

(実施例
参考例4において、該複合半透膜組立体を、エタノール処理に続き、60℃の熱水で、同様の条件で10時間の加圧通水を行い、純水で十分に水洗した以外は全く同一の操作を行った。結果を表2に示す。
(Example 6 )
In Reference Example 4 , the composite semipermeable membrane assembly was subjected to ethanol treatment, followed by hot water at 60 ° C. for 10 hours under the same conditions, and thoroughly washed with pure water. The same operation was performed. The results are shown in Table 2.

(比較例2)
参考例4において、該複合半透膜組立体を、エタノール処理を施さず、純水のみで洗浄した以外は全く同一の操作を行った。結果を表に示す。
(Comparative Example 2)
In Reference Example 4 , the same operation was performed except that the composite semipermeable membrane assembly was washed with pure water only without being subjected to ethanol treatment. The results are shown in Table 2 .

発明の効果
以上説明したように、本発明の複合半透膜および複合半透膜モジュールは、陰イオン界面活性剤の残留量が少なく、膜分離装置の運転初期においても、膜モジュールからの陰イオン界面活性剤の溶出量を極めて低く押さえることができ、異臭味や発泡を生じず、安全な飲用に供する水を製造することができる。
As described above, the composite semipermeable membrane and the composite semipermeable membrane module of the present invention have a small amount of residual anionic surfactant, and the anion from the membrane module even in the initial operation of the membrane separator. The elution amount of the surfactant can be suppressed to a very low level, and it is possible to produce water for safe drinking without causing off-flavors and foaming.

Figure 0005077779
Figure 0005077779

Figure 0005077779
Figure 0005077779

Claims (2)

多孔質支持体の表面をポリアミド薄膜で被覆した複合半透膜の製造方法であって、多孔質支持体の表面にin−situ界面重合法により、陰イオン界面活性剤の存在下に多官能アミンと多官能酸ハライドからなる架橋ポリアミド薄膜を形成させた後、アルコール水溶液で浸漬処理し、続いて50℃以上の熱水、又はアルカリ水溶液で処理し、これにより、複合半透膜に残留する陰イオン界面活性剤の量を複合半透膜重量1kg当たり5g以下に低下させることを特徴とする方法。 A method for producing a composite semipermeable membrane in which a surface of a porous support is coated with a polyamide thin film, wherein a polyfunctional amine is formed on the surface of the porous support by an in-situ interfacial polymerization method in the presence of an anionic surfactant. after a to form a cross-linked polyamide thin film made of polyfunctional acid halide, and dipped in aqueous alcohol, followed by treatment with 50 ° C. or more hot water or alkaline aqueous solution, thereby, remaining in the composite semipermeable membrane Reducing the amount of the anionic surfactant to 5 g or less per kg of the weight of the composite semipermeable membrane . 多孔質支持体の表面をポリアミド薄膜で被覆した複合半透膜を構成要素とする複合半透膜モジュールの製造方法であって、多孔質支持体の表面にin−situ界面重合法により、陰イオン界面活性剤の存在下に多官能アミンと多官能酸ハライドからなる架橋ポリアミド薄膜を形成させた複合膜形成物を構成要素とする複合半透膜組立体の内部を、アルコール水溶液で満たすか又は加圧通水したのち、50℃以上の熱水、もしくはアルカリ水溶液で該複合半透膜組立体内部を満たすか又は加圧通水し、これにより複合半透膜に残留する陰イオン界面活性剤の量を複合半透膜重量1kg当たり5g以下に低下させることを特徴とする方法。 A method for producing a composite semipermeable membrane module comprising a composite semipermeable membrane with the surface of a porous support coated with a polyamide thin film, comprising an anion on the surface of the porous support by in-situ interfacial polymerization. the interior of the composite semipermeable membrane assembly for a composite film formed product to form a cross-linked polyamide thin film in the presence of a surfactant consisting of a polyfunctional amine and a polyfunctional acid halide and components, fully Tasca or aqueous alcohol After pressing and water, 50 ° C. or more hot water or an alkaline aqueous solution or pressing and water meets the inside of the composite semipermeable membrane assembly, thereby anionic surfactants remaining in the composite semipermeable membrane Reducing the amount of the agent to 5 g or less per kg of the composite semipermeable membrane weight .
JP2009158406A 2009-07-03 2009-07-03 Method for producing composite semipermeable membrane and composite semipermeable membrane module Expired - Lifetime JP5077779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158406A JP5077779B2 (en) 2009-07-03 2009-07-03 Method for producing composite semipermeable membrane and composite semipermeable membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158406A JP5077779B2 (en) 2009-07-03 2009-07-03 Method for producing composite semipermeable membrane and composite semipermeable membrane module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11163863A Division JP2000350928A (en) 1999-06-10 1999-06-10 Composite diaphragm, composite diaphragm module and its manufacture

Publications (2)

Publication Number Publication Date
JP2009269028A JP2009269028A (en) 2009-11-19
JP5077779B2 true JP5077779B2 (en) 2012-11-21

Family

ID=41436040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158406A Expired - Lifetime JP5077779B2 (en) 2009-07-03 2009-07-03 Method for producing composite semipermeable membrane and composite semipermeable membrane module

Country Status (1)

Country Link
JP (1) JP5077779B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170030931A (en) * 2015-09-10 2017-03-20 주식회사 엘지화학 Composition for interfacial polymerizing polyamide, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module comprising the compound

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113351026A (en) * 2021-05-17 2021-09-07 浙江理工大学 Preparation method of polyamide composite membrane with high controllability
CN115090136B (en) * 2022-05-09 2023-05-05 恩泰环保科技(常州)有限公司 High-flux high-selectivity material membrane and preparation method and application thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686520B2 (en) * 1985-04-10 1994-11-02 東レ株式会社 Polyamide fine particles
US4719062A (en) * 1986-04-23 1988-01-12 E. I. Du Pont De Nemours And Company Extractant-surfactant post-treatments of permselective composite membranes
JP2514929B2 (en) * 1986-04-30 1996-07-10 オルガノ株式会社 Method for cleaning terminal reverse osmosis membrane device
JPH01168306A (en) * 1987-12-23 1989-07-03 Toray Ind Inc Preparation of semi-permeable composite membrane
JPH06327953A (en) * 1993-05-26 1994-11-29 Nitto Denko Corp Production of composite reverse osmotic membrane
JPH0739734A (en) * 1993-08-03 1995-02-10 Nitto Denko Corp Composite semipermeable membrane and its production
JPH0780260A (en) * 1993-09-14 1995-03-28 Toray Ind Inc Treatment of reverse osmosis membrane and reverse osmosis membrane separation element
JPH0780261A (en) * 1993-09-14 1995-03-28 Toray Ind Inc Treatment of reverse osmosis membrane and reverse osmosis membrane separation element
JPH0780262A (en) * 1993-09-14 1995-03-28 Toray Ind Inc Treatment of reverse osmosis membrane and reverse osmosis membrane separation element
JPH0780259A (en) * 1993-09-14 1995-03-28 Toray Ind Inc Treatment of reverse osmosis membrane and reverse osmosis membrane separation element
JP3250644B2 (en) * 1995-04-12 2002-01-28 東洋紡績株式会社 Composite hollow fiber membrane and method for producing the same
JP3665692B2 (en) * 1996-12-05 2005-06-29 日東電工株式会社 Method for producing dry composite reverse osmosis membrane
JPH1119493A (en) * 1997-07-03 1999-01-26 Nitto Denko Corp Reverse osmotic membrane module and treatment of sea water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170030931A (en) * 2015-09-10 2017-03-20 주식회사 엘지화학 Composition for interfacial polymerizing polyamide, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module comprising the compound
KR102015023B1 (en) * 2015-09-10 2019-10-23 주식회사 엘지화학 Composition for interfacial polymerizing polyamide, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module comprising the compound

Also Published As

Publication number Publication date
JP2009269028A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP6136266B2 (en) Composite semipermeable membrane
KR101733264B1 (en) Polyamide water-treatment membranes having properties of high salt rejection and high flux and manufacturing method thereof
JP2008093544A (en) Composite semipermeable membrane and manufacturing method thereof
JP2014521499A (en) Polyamide-based reverse osmosis separation membrane excellent in initial permeate flow rate and method for producing the same
JP5267273B2 (en) Manufacturing method of composite semipermeable membrane
JP5077779B2 (en) Method for producing composite semipermeable membrane and composite semipermeable membrane module
JP2005186059A (en) Processing method for semi-permeable membrane, modified semi-permeable membrane and production method for the same
JP2008246419A (en) Production method for composite semi-permeable membrane
JP5964114B2 (en) Internal pressure type hollow fiber NF membrane and manufacturing method thereof
JP2011125856A (en) Method for manufacturing composite semipermeable membrane and polyamide composite semipermeable membrane
JP7342528B2 (en) Composite semipermeable membrane and method for manufacturing composite semipermeable membrane
JP2000350928A (en) Composite diaphragm, composite diaphragm module and its manufacture
KR102072877B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
JP2006021094A (en) Compound semi-permeable membrane and its manufacturing method
JP2013223861A (en) Composite diaphragm
JPWO2013125681A1 (en) Hollow fiber type semipermeable membrane, manufacturing method and module thereof, and water treatment method
JP6081290B2 (en) Internal pressure type hollow fiber NF membrane and manufacturing method thereof
JP4433233B2 (en) Processing method of composite semipermeable membrane module
JP2009262089A (en) Manufacturing method of composite semi-permeable membrane
JP5130967B2 (en) Manufacturing method of composite semipermeable membrane
JP2010234284A (en) Composite semipermeable membrane
JP4470472B2 (en) Composite semipermeable membrane and method for producing water using the same
JP2005137964A (en) Liquid separation membrane and its manufacturing method
KR101716045B1 (en) Manufacturing method for polyamide watertreatment membranes having properies of high flux and water-treatment membranes manufactured by using the same
JP2006272148A (en) Manufacturing method of drying composite semi-permeable membrane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5077779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

EXPY Cancellation because of completion of term