JPH1119493A - Reverse osmotic membrane module and treatment of sea water - Google Patents

Reverse osmotic membrane module and treatment of sea water

Info

Publication number
JPH1119493A
JPH1119493A JP19311297A JP19311297A JPH1119493A JP H1119493 A JPH1119493 A JP H1119493A JP 19311297 A JP19311297 A JP 19311297A JP 19311297 A JP19311297 A JP 19311297A JP H1119493 A JPH1119493 A JP H1119493A
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
water
module
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19311297A
Other languages
Japanese (ja)
Inventor
Tomoumi Obara
知海 小原
Masahiko Hirose
雅彦 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP19311297A priority Critical patent/JPH1119493A/en
Publication of JPH1119493A publication Critical patent/JPH1119493A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a reverse osmotic membrane module capable of obtaining a permeated water of low boron content safely used as a drinking water from sea water with a usual initial cost, equipment and operating condition. SOLUTION: This reverse osmotic membrane module is a module using a composite reverse osmotic membrane using a cross-linked polyamide based compound produced by the cross-linking reaction of a compound having >=2 reactive amino groups with a polyfunctional halide as a skin layer B and has <=1×10<-6> m/sec boron permeation coefficient under 4.5 mg/l raw water boron concentration at 25 deg.C and pH 6.5 by heat treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、海水の淡水化に有
用な逆浸透膜モジュ−ル及び海水の処理方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reverse osmosis membrane module useful for desalination of seawater and a method for treating seawater.

【0002】[0002]

【従来の技術】液状混合物からの不純物の除去、有用物
の分離精製の手段として逆浸透膜分離方法が使用されて
いる。かかる逆浸透膜として、多官能芳香族アミンと多
官能芳香族酸ハロゲン化物との界面重合により得られる
ポリアミドをスキン層とする複合膜(例えば、特開昭5
5−147106号、特開昭62−121603号、特
開昭63−218208号、特開平2−187135
号)、多官能芳香族アミンと多官能脂環酸ハロゲン化物
との界面重合により得られるポリアミドをスキン層とす
る複合膜(例えば、特開昭61−42308号)等が提
案されている。また、これらの複合逆浸透膜の透水性能
を一層向上させるために、界面反応にて生成するハロゲ
ン化水素を除去し得る水酸化ナトリウムやリン酸三ナト
リウム等を添加すること、アシル化触媒や界面反応時の
反応場の界面張力を減少させる化合物を添加することも
提案されている(例えば、特開昭63−12310号、
特開平6−47260号、特願昭平6−319716
号)。近来、これらの複合逆浸透膜を用いて海水を淡水
化することが試みられている。
2. Description of the Related Art A reverse osmosis membrane separation method has been used as a means for removing impurities from a liquid mixture and separating and purifying useful substances. As such a reverse osmosis membrane, a composite membrane having a polyamide as a skin layer obtained by interfacial polymerization of a polyfunctional aromatic amine and a polyfunctional aromatic acid halide (for example, Japanese Patent Application Laid-Open No.
JP-A-5-147106, JP-A-62-121603, JP-A-63-218208, JP-A-2-187135
No., a composite film having a polyamide as a skin layer obtained by interfacial polymerization of a polyfunctional aromatic amine and a polyfunctional alicyclic halide (for example, JP-A-61-42308). Further, in order to further improve the water permeation performance of these composite reverse osmosis membranes, sodium hydroxide or trisodium phosphate capable of removing hydrogen halide generated by an interfacial reaction is added, and an acylation catalyst or an interface is added. It has also been proposed to add a compound that reduces the interfacial tension of the reaction field during the reaction (for example, JP-A-63-12310,
JP-A-6-47260, Japanese Patent Application No. 6-319716
issue). Recently, it has been attempted to desalinate seawater using these composite reverse osmosis membranes.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、海水に
はホウ素が多量に含有されており、通常の一段処理で
は、所定の回収率(40%程度)で透過水のホウ素濃度
を飲料水に適する程度の濃度にまで低減することは困難
である。このため、多段処理することが提案されている
が(例えば、特開平8−206460号)、イニシャル
コストの増大、設備の大型化、運転条件の複雑化等が避
けられない。
However, seawater contains a large amount of boron, and in a normal one-stage treatment, the boron concentration of permeated water at a predetermined recovery rate (about 40%) is reduced to a level suitable for drinking water. It is difficult to reduce to a concentration of. For this reason, although multi-stage processing has been proposed (for example, Japanese Patent Application Laid-Open No. 8-206460), an increase in initial costs, an increase in size of equipment, and complicated operating conditions are inevitable.

【0004】そこで、本発明者等は上記透過水のホウ素
濃度を低減すべく、鋭意検討した結果、2箇以上の反応
性のアミノ基を有する化合物と多官能性ハロゲン化物と
を架橋反応させた架橋ポリアミド系化合物をスキン層と
する複合逆浸透膜を所定の条件で熱水処理すれば、ホウ
素の透過係数を小にし得、通常の回収率のもとで、飲料
水として安全に使用できる低ホウ素含有量の透過水が得
られることを認識した。
Accordingly, the present inventors have conducted intensive studies in order to reduce the boron concentration of the permeated water, and as a result, cross-linked a compound having two or more reactive amino groups with a polyfunctional halide. If the composite reverse osmosis membrane having a crosslinked polyamide-based compound as a skin layer is subjected to hot water treatment under predetermined conditions, the permeability coefficient of boron can be reduced, and under a normal recovery rate, low permeability that can be safely used as drinking water. It was recognized that a permeate of boron content was obtained.

【0005】本発明の目的は、かかる検討結果に基づ
き、通常のイニシャルコスト、設備、運転条件のもと
で、海水から飲料水として安全に使用できる低ホウ素含
有量の透過水を得ることを可能にすることにある。
An object of the present invention is to provide a low boron content permeated water that can be safely used as drinking water from seawater under ordinary initial cost, equipment, and operating conditions based on the results of the study. It is to make.

【0006】[0006]

【課題を解決するための手段】本発明に係る逆浸透膜モ
ジュ−ルは2箇以上の反応性のアミノ基を有する化合物
と多官能性ハロゲン化物とを架橋反応させた架橋ポリア
ミド系化合物をスキン層とする複合逆浸透膜を用いたモ
ジュ−ルであり、熱水処理により25℃、pH6.5、
原水ホウ素濃度4.5mg/lのもとでのホウ素透過係
数が1×10-6m/s以下とされていることを特徴とす
る構成であり、熱水処理した複合逆浸透膜を用いてモジ
ュ−ルに組み立ててもよく、モジュ−ルの組立て後、熱
水の通水により複合逆浸透膜を熱水処理してもよい。
SUMMARY OF THE INVENTION A reverse osmosis membrane module according to the present invention is obtained by skinning a cross-linked polyamide compound obtained by subjecting a compound having two or more reactive amino groups to a cross-linking reaction with a polyfunctional halide. This is a module using a composite reverse osmosis membrane as a layer.
A construction which is characterized in that boron permeability coefficient under raw boron concentration 4.5 mg / l is less 1 × 10- 6 m / s, using a composite reverse osmosis membrane was hydrothermally treated The module may be assembled, and after assembling the module, the composite reverse osmosis membrane may be treated with hot water by passing hot water through it.

【0007】[0007]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について説明する。図1は本発明に係る逆浸
透膜モジュ−ルにおいて使用する複合逆浸透膜を示して
いる。図1において、Aは微多孔性支持体、Bは微多孔
性支持体の片面に設けたスキン層であり、2箇以上の反
応性のアミノ基を有する化合物と多官能性ハロゲン化物
とを架橋反応させた架橋ポリアミド系化合物から成り、
熱水処理により25℃、pH6.5、原水ホウ素濃度
4.5mg/lのもとでのホウ素透過係数が1×10-6
m/s以下とされている。上記微多孔性支持体Aは、ス
キン層Bを支持し得るものであれば特に限定されず、例
えば、ポリスルホン、ポリエ−テルスルホンのようなポ
リアリ−ルエ−テルスルホン、ポリイミド、ポリフッ化
ビニリデン等を使用できる。特に、化学的、機械的、熱
的安定性の面からポリスルホン、ポリエ−テルスルホン
のようなポリアリ−ルエ−テルスルホンを使用すること
が好ましい。この微多孔性支持体の厚みは、通常約25
〜125μm、好ましくは約40〜75μmとされる。
上記スキン層Bは、2箇以上の反応性のアミノ基を有す
る化合物を含む溶液aを微多孔性支持体上に被覆し、余
分な溶液を除去したのち、多官能性ハロゲン化物を含む
溶液bを上記溶液aと接触させ2箇以上の反応性のアミ
ノ基を有する化合物と多官能性ハロゲン化物とを加熱下
で重縮合反応させることにより形成できる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a composite reverse osmosis membrane used in a reverse osmosis membrane module according to the present invention. In FIG. 1, A is a microporous support, B is a skin layer provided on one surface of the microporous support, and crosslinks a compound having two or more reactive amino groups with a polyfunctional halide. It is made of a crosslinked polyamide-based compound reacted,
25 ° C. The hot water treatment, pH 6.5, boron permeability coefficient under raw boron concentration 4.5 mg / l is 1 × 10- 6
m / s or less. The microporous support A is not particularly limited as long as it can support the skin layer B, and for example, polysulfone, polyarylethersulfone such as polyethersulfone, polyimide, polyvinylidene fluoride and the like can be used. . In particular, it is preferable to use polyaryl ether sulfone such as polysulfone and polyether sulfone from the viewpoint of chemical, mechanical and thermal stability. The thickness of this microporous support is usually about 25
125125 μm, preferably about 40-75 μm.
The skin layer B is formed by coating a solution a containing a compound having two or more reactive amino groups on a microporous support, removing an excess solution, and then adding a solution b containing a polyfunctional halide. And a compound having two or more reactive amino groups and a polyfunctional halide are subjected to a polycondensation reaction under heating to form a polycondensation reaction.

【0008】上記2箇以上の反応性のアミノ基を有する
化合物(以下、多官能アミンと称する)には、芳香族、
脂肪族、脂環式等の多官能アミンの単独または混合物の
何れも使用できる。芳香族多官能アミンとしては、例え
ば、m−フェニレンジアミン、p−フェニレンジアミ
ン、1,3,5−トリアミノベンゼン、1,2,4−トリアミンベ
ンゼン、3,5−ジアミノ安息香酸、2,4−ジアミノトルエ
ン、2,6−ジアミノトルエン、2,4−ジアミノアニソ−
ル、アミド−ル、キシレンジアミン等を挙げることがで
きる。脂肪族多官能アミンとしては、例えば、エチレン
ジアミン、プロピレンジアミン、トリス(2−アミノエ
チル)アミン等を挙げることができる。脂環式多官能ア
ミンとしては、例えば、1,3−ジアミノシクロヘキサ
ン、1,2−ジアミノシクロヘキサン、1,4−ジアミノシク
ロヘキサン、ピペラジン、1,5−ジメチルピペラジン、4
−アミノメチルピペラジン等を挙げることができる。
The compounds having two or more reactive amino groups (hereinafter referred to as polyfunctional amines) include aromatic,
Any of aliphatic or alicyclic or other polyfunctional amines can be used alone or as a mixture. As the aromatic polyfunctional amine, for example, m-phenylenediamine, p-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminebenzene, 3,5-diaminobenzoic acid, 2,4 -Diaminotoluene, 2,6-diaminotoluene, 2,4-diaminoaniso-
Amide, xylylenediamine, and the like. Examples of the aliphatic polyfunctional amine include ethylenediamine, propylenediamine, and tris (2-aminoethyl) amine. Examples of the alicyclic polyfunctional amine include, for example, 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 1,5-dimethylpiperazine, 4
-Aminomethylpiperazine and the like.

【0009】上記多官能性ハロゲン化物には、特に限定
されず、芳香族、脂肪族、脂環式等の多官能性酸ハロゲ
ン化物の単独または混合物の何れも使用できる。芳香族
多官能性酸ハロゲン化物としては、トリメシン酸クロラ
イド、テレフタル酸クロライド、イソフタル酸クロライ
ド、ビフェニルジカルボン酸クロライド、ナフタレンジ
カルボン酸クロライド、ベンゼントリスルホン酸クロラ
イド、ベンゼンジスルホン酸クロライド、クロロスルホ
ニルベンゼンジカルボン酸クロライド等を挙げることが
できる。脂肪族多官能性酸ハロゲン化物としては、プロ
パントリジカルボン酸クロライド、ブタントリカルボン
酸クロライド、ペンタントリカルボン酸クロライド、グ
ルタリハライド、アジポイルハライド等を挙げることが
できる。脂環式多官能性酸ハロゲン化物としては、例え
ば、シクロプロパントリカルボン酸クロライド、シクロ
ブタンテトラトリカルボン酸クロライド、シクロペンタ
ントリカルボン酸クロライド、シクロペンタンテトラカ
ルボン酸クロライド、シクロヘキサントリカルボン酸ク
ロライド、テトラハイドロフランテトラカルボン酸クロ
ライド、シクロペンタンジカルボン酸クロライド、シク
ロブタンジカルボン酸クロライド、シクロヘキサンジカ
ルボン酸クロライド、テトラハイドロフランジカルボン
酸クロライド等を挙げることができる。
The polyfunctional halide is not particularly limited, and any of aromatic, aliphatic, alicyclic and other polyfunctional acid halides can be used alone or as a mixture. Examples of the aromatic polyfunctional acid halide include trimesic acid chloride, terephthalic acid chloride, isophthalic acid chloride, biphenyldicarboxylic acid chloride, naphthalenedicarboxylic acid chloride, benzenetrisulfonic acid chloride, benzenedisulfonic acid chloride, chlorosulfonylbenzenedicarboxylic acid chloride. And the like. Examples of the aliphatic polyfunctional acid halide include propanetridicarboxylic acid chloride, butanetricarboxylic acid chloride, pentanetricarboxylic acid chloride, glutari halide, and adipoyl halide. Examples of the alicyclic polyfunctional acid halide include, for example, cyclopropanetricarboxylic acid chloride, cyclobutanetetracarboxylic acid chloride, cyclopentanetricarboxylic acid chloride, cyclopentanetetracarboxylic acid chloride, cyclohexanetricarboxylic acid chloride, tetrahydrofurantetracarboxylic acid Chloride, cyclopentanedicarboxylic acid chloride, cyclobutanedicarboxylic acid chloride, cyclohexanedicarboxylic acid chloride, tetrahydrofurandicarboxylic acid chloride and the like can be mentioned.

【0010】上記多官能アミンを含有する溶液aには、
製膜を容易にし、または得られる複合逆浸透膜の性能を
向上させるために、例えば、ポリビニルアルコ−ル、ポ
リビニルピロリドン、ポリアクリル酸の重合体やソルビ
ト−ル、グリセリン等の多価アルコ−ルを少量添加する
ことができる。また、アミン塩、例えばテトラアルキル
アンモニウムハライドやトリアルキルアミンと有機酸と
の塩の添加も、製膜を容易にし、多官能アミン溶液の支
持体への吸収性を向上させるので有効である。また、ド
デシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナ
トリウム、ラウリル酸ナトリウムの界面活性剤の添加
も、多官能アミン溶液の支持体への濡れ性を向上させる
ので有効である。また、上記界面での重縮合反応を促進
するために、界面反応で生成するハロゲン化水素を除去
できる水酸化ナトリウムやリン酸三ナトリウム、或い
は、アシル化触媒を添加することも有効である。更に、
透過流束を高めるために、溶解度パラメ−タが8〜14
(cal/cm3)1/2のある化合物、例えば、イソプロピルアル
コ−ルを添加することもできる。
The solution a containing the above polyfunctional amine includes:
In order to facilitate film formation or to improve the performance of the obtained composite reverse osmosis membrane, for example, polyhydric alcohols such as polyvinyl alcohol, polyvinyl pyrrolidone, a polymer of polyacrylic acid, sorbitol, and glycerin are used. Can be added in small amounts. Addition of an amine salt, for example, a salt of a tetraalkylammonium halide or a trialkylamine with an organic acid is also effective because it facilitates film formation and improves the absorbability of the polyfunctional amine solution on the support. Further, the addition of a surfactant such as sodium dodecylbenzenesulfonate, sodium dodecyl sulfate, and sodium laurate is also effective because it improves the wettability of the polyfunctional amine solution to the support. To promote the polycondensation reaction at the interface, it is also effective to add sodium hydroxide, trisodium phosphate, or an acylation catalyst capable of removing hydrogen halide generated by the interface reaction. Furthermore,
To increase the permeation flux, the solubility parameter should be between 8 and 14
(cal / cm 3) 1/ 2 of a compound, such as isopropyl alcohol - may also be added Le.

【0011】上記多官能性ハロゲン化物を含有する溶液
bの溶媒としては水非混和性有機溶剤が使用され、特
に、ヘキサン、ヘプタン、オクタン、ノナン、シクロヘ
キサン等の炭化水素、四塩化炭素、トリクロロトリフル
オロエタン、ジフロロテトラクロルロエタン、ヘキサク
ロルロエタン等のハロゲン化炭化水素等を使用すること
が好ましい。
A water-immiscible organic solvent is used as a solvent for the solution b containing the polyfunctional halide, and in particular, hydrocarbons such as hexane, heptane, octane, nonane, and cyclohexane, carbon tetrachloride, trichlorotrichloride, etc. It is preferable to use halogenated hydrocarbons such as fluoroethane, difluorotetrachloroloethane and hexachloroloethane.

【0012】上記多官能性ハロゲン化物を含有する溶液
bと多官能アミンを含有する溶液aの濃度は、特に限定
されるものではないが、多官能性ハロゲン化物の濃度は
通常0.01〜5重量%、好ましくは0.1〜1重量%
とされ、多官能アミンの濃度は通常0.1〜10重量
%、好ましくは0.5〜10重量%とされる。
The concentration of the solution b containing the polyfunctional halide and the solution a containing the polyfunctional amine is not particularly limited, but the concentration of the polyfunctional halide is usually 0.01-5. % By weight, preferably 0.1 to 1% by weight
The concentration of the polyfunctional amine is usually 0.1 to 10% by weight, preferably 0.5 to 10% by weight.

【0013】上記2箇以上の反応性のアミノ基を有する
化合物と多官能性ハロゲン化物とを重縮合反応させて架
橋ポリアミドのスキン層を得る加熱条件は、通常20〜
150℃、好ましくは70〜130℃で、約1〜10分
間、好ましくは2〜8分間とされる。スキン層の厚み
は、通常0.05〜2μm、好ましくは0.1〜1μm
とされる。
The heating conditions for obtaining a crosslinked polyamide skin layer by polycondensation reaction of a compound having two or more reactive amino groups with a polyfunctional halide are usually from 20 to
C. at 150.degree. C., preferably 70-130.degree. C., for about 1-10 minutes, preferably 2-8 minutes. The thickness of the skin layer is usually 0.05 to 2 μm, preferably 0.1 to 1 μm.
It is said.

【0014】本発明に係る逆浸透膜モジュ−ルは、上記
複合逆浸透膜を使用することを構成上の特徴としてお
り、上記複合逆浸透膜をシ−ト状で用いたスパイラル型
モジュ−ル、プレ−ト・アンド・フレ−ム型モジュ−
ル、同複合逆浸透膜を管状で用いたチュ−ブ型モジュ−
ル、同複合逆浸透膜を中空糸状で用いた中空糸膜モジュ
−ル等の形態で使用することができる。周知の通り、逆
浸透膜分離における膜理論で知られている通り、水(溶
媒)に一の溶質(塩)が溶けている溶液が逆浸透分離膜
で分離されるときの水の透過流束Jv(m3/m2/s)、溶質の
透過流束Js(g/m2/s)は次の、式で把握できる。
A reverse osmosis membrane module according to the present invention is characterized by using the above-mentioned composite reverse osmosis membrane, and is a spiral type module using the above composite reverse osmosis membrane in a sheet form. , Plate and frame type module
Tube type module using the same composite reverse osmosis membrane in a tubular form
And a hollow fiber membrane module using the composite reverse osmosis membrane in the form of a hollow fiber. As is well known, as is known from membrane theory in reverse osmosis membrane separation, the permeation flux of water when a solution in which one solute (salt) is dissolved in water (solvent) is separated by a reverse osmosis separation membrane. Jv (m 3 / m 2 / s) and permeate flux Js (g / m 2 / s) of the solute can be grasped by the following equations.

【0015】 Jv=Lp(Δp−σΔπ) Js=Ps(Cm−Cp)+(1−σ)CJv ただし、Lpは純水透過係数(m3/m2/s/Pa)、Psは溶質の
透過係数(m/s)、Δpは原水と透過水との圧力差(Pa)、
Δπは原水と透過水との浸透圧差(Pa)、Cは溶質の膜中
濃度(g/m3)、σは反射係数、Cmは溶質の膜面濃度(g/
m3)、Cpは溶質の透過水での濃度(g/m3)である。ま
た、膜の真の阻止率Rは R=(1−Cp/Cm)×100% で与えられる。
Jv = Lp (Δp−σΔπ) Js = Ps (Cm−Cp) + (1−σ) CJv where Lp is a pure water permeability coefficient (m 3 / m 2 / s / Pa), and Ps is a solute Permeability coefficient (m / s), Δp is pressure difference between raw water and permeated water (Pa),
Δπ is the osmotic pressure difference (Pa) between the raw water and the permeated water, C is the solute concentration in the film (g / m 3 ), σ is the reflection coefficient, and Cm is the solute film surface concentration (g / m 3 ).
m 3 ) and Cp are the concentrations (g / m 3 ) of the solute in the permeated water. The true rejection R of the film is given by R = (1−Cp / Cm) × 100%.

【0016】上記溶質の膜中濃度Cを膜厚みについて積
分した値と溶質の透過水での濃度Cpとの和は、膜面での
溶質の濃度Cmに等しく、 R=σ(1−F)/(1−σF) F=exp〔-(1−σ)・Jv/Ps〕 が成立する。
The sum of the value obtained by integrating the solute concentration C in the membrane with respect to the membrane thickness and the solute concentration Cp in the permeated water is equal to the solute concentration Cm on the membrane surface, and R = σ (1-F) / (1−σF) F = exp [− (1−σ) · Jv / Ps] holds.

【0017】而して、Δpを種々変化させて純水の透過
実験を行い、そのときのJvとΔpとの傾きから、純水
透過係数Lpを算出でき、また、水の透過流束Jvを種
々変化させて、膜の阻止率Rを測定し、阻止率R対1/
Jvのカ−ブフィティングを行うことにより、溶質の透
過係数Psや反射係数σを求めることができる。
Thus, a pure water permeation experiment is performed by changing Δp variously, and a pure water permeability coefficient Lp can be calculated from a slope between Jv and Δp at that time. The rejection R of the film was measured with various changes, and the rejection ratio R / 1 /
By performing curve fitting of Jv, the transmission coefficient Ps and the reflection coefficient σ of the solute can be obtained.

【0018】本発明に係る逆浸透膜モジュ−ルにおいて
は、海水の淡水化によりホウ素含有量が著しく少ない、
飲料水として使用可能な純水を通常の回収率、運転圧力
のもとで容易に得ることができるように、熱水処理によ
り25℃、pH6.5、原水ホウ素濃度4.5mg/l
のもとでのホウ素透過係数を1×10-6m/s以下とし
ている。、この熱水処理は、温度40℃〜100℃の範
囲内で行われる。40℃未満では、ホウ素透過係数を上
記の1×10-6m/s以下にすることが難しく、100
℃を越えると複合逆浸透膜の熱劣化が懸念される。この
熱水処理には、例えば、複合逆浸透膜を常圧の熱水に浸
漬する方法、逆浸透膜エレメント(例えば、集水管に封
筒状の膜を連結しスパイラルに巻回したもの)を常圧の
熱水に浸漬する方法を使用でき、浸漬時間は温度により
異なるが、1秒〜48時間、好ましくは10秒〜24時
間とされる。1秒未満では、上記のホウ素透過係数の低
減効果を満足に達成し難く、48時間を越えると、ホウ
素透過係数が平衡値に達してしまい、必要以上に長時間
を費やすことになる。本発明において熱水処理は、逆浸
透膜モジュ−ルを組み立てたのち、熱水を加圧通水する
ことにより行うこともできる。上記熱水処理により純水
透過係数Lpが低下するのを抑制するために、有機物や
塩類を含有する水溶液の熱水を使用すること、次亜塩素
等による塩素処理を行って塩阻止性能を更に向上させる
も有効である。
In the reverse osmosis membrane module according to the present invention, the content of boron is extremely low due to desalination of seawater.
Hot water treatment at 25 ° C, pH 6.5, raw water boron concentration of 4.5 mg / l so that pure water usable as drinking water can be easily obtained under normal recovery rate and operating pressure.
Of boron permeability coefficient under are less 1 × 10- 6 m / s. This hot water treatment is performed within a temperature range of 40 ° C to 100 ° C. Is less than 40 ° C., the boron permeability coefficient difficult to below 1 × 10- 6 m / s described above, 100
If the temperature exceeds ℃, the composite reverse osmosis membrane may be thermally deteriorated. For this hot water treatment, for example, a method in which a composite reverse osmosis membrane is immersed in hot water at normal pressure, or a reverse osmosis membrane element (for example, an envelope-like membrane connected to a water collection pipe and spirally wound) is usually used. A method of immersion in hot water under pressure can be used, and the immersion time varies depending on the temperature, but is 1 second to 48 hours, preferably 10 seconds to 24 hours. If the time is less than 1 second, it is difficult to satisfactorily achieve the above-described effect of reducing the boron permeability coefficient. If the time exceeds 48 hours, the boron permeability coefficient reaches an equilibrium value, and it takes more time than necessary. In the present invention, the hot water treatment may be performed by assembling a reverse osmosis membrane module and then passing hot water under pressure. In order to suppress a decrease in the pure water permeability coefficient Lp due to the hot water treatment, use of hot water of an aqueous solution containing organic substances and salts is performed, and a salt rejection performance is further improved by performing chlorination treatment with hypochlorite or the like. Improving is also effective.

【0019】本発明において、ホウ素の透過係数Ps(B)
と水透過係数Lp(ただし、25℃、pH6.5、原水ホ
ウ素濃度4.5mg/lのもとでの透過係数である。以
下、同じ)との比を、Ps(B)/Lp≦3.5×105(Pa)
とすること、またはLpをLp≧5×10-13(m3/m2/s/Pa)
とすることが好ましい。これらの条件を外れると、膜の
透水性が低くなり、運転圧力の上昇や膜面積の増加が招
来され、高コスト化が避けられない。更に、NaClに
対する透過係数Ps(NaCl)は、1×10-7(m/s)以下と
することが好ましい。本発明に係る逆浸透膜モジュ−ル
を使用して海水を淡水化する場合、Ps(B)×Lp≦5×1
0-18(m2/s2/Pa)を充たせば、一段処理のもとでも、透
過水のホウ素濃度を充分に低くし充分な透水量で処理で
きる。特に、Ps(B)が1×10-6(m/s)以下であって、
かつLpが2.0×10-12(m3/m2/s/Pa)以上であること
が好ましく、更に、Ps(B)が1×10-6(m/s)以下であ
って、かつLpが3.0×10-12(m3/m2/s/Pa)以上であ
ることがより好ましい。これらの条件を外れると、膜の
透水性が低くなり、運転圧力の上昇や膜面積の増加が招
来され、高コスト化が避けられない。
In the present invention, boron permeability coefficient Ps (B)
And the water permeability coefficient Lp (however, this is the permeability coefficient under the condition of 25 ° C., pH 6.5, and a raw water boron concentration of 4.5 mg / l; the same shall apply hereinafter) is defined as Ps (B) / Lp ≦ 3. .5 × 10 5 (Pa)
Or Lp is Lp ≧ 5 × 10−13 (m 3 / m 2 / s / Pa)
It is preferable that If these conditions are not met, the water permeability of the membrane will decrease, causing an increase in operating pressure and an increase in the membrane area, and unavoidable cost increases. Moreover, the transmission coefficient for NaCl Ps (NaCl) is preferably in the 1 × 10- 7 (m / s ) or less. When desalinating seawater using the reverse osmosis membrane module according to the present invention, Ps (B) × Lp ≦ 5 × 1
If Mitase the 0- 18 (m 2 / s 2 / Pa), even under a one-stage process, the boron concentration of the permeate sufficiently low can be processed with sufficient water permeability. In particular, Ps (B) is not more 1 × 10- 6 (m / s ) or less,
And preferably Lp is the 2.0 × 10- 12 (m 3 / m 2 / s / Pa) or more, further, Ps (B) is not more 1 × 10- 6 (m / s ) or less, and more preferably Lp is the 3.0 × 10- 12 (m 3 / m 2 / s / Pa) or more. If these conditions are not met, the water permeability of the membrane will decrease, causing an increase in operating pressure and an increase in the membrane area, and unavoidable cost increases.

【0020】図2は本発明に係る逆浸透膜モジュ−ルを
使用した淡水化装置の一例を示している。図2におい
て、1は海水タンクを、2は海水の前処理槽を、3送液
ポンプを、4は本発明に係る逆浸透膜分離モジュ−ル
を、5は非透過水排出管を、6は透過水流出管をそれぞ
れ示している。上記装置を用いて海水を淡水化するに
は、海水タンク1内の海水を前処理槽2で前処理したう
えで、送液ポンプ3により所定の圧力で逆浸透膜分離モ
ジュ−ル4に供給し、海水中の溶質の通過の阻止により
溶質の濃縮された非透過水を非透過水排出管5から排出
し、透過側に所定の除去率で溶質を除去した透過水を発
生させていく。上記の前処理槽2は、逆浸透膜分離モジ
ュ−ル4の膜面を懸濁物質や有機物の付着、汚染から保
護するために使用され、それらの懸濁物質や有機物等を
除去するための手段、例えば、砂ろか、精密濾過、溶質
素や凝集剤の添加、CaCO3の沈殿防止のためのpH
調整(弱酸性)等を用いることができる。上記におい
て、逆浸透膜モジュ−ルを複数箇並列接続して使用する
こともできる。また、スパイラル型膜モジュ−ルの場合
は、逆浸透膜エレメント(例えば、集水管に封筒状の膜
を連結しスパイラルに巻回したもの)を複数箇直列に接
続し、これを耐圧筒ケ−ス内に納めたものも使用でき
る。上記において、運転圧力は、海水の浸透圧に打ち勝
ち、かつ、膜面へのスケ−ルの生成を充分に阻止できる
原水流速を確保でき、しかも、膜やモジュ−ル等の機械
的劣化を回避できる範囲内に設定され、通常6MPaに
されるが、それ以上に設定することもできる。
FIG. 2 shows an example of a desalination apparatus using the reverse osmosis membrane module according to the present invention. In FIG. 2, 1 is a seawater tank, 2 is a pretreatment tank for seawater, 3 is a liquid sending pump, 4 is a reverse osmosis membrane separation module according to the present invention, 5 is a non-permeated water discharge pipe, and 6 is Indicates a permeated water outflow pipe. In order to desalinate seawater using the above apparatus, seawater in a seawater tank 1 is pretreated in a pretreatment tank 2 and then supplied to a reverse osmosis membrane separation module 4 at a predetermined pressure by a liquid sending pump 3. Then, the non-permeated water enriched in the solute is discharged from the non-permeated water discharge pipe 5 by preventing passage of the solute in the seawater, and permeated water from which the solute is removed at a predetermined removal rate is generated on the permeation side. The pretreatment tank 2 is used to protect the membrane surface of the reverse osmosis membrane separation module 4 from adhesion and contamination of suspended substances and organic substances, and is used to remove the suspended substances and organic substances. Means, eg sand sand, microfiltration, addition of solutes and flocculants, pH to prevent precipitation of CaCO 3
Adjustment (weakly acidic) can be used. In the above, a plurality of reverse osmosis membrane modules can be connected in parallel and used. In the case of a spiral-wound membrane module, a plurality of reverse osmosis membrane elements (for example, a water-collecting pipe connected with an envelope-shaped membrane and spirally wound) are connected in series, and this is connected to a pressure-resistant cylinder casing. Can also be used. In the above, the operating pressure can overcome the osmotic pressure of seawater, secure a flow rate of raw water that can sufficiently prevent the generation of scale on the membrane surface, and avoid mechanical deterioration of the membrane and modules. It is set within the allowable range and is usually set to 6 MPa, but it can be set to a higher value.

【0021】[0021]

【実施例】【Example】

〔実施例1〕m−フェニレンジアミン2.5重量%、ラ
ウリル硫酸ナトリウム0.15重量%、トリエチルアミ
ン2.5重量%、カンファ−スルホン酸5.0重量%を
含有した水溶液aをポリスルホン多孔質膜からなる支持
膜に接触させ、余分の溶液aを除去して溶液aの層を形
成した。次いで、この支持膜の表面に、トリメシン酸ク
ロライド0.18重量%を含有する飽和炭化水素溶液b
を接触させ、更に120℃の熱風乾燥機内で3分間保持
し支持膜上に重合体スキン層を形成して複合逆浸透膜を
得、この複合逆浸透膜を90℃の熱水で2時間浸漬処理
した。この熱水処理前の25℃、pH6.5のもとでの
ホウ素透過係数Ps(B)は2.0×10-6(m/s)であった
が、この熱水処理後は0.8×10-6(m/s)であった。
また、熱水処理後の水透過係数Lpは3.8×10-
12(m3/m2/s/Pa)、NaClの透過係数Ps(NaCl)は2.3
×10-8(m/s)であった。従って、Ps(B)Lpは3.0×1
0-18m2/s2/Paであり、Ps(B)/Lpは6.1×104Paであ
った。この複合逆浸透膜を用いて純水の透過流束が単位
膜面積当たり0.032m3/m2・(kgf/cm2)・day、単位エ
レメント当たり0.90m3/(kgf/cm2)・dayであるスパイ
ラル型逆浸透分離膜モジュ−ルを作成し、海水(ホウ素
濃度4.3mg/リットル)をpH7、温度25℃、運
転圧力55kg/cm2、回収率40%の条件で淡水化
した。透過水のホウ素濃度を測定したところ、0.5m
g/リットルであった。また、透過水の電導度は海水電
導度53000μs/cmに対し360μs/cmであった。更
に、運転圧力70kg/cm2に設定し、それ以外は上
記に同じとして淡水化したところ、透過水のホウ素濃度
が0.35mg/リットルとなり、電導度が300μs/
cmとなった。
[Example 1] An aqueous solution a containing 2.5% by weight of m-phenylenediamine, 0.15% by weight of sodium lauryl sulfate, 2.5% by weight of triethylamine and 5.0% by weight of camphor-sulfonic acid was used as a polysulfone porous membrane. And the excess solution a was removed to form a layer of the solution a. Next, a saturated hydrocarbon solution containing 0.18% by weight of trimesic acid chloride is placed on the surface of the support membrane.
And then kept in a hot air dryer at 120 ° C. for 3 minutes to form a polymer skin layer on the support membrane to obtain a composite reverse osmosis membrane, and immersed the composite reverse osmosis membrane in hot water at 90 ° C. for 2 hours. Processed. The hydrothermal pre-treatment of 25 ° C., boron permeability coefficient under pH 6.5 Ps (B) is a was the 2.0 × 10- 6 (m / s ), after the hot water treatment is 0. 8 was × 10- 6 (m / s) .
The water permeability coefficient Lp after hot water treatment is 3.8 × 10 −
12 (m 3 / m 2 / s / Pa), and the permeation coefficient Ps (NaCl) of NaCl is 2.3.
× was 10- 8 (m / s). Therefore, Ps (B) Lp is 3.0 × 1
A 0- 18 m 2 / s 2 / Pa, Ps (B) / Lp was 6.1 × 10 4 Pa. Using this composite reverse osmosis membrane, the permeation flux of pure water is 0.032 m 3 / m 2 · (kgf / cm 2 ) · day per unit membrane area, and 0.90 m 3 / (kgf / cm 2 ) per unit element.・ A spiral reverse osmosis separation membrane module for day is prepared, and seawater (boron concentration: 4.3 mg / liter) is desalinated under the conditions of pH 7, temperature 25 ° C, operating pressure 55 kg / cm 2 , and recovery rate 40%. did. When the boron concentration of the permeated water was measured, it was 0.5 m
g / liter. The conductivity of the permeated water was 360 μs / cm against the seawater conductivity of 53000 μs / cm. Further, the operation pressure was set to 70 kg / cm 2, and desalination was carried out in the same manner as above except that the boron concentration of the permeated water was 0.35 mg / liter and the conductivity was 300 μs / cm 2.
cm.

【0022】〔比較例〕熱水浸漬処理を行わなかった以
外、実施例1に同じとした。複合逆浸透膜の25℃、p
H6.5のもとでのホウ素透過係数Ps(B)は2.0×1
0-6(m/s)であった。また、水透過係数Lpは6.0×
10-12(m3/m2/s/Pa)、NaClの透過係数Ps(NaCl)は
2.0×10-8(m/s)であった。従って、Ps(B)Lpは12
×10-18m2/s2/Paであり、Ps(B)/Lpは3.3×105Pa
であった。pH7、温度25℃、運転圧力55kg/c
2、回収率40%の条件で処理して淡水化し、透過水
のホウ素濃度を測定したところ、1.0mg/リットル
であった。また、透過水の電導度は300μs/cmであっ
た。
Comparative Example Same as Example 1 except that the hot water immersion treatment was not performed. 25 ° C, p of composite reverse osmosis membrane
The boron permeability coefficient Ps (B) under H6.5 is 2.0 × 1
Was 0- 6 (m / s). The water permeability coefficient Lp is 6.0 ×
10- 12 (m 3 / m 2 / s / Pa), the transmission coefficient Ps (NaCl) of NaCl was 2.0 × 10- 8 (m / s ). Therefore, Ps (B) Lp is 12
× 10- 18 m was 2 / s 2 / Pa, Ps (B) / Lp is 3.3 × 10 5 Pa
Met. pH 7, temperature 25 ° C, operating pressure 55 kg / c
It was treated under the conditions of m 2 and a recovery rate of 40% to desalinate, and the boron concentration of the permeated water was measured to be 1.0 mg / liter. The conductivity of the permeated water was 300 μs / cm.

【0023】上記実施例1と比較例との対比から、本発
明によれば、従来例(比較例)に較べ、透過水中のホウ
素濃度を半減でき、透過水のミネラル含有量がやや多く
て所謂おいしい水の要件も充たし、好適な飲料水を通常
の運転条件で製造し得ることが明らかである。
From the comparison between Example 1 and the comparative example, according to the present invention, the boron concentration in the permeated water can be reduced by half and the mineral content of the permeated water is slightly higher than that of the conventional example (comparative example), so-called, It is clear that delicious water requirements are also met and suitable drinking water can be produced under normal operating conditions.

【0024】〔実施例2〕複合逆浸透膜の熱水浸漬処理
の条件を、熱水温度60℃、熱水浸漬時間1時間として
緩和した以外、実施例1に同じとした。この熱水処理後
のホウ素透過係数Ps(B)は8.5×10-7(m/s)であっ
た。また、熱水処理後の水透過係数Lpは3.0×10
-12(m3/m2/s/Pa)、NaClの透過係数Ps(NaCl)は2.
5×10-8(m/s)であった。従って、Ps(B)Lpは2.6×
10-18m2/s2/Paであり、Ps(B)/Lpは2.8×105Paで
あった。この複合逆浸透膜を用いたスパイラル型逆浸透
分離膜モジュ−ルによる、海水(ホウ素濃度4.3mg
/リットル)のpH7、温度25℃、運転圧力55kg
/cm2、回収率40%の条件下での淡水化処理の結果
は、透過水のホウ素濃度が、0.6mg/リットルま
た、透過水の電導度が360μs/cmであった。
Example 2 The same conditions as in Example 1 were adopted except that the conditions of the hot water immersion treatment of the composite reverse osmosis membrane were relaxed to a hot water temperature of 60 ° C. and a hot water immersion time of 1 hour. The boron permeability coefficient after the hot water treatment Ps (B) was 8.5 × 10- 7 (m / s ). Further, the water permeability coefficient Lp after the hot water treatment is 3.0 × 10
−12 (m 3 / m 2 / s / Pa), the permeation coefficient Ps (NaCl) of NaCl is 2.
5 was × 10- 8 (m / s) . Therefore, Ps (B) Lp is 2.6 ×
A 10- 18 m 2 / s 2 / Pa, Ps (B) / Lp was 2.8 × 10 5 Pa. Spiral reverse osmosis separation membrane module using this composite reverse osmosis membrane, seawater (boron concentration 4.3 mg)
/ Liter) pH 7, temperature 25 ° C, operating pressure 55 kg
As a result of the desalination treatment under the conditions of / cm 2 and a recovery rate of 40%, the boron concentration of the permeated water was 0.6 mg / liter, and the conductivity of the permeated water was 360 μs / cm.

【0025】この実施例2と比較例との対比からも、本
発明によれば、従来例(比較例)に較べ、透過水中のホ
ウ素濃度を半減でき、透過水のミネラル含有量がやや多
くて所謂おいしい水の要件も充たし、好適な飲料水を通
常の運転条件で製造し得ることが明らかである。
From the comparison between Example 2 and Comparative Example, according to the present invention, the boron concentration in the permeated water can be reduced by half and the mineral content of the permeated water is slightly higher than that of the conventional example (Comparative Example). It is clear that the so-called tasty water requirements are also met and suitable drinking water can be produced under normal operating conditions.

【0026】[0026]

【発明の効果】本発明によれば、2箇以上の反応性のア
ミノ基を有する化合物と多官能性ハロゲン化物とを架橋
反応させた架橋ポリアミド系化合物をスキン層とする複
合逆浸透膜を用いたモジュ−ルで海水を淡水化するにあ
たり、複合逆浸透膜を熱水処理するだけで透過水のホウ
素濃度を半減でき、一段の逆浸透膜分離処理でホウ素含
有量を激減させた飲料水に適した透過水を得ることがで
きる。
According to the present invention, there is provided a composite reverse osmosis membrane having a skin layer of a crosslinked polyamide compound obtained by crosslinking a compound having two or more reactive amino groups and a polyfunctional halide. When desalinating seawater with a conventional module, the boron concentration of the permeated water can be halved by simply treating the composite reverse osmosis membrane with hot water, and the drinking water whose boron content has been drastically reduced by a single-stage reverse osmosis membrane separation treatment can be obtained. Suitable permeate can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において使用する複合逆浸透膜を示す図
面である。
FIG. 1 is a view showing a composite reverse osmosis membrane used in the present invention.

【図2】本発明に係る海水の淡水化方法において使用す
る淡水化装置を示す図面である。
FIG. 2 is a view showing a desalination apparatus used in the seawater desalination method according to the present invention.

【符号の説明】[Explanation of symbols]

A 微多孔支持体 B スキン層 A microporous support B skin layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】2箇以上の反応性のアミノ基を有する化合
物と多官能性ハロゲン化物とを架橋反応させた架橋ポリ
アミド系化合物をスキン層とする複合逆浸透膜を用いた
モジュ−ルであり、熱水処理により25℃、pH6.5
のもとでのホウ素透過係数が1×10-6m/s以下とさ
れていることを特徴とする逆浸透膜モジュ−ル。
1. A module using a composite reverse osmosis membrane having a skin layer made of a crosslinked polyamide compound obtained by crosslinking a compound having two or more reactive amino groups and a polyfunctional halide. 25 ° C., pH 6.5 by hot water treatment
Reverse osmosis membrane module boron permeability coefficient under is characterized in that it is less 1 × 10- 6 m / s - le.
【請求項2】熱水処理した複合逆浸透膜を用いてモジュ
−ルに組み立てた請求項1記載の逆浸透膜モジュ−ル。
2. The reverse osmosis membrane module according to claim 1, wherein the module is assembled using a composite reverse osmosis membrane subjected to hot water treatment.
【請求項3】モジュ−ルの組立て後、熱水の通水により
複合逆浸透膜を熱水処理した請求項1記載の逆浸透膜モ
ジュ−ル。
3. The reverse osmosis membrane module according to claim 1, wherein after assembling the module, the composite reverse osmosis membrane is treated with hot water by passing hot water through it.
【請求項4】請求項1記載の逆浸透膜を使用して海水を
淡水化することを特徴とする海水の処理方法。
4. A method for treating seawater, comprising desalinating seawater using the reverse osmosis membrane according to claim 1.
JP19311297A 1997-07-03 1997-07-03 Reverse osmotic membrane module and treatment of sea water Pending JPH1119493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19311297A JPH1119493A (en) 1997-07-03 1997-07-03 Reverse osmotic membrane module and treatment of sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19311297A JPH1119493A (en) 1997-07-03 1997-07-03 Reverse osmotic membrane module and treatment of sea water

Publications (1)

Publication Number Publication Date
JPH1119493A true JPH1119493A (en) 1999-01-26

Family

ID=16302460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19311297A Pending JPH1119493A (en) 1997-07-03 1997-07-03 Reverse osmotic membrane module and treatment of sea water

Country Status (1)

Country Link
JP (1) JPH1119493A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1488846A1 (en) * 2003-06-18 2004-12-22 Toray Industries, Inc. Composite semipermeable membrane, and production process thereof
JP2005095856A (en) * 2003-06-18 2005-04-14 Toray Ind Inc Compound semi-permeable membrane and production method therefor
JPWO2003062151A1 (en) * 2002-01-22 2005-05-19 東レ株式会社 Fresh water generation method and fresh water generator
JP2009011891A (en) * 2007-07-02 2009-01-22 Toray Ind Inc Manufacturing method of composite semi-permeable membrane
US7497951B2 (en) 2004-10-29 2009-03-03 Toray Industries, Inc. Composite semipermeable membrane, production process thereof, and element, fluid separation equipment and method for water treatment using the same
JP2009078218A (en) * 2007-09-26 2009-04-16 Toray Ind Inc Method of manufacturing composite semi-permeable membrane
JP2009269028A (en) * 2009-07-03 2009-11-19 Toyobo Co Ltd Composite semi-permeable membrane and method for manufacturing the same
US7641054B2 (en) 2004-11-15 2010-01-05 Toray Industries, Inc. Composite semipermeable membrane, production process thereof, and element, fluid separation equipment and treatment method for boron-containing water using the same
WO2011010347A1 (en) * 2009-07-22 2011-01-27 株式会社 東芝 System for producing fresh water
WO2011078131A1 (en) 2009-12-22 2011-06-30 東レ株式会社 Semipermeable membrane and manufacturing method therefor
WO2011105278A1 (en) 2010-02-23 2011-09-01 東レ株式会社 Composite semipermeable membrane and process for production thereof
WO2012020680A1 (en) 2010-08-11 2012-02-16 東レ株式会社 Separation membrane element and method for producing composite semipermeable membrane
JP2013503034A (en) * 2009-08-31 2013-01-31 ゼネラル・エレクトリック・カンパニイ Reverse osmosis composite membrane for boron removal
US8602222B2 (en) 2005-12-16 2013-12-10 Toray Industries, Inc. Composite semipermeable membranes, methods for production thereof and uses thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003062151A1 (en) * 2002-01-22 2005-05-19 東レ株式会社 Fresh water generation method and fresh water generator
JP2011078980A (en) * 2003-06-18 2011-04-21 Toray Ind Inc Composite semipermeable membrane and manufacturing method of the same
JP2005095856A (en) * 2003-06-18 2005-04-14 Toray Ind Inc Compound semi-permeable membrane and production method therefor
US7279097B2 (en) 2003-06-18 2007-10-09 Toray Industries, Inc. Composite semipermeable membrane, and production process thereof
KR100850405B1 (en) * 2003-06-18 2008-08-04 도레이 가부시끼가이샤 Composite semipermeable membrane, and production process thereof
EP1488846A1 (en) * 2003-06-18 2004-12-22 Toray Industries, Inc. Composite semipermeable membrane, and production process thereof
US7497951B2 (en) 2004-10-29 2009-03-03 Toray Industries, Inc. Composite semipermeable membrane, production process thereof, and element, fluid separation equipment and method for water treatment using the same
US7641054B2 (en) 2004-11-15 2010-01-05 Toray Industries, Inc. Composite semipermeable membrane, production process thereof, and element, fluid separation equipment and treatment method for boron-containing water using the same
US8602222B2 (en) 2005-12-16 2013-12-10 Toray Industries, Inc. Composite semipermeable membranes, methods for production thereof and uses thereof
JP2009011891A (en) * 2007-07-02 2009-01-22 Toray Ind Inc Manufacturing method of composite semi-permeable membrane
JP2009078218A (en) * 2007-09-26 2009-04-16 Toray Ind Inc Method of manufacturing composite semi-permeable membrane
JP2009269028A (en) * 2009-07-03 2009-11-19 Toyobo Co Ltd Composite semi-permeable membrane and method for manufacturing the same
WO2011010347A1 (en) * 2009-07-22 2011-01-27 株式会社 東芝 System for producing fresh water
JP2013503034A (en) * 2009-08-31 2013-01-31 ゼネラル・エレクトリック・カンパニイ Reverse osmosis composite membrane for boron removal
WO2011078131A1 (en) 2009-12-22 2011-06-30 東レ株式会社 Semipermeable membrane and manufacturing method therefor
WO2011105278A1 (en) 2010-02-23 2011-09-01 東レ株式会社 Composite semipermeable membrane and process for production thereof
WO2012020680A1 (en) 2010-08-11 2012-02-16 東レ株式会社 Separation membrane element and method for producing composite semipermeable membrane

Similar Documents

Publication Publication Date Title
Sagle et al. Fundamentals of membranes for water treatment
US6805796B2 (en) Water treatment apparatus
EP0798036B1 (en) Highly permeable composite reverse osmosis membrane and a reverse osmosis membrane module using the same
EP1295631B1 (en) Method of recovering performance of a reverse osmosis membrane element
US6709590B1 (en) Composite reverse osmosis membrane and method for producing the same
JP2011078980A (en) Composite semipermeable membrane and manufacturing method of the same
JPH1119493A (en) Reverse osmotic membrane module and treatment of sea water
CN109789378B (en) Composite semipermeable membrane and spiral separation membrane element
US20060169634A1 (en) Reverse osmosis membrane and method for producing the same
US20170120201A1 (en) Composite semipermeable membrane
EP1500425A1 (en) Composite semipermeable membrane and process for producing the same
JP2000334280A (en) Production of multiple reverse osmosis membrane
JP3665692B2 (en) Method for producing dry composite reverse osmosis membrane
JP3862184B2 (en) Method for producing composite reverse osmosis membrane
JP2009262089A (en) Manufacturing method of composite semi-permeable membrane
JP4177231B2 (en) Liquid separation membrane and method for producing the same
JP5062136B2 (en) Manufacturing method of composite semipermeable membrane
JP2009078218A (en) Method of manufacturing composite semi-permeable membrane
JPH10174852A (en) Composite reverse osmotic film
JP2000237559A (en) Production of high permeability composite reverse osmosis membrane
JP4872800B2 (en) Method for treating composite semipermeable membrane and method for producing salt-treated composite semipermeable membrane
Lonsdale Reverse osmosis
JP2007111644A (en) Method for producing composite semipermeable membrane
JPH10314557A (en) Composite reverse osmosis membrane
JP2005021807A (en) Liquid separation membrane and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050117

A131 Notification of reasons for refusal

Effective date: 20050125

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060926