JP5076995B2 - Hydrogen gas sensor - Google Patents

Hydrogen gas sensor Download PDF

Info

Publication number
JP5076995B2
JP5076995B2 JP2008071815A JP2008071815A JP5076995B2 JP 5076995 B2 JP5076995 B2 JP 5076995B2 JP 2008071815 A JP2008071815 A JP 2008071815A JP 2008071815 A JP2008071815 A JP 2008071815A JP 5076995 B2 JP5076995 B2 JP 5076995B2
Authority
JP
Japan
Prior art keywords
thermoelectric material
hydrogen gas
catalyst
gas sensor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008071815A
Other languages
Japanese (ja)
Other versions
JP2009229114A (en
Inventor
健作 朝倉
篤志 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2008071815A priority Critical patent/JP5076995B2/en
Publication of JP2009229114A publication Critical patent/JP2009229114A/en
Application granted granted Critical
Publication of JP5076995B2 publication Critical patent/JP5076995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水素ガスセンサ、より詳しくは、熱電式水素ガスセンサに関する。   The present invention relates to a hydrogen gas sensor, and more particularly to a thermoelectric hydrogen gas sensor.

雰囲気中の水素を検出する水素ガスセンサとして、熱電式水素ガスセンサは、消費電力が小さく、しかも安価であることから、例えば、燃料電池等の発電システム等に効率よく適用することができると期待されている。この熱電式水素ガスセンサは、熱電素子の一部分で水素による発熱反応を生じさせ、発熱反応が生じた部分と発熱反応が生じなかった部分との温度差に基づく起電力を発生させることによって水素の検出を行うものである。   As a hydrogen gas sensor for detecting hydrogen in the atmosphere, a thermoelectric hydrogen gas sensor is expected to be able to be efficiently applied to, for example, a power generation system such as a fuel cell because of its low power consumption and low cost. Yes. This thermoelectric hydrogen gas sensor generates an exothermic reaction due to hydrogen in a part of the thermoelectric element and generates an electromotive force based on a temperature difference between a part where the exothermic reaction has occurred and a part where the exothermic reaction has not occurred. Is to do.

このような熱電式水素ガスセンサとしては、例えば、被検出ガスと接触して触媒反応を起こす触媒(触媒成分)と、この反応による局所的な温度差を電圧信号に変換する熱電変換材料膜を含む構成を有するものが知られている(特許文献1、2参照)。   Such a thermoelectric hydrogen gas sensor includes, for example, a catalyst (catalyst component) that causes a catalytic reaction in contact with a gas to be detected, and a thermoelectric conversion material film that converts a local temperature difference due to this reaction into a voltage signal. What has a structure is known (refer patent document 1, 2).

特開2003−156461号公報JP 2003-156461 A 特開2006−201100号公報JP 2006-201100 A

上述した構成を有する従来の熱電式水素ガスセンサでは、触媒における反応による発熱を利用して熱電変換材料膜に温度差を発生させ、これにより起電力(電圧)を生じさせることが動作原理となる。   In the conventional thermoelectric hydrogen gas sensor having the above-described configuration, the operation principle is to generate an electromotive force (voltage) by generating a temperature difference in the thermoelectric conversion material film using heat generated by the reaction in the catalyst.

このような水素ガスセンサでは、熱電変換材料膜、又は熱電変換材料膜に生じた起電力を測定する回路が故障(破損又は劣化)すると、水素による発熱反応が起こったとしても、水素が検知されない可能性がある。水素ガスセンサの故障によって水素ガスが検知されない場合、検知されない水素ガスが危険な事態を引き起こす可能性がある。したがって、水素ガスセンサには故障を検出する機能が要求される。   In such a hydrogen gas sensor, if a thermoelectric conversion material film or a circuit for measuring an electromotive force generated in the thermoelectric conversion material film fails (broken or deteriorated), hydrogen may not be detected even if an exothermic reaction occurs due to hydrogen. There is sex. If hydrogen gas is not detected due to a failure of the hydrogen gas sensor, the undetected hydrogen gas may cause a dangerous situation. Therefore, the hydrogen gas sensor is required to have a function for detecting a failure.

しかしながら、水素ガスセンサの故障を検出する機能を水素ガスセンサに付与するためには、水素の反応熱に起因して熱電変換材料膜に生じた起電力を測定する機構とは別に、故障を検出するための機構を水素ガスセンサに具備させる必要がある。そのため、水素ガスセンサの構造が従来よりも複雑になり、水素ガスセンサの製造コストが増加することが問題となる。   However, in order to provide the hydrogen gas sensor with the function of detecting a failure of the hydrogen gas sensor, in order to detect the failure separately from the mechanism for measuring the electromotive force generated in the thermoelectric conversion material film due to the reaction heat of hydrogen. This mechanism needs to be provided in the hydrogen gas sensor. Therefore, the structure of the hydrogen gas sensor becomes more complicated than before, and there is a problem that the manufacturing cost of the hydrogen gas sensor increases.

そこで、本発明はこのような事情に鑑みてなされたものであり、水素ガスセンサの故障を検知することができ、且つ簡易な構造を有する水素ガスセンサを提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and an object thereof is to provide a hydrogen gas sensor that can detect a failure of a hydrogen gas sensor and has a simple structure.

本発明者は、鋭意研究の結果、水素ガスセンサの故障によって水素ガスが検知されない事態を防止し、水素ガスセンサの安全性を向上させるためには、水素ガスセンサが正常に作動することによって初めて発信が可能となる信号(以下、場合により「故障検出信号」と記す。)を水素ガスセンサから発信させ続けて、これを常時検出し、故障検出信号が途絶えることをもって水素ガスセンサの故障を検知するような機能(以下、場合により「故障検出機能」と記す。)を水素ガスセンサに付与すればよい、という知見を得て、本発明に至った。   As a result of diligent research, the present inventor has been able to make a transmission only when the hydrogen gas sensor operates normally in order to prevent the hydrogen gas sensor from being detected due to a failure of the hydrogen gas sensor and to improve the safety of the hydrogen gas sensor. (Hereinafter, referred to as “failure detection signal” in some cases) is continuously transmitted from the hydrogen gas sensor, and this is always detected, and when the failure detection signal is interrupted, a function that detects a failure of the hydrogen gas sensor ( Hereinafter, in some cases, it may be referred to as “failure detection function”)), and the present inventors have obtained the knowledge that the hydrogen gas sensor may be provided.

上記目的を達成するため、本発明の水素ガスセンサは、熱電材料部、熱電材料部上に設けられた一対の電極、及び熱電材料部上に一対の電極のうちの一方の電極側に偏在して設けられ、水素の発熱反応を触媒する触媒部を有する検知部と、一対の電極間に発生した電圧を測定する電圧測定部と、熱電材料部を挟んで触媒部の反対側に位置する絶縁部と、絶縁部を挟んで熱電材料部の反対側に位置し、熱電材料部において一対の電極のうちの一方の電極が設けられた側と他方の電極が設けられた側との間に温度差が生じるように、絶縁部を介して熱電材料部を加熱する加熱部と、を備える。   In order to achieve the above object, a hydrogen gas sensor of the present invention is unevenly distributed on one electrode side of a thermoelectric material part, a pair of electrodes provided on the thermoelectric material part, and a pair of electrodes on the thermoelectric material part. A detection unit provided with a catalyst unit that catalyzes an exothermic reaction of hydrogen, a voltage measurement unit that measures a voltage generated between a pair of electrodes, and an insulating unit that is located on the opposite side of the catalyst unit across the thermoelectric material unit Between the side where one electrode of the pair of electrodes is provided and the side where the other electrode is provided in the thermoelectric material part. A heating part that heats the thermoelectric material part via the insulating part.

また、上記本発明の水素ガスセンサでは、熱電材料部が加熱部によって常時加熱され、一対の電極間に発生した電圧が電圧測定部によって常時測定され、水素の発熱反応によって触媒部が加熱されていない状態で、熱電材料部において一対の電極のうちの一方の電極が設けられた側と他方の電極が設けられた側との間の温度差が一定に維持され、一定に維持された温度差によって一対の電極間に発生する電圧(熱起電力)が電圧測定部で検出される。   In the hydrogen gas sensor of the present invention, the thermoelectric material part is constantly heated by the heating part, the voltage generated between the pair of electrodes is always measured by the voltage measuring part, and the catalyst part is not heated by the exothermic reaction of hydrogen. In the state, in the thermoelectric material portion, the temperature difference between the side where one electrode of the pair of electrodes is provided and the side where the other electrode is provided is maintained constant, and the temperature difference is maintained constant. A voltage (thermoelectromotive force) generated between the pair of electrodes is detected by the voltage measuring unit.

上記本発明の水素ガスセンサは、触媒部において水素の発熱反応を生じさせて熱を発生させることで、熱電材料部において触媒部に接触している部分とこれ以外の部分との温度差ΔTに基づく起電力V(電圧)を発生させ、この起電力を電圧測定部で測定することによって水素ガスを検出する熱電式水素ガスセンサである。起電力Vは次式(1)で表される。
V=αΔT・・・式(1)
なお、上記式(1)中、αは比例定数(ゼーベック係数)である。
The hydrogen gas sensor of the present invention is based on the temperature difference ΔT between the portion in contact with the catalyst portion and the other portion in the thermoelectric material portion by generating heat by causing an exothermic reaction of hydrogen in the catalyst portion. The thermoelectric hydrogen gas sensor detects hydrogen gas by generating an electromotive force V (voltage) and measuring the electromotive force with a voltage measuring unit. The electromotive force V is expressed by the following equation (1).
V = αΔT Equation (1)
In the above formula (1), α is a proportionality constant (Seebeck coefficient).

上記本発明では、水素ガスセンサが正常に作動し、且つ水素の発熱反応が触媒部で起こっていない場合(水素が検出されない場合)、加熱部によって熱電材料部が常時加熱されているため、熱電材料部において一対の電極のうちの一方の電極が設けられた側と他方の電極が設けられた側との間の温度差が一定の値ΔTに維持される。そのため、一対の電極間に発生する電圧も一定の値V(以下、場合により「水素未検出時電圧V」と記す。)に維持される。したがって、水素ガスセンサが正常に作動し、且つ水素の発熱反応が起こっていない場合は、電圧測定部において常に電圧V=αΔTが測定される。 In the present invention, when the hydrogen gas sensor operates normally and no exothermic reaction of hydrogen occurs in the catalyst part (when no hydrogen is detected), the thermoelectric material part is constantly heated by the heating part. In this section, the temperature difference between the side on which one of the pair of electrodes is provided and the side on which the other electrode is provided is maintained at a constant value ΔT 0 . Therefore, the voltage generated between the pair of electrodes is also maintained at a constant value V 0 (hereinafter, sometimes referred to as “voltage V 0 when no hydrogen is detected”). Therefore, when the hydrogen gas sensor operates normally and no exothermic reaction of hydrogen occurs, the voltage measurement unit always measures the voltage V 0 = αΔT 0 .

また上記本発明では、水素ガスセンサが故障すると、一対の電極間に熱起電力が発生しなかったり、熱起電力が電圧測定部で測定されなかったりする。すなわち、水素ガスセンサが故障した場合、電圧測定部で電圧Vが測定されなくなる。 In the present invention, when the hydrogen gas sensor fails, no thermoelectromotive force is generated between the pair of electrodes, or the thermoelectromotive force is not measured by the voltage measuring unit. That is, when the hydrogen gas sensor has failed, the voltage V 0 will not be measured by the voltage measuring section.

以上のように、上記本発明では、一対の電極間に発生する電圧(熱起電力)を電圧測定部によって常時測定し、一対の電極間に発生する電圧が電圧Vであるか否かを常時監視することによって、水素ガスセンサの故障を検知することが可能となる。すなわち、上記本発明では、水素が検出されない状態で一対の電極間に発生する水素未検出時電圧Vが故障検出信号となる。 As described above, in the present invention, the voltage (thermoelectromotive force) generated between the pair of electrodes is always measured by the voltage measuring unit, and whether or not the voltage generated between the pair of electrodes is the voltage V 0 is determined. Monitoring constantly makes it possible to detect a failure of the hydrogen gas sensor. In other words, in the present invention, the hydrogen non-detection voltage V 0 generated between the pair of electrodes in a state where hydrogen is not detected is a failure detection signal.

また上記本発明では、水素ガスセンサが正常に作動し、且つ触媒部において水素の発熱反応が起こった場合、触媒部で発生した反応熱が、熱電材料部において触媒部に接触している部分を加熱するため、熱電材料部において触媒部が偏在して設けられた側の電極が配置された部分と、別の電極が配置された部分との間の温度差ΔTがΔTより大きくなる。その結果、水素の発熱反応が起こった時に電圧測定部において測定される電圧(水素検出時電圧V=αΔT)は、電圧Vよりも大きくなる。水素検出時電圧Vと水素未検出時電圧Vとの電圧差ΔV=V−V=α(ΔT−ΔT)から、検知部において検出された水素ガスを定量することが可能となる。 In the present invention, when the hydrogen gas sensor operates normally and an exothermic reaction of hydrogen occurs in the catalyst part, the reaction heat generated in the catalyst part heats the part in contact with the catalyst part in the thermoelectric material part. Therefore, the temperature difference ΔT r between the portion where the electrode on the side where the catalyst portion is unevenly provided in the thermoelectric material portion and the portion where another electrode is disposed is larger than ΔT 0 . As a result, the voltage (hydrogen detection time voltage V r = αΔT r ) measured by the voltage measurement unit when the exothermic reaction of hydrogen occurs is larger than the voltage V 0 . From the voltage difference ΔV = V r −V 0 = α (ΔT r −ΔT 0 ) between the voltage V r when hydrogen is detected and the voltage V 0 when no hydrogen is detected, it is possible to quantify the hydrogen gas detected in the detector It becomes.

上述のように、上記本発明では、水素ガスセンサの故障を検知するための故障検出信号(水素未検出時電圧V)と、水素ガスを検出、定量するための信号(水素検出時電圧V)とを、共に一つの電圧測定部で測定することができる。したがって、本発明では、電圧測定部とは別に、故障検出信号の発信機構及び検出機構を水素ガスセンサに具備させる必要がなく、水素ガスセンサの構造が簡易となる。 As described above, in the present invention, a failure detection signal for detecting a failure of the hydrogen gas sensor (hydrogen non-detection voltage V 0 ) and a signal for detecting and quantifying hydrogen gas (hydrogen detection voltage V r ) Can be measured by one voltage measuring unit. Therefore, in the present invention, it is not necessary to provide a failure detection signal transmission mechanism and a detection mechanism in the hydrogen gas sensor separately from the voltage measurement unit, and the structure of the hydrogen gas sensor is simplified.

また、上記本発明では、加熱部が絶縁部を挟んで熱電材料部の反対側に位置するため、加熱部と熱電材料部とが直に接触しない。つまり、加熱部と熱電材料部とは、絶縁部によって電気的に絶縁している。そのため、加熱部(例えば電気抵抗)における電圧降下が、熱電材料部において一対の電極間に発生する熱起電力(水素検出時電圧V)に影響することがないため、水素ガスの検出、定量を正確に行うことができる。 Moreover, in the said invention, since a heating part is located in the other side of a thermoelectric material part on both sides of an insulating part, a heating part and a thermoelectric material part do not contact directly. That is, the heating part and the thermoelectric material part are electrically insulated by the insulating part. Therefore, the voltage drop in the heating part (for example, electric resistance) does not affect the thermoelectromotive force (hydrogen detection voltage V r ) generated between the pair of electrodes in the thermoelectric material part. Can be done accurately.

さらに、上記本発明では、加熱部で加熱された熱電材料部の熱が触媒部に伝導し、触媒部も加熱される。すなわち、触媒部は加熱部によって間接的に常時加熱される。そのため、触媒部の表面に吸着等した水蒸気由来の水分等を、触媒部表面から除去することができ、水分等の付着による触媒部の活性低下を防止して、触媒部が本来有している活性に応じた検出感度を得ることが可能となる。   Furthermore, in the said invention, the heat | fever of the thermoelectric material part heated by the heating part is conducted to a catalyst part, and a catalyst part is also heated. That is, the catalyst part is always heated indirectly by the heating part. Therefore, water or the like derived from water vapor adsorbed on the surface of the catalyst part can be removed from the surface of the catalyst part, preventing a decrease in the activity of the catalyst part due to adhesion of moisture or the like, and the catalyst part originally has It becomes possible to obtain a detection sensitivity corresponding to the activity.

本発明によれば、水素ガスセンサの故障を検知することができ、且つ簡易な構造を有する水素ガスセンサを提供することが可能となる。   According to the present invention, it is possible to provide a hydrogen gas sensor that can detect a failure of the hydrogen gas sensor and has a simple structure.

以下、図面を参照して本発明の好適な実施の形態について説明する。なお、図面の説明において、同一の要素には同一の符号を付し、重複する説明については省略することとする。また、図面中に示す寸法及び位置関係は図示されたものに限定されない。   Preferred embodiments of the present invention will be described below with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant descriptions are omitted. Further, the dimensions and positional relationships shown in the drawings are not limited to those illustrated.

<水素ガスセンサ100>
図1〜3は、本発明の一実施形態に係る水素ガスセンサ100の構成を示す概略図である。図1は、水素ガスセンサ100を検知部10側から見た上面図であり、図2は、水素ガスセンサ100を加熱部30側から見た下面図であり、図3は、図1の水素ガスセンサ100のIII−III線における断面図である。図1〜3に示すように、本実施形態の水素ガスセンサ100は、検知部10、電圧測定部20、及び加熱部30から構成される。なお、図1では、図示の便宜上、電圧測定部20を省略している。
<Hydrogen gas sensor 100>
1 to 3 are schematic views showing a configuration of a hydrogen gas sensor 100 according to an embodiment of the present invention. 1 is a top view of the hydrogen gas sensor 100 viewed from the detection unit 10 side, FIG. 2 is a bottom view of the hydrogen gas sensor 100 viewed from the heating unit 30 side, and FIG. 3 is a hydrogen gas sensor 100 of FIG. It is sectional drawing in the III-III line. As shown in FIGS. 1 to 3, the hydrogen gas sensor 100 of this embodiment includes a detection unit 10, a voltage measurement unit 20, and a heating unit 30. In FIG. 1, the voltage measuring unit 20 is omitted for convenience of illustration.

図3に示すように、検知部10は、熱電材料部2と、一対の電極4a、4bと、触媒部6と、を有する。   As shown in FIG. 3, the detection unit 10 includes a thermoelectric material unit 2, a pair of electrodes 4 a and 4 b, and a catalyst unit 6.

一対の電極4a、4bは、熱電材料部2の一面上に、互いに離間するように設けられており、具体的には、熱電材料部2の長手方向における両端の辺に沿ってそれぞれ形成されている。これらの電極4a、4bは、熱電材料部2と外部回路等との接続を行う端子としての機能を有しており、金属等の導電性を有する材料によって構成される。   The pair of electrodes 4a and 4b are provided on one surface of the thermoelectric material portion 2 so as to be separated from each other. Specifically, the electrodes 4a and 4b are respectively formed along both sides in the longitudinal direction of the thermoelectric material portion 2. Yes. These electrodes 4a and 4b have a function as terminals for connecting the thermoelectric material portion 2 to an external circuit or the like, and are made of a conductive material such as metal.

触媒部6は、熱電材料部2の電極4a、4bと同じ側の面上に、一対の電極4a、4bのうちの一方の電極4a側に偏在して設けられている。この触媒部6は、水素ガスと空気中の酸素と反応させる触媒能を有する。触媒部6としては、例えば、触媒担持体に上記触媒能を有する触媒成分を担持させた構成を有するものが挙げられる。具体的には、触媒担持体が多孔質のアルミナからなり、これに触媒成分として、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等を担持させたものである。触媒成分としては、特に白金を担持させたものが好適である。白金は、水素ガスによる反応を選択的に生じさせることができ、これが表面積の大きい多孔質の触媒担持体に担持されることで、触媒部6の表面上で効率よく反応が生じるようになる。より具体的な触媒部6としては、例えば、触媒担持体であるAlに対して、触媒成分として、0.2重量%のロジウムと1.0重量%の白金とを担持させたものを用いればよい。 The catalyst portion 6 is provided on the same surface as the electrodes 4a and 4b of the thermoelectric material portion 2 so as to be unevenly distributed on the one electrode 4a side of the pair of electrodes 4a and 4b. The catalyst unit 6 has a catalytic ability to react with hydrogen gas and oxygen in the air. As the catalyst part 6, what has the structure which made the catalyst support body carry | support the catalyst component which has the said catalyst ability is mentioned, for example. Specifically, the catalyst carrier is made of porous alumina, on which platinum (Pt), palladium (Pd), rhodium (Rh) or the like is supported as a catalyst component. As the catalyst component, one carrying platinum is particularly suitable. Platinum can selectively cause a reaction by hydrogen gas, and this is efficiently supported on the surface of the catalyst part 6 by being supported on a porous catalyst support having a large surface area. As a more specific catalyst part 6, for example, 0.2% by weight of rhodium and 1.0% by weight of platinum are supported as catalyst components on Al 2 O 3 which is a catalyst support. May be used.

触媒部6は、上述のように一方の電極4a側に偏在して設けられているが、触媒部6が形成されていない側の電極4bからはできるだけ離れていることが好ましい。触媒部6が、電極4bから離れているほど、後述するような熱電材料部2における温度差(温度勾配)を大きくすることができ、より大きな起電力が得られる。ただし、触媒部6における発熱量との兼ね合いの観点から、触媒部6における反応を効率よく生じさせ、熱電材料部6に十分な温度差を与えることを可能とするために必要となる触媒部6の面積を確保した上で、触媒部6をできるだけ電極4a側に偏在させることが好ましい。   As described above, the catalyst portion 6 is provided unevenly on the one electrode 4a side, but it is preferable that the catalyst portion 6 be as far as possible from the electrode 4b on the side where the catalyst portion 6 is not formed. As the catalyst unit 6 is further away from the electrode 4b, a temperature difference (temperature gradient) in the thermoelectric material unit 2 as described later can be increased, and a larger electromotive force can be obtained. However, from the viewpoint of balance with the calorific value in the catalyst unit 6, the catalyst unit 6 required to efficiently cause a reaction in the catalyst unit 6 and to give a sufficient temperature difference to the thermoelectric material unit 6. It is preferable that the catalyst part 6 is unevenly distributed on the electrode 4a side as much as possible.

触媒部6は、本実施形態では、電極4aを被覆しているが、電極4aを被覆しないように形成されていてもよい。触媒部6が電極4aを被覆しないように形成されている場合、触媒部6での発熱が電極4aを介しないで熱電材料部2に直接伝わるため、後述するような熱電材料部2における温度差(温度勾配)をより大きく生じさせることができる。   In this embodiment, the catalyst unit 6 covers the electrode 4a, but may be formed so as not to cover the electrode 4a. When the catalyst part 6 is formed so as not to cover the electrode 4a, the heat generated in the catalyst part 6 is directly transmitted to the thermoelectric material part 2 without passing through the electrode 4a. (Temperature gradient) can be generated more greatly.

また、触媒部6は、これが設けられている側の電極4aと接していなくてもよい。なお、本実施形態のように、触媒部6を電極4aと接するように設けることで、触媒部6と電極4aとが接しない場合に比べて、触媒部6と電極4bとの距離を大きくとることができ、熱電材料部2に生じる温度差(温度勾配)をより大きくし、電極4a、4b間で大きな起電力を得ることが可能となる。なお、触媒部6を電極4aと接触させるか否かは、所望とする水素ガスセンサの特性に応じて適宜選択すればよい。   Moreover, the catalyst part 6 does not need to be in contact with the electrode 4a on the side where the catalyst part 6 is provided. Note that, as in the present embodiment, by providing the catalyst portion 6 so as to be in contact with the electrode 4a, the distance between the catalyst portion 6 and the electrode 4b can be increased as compared with the case where the catalyst portion 6 and the electrode 4a are not in contact. It is possible to increase the temperature difference (temperature gradient) generated in the thermoelectric material portion 2 and obtain a large electromotive force between the electrodes 4a and 4b. Whether or not the catalyst unit 6 is brought into contact with the electrode 4a may be appropriately selected according to the desired characteristics of the hydrogen gas sensor.

電圧測定部20は、検知部10が有している一対の電極4a、4bに接続されており、電極4a、4b間の電圧を測定することができる。この電圧測定部20としては、検出される電圧に応じた公知の電圧計を適用することができる。   The voltage measurement unit 20 is connected to the pair of electrodes 4a and 4b included in the detection unit 10, and can measure the voltage between the electrodes 4a and 4b. As the voltage measuring unit 20, a known voltmeter corresponding to the detected voltage can be applied.

熱電材料部2は、10〜500μm程度の厚みを有し、平面形状が長方形状である板状の部材である。本実施形態では、熱電材料部2の寸法は、例えば、長さが6mm程度、幅1mm程度、厚さ100μm程度である。この熱電材料部2は、局所的な温度差が生じるとゼーベック効果によって起電力が発生する性質(熱電変換能)を有する熱電材料から構成される。熱電材料としては、こ熱電変換能を十分に有しており、しかも、ガス等による抵抗や起電力の変化が少ないものが好ましい。例えば、BiTe系、PbTe系、FeSi系、SiGe系、スカッタルダイド系、ハーフホイスラー型金属間化合物系、コバルト層状化合物、金属酸化物系等の熱電材料が挙げられる。また、アルカリ金属をドープしたNiO系等も適用可能である。   The thermoelectric material part 2 is a plate-like member having a thickness of about 10 to 500 μm and a rectangular planar shape. In this embodiment, the dimensions of the thermoelectric material part 2 are, for example, a length of about 6 mm, a width of about 1 mm, and a thickness of about 100 μm. This thermoelectric material part 2 is comprised from the thermoelectric material which has the property (thermoelectric conversion capability) which an electromotive force generate | occur | produces by Seebeck effect, when a local temperature difference arises. As the thermoelectric material, a material having sufficient thermoelectric conversion ability and having little change in resistance and electromotive force due to gas or the like is preferable. Examples thereof include thermoelectric materials such as BiTe, PbTe, FeSi, SiGe, scuttaldide, half-Heusler type intermetallic compound, cobalt layered compound, and metal oxide. Moreover, NiO system doped with an alkali metal or the like is also applicable.

上述の熱電材料の中でも、微細な空孔を多数有する多孔形状熱電材料を用いることが好ましい。なお、多孔形状熱電材料が有する空孔の孔径は、0.1〜20μm程度である。多孔形状熱電材料としては、例えば、CaCo、NaCoO(xは例えば0<x<1.0を満たす任意の実数)等から成る熱電材料が挙げられる。これらの中でも、多孔形状熱電材料としては、CaCoからなる多孔形状熱電材料が好ましい。CaCoからなる多孔形状熱電材料を用いることによって、緻密な熱電材料を用いる場合に比べて、触媒部6で発生した熱を、熱電材料部2において触媒部6に接触している部分から、電極4bが設けられた部分へ伝導させ難くすることが可能となる。その結果、熱電材料部2において触媒部6が偏在して設けられた側の電極4aが配置された部分と、別の電極4bが配置された部分との間の温度差が大きくなり、両電極4a、4b間に発生する熱起電力が大きくなるため、水素ガスセンサ100の感度を従来よりも向上させることが可能となる。 Among the thermoelectric materials described above, it is preferable to use a porous thermoelectric material having many fine pores. The pore diameter of the porous thermoelectric material is about 0.1 to 20 μm. Examples of the porous thermoelectric material include a thermoelectric material made of Ca 3 Co 4 O 9 , Na x CoO 2 (x is an arbitrary real number satisfying 0 <x <1.0), and the like. Among these, the porous thermoelectric material made of Ca 3 Co 4 O 9 is preferable as the porous thermoelectric material. By using a porous thermoelectric material made of Ca 3 Co 4 O 9 , heat generated in the catalyst unit 6 is in contact with the catalyst unit 6 in the thermoelectric material unit 2 as compared with the case where a dense thermoelectric material is used. It is possible to make it difficult to conduct from the portion to the portion where the electrode 4b is provided. As a result, the temperature difference between the portion where the electrode 4a on the side where the catalyst portion 6 is provided unevenly in the thermoelectric material portion 2 and the portion where the other electrode 4b is arranged increases, and both electrodes Since the thermoelectromotive force generated between 4a and 4b is increased, the sensitivity of the hydrogen gas sensor 100 can be improved as compared with the conventional case.

CaCoは、結晶異方性の大きい物質であり、その結晶粒子は、結晶軸のc軸に垂直な面方向に長い板状の形状を有する。CaCoの抵抗率は10−5Ω・m程度、熱起電力は0.12mV・K−1程度、熱伝導率は2W・m−1・K−1程度であり、特にc軸に垂直な面方向において、CaCoの抵抗率が小さく、熱起電力が大きい。CaCoからなる多孔形状熱電材料は、例えば、CaCoの結晶粒子を、その結晶軸のc軸方向に多数積層し、プレスした後、焼成することによって得ることができる。 Ca 3 Co 4 O 9 is a substance having large crystal anisotropy, and its crystal grains have a plate-like shape that is long in the plane direction perpendicular to the c-axis of the crystal axis. The resistivity of Ca 3 Co 4 O 9 is about 10 −5 Ω · m, the thermoelectromotive force is about 0.12 mV · K −1 , and the thermal conductivity is about 2 W · m −1 · K −1 , especially c In the surface direction perpendicular to the axis, the resistivity of Ca 3 Co 4 O 9 is small and the thermoelectromotive force is large. Porous shaped thermoelectric material consisting of Ca 3 Co 4 O 9, for example, the crystal grains of Ca 3 Co 4 O 9, a large number laminated in the c-axis direction of the crystal axis, after pressing, can be obtained by calcining it can.

CaCoからなる多孔形状熱電材料から構成した熱電材料部2では、CaCoの結晶粒子の結晶軸のc軸に垂直な面方向と、一対の電極4a、4bが対向する方向とが、略平行であることが好ましい。こうすれば、CaCoは結晶軸のc軸に垂直な面方向において、熱起電力が大きくなるので、電極4a、4b間での温度差及び熱起電力が大きくなり易くなり、その結果、水素ガスセンサ100の感度を更に向上させることができる。 In Ca 3 Co 4 O 9 thermoelectric material part 2 is constituted of a porous shaped thermoelectric material consisting, Ca 3 Co 4 and a plane direction perpendicular to the c axis of the crystal axes of the crystal grains of O 9, a pair of electrodes 4a, 4b is The facing direction is preferably substantially parallel. In this way, Ca 3 Co 4 O 9 has a large thermoelectromotive force in the plane direction perpendicular to the c-axis of the crystal axis, so that the temperature difference and the thermoelectromotive force between the electrodes 4a and 4b tend to be large, As a result, the sensitivity of the hydrogen gas sensor 100 can be further improved.

水素ガスセンサ100は、熱電材料部2を挟んで触媒部6の反対側に絶縁部(絶縁基板22)を備える。熱電材料部2は、絶縁基板22上に固定されている。絶縁基板22は、酸化アルミニウム等の絶縁材から構成される。絶縁基板22の寸法は、例えば、熱電材料部2の長手方向における長さが7mm、熱電材料部2の短手方向における長さが6mm、厚さが120μmである。   The hydrogen gas sensor 100 includes an insulating portion (insulating substrate 22) on the opposite side of the catalyst portion 6 with the thermoelectric material portion 2 interposed therebetween. The thermoelectric material portion 2 is fixed on the insulating substrate 22. The insulating substrate 22 is made of an insulating material such as aluminum oxide. The dimensions of the insulating substrate 22 are, for example, a length of 7 mm in the longitudinal direction of the thermoelectric material portion 2, a length of 6 mm in the short direction of the thermoelectric material portion 2, and a thickness of 120 μm.

加熱部30は、絶縁基板22を挟んで熱電材料部2の反対側に位置している。加熱部30は、ヒーター24(電気抵抗)と、ヒーター24の両端に接続された電源26とから構成される。電源26によってヒーター24に電圧が印加され、ヒーター24でジュール熱が発生する。ヒーター24は、絶縁基板22を挟んで、熱電材料部2全体と重なるように配置され、均一なパターンを有する。このようなヒーター24によって熱電材料部2全体が加熱される。ヒーター24は、例えば、ZnとAgとを60:100の重量比で含有する材料から構成される。   The heating unit 30 is located on the opposite side of the thermoelectric material unit 2 with the insulating substrate 22 interposed therebetween. The heating unit 30 includes a heater 24 (electrical resistance) and a power source 26 connected to both ends of the heater 24. A voltage is applied to the heater 24 by the power source 26, and Joule heat is generated in the heater 24. The heater 24 is disposed so as to overlap the entire thermoelectric material portion 2 with the insulating substrate 22 interposed therebetween, and has a uniform pattern. The entire thermoelectric material portion 2 is heated by such a heater 24. The heater 24 is made of, for example, a material containing Zn and Ag at a weight ratio of 60: 100.

加熱部30で加熱された熱電材料部2の熱は、触媒部6に伝導し、触媒部6も加熱される。すなわち、加熱部30によって触媒部6が間接的に加熱される。そのため、触媒部6の表面に吸着等した水分等を、触媒部6表面から除去することができ、水分等の付着によって触媒部6の活性が低下することを防止できる。そのため、触媒部6が本来有している活性に応じた水素の検出感度を得ることが可能となる。   The heat of the thermoelectric material part 2 heated by the heating part 30 is conducted to the catalyst part 6 and the catalyst part 6 is also heated. That is, the catalyst unit 6 is indirectly heated by the heating unit 30. Therefore, moisture or the like adsorbed on the surface of the catalyst unit 6 can be removed from the surface of the catalyst unit 6, and the activity of the catalyst unit 6 can be prevented from being reduced due to adhesion of moisture or the like. Therefore, it is possible to obtain hydrogen detection sensitivity corresponding to the activity that the catalyst unit 6 originally has.

<水素ガスセンサ100の動作方法>
次に、水素ガスセンサ100の作動中、触媒部6において水素の発熱反応が起こっていない状態(水素未検出状態)と、水素ガスセンサ100の作動中、触媒部6において水素の発熱反応が起こっている状態(水素検出状態)との二つの状態における水素ガスセンサ100の動作方法について説明する。なお、水素ガスセンサ100では、水素未検出状態及び水素検出状態のいずれの状態においても、熱電材料部2が加熱部30によって常時加熱されると共に、一対の電極4a、4b間に発生する電圧(熱起電力)が電圧測定部20によって常時測定される。
<Operation Method of Hydrogen Gas Sensor 100>
Next, during operation of the hydrogen gas sensor 100, a state where no exothermic reaction of hydrogen occurs in the catalyst unit 6 (a state where hydrogen is not detected), and during operation of the hydrogen gas sensor 100, an exothermic reaction of hydrogen occurs in the catalyst unit 6. An operation method of the hydrogen gas sensor 100 in two states, ie, a state (hydrogen detection state) will be described. In the hydrogen gas sensor 100, the thermoelectric material unit 2 is constantly heated by the heating unit 30 and the voltage (heat) generated between the pair of electrodes 4a and 4b in both the hydrogen non-detection state and the hydrogen detection state. Electromotive force) is constantly measured by the voltage measuring unit 20.

(水素未検出状態)
検知部10は、一対の電極4a、4bが並ぶ方向(熱電材料部2の長手方向)において非対称な構造を有する。そのため、水素の発熱反応によって触媒部6が加熱されていない状態では、熱電材料部2において一方の電極4aが設けられた側と他方の電極4bが設けられた側との間に、ヒーター24で発生するジュール熱に起因する温度差ΔTが生じる。ここで、電源26によってヒーター24に印加される電圧、及びヒーター24で発生するジュール熱は略一定であるため、温度差ΔTも略一定に維持される。したがって、熱電材料部2の熱電変換能によって一対の電極4a、4b間に発生する熱起電力も略一定の値V(=αΔT)に維持される。したがって、水素ガスセンサ100が正常に作動し、且つ触媒部6において水素の発熱反応が起こっていない状態では、電圧測定部20において常に略一定の電圧Vが測定される。なお、温度差ΔTは、一定であることが望ましいが、後述する電圧Vの測定に支障を来たさない範囲内で変動してもよい。
(Hydrogen not detected)
The detection unit 10 has an asymmetric structure in the direction in which the pair of electrodes 4a and 4b are arranged (longitudinal direction of the thermoelectric material unit 2). Therefore, in a state where the catalyst part 6 is not heated by the exothermic reaction of hydrogen, the heater 24 is provided between the side where the one electrode 4a is provided in the thermoelectric material part 2 and the side where the other electrode 4b is provided. A temperature difference ΔT 0 is generated due to the generated Joule heat. Here, since the voltage applied to the heater 24 by the power source 26 and the Joule heat generated in the heater 24 are substantially constant, the temperature difference ΔT 0 is also maintained substantially constant. Therefore, the thermoelectromotive force generated between the pair of electrodes 4a and 4b by the thermoelectric conversion ability of the thermoelectric material portion 2 is also maintained at a substantially constant value V 0 (= αΔT 0 ). Accordingly, the hydrogen gas sensor 100 is operating normally, and in a state in which no occurred exothermic reaction of hydrogen at the catalyst portion 6, a substantially constant voltage V 0 is always in the voltage measuring unit 20 is measured. The temperature difference ΔT 0 is desirably constant, but may vary within a range that does not hinder measurement of the voltage V r described later.

一方、熱電材料部2が破断したり、電圧測定部20と電極40a、40bとの接続不良が生じたりして、水素ガスセンサ100が故障すると、一対の電極4a、4b間に熱起電力(電圧V)が発生しなかったり、熱起電力が電圧測定部10で測定されなかったりする。すなわち、水素ガスセンサ100が故障した状態では、電圧測定部10で電圧Vが測定されなくなる。 On the other hand, if the thermoelectric material part 2 breaks or a connection failure between the voltage measuring part 20 and the electrodes 40a and 40b occurs and the hydrogen gas sensor 100 fails, a thermoelectromotive force (voltage) is generated between the pair of electrodes 4a and 4b. V 0 ) does not occur or the thermoelectromotive force is not measured by the voltage measuring unit 10. That is, in the state where the hydrogen gas sensor 100 has failed, the voltage V 0 is not measured by the voltage measuring unit 10.

以上のように、一対の電極4a、4b間で電圧Vが測定される状態では、水素ガスセンサ100は正常に作動しており、電圧Vが測定されない状態では、水素ガスセンサ100故障している可能性がある。このように、水素ガスセンサ100では、電圧Vが故障検出信号として機能し、電圧Vの有無によって水素ガスセンサ100の故障の有無を判別できる。 As described above, the hydrogen gas sensor 100 is operating normally when the voltage V 0 is measured between the pair of electrodes 4a and 4b, and the hydrogen gas sensor 100 is malfunctioning when the voltage V 0 is not measured. there is a possibility. Thus, the hydrogen gas sensor 100, the voltage V 0 acts as a fault detection signal, it determines the presence or absence of a failure of the hydrogen gas sensor 100 according to the presence or absence of the voltage V 0.

(水素検出状態)
検知部10において、触媒部6に水素ガスが接触すると、触媒部6上で水素ガスと空気中の酸素との反応が発生する。この反応では、水素と酸素との反応によって水が生成するとともに反応熱が発生する。この反応熱により、熱電材料部2のうち触媒部6と接している部分(電極4a側)が加熱される。一方、触媒部6が設けられていない部分(電極4b側)は、上記反応が生じても加熱され難いため、反応前の温度を維持したままとなり易い。その結果、触媒部6で水素ガスの反応が生じると、熱電材料部2において触媒部6が偏在して設けられた側(電極4a側)と、別の電極4b側との間に、ΔTより大きな温度差ΔTが生じることになる。なお、ΔTは、触媒部における水素ガスと酸素との反応による反応熱の大きさに依存する変数である。換言すれば、ΔTは、触媒部6において酸素と反応した水素ガスの量に依存する変数である。
(Hydrogen detection state)
In the detection unit 10, when hydrogen gas comes into contact with the catalyst unit 6, a reaction between the hydrogen gas and oxygen in the air occurs on the catalyst unit 6. In this reaction, water is generated by the reaction between hydrogen and oxygen and heat of reaction is generated. Due to this reaction heat, the portion of the thermoelectric material portion 2 that is in contact with the catalyst portion 6 (on the electrode 4a side) is heated. On the other hand, the portion where the catalyst portion 6 is not provided (on the electrode 4b side) is difficult to be heated even when the above reaction occurs, and thus the temperature before the reaction is easily maintained. As a result, when a reaction of hydrogen gas occurs in the catalyst unit 6, ΔT 0 is formed between the side where the catalyst unit 6 is unevenly provided in the thermoelectric material unit 2 (electrode 4a side) and the other electrode 4b side. A larger temperature difference ΔT r will occur. Note that ΔT r is a variable that depends on the magnitude of heat of reaction due to the reaction between hydrogen gas and oxygen in the catalyst portion. In other words, ΔT r is a variable that depends on the amount of hydrogen gas that has reacted with oxygen in the catalyst unit 6.

温度差ΔTによって熱電材料部2に生じた熱起電力は、熱電材料部2の両端に設けられた一対の電極4a、4b間に、電圧Vより大きな電圧(電圧V=αΔT)を発生させる。この電圧Vが電圧測定部20で測定される。電圧Vと電圧Vとの電圧差ΔV=V−V=α(ΔT−ΔT)に基づいて、雰囲気中の水素ガスの濃度等を定量することができる。 The thermoelectromotive force generated in the thermoelectric material portion 2 due to the temperature difference ΔT r is a voltage higher than the voltage V 0 (voltage V r = αΔT r ) between the pair of electrodes 4 a and 4 b provided at both ends of the thermoelectric material portion 2. Is generated. This voltage V r is measured by the voltage measuring unit 20. Based on the voltage difference ΔV = V r −V 0 = α (ΔT r −ΔT 0 ) between the voltage V r and the voltage V 0 , the concentration of hydrogen gas in the atmosphere can be quantified.

なお、電圧Vが電圧Vに比べて小さいほど、電圧差ΔVが大きくなるので、水素ガスの検出、定量がし易くなる。電圧Vを電圧Vに比べて小さくするためには、例えば、ヒーター24で発生させる熱量、又は熱電材料部2に対するヒーター24の配置を適宜調整すればよい。 In addition, since the voltage difference ΔV increases as the voltage V 0 is smaller than the voltage V r , it becomes easier to detect and quantify hydrogen gas. In order to make the voltage V 0 smaller than the voltage V r , for example, the amount of heat generated by the heater 24 or the arrangement of the heater 24 with respect to the thermoelectric material portion 2 may be adjusted as appropriate.

本実施形態では、水素ガスセンサ100の故障を検知するための故障検出信号(電圧V)と、水素ガスを検出、定量するための信号(電圧V)とを、共に一つの電圧測定部20で測定することができる。したがって、本実施形態では、電圧測定部20とは別に、故障検出信号の発信機構及び検出機構を水素ガスセンサ100に具備させる必要がないため、水素ガスセンサ100の構造が簡易となる。 In the present embodiment, both a failure detection signal (voltage V 0 ) for detecting a failure of the hydrogen gas sensor 100 and a signal (voltage V r ) for detecting and quantifying hydrogen gas are used as one voltage measuring unit 20. Can be measured. Therefore, in this embodiment, it is not necessary to provide the hydrogen gas sensor 100 with a failure detection signal transmission mechanism and a detection mechanism separately from the voltage measurement unit 20, and thus the structure of the hydrogen gas sensor 100 is simplified.

また、本実施形態では、加熱部30が絶縁基板22を挟んで熱電材料部2の反対側に位置するため、加熱部のヒーター24と熱電材料部2とが直に接触しない。つまり、ヒーター24と熱電材料部2とは、絶縁基板22を介して電気的に絶縁している。そのため、ヒーター24における電圧降下が、熱電材料部2に発生する熱起電力に影響することがないため、水素ガスの検出、定量を正確に行うことができる。   Moreover, in this embodiment, since the heating part 30 is located in the other side of the thermoelectric material part 2 on both sides of the insulating substrate 22, the heater 24 of the heating part and the thermoelectric material part 2 do not contact directly. That is, the heater 24 and the thermoelectric material part 2 are electrically insulated via the insulating substrate 22. Therefore, since the voltage drop in the heater 24 does not affect the thermoelectromotive force generated in the thermoelectric material part 2, hydrogen gas can be detected and quantified accurately.

以上、本実施形態の水素ガスセンサ100について説明したが、本発明は必ずしも上述した実施形態に限定されず、その趣旨を逸脱しない範囲で適宜変更が可能である。   The hydrogen gas sensor 100 of the present embodiment has been described above, but the present invention is not necessarily limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

例えば、図4に示すように、加熱部30のヒーター24が、絶縁基板22を挟んで、検知部10のうち一方の電極4a側(触媒部6側)に偏在して配置されていてもよい。これにより、熱電材料部2のうち一方の電極4a側が局所的に加熱され、熱電材料部2において一方の電極4aが設けられた側と他方の電極4bが設けられた側との間において温度差ΔTが生じ易くなる。また、ヒーター24で発生した熱が触媒部6に伝導し易くなり、触媒部6の表面に吸着した水分等を、触媒部6表面から除去し易くなる。そのため、触媒部6が本来有している活性に応じた水素の検出感度を得易くなる。 For example, as shown in FIG. 4, the heater 24 of the heating unit 30 may be arranged unevenly on one electrode 4 a side (catalyst unit 6 side) of the detection unit 10 with the insulating substrate 22 interposed therebetween. . Thereby, one electrode 4a side of the thermoelectric material part 2 is locally heated, and a temperature difference between the side where the one electrode 4a is provided in the thermoelectric material part 2 and the side where the other electrode 4b is provided. ΔT 0 tends to occur. Further, the heat generated by the heater 24 is easily conducted to the catalyst unit 6, and moisture adsorbed on the surface of the catalyst unit 6 can be easily removed from the surface of the catalyst unit 6. Therefore, it becomes easy to obtain hydrogen detection sensitivity corresponding to the activity that the catalyst unit 6 originally has.

さらに、上述の実施形態において、水素ガスセンサ100における熱電材料部2は板状の形状を有するものとしたが、一対の電極4a、4b及び触媒部6を表面に配置できるものであれば、板状以外の形状を有していてもよい。また、電極4a、4bや触媒部6は、全てが熱電材料部2における同一面上に設けられていたが、例えば電極4a、4bのうち一方の電極のみが他の面に設けられていてもよい。   Furthermore, in the above-described embodiment, the thermoelectric material portion 2 in the hydrogen gas sensor 100 has a plate shape. However, as long as the pair of electrodes 4a, 4b and the catalyst portion 6 can be arranged on the surface, a plate shape. You may have shapes other than. The electrodes 4a and 4b and the catalyst part 6 are all provided on the same surface of the thermoelectric material part 2, but for example, only one of the electrodes 4a and 4b may be provided on the other surface. Good.

また、熱電材料部2が多孔形状熱電材料から構成されている場合、多孔形状熱電材料の有する空孔に触媒部6を構成する触媒成分が担持されていてもよい。   Moreover, when the thermoelectric material part 2 is comprised from the porous thermoelectric material, the catalyst component which comprises the catalyst part 6 may be carry | supported by the void | hole which the porous thermoelectric material has.

本発明の一実施形態に係る水素ガスセンサの構成を示す概略上面図である。It is a schematic top view which shows the structure of the hydrogen gas sensor which concerns on one Embodiment of this invention. 図1に示す水素ガスセンサを加熱部側から見た概略下面図である。It is the schematic bottom view which looked at the hydrogen gas sensor shown in FIG. 1 from the heating part side. 図1に示す水素ガスセンサを図1のIII−III線に沿って切断した場合の水素ガスセンサの模式断面図である。It is a schematic cross section of the hydrogen gas sensor when the hydrogen gas sensor shown in FIG. 1 is cut along the line III-III in FIG. 本発明の他の実施形態に係る水素ガスセンサを加熱部側から見た概略下面図である。It is the schematic bottom view which looked at the hydrogen gas sensor which concerns on other embodiment of this invention from the heating part side.

符号の説明Explanation of symbols

2・・・熱電材料部、4a、4b・・・電極、6・・・触媒部、10・・・検知部、20・・・電圧測定部、22・・・絶縁基板(絶縁部)、24・・・ヒーター、26・・・電源、30・・・加熱部、100、100a・・・水素ガスセンサ。
2 ... Thermoelectric material part, 4a, 4b ... Electrode, 6 ... Catalyst part, 10 ... Detection part, 20 ... Voltage measurement part, 22 ... Insulating substrate (insulating part), 24 ... Heater, 26 ... Power supply, 30 ... Heating unit, 100, 100a ... Hydrogen gas sensor.

Claims (1)

熱電材料部、前記熱電材料部上に設けられた一対の電極、及び前記熱電材料部上に前記一対の電極のうちの一方の電極側に偏在して設けられ、水素の発熱反応を触媒する触媒部を有する検知部と、
前記一対の電極間に発生した電圧を測定する電圧測定部と、
前記熱電材料部を挟んで前記触媒部の反対側に位置する絶縁部と、
前記絶縁部を挟んで前記熱電材料部の反対側に位置し、前記熱電材料部において前記一対の電極のうちの一方の電極が設けられた側と他方の電極が設けられた側との間に温度差が生じるように、前記絶縁部を介して前記熱電材料部を加熱する加熱部と、
を備え、
前記熱電材料部が前記加熱部によって常時加熱され、
前記一対の電極間に発生した電圧が前記電圧測定部によって常時測定され、
前記水素の発熱反応によって前記触媒部が加熱されていない状態で、前記熱電材料部において前記一対の電極のうちの一方の電極が設けられた側と他方の電極が設けられた側との間の温度差が一定に維持され、
一定に維持された前記温度差によって前記一対の電極間に発生する電圧が前記電圧測定部で検出される、水素ガスセンサ。
A thermoelectric material part, a pair of electrodes provided on the thermoelectric material part, and a catalyst that is provided on the thermoelectric material part on one electrode side of the pair of electrodes and catalyzes an exothermic reaction of hydrogen A detection unit having a part;
A voltage measuring unit for measuring a voltage generated between the pair of electrodes;
An insulating part located on the opposite side of the catalyst part across the thermoelectric material part;
It is located on the opposite side of the thermoelectric material part with the insulating part in between, and between the side where one electrode of the pair of electrodes is provided and the side where the other electrode is provided in the thermoelectric material part. A heating part that heats the thermoelectric material part through the insulating part so that a temperature difference occurs;
Bei to give a,
The thermoelectric material part is constantly heated by the heating part,
The voltage generated between the pair of electrodes is constantly measured by the voltage measuring unit,
In a state where the catalyst part is not heated by the exothermic reaction of hydrogen, in the thermoelectric material part, between the side where one electrode of the pair of electrodes is provided and the side where the other electrode is provided The temperature difference is kept constant,
Voltage generated between the pair of electrodes by the temperature difference is kept constant is discovered by the voltage measuring unit, hydrogen gas sensor.
JP2008071815A 2008-03-19 2008-03-19 Hydrogen gas sensor Active JP5076995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008071815A JP5076995B2 (en) 2008-03-19 2008-03-19 Hydrogen gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008071815A JP5076995B2 (en) 2008-03-19 2008-03-19 Hydrogen gas sensor

Publications (2)

Publication Number Publication Date
JP2009229114A JP2009229114A (en) 2009-10-08
JP5076995B2 true JP5076995B2 (en) 2012-11-21

Family

ID=41244701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008071815A Active JP5076995B2 (en) 2008-03-19 2008-03-19 Hydrogen gas sensor

Country Status (1)

Country Link
JP (1) JP5076995B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6909663B2 (en) * 2017-07-20 2021-07-28 日本碍子株式会社 How to calibrate the gas sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494508B2 (en) * 1995-06-26 2004-02-09 日本碍子株式会社 Combustible gas sensor, method for measuring combustible gas concentration, and method for detecting catalyst deterioration
JPH1039083A (en) * 1996-07-18 1998-02-13 Toshiba Corp In-furnace information monitoring apparatus
JP4302611B2 (en) * 2004-05-27 2009-07-29 日本特殊陶業株式会社 Combustible gas detection device and combustible gas detection method
JP2006201100A (en) * 2005-01-24 2006-08-03 Matsushita Electric Ind Co Ltd Hydrogen gas detection sensor
JP2006317196A (en) * 2005-05-10 2006-11-24 Akihisa Inoue Hydrogen gas sensor

Also Published As

Publication number Publication date
JP2009229114A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
US8156789B2 (en) Gas sensor chip and gas sensor provided therewith
JP4820528B2 (en) Catalyst sensor
US20200166493A1 (en) Gas sensor, gas detection device, gas detection method, and device provided with gas sensor or gas detection device
JP2010122106A (en) Thermoelectric type gas sensor
US4134818A (en) Solid electrolyte sensor for monitoring combustibles in an oxygen containing environment
JP2008275588A (en) Combustible gas sensor
JP5076995B2 (en) Hydrogen gas sensor
JP6243040B2 (en) Sensor for detecting oxidizable gas
JP4798961B2 (en) HEATER DEVICE AND GAS SENSOR DEVICE USING THE SAME
JP2016020894A (en) Gas sensor
JP2018132336A (en) Gas sensor element and gas detector
WO2019030621A1 (en) Low power combustible gas sensing
JP2007315925A (en) Combustible gas sensor, and combustible gas detector
JP5040515B2 (en) Hydrogen gas sensor
JP2008292387A (en) Flammable gas sensor
JP7187139B2 (en) Catalytic combustion gas sensor
JP2000206081A (en) Gas sensor with two electrodes
JP3809897B2 (en) Combustible gas concentration measuring device
JP2006071362A (en) Combustible gas sensor
JP2005098742A (en) Catalytic combustion type hydrogen sensor
JP2009133636A (en) Hydrogen gas sensor
JP2004061214A (en) Combustible gas detecting apparatus
JP4332612B2 (en) Gas sensor with thermopile pattern
JP3929846B2 (en) Intermittent drive type combustible gas detector
JP7421441B2 (en) MEMS type semiconductor gas detection element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5076995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150