JP5073347B2 - Method of operating a heating furnace with a regenerative burner - Google Patents

Method of operating a heating furnace with a regenerative burner Download PDF

Info

Publication number
JP5073347B2
JP5073347B2 JP2007097381A JP2007097381A JP5073347B2 JP 5073347 B2 JP5073347 B2 JP 5073347B2 JP 2007097381 A JP2007097381 A JP 2007097381A JP 2007097381 A JP2007097381 A JP 2007097381A JP 5073347 B2 JP5073347 B2 JP 5073347B2
Authority
JP
Japan
Prior art keywords
furnace
temperature
burner
exhaust gas
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007097381A
Other languages
Japanese (ja)
Other versions
JP2008255396A (en
Inventor
賢一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2007097381A priority Critical patent/JP5073347B2/en
Publication of JP2008255396A publication Critical patent/JP2008255396A/en
Application granted granted Critical
Publication of JP5073347B2 publication Critical patent/JP5073347B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、蓄熱式バーナを備えた加熱炉の操炉方法に関し、特に炉を停止し再び操業を開始する場合の昇温立ち上げ時にバーナタイルおよび蓄熱体に発生する熱衝撃や過大な熱応力を防止し、バーナタイルおよび蓄熱体の寿命延長が図れる蓄熱式バーナを備えた加熱炉の操炉方法に関する。   The present invention relates to a method for operating a heating furnace provided with a regenerative burner, and in particular, thermal shock and excessive thermal stress generated in the burner tile and the regenerator when the temperature rise is started when the furnace is stopped and the operation is started again. It is related with the operating method of the heating furnace provided with the heat storage type burner which can prevent life and can extend the lifetime of a burner tile and a heat storage body.

近年、鋼片、鋼材等の金属材料を加熱する加熱炉として、蓄熱式バーナを備えた加熱炉が広く用いられている。
図1は、蓄熱式バーナを備えた加熱炉の全体構成を示す模式図であり、加熱炉内に装入された金属材料(被加熱材)は、炉内に設置された搬送ローラやウォーキンギビーム等の搬送装置(図示しない)によってパスラインに沿って連続的に移動するとともに、この間に左右の炉側壁に互いに対向させて配設された蓄熱式バーナによって所定温度まで加熱されていく。
In recent years, a heating furnace equipped with a regenerative burner has been widely used as a heating furnace for heating metal materials such as steel slabs and steel materials.
FIG. 1 is a schematic diagram showing the overall configuration of a heating furnace equipped with a regenerative burner. Metal materials (materials to be heated) charged in the heating furnace are transport rollers and walking rings installed in the furnace. While moving continuously along a pass line by a conveying device (not shown) such as a beam, the heat is stored up to a predetermined temperature by a regenerative burner disposed opposite to the left and right furnace side walls.

加熱炉内は、図1に示すように金属材料の進行方向に複数のゾーンに分割するのが一般的であり、各ゾーンにおいて互いに対向する位置に配設されて1対をなす蓄熱式バーナを交互に燃焼させて操業する。具体的には、図2に示すように、1対をなす蓄熱式バーナの一方のバーナに燃料と燃焼用空気を供給して燃焼させ、当該一方のバーナが燃焼している間は、他方のバーナは燃焼させず、当該片方のバーナは炉内から燃焼した排ガスを吸引する。このとき吸引された排ガスは蓄熱体を通って排出されるが、当該蓄熱体にはセラミックスや耐火煉瓦等からなる蓄熱材が充填されているので、高温の排ガスが通過することによって蓄熱体に顕熱が蓄積され、当該蓄積された顕熱は燃焼が切り替わったときの他方のバーナの燃焼用空気の予熱に利用される。   As shown in FIG. 1, the inside of the heating furnace is generally divided into a plurality of zones in the traveling direction of the metal material, and a pair of regenerative burners arranged at positions facing each other in each zone. Operate by alternately burning. Specifically, as shown in FIG. 2, fuel and combustion air are supplied to one burner of a pair of regenerative burners and burned, and while one burner is burning, the other burner The burner does not burn, and one of the burners sucks the exhaust gas burned from the furnace. The exhaust gas sucked at this time is discharged through the heat accumulator, but since the heat accumulator is filled with a heat accumulating material made of ceramics, refractory bricks, etc., it is manifested in the heat accumulator when high-temperature exhaust gas passes. Heat is accumulated, and the accumulated sensible heat is used for preheating the combustion air of the other burner when combustion is switched.

すなわち、蓄熱式バーナは、炉内に燃焼用空気を供給又は炉内から排ガスを吸引する給排気経路に蓄熱体を配置したバーナであり、交互に燃焼と吸引を繰り返し、燃焼ガスの保有熱を吸気側のバーナの蓄熱体によって回収し、燃焼側のバーナでは燃焼用空気を蓄熱体に通して予熱することにより高い熱効率を達成できるようにしたバーナである。このため、このような高い熱効率を達成する蓄熱式バーナを加熱炉に用いると大きな省エネルギ効果が得られるため、近年においては加熱炉への適用が増大している。   In other words, a regenerative burner is a burner in which a regenerator is arranged in a supply / exhaust path for supplying combustion air to the furnace or sucking exhaust gas from the furnace, and alternately repeats combustion and suction to increase the retained heat of the combustion gas. It is a burner that is recovered by a heat storage body of an intake-side burner, and the combustion-side burner can achieve high thermal efficiency by preheating the combustion air through the heat storage body. For this reason, when a regenerative burner that achieves such high thermal efficiency is used in a heating furnace, a large energy saving effect can be obtained, and in recent years, its application to heating furnaces has increased.

しかしながら、高い熱効率ないし大きな省エネルギ効果を発揮し得るのは、全対の蓄熱式バーナが最大PB率で交互に燃焼と吸引を繰り返す所謂蓄熱交番燃焼(リジェネ燃焼)をしている通常操業時のときであって、加熱炉の新設や補修、および定期的な設備点検等の理由によって加熱炉の操業を停止して、再び操業を開始する場合の炉の立ち上げ時には状況が異なってくる。   However, high thermal efficiency or a large energy saving effect can be achieved when all pairs of regenerative burners perform so-called regenerative combustion (regenerative combustion) in which combustion and suction are alternately repeated at the maximum PB rate. Sometimes, the situation changes when the furnace is started up when the operation of the heating furnace is stopped and the operation is started again due to reasons such as the new installation or repair of the heating furnace or periodic equipment inspection.

加熱炉を停止して再び操業を開始する場合の炉の立ち上げ時には炉内温度が低く、蓄熱体には顕熱が蓄積されていないため、たとえ炉の立ち上げ時から蓄熱交番燃焼を実施したとしても、蓄熱体に吸収される排ガスの保有熱が小さく、蓄熱体に回収される顕熱は通常操業時よりも減少するため、炉内温度の昇温速度は遅く、高い熱効率を達成する蓄熱式バーナ本来の性能を発揮することができない。また、蓄熱体は排ガスの顕熱を充分に吸収するように設計されていることから、蓄熱体を通って排出される排ガスの温度が排ガス中に含まれる水分の露点以下となり、結露する可能性が極めて高くなる。当該結露が発生すると、炉内に燃焼用空気を供給又は炉内から排ガスを吸引する給排気経路それ自体や、当該経路に設置された各種弁が酸化され、当該酸化が進行すると蓄熱式バーナの正常な燃焼運転が困難となり、ひいては蓄熱式バーナの破壊にまで至る。   When the furnace was started up after stopping the heating furnace, the furnace temperature was low when the furnace was started up, and sensible heat was not accumulated in the regenerator. However, since the retained heat of the exhaust gas absorbed by the heat accumulator is small and the sensible heat recovered by the heat accumulator is less than during normal operation, the temperature rise rate of the furnace temperature is slow, and heat storage that achieves high thermal efficiency The original performance of the type burner cannot be demonstrated. In addition, since the heat storage body is designed to sufficiently absorb the sensible heat of the exhaust gas, the temperature of the exhaust gas discharged through the heat storage body may be below the dew point of the moisture contained in the exhaust gas, which may cause condensation. Becomes extremely high. When the condensation occurs, the supply / exhaust path itself for supplying combustion air into the furnace or sucking exhaust gas from the furnace and various valves installed in the path are oxidized, and when the oxidation proceeds, the regenerative burner Normal combustion operation becomes difficult, which leads to destruction of the regenerative burner.

このため、従来一般においては、加熱炉を停止して再び操業を開始する場合の炉の立ち上げ時には、前記した一対の蓄熱式バーナが交互に燃焼と吸引を繰り返す蓄熱交番燃焼を行って昇温するのではなく、一対のバーナの各々を同時に燃焼させる所謂連続燃焼方式で昇温を行い、排ガスの結露が生じない所定の炉温に達した以降になってはじめて蓄熱交番燃焼方式により昇温を行うことによって結露の発生を防止していた(例えば、特許文献1参照)。   Therefore, in general, when the furnace is started up when the heating furnace is stopped and the operation is started again, the pair of regenerative burners described above performs regenerative alternating combustion in which combustion and suction are alternately repeated to raise the temperature. Instead, the temperature is raised by a so-called continuous combustion method in which each of the pair of burners is burned simultaneously, and the temperature is raised by the regenerative alternating combustion method only after reaching a predetermined furnace temperature at which dew condensation of the exhaust gas does not occur. By doing so, the occurrence of condensation was prevented (for example, see Patent Document 1).

しかしながら、このような炉の立ち上げ時の初期段階においては連続燃焼方式で昇温を行い、途中で蓄熱交番燃焼方式による昇温に切り替える操炉方法においては新たな問題が発生した。前記したように蓄熱式バーナは交互に燃焼と吸引を繰り返し、燃焼ガスの保有熱を吸気側のバーナの蓄熱体によって回収し、燃焼側のバーナで燃焼用空気を蓄熱体に通して予熱することにより高い熱効率を達成できるようにしたバーナであるところ、前記操炉方法において蓄熱交番燃焼方式による昇温に切り替えるまでは、いずれのバーナも燃焼するのみで排ガスの吸引を行っていないことから蓄熱体には顕熱が蓄積されておらず、バーナタイルおよび蓄熱体の温度は低温のままである。したがって、蓄熱交番燃焼方式に切り替えた直後に、蓄熱式バーナはいきなり高温となった排ガスを吸引し始めることから、バーナタイルおよび蓄熱体には急激な温度変化による熱衝撃や過大な熱応力が発生することとなり、これがバーナタイルや蓄熱体が損傷する原因となった。   However, a new problem has arisen in the furnace operation method in which the temperature is raised by the continuous combustion method in the initial stage of the start-up of the furnace and the temperature is changed to the temperature increase by the regenerative alternating combustion method. As described above, the regenerative burner alternately repeats combustion and suction, recovers the retained heat of the combustion gas with the heat storage body of the intake side burner, and preheats the combustion air through the heat storage body with the combustion side burner The burner is designed to achieve higher thermal efficiency, and until the temperature is switched to the temperature increase by the regenerative alternating combustion method in the furnace operation method, no burner is combusted and exhaust gas is not sucked. No sensible heat is accumulated in the burner tile and the temperature of the heat storage body remains low. Therefore, immediately after switching to the regenerative alternating combustion method, the regenerative burner suddenly begins to suck the exhaust gas that has become hot, and thermal shock and excessive thermal stress due to sudden temperature changes occur on the burner tile and the regenerator. This caused damage to burner tiles and heat storage.

このような新たな課題、すなわち、炉を停止し再び操業を開始する場合の昇温立ち上げ時にバーナタイルおよび蓄熱体に発生する熱衝撃や過大な熱応力を防止する操炉方法としては、所定炉温に達するまでの低温域においては1次空気と2次空気と燃料を供給して切替交番燃焼を行い、所定炉温に達した以降は2次空気と燃料を供給して切替交番燃焼を行う操炉方法が提案されている(例えば、特許文献2参照)。   Such a new problem, that is, a furnace operation method for preventing thermal shock and excessive thermal stress generated in the burner tile and the heat storage body at the start of temperature rise when the furnace is stopped and the operation is started again, In the low temperature range until the furnace temperature is reached, primary alternating air, secondary air and fuel are supplied to perform switched alternating combustion, and after reaching the predetermined furnace temperature, secondary air and fuel are supplied to perform switched alternating combustion. A furnace operation method to be performed has been proposed (see, for example, Patent Document 2).

しかしながら、特許文献2に記載の操炉方法は、バーナタイルに燃料を供給する燃料供給口、1次空気を供給する1次空気供給口、2次空気を供給又は炉内から排ガスを吸引する2次空気供給兼排ガス吸引口を配置した蓄熱式バーナを備えた加熱炉の操炉方法であるので、既存の設備のままでは実現できず、これを実現するためには1次空気の吹き込み手段、または1次燃料の吹き込み手段が別途必要となり、当該設備の構成がその分複雑になると共に保守作業の負荷が増加した。
特開平7−120171号公報 特開2003−294229号公報
However, the furnace operation method described in Patent Document 2 is a fuel supply port for supplying fuel to the burner tile, a primary air supply port for supplying primary air, supplying secondary air, or sucking exhaust gas from the furnace 2 Since it is a furnace operating method equipped with a regenerative burner in which a secondary air supply and exhaust gas suction port is arranged, it cannot be realized with existing equipment, and in order to achieve this, primary air blowing means, Alternatively, a separate means for injecting the primary fuel is required, and the configuration of the equipment becomes complicated accordingly, and the load of maintenance work increases.
JP-A-7-120171 JP 2003-294229 A

本発明の解決すべき課題は、バーナタイルに燃料を供給する燃料供給口、炉内に燃焼用空気を供給又は炉内から排ガスを吸引する空気供給兼排ガス吸引口を配置した蓄熱式バーナを備えた既存の加熱炉設備を何ら変更することなく、炉を停止し再び操業を開始する場合の昇温立ち上げ時にバーナタイルおよび蓄熱体に発生する熱衝撃や過大な熱応力を防止して、バーナタイルおよび蓄熱体の寿命延長が図れる、蓄熱式バーナを備えた加熱炉の操炉方法を新たに提供することにある。   Problems to be solved by the present invention include a fuel supply port for supplying fuel to a burner tile, a heat storage burner in which an air supply and exhaust gas suction port for supplying combustion air into the furnace or sucking exhaust gas from the furnace is disposed. Without changing the existing heating furnace equipment, the thermal shock and excessive thermal stress generated in the burner tile and the heat storage body at the start of temperature rise when the furnace is stopped and restarted can be prevented. The object of the present invention is to provide a new method for operating a heating furnace equipped with a regenerative burner that can extend the life of tiles and regenerators.

本発明者は、前記課題を解決すべく種々の理論的検討および実験的検討を重ねた結果、以下の技術的知見を得た。   The present inventor has obtained the following technical knowledge as a result of various theoretical and experimental studies to solve the above problems.

(A)前記したように炉の立ち上げ時の初期段階においては連続燃焼方式で昇温を行い、途中で蓄熱交番燃焼方式による昇温に切り替える従来の操炉方法においては、切り替え直後に発生する熱衝撃や過大な熱応力が非常に重要な障害となるところ、蓄熱式バーナでどの程度排ガスを吸引するかの割合を示す所謂PB率(Pullbac率)を適正な範囲に設定して蓄熱交番燃焼方式による昇温を行うと、切替直後の高温となった排ガスの吸引量が抑制され、これによりバーナタイルおよび蓄熱体に発生する急激な温度変化による熱衝撃や熱応力が緩和され、バーナタイルや蓄熱体の損傷を防げること。 (A) As described above, in the conventional furnace operation method in which the temperature is raised by the continuous combustion method in the initial stage when the furnace is started up, and the temperature is raised by the regenerative alternating combustion method in the middle, it occurs immediately after switching. Thermal shock and excessive thermal stress are very important obstacles, so-called PB rate (Pullbac rate), which indicates how much exhaust gas is sucked by the regenerative burner, is set to an appropriate range, and regenerative combustion When the temperature is raised by this method, the suction amount of exhaust gas that has become hot immediately after switching is suppressed, which reduces thermal shock and thermal stress caused by sudden temperature changes that occur in the burner tile and heat storage body. Prevent damage to the heat storage.

(B)設定するPB率については、高温な排ガスの吸引量を抑制する観点からは低めに設定することが望ましいが、PB率が20%未満であると高い熱効率を達成し得る蓄熱交番燃焼の利点を十分に発揮することができず、40%を超えるとバーナタイルや蓄熱体等の耐火物が損傷するおそれがあるので、設定するPB率については20〜40%とするのが望ましいこと。 (B) Although it is desirable to set the PB rate to be low from the viewpoint of suppressing the suction amount of high-temperature exhaust gas, the PB rate is less than 20%. The advantage cannot be fully exhibited, and if it exceeds 40%, refractories such as burner tiles and heat storage bodies may be damaged. Therefore, it is desirable to set the PB rate to 20 to 40%.

(C)すなわち、従来技術のように、炉を停止し再び操業を開始する場合の昇温立ち上げ時に、常温から所定炉温に達するまでの低温域においては連続燃焼方式で昇温を行い、所定炉温に達してから蓄熱交番燃焼方式による昇温に切り替える操業を実施したとしても、PB率:20〜40%の範囲で蓄熱交番燃焼を行えば、バーナタイルおよび蓄熱体に発生する急激な温度変化による熱衝撃や熱応力が緩和されるので、バーナタイルおよび蓄熱体の寿命延長が図れるとともに、高い熱効率を達成し得る蓄熱交番燃焼の利点を十分に発揮することのできる安定した加熱炉の操業を達成できること。 (C) That is, as in the prior art, when the temperature rise is started when the furnace is stopped and the operation is started again, the temperature is raised by a continuous combustion method in a low temperature range from normal temperature to the predetermined furnace temperature, Even if the operation for switching to the temperature increase by the regenerative alternating combustion method is performed after reaching the predetermined furnace temperature, if the regenerative alternating combustion is performed in the range of PB rate: 20 to 40%, the abrupt generated in the burner tile and the regenerator The thermal shock and thermal stress due to temperature change are alleviated, so the life of the burner tile and the heat storage body can be extended, and the stable heating furnace that can fully demonstrate the advantages of regenerative alternating combustion that can achieve high thermal efficiency Achieving operations.

(D)さらに、当該操炉方法によれば、バーナタイルに燃料を供給する燃料供給口、炉内に燃焼用空気を供給又は炉内から排ガスを吸引する空気供給兼排ガス吸引口を配置した蓄熱式バーナを備えた既存の加熱炉設備を何ら変更する必要がないので、従来技術のように加熱炉の設備構成の複雑化、保守作業が増加する等の問題は生じ得ないこと。 (D) Further, according to the furnace operating method, a fuel storage port in which a fuel supply port for supplying fuel to the burner tile, an air supply and exhaust gas suction port for supplying combustion air to the furnace or sucking exhaust gas from the furnace are arranged. Since there is no need to change the existing heating furnace equipment equipped with a type burner, problems such as complicated heating furnace equipment configuration and increased maintenance work as in the prior art cannot occur.

上記の知見に基づき、本発明者は、バーナタイルに燃料を供給する燃料供給口、炉内に燃焼用空気を供給又は炉内から排ガスを吸引する空気供給兼排ガス吸引口を配置した蓄熱式バーナを備えた既存の加熱炉設備を何ら変更することなく、炉を停止し再び操業を開始する場合の昇温立ち上げ時にバーナタイルおよび蓄熱体に発生する熱衝撃や過大な熱応力を防止し、バーナタイルおよび蓄熱体の寿命延長が図れる、蓄熱式バーナを備えた加熱炉の操炉方法に想到した。その要旨とするところは以下の通りである。   Based on the above knowledge, the present inventor has developed a regenerative burner in which a fuel supply port for supplying fuel to the burner tile, an air supply / exhaust gas suction port for supplying combustion air into the furnace or sucking exhaust gas from the furnace are arranged. Without any changes to existing heating furnace equipment equipped with, prevent thermal shock and excessive thermal stress generated in the burner tile and heat storage body at the start of temperature rise when shutting down the furnace and restarting operation, We have come up with a method for operating a heating furnace equipped with a regenerative burner that can extend the life of burner tiles and regenerators. The gist is as follows.

(1)バーナタイルに燃料を供給する燃料供給口、炉内に燃焼用空気を供給又は炉内から排ガスを吸引する空気供給兼排ガス吸引口を配置した蓄熱式バーナを備えた加熱炉の操炉方法であって、炉を停止し再び操業を開始する場合の昇温立ち上げ時に、炉温が常温から900℃に達するまでの低温域においては、連続燃焼方式で昇温を行い、炉温が900℃に達してから1000℃に達するまでは、下記式で定義されるPB率:20〜40%の範囲で蓄熱交番燃焼方式により昇温を行うことを特徴とする蓄熱式バーナを備えた加熱炉の操炉方法。
PB率= 排ガス流量の設定値/{(Qair−Qfu×A0)+Qfu×G0}
ここで、Qair:燃焼空気実績流量[Nm/h] Qfu :燃料実績流量[Nm/h]
A0 :理論空気比 G0 : 理論排ガス比
(1) Operation of a heating furnace equipped with a regenerative burner provided with a fuel supply port for supplying fuel to the burner tile, an air supply / exhaust gas suction port for supplying combustion air into the furnace or sucking exhaust gas from the furnace a method, at Atsushi Nobori rising when starting the operation to stop the oven again, in the low temperature range up to the furnace temperature reached 900 ° C. from room temperature, subjected to heating in a continuous combustion system, the furnace temperature From 900 ° C. to 1000 ° C. , PB rate defined by the following formula: heating with a regenerative burner characterized in that the temperature is raised by a regenerative alternating combustion method in the range of 20-40% How to operate the furnace.
PB rate = set value of exhaust gas flow rate / {(Qair−Qfu × A0) + Qfu × G0}
Where Qair: actual combustion air flow rate [Nm 3 / h] Qfu: actual fuel flow rate [Nm 3 / h]
A0: Theoretical air ratio G0: Theoretical exhaust gas ratio

(イ)本発明に係る加熱炉の操炉方法は、炉を停止し再び操業を開始する場合の昇温立ち上げ時に、常温から所定炉温に達するまでの低温域においては連続燃焼方式で昇温を行い、前記所定炉温に達してからはPB率:20〜40%の範囲で蓄熱交番燃焼方式による昇温を行うので、バーナタイルおよび蓄熱体に発生する熱衝撃や過大な熱応力を防止することができ、これによりバーナタイルおよび蓄熱体の寿命延長が図れるとともに、高い熱効率を達成し得る蓄熱交番燃焼の利点を十分に発揮することのできる安定した加熱炉の操業を達成することができる。 (A) The heating furnace operating method according to the present invention is a continuous combustion method in the low temperature range from normal temperature to the predetermined furnace temperature when the temperature is raised when the furnace is stopped and restarted. Since the temperature is increased by the regenerative alternating combustion method within the range of 20-40% after reaching the predetermined furnace temperature, the thermal shock and excessive thermal stress generated in the burner tile and the heat storage body This makes it possible to extend the life of the burner tile and the heat storage body, and to achieve a stable heating furnace operation that can fully exhibit the advantages of regenerative alternating combustion that can achieve high thermal efficiency. it can.

(ロ)本発明に係る加熱炉の操炉方法は、バーナタイルに燃料を供給する燃料供給口、炉内に燃焼用空気を供給又は炉内から排ガスを吸引する空気供給兼排ガス吸引口を配置した蓄熱式バーナを備えた既存の加熱炉設備を何ら変更する必要がない。このため、従来技術に係る操炉方法のように加熱炉の設備構成の複雑化、保守作業が増加する等の問題を生じ得ないので、経済性に優れた加熱炉の操業を達成することができる。 (B) A method for operating a heating furnace according to the present invention includes a fuel supply port for supplying fuel to the burner tile, an air supply / exhaust gas suction port for supplying combustion air into the furnace or sucking exhaust gas from the furnace. There is no need to change the existing furnace with the regenerative burner. For this reason, it is not possible to cause problems such as complicated heating furnace construction and increased maintenance work as in the prior art furnace operation method, so that it is possible to achieve an economical operation of the heating furnace. it can.

以下、図1〜図6を参照して、本発明を実施するための最良の形態を説明する。
図1は一般的な蓄熱式バーナを備えた加熱炉1の全体構成を示す模式図であり、加熱炉内に装入された金属材料(被加熱材)は、炉内に設置された搬送ローラやウォーキンギビーム等の搬送装置(図示しない)によってパスラインに沿って連続的に炉長方向に移動するとともに、左右の炉側壁に互いに対向させて配設された蓄熱式バーナによって所定温度まで加熱される。本発明は、このような一般的な加熱炉に対応できる操炉方法である。なお、図2において蓄熱式バーナ2の構成を示しているので、図1においては蓄熱式バーナの図示を省略している。
Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS.
FIG. 1 is a schematic diagram showing an overall configuration of a heating furnace 1 equipped with a general heat storage burner. A metal material (a material to be heated) charged in the heating furnace is a transport roller installed in the furnace. Is moved continuously along the pass line in the furnace length direction by a transfer device (not shown) such as a waving beam or the like, and heated to a predetermined temperature by a regenerative burner disposed opposite to the left and right furnace side walls. Is done. The present invention is a furnace operating method that can cope with such a general heating furnace. In addition, since the structure of the thermal storage type burner 2 is shown in FIG. 2, illustration of the thermal storage type burner is abbreviate | omitted in FIG.

図1に示すように、加熱炉1は材料進行方向に複数のゾーンに分割するのが一般的であり、各ゾーンにおいて互いに対向する位置に配設されて1対をなす蓄熱式バーナを交互に燃焼させて操業する。図1に例示した加熱炉1はパスラインを境に上下に、また炉長方向にも分割され、合計4ゾーンで構成した加熱炉であるが、例えば、パスラインより上層である第1、第3ゾーンの左炉側壁に配設された蓄熱式バーナを燃焼したときに、パスラインより下層である第2、第4ゾーンの右炉側壁に配設された蓄熱式バーナによって炉内から燃焼した排ガスを吸引し、交互に燃焼と吸引を繰り返すといった蓄熱交番燃焼を行うことができる。   As shown in FIG. 1, the heating furnace 1 is generally divided into a plurality of zones in the material advancing direction. In each zone, a pair of regenerative burners arranged alternately are arranged alternately. Burn and operate. The heating furnace 1 illustrated in FIG. 1 is a heating furnace that is divided up and down with respect to the pass line and also in the furnace length direction, and is configured by a total of four zones. When the regenerative burner arranged on the left furnace side wall of the 3 zone was burned, it was burned from inside the furnace by the regenerative burner arranged on the right furnace side wall of the second and fourth zones, which are lower layers than the pass line. Thermal accumulator combustion can be performed in which exhaust gas is sucked and combustion and suction are alternately repeated.

あるいは、各ゾーンを単位として、左炉側壁に配設された蓄熱式バーナを燃焼したときに、右炉側壁に配設された蓄熱式バーナによって炉内から燃焼した排ガスを吸引し、交互に燃焼と吸引を繰り返すといった蓄熱交番燃焼を行うことができる。   Alternatively, when the regenerative burner arranged on the left furnace side wall is burned in units of each zone, the exhaust gas burned from the furnace is sucked by the regenerative burner arranged on the right furnace side wall and alternately burned. And regenerative combustion, such as repeated suction.

図2は当該ゾーン単位の蓄熱交番燃焼を示す模式図であり、左炉側壁に配設された蓄熱式バーナ2に配置された燃料供給口5からバーナタイル4に燃料7を供給するとともに、空気供給兼排ガス吸引口6から炉内に燃焼用空気8を供給して当該左炉側壁に配設された蓄熱式バーナ2を燃焼したときに、これに対向して配設された右炉側壁の蓄熱式バーナ2が、炉内から燃焼した排ガス9を吸引する様子を示すものである。このとき吸気側の蓄熱式バーナ2、すなわち右炉側壁に配設された蓄熱式バーナにおいては、炉内に燃焼用空気を供給又は炉内から排ガスを吸引する給排気経路に配置された蓄熱体3によって燃焼ガスの保有熱を回収している。したがって、当該吸気側の蓄熱式バーナが燃焼側の蓄熱式バーナに交番するときは、蓄熱体3を通して燃焼用空気8を予熱するので高い熱効率を達成することができる。なお、図5は蓄熱式バーナ2の炉壁11への取付部を示す模式図、図6はバーナタイル4の一形態を示す模式図であり、図5のA−A方向から見た図である。   FIG. 2 is a schematic diagram showing the regenerative alternating combustion in the zone unit, supplying fuel 7 to the burner tile 4 from the fuel supply port 5 arranged in the regenerative burner 2 arranged on the left furnace side wall, and air When the combustion air 8 is supplied into the furnace from the supply / exhaust gas suction port 6 and the regenerative burner 2 disposed on the left furnace side wall is burned, the right furnace side wall disposed opposite to the burner The regenerative burner 2 shows how the exhaust gas 9 burned from the furnace is sucked. At this time, in the regenerative burner 2 on the intake side, that is, the regenerative burner disposed on the right furnace side wall, the regenerator disposed in the supply / exhaust path for supplying combustion air into the furnace or sucking exhaust gas from the furnace 3 recovers the heat retained in the combustion gas. Therefore, when the intake-side regenerative burner alternates with the combustion-side regenerative burner, the combustion air 8 is preheated through the heat accumulator 3, so that high thermal efficiency can be achieved. FIG. 5 is a schematic view showing a mounting portion of the regenerative burner 2 to the furnace wall 11, and FIG. 6 is a schematic view showing one form of the burner tile 4, as seen from the direction AA in FIG. 5. is there.

本発明に係る操炉方法は、図2、図5〜6に示すようなバーナタイル4に燃料7を供給する燃料供給口5、炉内12に燃焼用空気を供給又は炉内から排ガスを吸引する空気供給兼排ガス吸引口6を配置した一般的な蓄熱式バーナ2を備えた加熱炉1の操炉方法に関するものであり、通常操業時、すなわち、前記した一対の蓄熱式バーナ2が交互に燃焼と吸引を繰り返す蓄熱交番燃焼しているときにおける基本的な動作原理については、従来技術に係る操炉方法と特段変わるところはない。   The furnace operating method according to the present invention includes a fuel supply port 5 for supplying fuel 7 to a burner tile 4 as shown in FIGS. 2 and 5 to 6, supplying combustion air to the furnace 12, and sucking exhaust gas from the furnace. The present invention relates to a method of operating a heating furnace 1 provided with a general regenerative burner 2 in which an air supply / exhaust gas suction port 6 is arranged. During normal operation, that is, the pair of regenerative burners 2 described above are alternately arranged. The basic operation principle during regenerative combustion with repeated combustion and suction is not particularly different from the conventional furnace operation method.

本発明に係る操炉方法の技術的特徴ないしその効果を最大限に発揮する局面は、加熱炉の新設や補修、および定期的な設備点検等の理由によって加熱炉の操業を停止して、再び操業を開始する場合の昇温立ち上げ時にあるので、以下、これについて説明する。   The technical feature of the furnace operation method according to the present invention or the aspect of maximizing the effect thereof is to stop the operation of the heating furnace for the reason of newly installing or repairing the heating furnace and regularly checking the equipment, and again. Since it is at the time of temperature rise start-up when starting operation, this will be described below.

図3は本発明に係る操炉方法を示す制御フロー図である。当該図に示すとおり、本発明に係る操炉方法においては、従来技術に係る操炉方法と同様に、炉の立ち上げ時の初期段階においては一対の蓄熱式バーナ2の各々を同時に燃焼させる連続燃焼方式で昇温を行い、途中で蓄熱交番燃焼方式による昇温に切り替える。   FIG. 3 is a control flow diagram showing the furnace operation method according to the present invention. As shown in the figure, in the operation method according to the present invention, as in the operation method according to the prior art, in the initial stage when the furnace is started up, each of the pair of regenerative burners 2 is burnt continuously. The temperature is raised by the combustion method, and the temperature is changed to the heat accumulation alternating combustion method on the way.

ただし、蓄熱交番燃焼方式への切り換え直後に、蓄熱式バーナ2はいきなり高温となった排ガス9を吸引し始めることとなり、これによりバーナタイル4および蓄熱体3には急激な温度変化による熱衝撃や過大な熱応力が発生し、これがバーナタイル4や蓄熱体3が損傷する原因となる。したがって、本発明に係る操炉方法においては、切り換え直後の蓄熱交番燃焼を下記式で定義されるPB率:20〜40%の範囲で行う。ここで、PB率とは、蓄熱式バーナ2でどの程度排ガスを吸引するかの割合を示すもので、例えば、PB率30%であれば、排ガスの30%が吸引側バーナに吸引されることを意味する。   However, immediately after switching to the regenerative alternating combustion method, the regenerative burner 2 suddenly starts to suck the exhaust gas 9 that has become hot, and thus the burner tile 4 and the regenerator 3 are subjected to thermal shocks caused by sudden temperature changes. Excessive thermal stress is generated, which causes damage to the burner tile 4 and the heat storage body 3. Therefore, in the method for operating a furnace according to the present invention, the regenerative alternating combustion immediately after switching is performed in the range of PB rate: 20 to 40% defined by the following formula. Here, the PB rate indicates a ratio of how much exhaust gas is sucked by the regenerative burner 2. For example, if the PB rate is 30%, 30% of the exhaust gas is sucked into the suction side burner. Means.

PB率= 排ガス流量の設定値/{(Qair−Qfu×A0)+Qfu×G0}
ここで、Qair: 燃焼空気実績流量[Nm/h]
Qfu : 燃料実績流量[Nm/h]
A0 : 理論空気比
G0 : 理論排ガス比
PB rate = set value of exhaust gas flow rate / {(Qair−Qfu × A0) + Qfu × G0}
Here, Qair: actual combustion air flow rate [Nm 3 / h]
Qfu: Actual fuel flow [Nm 3 / h]
A0: Theoretical air ratio
G0: Theoretical exhaust gas ratio

図4はPB率と排ガス温度、炉内温度の関係を示す相関図であり、上側グラフがPB率と排ガス温度との関係を、下側グラフがPB率と炉内温度の関係を示している。本発明者は、炉の立ち上げ時の初期段階においては一対の蓄熱式バーナ2の各々を同時に燃焼させる連続燃焼方式で昇温を行い、途中で蓄熱交番燃焼方式による昇温に切り替えたときのPB率と排ガス温度との関係に注目した。   FIG. 4 is a correlation diagram showing the relationship between the PB rate, the exhaust gas temperature, and the furnace temperature. The upper graph shows the relationship between the PB rate and the exhaust gas temperature, and the lower graph shows the relationship between the PB rate and the furnace temperature. . The present inventor performs the temperature increase by a continuous combustion method in which each of the pair of regenerative burners 2 is simultaneously burned in the initial stage when the furnace is started up, and switches to a temperature increase by a regenerative alternating combustion method in the middle. We paid attention to the relationship between PB rate and exhaust gas temperature.

これは、常温から燃料の自然着火温度である900℃に達するまでの低温域において連続燃焼方式で昇温を行い、ここから所定の温度、例えば炉内温度が1000℃に達するまでの時間、PB率=20、40、60、80%の条件で蓄熱交番燃焼方式による昇温を行った実験結果に基づくものであり、図4の上側グラフに示すようにPB率が20%未満であると排ガスの昇温速度が遅く、これでは高い熱効率を達成し得る蓄熱交番燃焼の利点を十分に発揮することができない。一方、PB率が40%を超えるとバーナタイルおよび蓄熱体には急激な温度変化による熱衝撃や過大な熱応力が発生し、バーナタイルや蓄熱体が損傷される結果となる。
なお、蓄熱交番燃焼を行うためには、炉内温度が燃料7の自然着火温度以上でなくてはならない。したがって、本発明に係る操炉方法においては、常温から900℃に達するまでの低温域においては連続燃焼方式による昇温を行うこととしている。また、一般に金属材料(被加熱材)を加熱炉1内に挿入する温度は1000℃であり、当該金属材料の挿入直後においては炉内温度が急激に下がることとなる。したがって、バーナタイル4等の損傷を防ぐべく、PB率:20〜40%の範囲で蓄熱交番燃焼方式による昇温を行って炉内温度が1000℃に達した以降、すなわち、金属材料の炉内挿入によって炉内温度が急激に下がった以降は、前記PB率の設定を解除して、40%を越える通常のPB率にて操業を開始する必要がある。
The temperature is raised by a continuous combustion method in a low temperature range from normal temperature to 900 ° C., which is the natural ignition temperature of the fuel, and from this time, a time until the furnace temperature reaches 1000 ° C., PB Based on the results of experiments in which the temperature was increased by the regenerative alternating combustion method under the conditions of rate = 20, 40, 60, and 80%, as shown in the upper graph of FIG. The rate of temperature rise is slow, and this makes it impossible to fully exhibit the advantages of regenerative alternating combustion that can achieve high thermal efficiency. On the other hand, when the PB rate exceeds 40%, the burner tile and the heat storage body are subjected to thermal shock and excessive thermal stress due to a rapid temperature change, resulting in damage to the burner tile and the heat storage body.
In order to perform regenerative alternating combustion, the furnace temperature must be equal to or higher than the natural ignition temperature of the fuel 7. Therefore, in the method for operating a furnace according to the present invention, the temperature is raised by the continuous combustion method in a low temperature range from normal temperature to 900 ° C. Moreover, generally the temperature which inserts a metal material (to-be-heated material) in the heating furnace 1 is 1000 degreeC, and immediately after the insertion of the said metal material, the furnace temperature will fall rapidly. Accordingly, in order to prevent damage to the burner tile 4 and the like, after the temperature inside the furnace is increased by the regenerative alternating combustion method within the range of PB rate: 20 to 40% and the furnace temperature reaches 1000 ° C., that is, in the furnace of the metal material After the furnace temperature drops rapidly due to the insertion, it is necessary to cancel the setting of the PB rate and to start operation at a normal PB rate exceeding 40%.

したがって、常温から所定炉温、例えば炉内温度が900℃に達するまでの低温域においては連続燃焼方式で昇温を行い、前記所定炉温に達してから別の所定炉温、例えば1000℃に達するまでは、PB率:20〜40%の範囲で蓄熱交番燃焼方式により昇温を行うことが望ましく、PB率が当該範囲ならばバーナタイル4および蓄熱体3に発生する急激な温度変化による熱衝撃や熱応力が緩和されるので、バーナタイル4および蓄熱体3の寿命延長が図れるとともに、高い熱効率を達成し得る蓄熱交番燃焼の利点を十分に発揮することのできる安定した加熱炉の操業を達成できる。   Accordingly, in a low temperature range from room temperature to a predetermined furnace temperature, for example, the temperature in the furnace reaches 900 ° C., the temperature is raised by a continuous combustion method, and after reaching the predetermined furnace temperature, another predetermined furnace temperature, for example, 1000 ° C. Until it reaches, it is desirable to raise the temperature by the regenerative alternating combustion method in the range of PB rate: 20 to 40%. If the PB rate is in this range, heat due to a sudden temperature change generated in the burner tile 4 and the heat storage body 3 Since the impact and thermal stress are alleviated, the life of the burner tile 4 and the heat storage body 3 can be extended, and the operation of a stable heating furnace that can fully exhibit the advantages of regenerative alternating combustion that can achieve high thermal efficiency. Can be achieved.

また、本発明に係る操炉方法は、図3に示すソフトウェアである制御フローによって実現できるものであり、ハードウェア、すなわち、バーナタイル4に燃料7を供給する燃料供給口5、炉内に燃焼用空気8を供給又は炉内から排ガス9を吸引する空気供給兼排ガス吸引口6を配置した蓄熱式バーナ2を備えた既存の加熱炉設備を何ら変更する必要がない。このため、従来技術に係る操炉方法のように加熱炉の設備構成の複雑化、保守作業が増加する等の問題を生じ得ないので、経済性に優れた加熱炉の操業を達成することができる。   The furnace operation method according to the present invention can be realized by the control flow that is software shown in FIG. 3, and is hardware, that is, the fuel supply port 5 for supplying the fuel 7 to the burner tile 4, and burning in the furnace. There is no need to change any existing heating furnace equipment provided with the regenerative burner 2 provided with the air supply / exhaust gas suction port 6 for supplying the working air 8 or sucking the exhaust gas 9 from the furnace. For this reason, it is not possible to cause problems such as complicated heating furnace construction and increased maintenance work as in the prior art furnace operation method, so that it is possible to achieve an economical operation of the heating furnace. it can.

なお、本発明に係る操炉方法を示す制御フロー図である図3の最終段、すなわち、炉内温度が1000℃に達した以降はPB率の設定を解除し、通常の演算を開始しているが、これは前記したように金属材料の挿入直後においては炉内温度が急激に下がるため、PB率の設定を解除して40%を越える通常のPB率にて操業を開始するためである。   Note that the final stage of FIG. 3, which is a control flow diagram showing the furnace operation method according to the present invention, that is, after the furnace temperature reaches 1000 ° C., the setting of the PB rate is canceled and normal calculation is started. However, as described above, the temperature inside the furnace rapidly decreases immediately after the metal material is inserted, so that the PB rate setting is canceled and the operation is started at a normal PB rate exceeding 40%. .

蓄熱式バーナを備えた加熱炉の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the heating furnace provided with the thermal storage type burner. 蓄熱式バーナの構成と配設位置を示す模式図である。It is a schematic diagram which shows the structure and arrangement | positioning position of a thermal storage type burner. 本発明に係る操炉方法を示す制御フロー図である。It is a control flowchart which shows the furnace operating method which concerns on this invention. PB率と排ガス温度、炉内温度の関係を示す相関図である。It is a correlation diagram which shows the relationship between PB rate, exhaust gas temperature, and furnace temperature. 蓄熱式バーナの炉壁への取付部を示す模式図である。It is a schematic diagram which shows the attachment part to the furnace wall of a thermal storage type burner. バーナタイルの一形態を示す模式図であり、図5のA−A方向から見た図である。It is a schematic diagram which shows one form of a burner tile, and is the figure seen from the AA direction of FIG.

符号の説明Explanation of symbols

1 加熱炉 2 蓄熱式バーナ
3 蓄熱体 4 バーナタイル
5 燃料供給口 6 空気供給兼排ガス吸引口
7 燃料 8 空気
9 排ガス 10 排ガス温度測定用熱電対
11 炉壁 12 炉内
S 材料進行方向
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Thermal storage type burner 3 Thermal storage body 4 Burner tile 5 Fuel supply port 6 Air supply and exhaust gas suction port 7 Fuel 8 Air 9 Exhaust gas 10 Exhaust gas temperature measurement thermocouple 11 Furnace wall 12 Furnace S Material traveling direction

Claims (1)

バーナタイルに燃料を供給する燃料供給口、炉内に燃焼用空気を供給又は炉内から排ガスを吸引する空気供給兼排ガス吸引口を配置した蓄熱式バーナを備えた加熱炉の操炉方法であって、
炉を停止し再び操業を開始する場合の昇温立ち上げ時に、
炉温が常温から900℃に達するまでの低温域においては、連続燃焼方式で昇温を行い、炉温が900℃に達してから1000℃に達するまでは、下記式で定義されるPB率:20〜40%の範囲で蓄熱交番燃焼方式により昇温を行うことを特徴とする蓄熱式バーナを備えた加熱炉の操炉方法。
PB率= 排ガス流量の設定値/{(Qair−Qfu×A0)+Qfu×G0}
ここで、Qair: 燃焼空気実績流量[Nm/h]
Qfu : 燃料実績流量[Nm/h]
A0 : 理論空気比
G0 : 理論排ガス比
This is a method for operating a heating furnace equipped with a regenerative burner in which a fuel supply port for supplying fuel to the burner tile, an air supply / exhaust gas suction port for supplying combustion air to the furnace or sucking exhaust gas from the furnace is arranged. And
When the temperature rise is started when the furnace is stopped and the operation is started again.
In the low temperature range until the furnace temperature reaches 900 ° C., the temperature is raised by a continuous combustion method, and until the furnace temperature reaches 900 ° C. until the furnace temperature reaches 1000 ° C. , the PB rate defined by the following formula: A method for operating a heating furnace provided with a regenerative burner, characterized in that the temperature is raised by a regenerative alternating combustion method in a range of 20 to 40%.
PB rate = set value of exhaust gas flow rate / {(Qair−Qfu × A0) + Qfu × G0}
Here, Qair: actual combustion air flow rate [Nm 3 / h]
Qfu: Actual fuel flow [Nm 3 / h]
A0: Theoretical air ratio
G0: Theoretical exhaust gas ratio
JP2007097381A 2007-04-03 2007-04-03 Method of operating a heating furnace with a regenerative burner Expired - Fee Related JP5073347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007097381A JP5073347B2 (en) 2007-04-03 2007-04-03 Method of operating a heating furnace with a regenerative burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007097381A JP5073347B2 (en) 2007-04-03 2007-04-03 Method of operating a heating furnace with a regenerative burner

Publications (2)

Publication Number Publication Date
JP2008255396A JP2008255396A (en) 2008-10-23
JP5073347B2 true JP5073347B2 (en) 2012-11-14

Family

ID=39979272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007097381A Expired - Fee Related JP5073347B2 (en) 2007-04-03 2007-04-03 Method of operating a heating furnace with a regenerative burner

Country Status (1)

Country Link
JP (1) JP5073347B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6341188B2 (en) * 2015-11-30 2018-06-13 Jfeスチール株式会社 Furnace temperature control method and furnace temperature control apparatus for heating furnace

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2936449B2 (en) * 1993-10-25 1999-08-23 日本鋼管株式会社 Furnace operation method of heating furnace provided with regenerative alternating combustion burner system
JP3235700B2 (en) * 1994-12-09 2001-12-04 川崎製鉄株式会社 Waste gas temperature control device of regenerative burner device
JP3478009B2 (en) * 1996-07-16 2003-12-10 Jfeスチール株式会社 Heating furnace with regenerative burner
JP2000097431A (en) * 1998-09-21 2000-04-04 Kawasaki Steel Corp Exhaust gas suction quantity control method in regenerative combustion apparatus
JP2003294229A (en) * 2002-04-01 2003-10-15 Nippon Steel Corp Operating method for heating furnace having regenerative burner
JP2003302044A (en) * 2002-04-05 2003-10-24 Nippon Steel Corp Method of controlling combustion of regenerative burner heating furnace

Also Published As

Publication number Publication date
JP2008255396A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
KR100780700B1 (en) Boiler for solid fuel
CN102878563B (en) Multi-drive high-pressure-loss fire grate type household garbage burning device
JP5073347B2 (en) Method of operating a heating furnace with a regenerative burner
JP2017171901A (en) Furnace body drying method and burner during firing in furnace body facility of coke oven
JP5211943B2 (en) Heating furnace exhaust equipment
JP2006349281A (en) Continuous heating furnace and method for controlling its combustion
JP2005060762A (en) Method and apparatus for manufacturing iron ore pellet
JP3478009B2 (en) Heating furnace with regenerative burner
JP7029277B2 (en) Manufacturing method for regenerative burners, industrial furnaces and fired products
JPH1060536A (en) Continuous type heating furnace
CN102721068B (en) A kind of control method of water-cooled reciprocating-type multi-stage hydraulic mechanical grate furnace air feed system
WO2010009612A1 (en) Non-gun slurry-throwing heat-accumulation moving bed boiler
JP5320926B2 (en) Regenerative burner method for heating furnace burners
KR20100073732A (en) Rotary regenerator type heat exchanger for waste hert recovery in reheating furnace
JP2936449B2 (en) Furnace operation method of heating furnace provided with regenerative alternating combustion burner system
JP5822540B2 (en) Boiler structure and boiler modification method
JP2003262323A (en) Water-cooled wall structure for stoker type incinerator
RU2452911C1 (en) Rotary sintering furnace
KR100897734B1 (en) Ceramics Sintering Furnace
JP3962237B2 (en) Continuous heating furnace
CN2663818Y (en) Heat accumulation type fully-dispersed changing-over combustion equipment for industrial furnace
JP7117902B2 (en) heating furnace
JP4970087B2 (en) Continuous heating furnace
CN2646637Y (en) Low nitrogen oxide and highly effective heat-accumulating industrial furnace
JP2005248258A (en) Continuous type heating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees