JP5072061B2 - Method for producing positive electrode for non-aqueous secondary battery and non-aqueous secondary battery - Google Patents

Method for producing positive electrode for non-aqueous secondary battery and non-aqueous secondary battery Download PDF

Info

Publication number
JP5072061B2
JP5072061B2 JP2006042065A JP2006042065A JP5072061B2 JP 5072061 B2 JP5072061 B2 JP 5072061B2 JP 2006042065 A JP2006042065 A JP 2006042065A JP 2006042065 A JP2006042065 A JP 2006042065A JP 5072061 B2 JP5072061 B2 JP 5072061B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
containing composition
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006042065A
Other languages
Japanese (ja)
Other versions
JP2007220581A (en
Inventor
英樹 津幡
勇人 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2006042065A priority Critical patent/JP5072061B2/en
Publication of JP2007220581A publication Critical patent/JP2007220581A/en
Application granted granted Critical
Publication of JP5072061B2 publication Critical patent/JP5072061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水二次電池用正極と、該正極を有する非水二次電池に関するものである。   The present invention relates to a positive electrode for a non-aqueous secondary battery and a non-aqueous secondary battery having the positive electrode.

近年、携帯電話などの携帯機器の加速度的な普及に伴い、その電源として、高エネルギー密度を有する非水二次電池の需要が急速に拡大している。こうした非水二次電池では、例えば、正極活物質を含有する正極合剤層を集電体表面に形成してなる正極と、負極活物質を含有する負極合剤層を集電体表面に形成してなる負極とを、セパレータを介して積層したり、更にこの積層体を巻回してなる電極体と、非水電解液とを、電池外装体内に装填してなる構造を有するものが一般的である。   In recent years, with the rapid spread of mobile devices such as mobile phones, the demand for non-aqueous secondary batteries having high energy density as the power source is rapidly expanding. In such a non-aqueous secondary battery, for example, a positive electrode formed by forming a positive electrode mixture layer containing a positive electrode active material on the current collector surface and a negative electrode mixture layer containing a negative electrode active material formed on the current collector surface In general, the negative electrode formed by laminating a negative electrode formed through a separator, and further having an electrode body formed by winding the laminated body and a nonaqueous electrolyte solution loaded in a battery outer body. It is.

そして、例えば、正極合剤層の形成に当たっては、正極活物質、導電助剤、結着剤などを含有し、これを溶剤に分散させてなる正極合剤含有組成物(ペースト、スラリーなど)を調製し、これを集電体表面に塗布し、乾燥して溶剤を除去する方法が採用されている。   For example, in forming the positive electrode mixture layer, a positive electrode mixture-containing composition (paste, slurry, etc.) containing a positive electrode active material, a conductive additive, a binder and the like dispersed in a solvent is used. A method of preparing, applying this to the surface of the current collector and drying to remove the solvent is employed.

正極合剤含有組成物の調製方法も種々提案されている。例えば、特許文献1には、正極活物質と導電助剤と結着剤とをプラネタリーミキサーで混合し、その後、この混合物を押出機で混練した後、この混練物と溶剤とを混合する方法が提案されている。   Various methods for preparing a positive electrode mixture-containing composition have also been proposed. For example, Patent Document 1 discloses a method in which a positive electrode active material, a conductive additive, and a binder are mixed with a planetary mixer, and then the mixture is kneaded with an extruder and then the kneaded material and a solvent are mixed. Has been proposed.

また、特許文献2には、導電助剤と結着剤と溶剤とを二軸押出機で混練し、得られた導電助剤含有分散液と正極活物質とを、二軸押出機で混練する方法や、正極活物質と導電助剤と結着剤と溶剤とを、二軸押出機で一度に混練する方法が提案されている。   In Patent Document 2, a conductive auxiliary agent, a binder, and a solvent are kneaded with a twin screw extruder, and the obtained conductive auxiliary agent-containing dispersion and a positive electrode active material are kneaded with a twin screw extruder. A method and a method of kneading a positive electrode active material, a conductive additive, a binder, and a solvent at once with a twin screw extruder have been proposed.

特開2000−123879号公報(特許請求の範囲など)JP 2000-123879 A (Claims etc.) 特開2004−14206号公報(特許請求の範囲など)JP 2004-14206 A (Claims etc.)

ところで、最近では、非水二次電池の更なる高容量化を達成すべく、正極合剤層や負極合剤層の密度を大きくして、正極活物質や負極活物質の充填量を向上させる試みがなされている。正極合剤層の密度を高めるには、例えば、正極合剤含有組成物を集電体表面に塗布した後、カレンダー成形などのプレス処理により圧縮する方法が採用できる。その際、集電体表面に塗布する正極合剤含有組成物の固形分濃度が低い場合には、プレス処理による圧縮前の正極合剤層密度が低くなるため、プレス処理における圧縮力を大きくする必要がある。ところが、プレス処理における圧縮力をあまり大きくすると、集電体の破れが生じることがあり、正極の生産性が損なわれてしまう。よって、高密度の正極合剤層を有する正極を生産性よく製造するには、固形分濃度の高い正極合剤含有組成物を調製することが好ましい。しかし、正極合剤含有組成物の固形分濃度を高くすると、該組成物中の固形分を均一に分散することが困難となる。分散性が悪く、均一性の低い正極合剤含有組成物で形成した正極合剤層は、活物質、導電助剤および結着剤が不均一に分散しているため、その活物質利用率が低くなり、却って容量低下を引き起こす虞がある。   By the way, recently, in order to achieve higher capacity of the non-aqueous secondary battery, the density of the positive electrode mixture layer and the negative electrode mixture layer is increased, and the filling amount of the positive electrode active material and the negative electrode active material is improved. Attempts have been made. In order to increase the density of the positive electrode mixture layer, for example, a method of applying the positive electrode mixture-containing composition to the surface of the current collector and then compressing it by a press treatment such as calendar molding can be employed. At that time, when the solid content concentration of the positive electrode mixture-containing composition applied to the surface of the current collector is low, the positive electrode mixture layer density before compression by the press treatment is reduced, so the compression force in the press treatment is increased. There is a need. However, if the compressive force in the press process is too large, the current collector may be broken, and the productivity of the positive electrode is impaired. Therefore, in order to produce a positive electrode having a high-density positive electrode mixture layer with high productivity, it is preferable to prepare a positive electrode mixture-containing composition having a high solid content concentration. However, when the solid content concentration of the positive electrode mixture-containing composition is increased, it is difficult to uniformly disperse the solid content in the composition. The positive electrode mixture layer formed of the positive electrode mixture-containing composition having poor dispersibility and low uniformity has an active material utilization factor because the active material, conductive additive and binder are dispersed non-uniformly. On the other hand, there is a risk that the capacity may decrease.

特許文献1に開示の正極合剤含有組成物の調製方法であれば、比較的固形分濃度の高い正極合剤含有組成物であっても、固形分を良好に分散させ得る可能性がある。しかしながら、特許文献1に開示の方法では、予め活物質と導電助剤と結着剤とを、バッチ式のプラネタリーミキサーで混合した後、二軸押出機に供給して混練するため、1段階目の混合工程の効率が悪く、正極合剤含有組成物の生産性、延いては非水二次電池の生産性を高めることが困難である。   If it is the preparation method of the positive mix containing composition disclosed by patent document 1, even if it is a positive mix containing composition with comparatively high solid content concentration, there exists a possibility that solid content can be disperse | distributed favorably. However, in the method disclosed in Patent Document 1, an active material, a conductive additive, and a binder are mixed in advance by a batch type planetary mixer, and then supplied to a twin screw extruder for kneading. The efficiency of the eye mixing process is poor, and it is difficult to increase the productivity of the positive electrode mixture-containing composition, and thus the productivity of the non-aqueous secondary battery.

これに対し、特許文献2に開示の正極合剤含有組成物の調製方法は、正極合剤含有組成物の調製に、連続式の二軸押出機を使用するため、正極合剤含有組成物や非水二次電池の生産性を高めることができる。しかし、特許文献2に開示の方法では、正極合剤含有組成物の分散性を維持しつつ固形分濃度を高くすることが困難である。従来程度の密度の正極合剤層を形成するための正極合剤含有組成物の調製方法としては、特許文献2の方法は非常に有効であるが、近年の高容量化の要請に対応するには、特許文献2の方法で可能な程度を超えた固形分濃度を有する正極合剤含有組成物を調製し、これにより高密度の正極合剤層を有する正極を生産性よく製造する方法の開発が望まれる。   In contrast, the method for preparing a positive electrode mixture-containing composition disclosed in Patent Document 2 uses a continuous twin-screw extruder for preparing a positive electrode mixture-containing composition. Productivity of the non-aqueous secondary battery can be increased. However, with the method disclosed in Patent Document 2, it is difficult to increase the solid content concentration while maintaining the dispersibility of the positive electrode mixture-containing composition. As a method for preparing a positive electrode mixture-containing composition for forming a positive electrode mixture layer having a density of a conventional level, the method of Patent Document 2 is very effective, but in response to the recent demand for higher capacity. Develops a method for producing a positive electrode mixture-containing composition having a solid content concentration exceeding the extent possible by the method of Patent Document 2, and thereby producing a positive electrode having a high-density positive electrode mixture layer with high productivity. Is desired.

本発明は上記事情に鑑みてなされたものであり、高容量の非水二次電池用正極を生産性よく製造する方法と、該方法により得られた正極を有する非水二次電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a method for producing a high-capacity positive electrode for a non-aqueous secondary battery with high productivity and a non-aqueous secondary battery having a positive electrode obtained by the method. For the purpose.

上記目的を達成し得た本発明の非水二次電池用正極の製造方法は、正極合剤含有組成物を導電性基体に塗布し、乾燥して正極合剤層を形成する工程を経由して非水二次電池用正極を製造するに当たり、正極活物質と導電助剤とを連続的に混合し、送り出す工程(A)と、上記工程(A)により得られた正極活物質と導電助剤の混合物と結着剤を二軸押出機に供給して混練し、更に該二軸押出機に溶剤を供給して混練することにより正極合剤含有組成物(ペースト、スラリーなど)を調製する工程(B)を有することを特徴とする方法である。   The method for producing a positive electrode for a non-aqueous secondary battery according to the present invention, which has achieved the above object, comprises a step of applying a positive electrode mixture-containing composition to a conductive substrate and drying to form a positive electrode mixture layer. In producing a positive electrode for a non-aqueous secondary battery, the positive electrode active material and the conductive additive are continuously mixed and sent out (A), and the positive electrode active material obtained in the above step (A) and the conductive aid. A mixture of an agent and a binder are supplied to a twin screw extruder and kneaded, and a solvent is supplied to the twin screw extruder and kneaded to prepare a positive electrode mixture-containing composition (paste, slurry, etc.). It is a method characterized by having a process (B).

また、上記製造方法により製造された正極を有する非水二次電池も本発明に包含される。   Moreover, the nonaqueous secondary battery which has the positive electrode manufactured by the said manufacturing method is also included by this invention.

本発明によれば、高容量の非水二次電池用正極を生産性よく製造できる。また、本発明の製造方法により得られた正極を有する本発明の非水二次電池は、高容量で良好な電池特性を有するものである。   ADVANTAGE OF THE INVENTION According to this invention, a high capacity | capacitance positive electrode for non-aqueous secondary batteries can be manufactured with high productivity. The nonaqueous secondary battery of the present invention having a positive electrode obtained by the production method of the present invention has a high capacity and good battery characteristics.

本発明の製造方法は、まず、正極活物質と導電助剤とを連続的に混合し、送り出し[工程(A)]、次に、二軸押出機を用いて、送り出された正極活物質と導電助剤との混合物と結着剤と混練し、更に、溶剤も二軸押出機に供給して混練することにより、正極活物質と導電助剤と結着剤と溶剤を含有する正極合剤含有組成物を調製し[工程(B)]、これを非水二次電池用正極の正極合剤層の形成に用いる点に特徴を有している。   In the production method of the present invention, first, the positive electrode active material and the conductive additive are continuously mixed and delivered [step (A)], and then, using the twin screw extruder, the fed positive electrode active material and A positive electrode mixture containing a positive electrode active material, a conductive auxiliary agent, a binder, and a solvent by kneading the mixture with the conductive auxiliary agent and the binder, and further supplying and kneading the solvent to the twin screw extruder. The content composition is prepared [step (B)], and this is characterized in that it is used for forming a positive electrode mixture layer of a positive electrode for a non-aqueous secondary battery.

正極合剤層において、正極活物質と導電助剤の分散が良好でない場合には、正極合剤層中における導電助剤が不均一になり、正極活物質の利用率が低下するため、喩え正極合剤層の密度を高めて正極活物質の充填性を向上させたとしても、このような正極合剤層を有する正極を用いた電池では、容量やインピーダンス特性が低下する虞がある。また、正極活物質や導電助剤は、粉体として供されるのが一般的であり、液体である溶剤の共存化で混合・混練を行って正極合剤含有組成物の調製を行うと、特に正極活物質や導電助剤などの固形分濃度が高い状況下では、組成物中における正極活物質や導電助剤の分散の均一性が低下してしまう。   In the positive electrode mixture layer, when the dispersion of the positive electrode active material and the conductive additive is not good, the conductive additive in the positive electrode mixture layer becomes non-uniform, and the utilization factor of the positive electrode active material is reduced. Even if the density of the mixture layer is increased to improve the filling property of the positive electrode active material, the battery using the positive electrode having such a positive electrode mixture layer may have reduced capacity and impedance characteristics. In addition, the positive electrode active material and the conductive auxiliary agent are generally provided as powder, and when the mixture of the liquid solvent is mixed and kneaded in the coexistence of a liquid solvent, the positive electrode mixture-containing composition is prepared. In particular, under a situation where the solid content concentration of the positive electrode active material and the conductive auxiliary agent is high, the uniformity of dispersion of the positive electrode active material and the conductive auxiliary agent in the composition is lowered.

例えば、上記特許文献2の方法によれば、固形分濃度が比較的低い正極合剤含有組成物については、各成分の分散性を良好にしつつ調製することができる。しかし、上述した通り、電池容量を向上させるべく高密度の正極合剤層を有する正極を製造するには、固形分濃度の低い正極合剤含有組成物を用いた場合、該組成物を集電体に塗布後、カレンダー成形などによるプレス処理によって圧縮する際の圧縮力を大きく必要があり、集電体の破れが生じやすく、正極の生産性が損なわれてしまう。   For example, according to the method of Patent Document 2, a positive electrode mixture-containing composition having a relatively low solid content concentration can be prepared while improving the dispersibility of each component. However, as described above, in order to produce a positive electrode having a high-density positive electrode mixture layer to improve battery capacity, when a positive electrode mixture-containing composition having a low solid content concentration is used, the composition is collected After application to the body, it is necessary to have a large compressive force when compressing by a pressing process such as calendering, the current collector is easily broken, and the productivity of the positive electrode is impaired.

また、上記特許文献1の方法によれば、固形分濃度が比較的高い正極合剤含有組成物を、各成分の分散性を良好にしつつ調製できる可能性があるが、上述の通り、1段階目の混合がバッチ式であるため、非効率であり、正極の生産性を高めることができない。   Further, according to the method of Patent Document 1, there is a possibility that a positive electrode mixture-containing composition having a relatively high solid content concentration can be prepared while improving the dispersibility of each component. Since the mixing of the eyes is batch, it is inefficient and the productivity of the positive electrode cannot be increased.

よって、本発明では、まず、上記工程(A)において、粉体である正極活物質と導電助剤とを連続的に混合し、送り出すことにより、正極活物質と導電助剤との混合物を、両者の分散を良好にしつつ効率よく調製し、その後、上記工程(B)において、二軸押出機を用いてこの混合物と結着剤とを混練し、最後に該二軸押出機に溶剤を供給して混練することにより、高固形分濃度の正極合剤含有組成物を、各成分の分散性を高めつつ良好な生産性で調製することを可能とした。そして、この正極合剤含有組成物を正極合剤層の形成に用いることにより、プレス処理による正極合剤層の圧縮時における集電体の破れを抑制しつつ高密度の正極合剤層を有する正極の製造を可能とした。   Therefore, in the present invention, first, in the step (A), the positive electrode active material and the conductive additive, which are powders, are continuously mixed and sent out, whereby the mixture of the positive electrode active material and the conductive additive is obtained. Efficiently prepare both dispersions, and then knead the mixture and binder using a twin screw extruder in the above step (B), and finally supply the solvent to the twin screw extruder By kneading the mixture, it was possible to prepare a positive electrode mixture-containing composition having a high solid content concentration with good productivity while improving the dispersibility of each component. And by using this positive electrode mixture-containing composition for forming the positive electrode mixture layer, it has a high-density positive electrode mixture layer while suppressing breakage of the current collector during compression of the positive electrode mixture layer by pressing. The positive electrode can be manufactured.

工程(A)で使用する装置としては、正極活物質と導電助剤とを良好な分散性で連続的に混合し、送り出すことができる装置であれば特に制限はない。例えば、従来公知の一軸または二軸押出機が使用できる。なお、上記の通り、正極活物質や導電助剤は、粉体であるのが通常であるため、工程(A)で使用する装置には、こうした粉体同士を良好に混合し、送り出し得る装置であることが好ましい。このような装置としては、例えば、回転ブレードと固定ブレードの間で混合する機構を備えた押出機が挙げられる。   The apparatus used in the step (A) is not particularly limited as long as the apparatus can continuously mix and send out the positive electrode active material and the conductive additive with good dispersibility. For example, a conventionally known single-screw or twin-screw extruder can be used. As described above, since the positive electrode active material and the conductive auxiliary agent are usually powders, the device used in the step (A) is a device that can mix these powders well and send them out. It is preferable that Examples of such an apparatus include an extruder having a mechanism for mixing between a rotating blade and a fixed blade.

図1に、回転ブレードと固定ブレードの間で混練する機構を備えた一軸押出機の縦断面概略図を示す。図1の押出機は、粉体供給ユニット11、バレル17、混合物排出口18を有しており、バレル17は、フィールド部、混合分散部およびメーターリング部に分かれている。そして、バレル17の内部には、回転軸12を有するスクリューが備えられており、該スクリューのうち、フィールド部に当たる箇所にはフィールドスクリュー13が、メーターリング部に当たる箇所にはメーターリングスクリュー16が、それぞれ位置している。また、混合分散部に当たる箇所においては、スクリューは、回転ブレード14と固定ブレード15が交互に多段に重ねられて構成されており、回転ブレード14は回転軸12に固定されており、固定ブレード15はバレル17の内面に固定されている。そして、回転ブレード14の両面には放射状に山と谷が形成されており、固定ブレード15の両面にも放射状に山と谷が形成されていて、これらが交互に重ねられることで、各ブレードの両面にキャビティー(窪みの谷)が放射状に形成されている。   FIG. 1 shows a schematic longitudinal sectional view of a single screw extruder provided with a mechanism for kneading between a rotating blade and a fixed blade. The extruder shown in FIG. 1 includes a powder supply unit 11, a barrel 17, and a mixture discharge port 18. The barrel 17 is divided into a field portion, a mixing and dispersing portion, and a metering portion. The barrel 17 is provided with a screw having a rotating shaft 12. Of the screw, a field screw 13 is provided at a place where the screw hits the field part, and a metering screw 16 is provided at a place where the contact is provided with the metering part. Each is located. Further, at the location corresponding to the mixing / dispersing section, the screw is configured such that the rotating blades 14 and the fixed blades 15 are alternately stacked in multiple stages, and the rotating blades 14 are fixed to the rotating shaft 12. It is fixed to the inner surface of the barrel 17. Then, the crests and valleys are formed radially on both surfaces of the rotating blade 14, and the crests and troughs are formed radially on both surfaces of the fixed blade 15, and these are alternately stacked, so that each blade Cavities (recessed valleys) are formed radially on both sides.

図1に示す一軸押出機の粉体供給ユニット11から供給された粉体状の正極活物質と粉体状の導電助剤は、フィールドスクリュー13により混合分散部に送られる。混合分散部では、回転ブレード14と固定ブレード15が重ねられることにより形成された上記キャビティーに供給された正極活物質と導電助剤とが、両者が互いに良好に分散して混合物となる。そして、これらの混合物が、メーターリングスクリュー16により送り出されて混合物排出部18から排出される。   The powdery positive electrode active material and the powdery conductive additive supplied from the powder supply unit 11 of the single screw extruder shown in FIG. 1 are sent to the mixing and dispersing section by the field screw 13. In the mixing and dispersing portion, the positive electrode active material and the conductive additive supplied to the cavity formed by overlapping the rotating blade 14 and the fixed blade 15 are well dispersed and become a mixture. These mixtures are sent out by the metering screw 16 and discharged from the mixture discharge unit 18.

また、工程(B)で使用する装置としては、従来公知の二軸押出機であれば、特に制限は無い。しかし、上述の通り、工程(B)では、まず、工程(A)で得られた混合物と結着剤とを二軸押出機に混練し、更にこの二軸押出機に溶剤を供給して混練して正極合剤含有組成物を調製する。そのため、工程(B)で使用する二軸押出機は、混練途中で溶剤を内部に供給できる機構を有していることが要求される。   Moreover, as an apparatus used at a process (B), if it is a conventionally well-known twin-screw extruder, there will be no restriction | limiting in particular. However, as described above, in step (B), first, the mixture obtained in step (A) and the binder are kneaded in a twin-screw extruder, and further, a solvent is supplied to the twin-screw extruder and kneaded. Thus, a positive electrode mixture-containing composition is prepared. Therefore, the twin screw extruder used in the step (B) is required to have a mechanism capable of supplying the solvent to the inside during the kneading.

図2に、本発明に係る工程(B)に好適に用い得る二軸押出機の縦断面概略図を示す。図2では、二軸押出機が有する2本のスクリューのうちの1本のみを図示している。なお、図2の二軸押出機では、便宜上、工程(A)で得られた混合物と結着剤とを混練するゾーンを「混練部」と称し、その後溶剤を供給して更に混練するゾーンを「希釈部」と称している。図2の二軸押出機は、正極活物質と導電助剤の混合物を供給するための粉体供給ユニット21、結着剤供給ユニット22、溶剤供給ユニット23、回転軸24、スクリュー25、バレル28、正極合剤含有組成物排出口29で構成されている。また、スクリュー25は、パドル26およびスペーサー27を有している。   In FIG. 2, the longitudinal cross-sectional schematic of the twin-screw extruder which can be used suitably for the process (B) based on this invention is shown. In FIG. 2, only one of the two screws of the twin screw extruder is shown. In the twin-screw extruder shown in FIG. 2, for convenience, a zone for kneading the mixture obtained in step (A) and the binder is referred to as a “kneading section”, and then a zone for further kneading by supplying a solvent. It is called “dilution part”. 2 has a powder supply unit 21, a binder supply unit 22, a solvent supply unit 23, a rotary shaft 24, a screw 25, and a barrel 28 for supplying a mixture of a positive electrode active material and a conductive additive. The positive electrode mixture-containing composition outlet 29 is constituted. The screw 25 has a paddle 26 and a spacer 27.

まず、工程(A)で送り出された正極活物質と導電助剤の混合物を、粉体供給ユニット21を通じて連続的に二軸押出機に供給する。そして、結着剤供給ユニット22から結着剤を二軸押出機に供給し、混練部において正極活物質と導電助剤の混合物と、結着剤とを混練する。なお、結着剤供給ユニット22から供給される結着剤は、溶剤の一部を含有していてもよい(詳しくは後述する)。   First, the mixture of the positive electrode active material and the conductive additive sent out in the step (A) is continuously supplied to the twin screw extruder through the powder supply unit 21. Then, the binder is supplied from the binder supply unit 22 to the twin-screw extruder, and the mixture of the positive electrode active material and the conductive additive and the binder are kneaded in the kneading unit. Note that the binder supplied from the binder supply unit 22 may contain a part of the solvent (details will be described later).

続いて、溶剤供給ユニット23から溶剤を供給し、希釈部において、正極活物質、導電助剤および結着剤の混練物と、溶剤とを混練(希釈)して正極合剤含有組成物を調製し、排出口29から正極合剤含有組成物を排出する。   Subsequently, the solvent is supplied from the solvent supply unit 23, and the positive electrode active material, the conductive additive and the binder kneaded material and the solvent are kneaded (diluted) in the dilution section to prepare a positive electrode mixture-containing composition. The positive electrode mixture-containing composition is discharged from the discharge port 29.

正極合剤含有組成物に係る正極活物質としては、特に限定されないが、例えば、LiMOまたはLiMで表されるリチウム含有金属酸化物であって、元素MがCo、Ni、Mn、Fe、Cuなどの金属元素の少なくとも1種であるもの、より具体的には、LiCoOなどのリチウムコバルト酸化物、LiMnOなどのリチウムマンガン酸化物、LiNiOなどのリチウムニッケル酸化物などのリチウム含有金属酸化物、またはこれらを基本構造とする複合酸化物(例えば、異種金属添加品);二酸化マンガン、五酸化バナジウム、クロム酸化物などの金属酸化物、またはこれらを基本構造とする複合酸化物;二硫化チタン、二硫化モリブデンなどの金属硫化物;などが挙げられる。これらの正極活物質は、1種単独で用いてもよく、例えば、混合物や固溶体として2種以上を併用しても構わない。特に、LiCoO、LiMnO、LiNiOなどの、充電時の開路電圧がLi基準で4V以上を示すリチウム含有複合酸化物を正極活物質として用いた場合には、より高エネルギー密度の電池を構成できることから好ましい。 The positive electrode active material according to the positive electrode mixture-containing composition is not particularly limited. For example, a lithium-containing metal oxide represented by LiMO 2 or LiM 2 O 4 , and the element M is Co, Ni, Mn, What is at least one of metal elements such as Fe and Cu, more specifically, lithium such as lithium cobalt oxide such as LiCoO 2 , lithium manganese oxide such as LiMnO 4, and lithium nickel oxide such as LiNiO 2 -Containing metal oxides, or composite oxides having these as a basic structure (for example, different metal additives); metal oxides such as manganese dioxide, vanadium pentoxide, chromium oxide, or composite oxides having these as basic structures Metal sulfides such as titanium disulfide and molybdenum disulfide; These positive electrode active materials may be used individually by 1 type, for example, may use 2 or more types together as a mixture or a solid solution. In particular, when a lithium-containing composite oxide, such as LiCoO 2 , LiMnO 4 , or LiNiO 2 , whose open circuit voltage during charging is 4 V or more on the basis of Li is used as the positive electrode active material, a battery having a higher energy density is formed. It is preferable because it is possible.

正極合剤含有組成物に係る導電助剤としては、例えば、ファーネスブラック、ケッチェンブラックなどのカーボンブラック系導電助剤;アセチレンブラック;鱗片状黒鉛;繊維状炭素;活性炭;などが挙げられる。例えば、アセチレンブラックやカーボンブラック系導電助剤であれば、比表面積が50〜2000m/gであるものが好ましい。また、鱗片状黒鉛のような黒鉛系の導電助剤の場合には、比表面積が50〜500m/gであるものが好ましい。比表面積が小さすぎる導電助剤を用いると、正極活物質との接触面積が減少するため、導電性が低下して内部抵抗が上昇することがある。また、比表面積が大きすぎる導電助剤を用いると、正極合剤含有組成物における溶剤の必要量が増大することがあり、高固形分濃度の正極合剤含有組成物を調製することが困難となることがある。 Examples of the conductive additive relating to the positive electrode mixture-containing composition include carbon black conductive assistants such as furnace black and ketjen black; acetylene black; flaky graphite; fibrous carbon; activated carbon; For example, if it is acetylene black and a carbon black type conductive support agent, that whose specific surface area is 50-2000 m < 2 > / g is preferable. In the case of a graphite-based conductive additive such as scaly graphite, those having a specific surface area of 50 to 500 m 2 / g are preferable. If a conductive auxiliary agent having a specific surface area that is too small is used, the contact area with the positive electrode active material is decreased, so that the electrical conductivity may decrease and the internal resistance may increase. In addition, if a conductive auxiliary agent having a too large specific surface area is used, the required amount of solvent in the positive electrode mixture-containing composition may increase, and it is difficult to prepare a high solid content positive electrode mixture-containing composition. May be.

正極合剤含有組成物に係る結着剤としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、ポリエチレン、ポリプロピレン、ポリエチレンオキシド、ポリビニルピロリドン、ポリエステル樹脂、アクリル樹脂、フェノール樹脂、エポキシ樹脂などの樹脂系結着剤;エチレン−プロピレン−ジエン共重合樹脂、スチレンブタジエンゴム(SBR)、ポリブタジエン、フッ素ゴムなどのゴム系結着剤;ヒドロキシプロピルセルロース、カルボキシメチルセルロース(CMC)などのセルロース樹脂などの多糖類;などが挙げられる。これらの結着剤は1種単独で用いてもよく、2種以上を併用しても構わない。中でも、PVDFが特に好ましい。なお、正極合剤含有組成物の調製に当たっては、結着剤は、予め溶剤に溶解させた溶液として用いることもできる。結着剤を溶液として用いる場合には、例えば、溶液のハンドリング性を考慮すると、粘度が0.3〜3Pa・sとなるように調整することが好ましい。   Examples of the binder according to the positive electrode mixture-containing composition include polytetrafluoroethylene, polyvinylidene fluoride (PVDF), polyethylene, polypropylene, polyethylene oxide, polyvinyl pyrrolidone, polyester resin, acrylic resin, phenol resin, epoxy resin, and the like. Resin-based binders; rubber-based binders such as ethylene-propylene-diene copolymer resins, styrene butadiene rubber (SBR), polybutadiene, and fluororubber; cellulose resins such as hydroxypropyl cellulose and carboxymethyl cellulose (CMC) Polysaccharides; and the like. These binders may be used alone or in combination of two or more. Among these, PVDF is particularly preferable. In preparing the positive electrode mixture-containing composition, the binder can also be used as a solution previously dissolved in a solvent. When the binder is used as a solution, for example, in consideration of the handleability of the solution, it is preferable to adjust the viscosity to be 0.3 to 3 Pa · s.

正極合剤含有組成物に係る溶剤としては、例えば、N−メチル−2−ピロリドン(NMP)、ジメチルアセトアミド、ジメチルホルムアミドなどの非プロトン性有機溶媒を1種単独で用いてもよく、2種以上を併用してもよい。   As the solvent related to the positive electrode mixture-containing composition, for example, an aprotic organic solvent such as N-methyl-2-pyrrolidone (NMP), dimethylacetamide, dimethylformamide or the like may be used alone, or two or more kinds thereof may be used. May be used in combination.

正極合剤含有組成物において、正極活物質、導電助剤および結着剤などの固形分の濃度は、例えば、70質量%以上、より好ましくは75質量%以上であって、85質量%以下、より好ましくは82質量%以下であることが望ましい。固形分濃度が低すぎる正極合剤含有組成物を用いて正極合剤層を形成すると、カレンダー成形などのプレス処理による圧縮前の密度が小さくなるため、高容量化を図るべく高密度の正極合剤層とするためには、プレス処理の際の圧縮力を大きくする必要があり、集電体の破れなどが生じてしまうことがある他、溶剤除去に要する時間や工程が長くなったり、所定量を塗布するための塗料の量が多くなり、また、固形分濃度が高すぎると、正極合剤含有組成物の粘度が高くなりすぎて、集電体への塗布性が損なわれることがある。   In the positive electrode mixture-containing composition, the concentration of solids such as the positive electrode active material, the conductive additive and the binder is, for example, 70% by mass or more, more preferably 75% by mass or more, and 85% by mass or less. More preferably, the content is 82% by mass or less. When a positive electrode mixture layer is formed using a positive electrode mixture-containing composition with a solid content concentration that is too low, the density before compression by pressing such as calendering is reduced, so a high density positive electrode mixture is required to increase the capacity. In order to make the agent layer, it is necessary to increase the compressive force during the pressing process, and the current collector may be broken, and the time and process required for removing the solvent may be lengthened. If the amount of paint for applying a fixed amount increases, and the solid content concentration is too high, the viscosity of the positive electrode mixture-containing composition becomes too high, and the applicability to the current collector may be impaired. .

正極合剤層における導電助剤含有量、結着剤含有量、および正極活物質含有量は下記のようであることが好ましく、このような成分組成の正極合剤層が形成できるように、正極合剤含有組成物における成分組成を調整することが好ましい。正極合剤層における導電助剤含有量は、0.1質量%以上、より好ましくは0.5質量%以上であって、8質量%以下、より好ましくは5質量%以下とすることが望ましい。導電助剤含有量が少なすぎると、正極合剤層における導電性の確保が困難となる場合があり、導電助剤含有量が多すぎると、正極合剤層における正極活物質含有量が減少するため、正極合剤層の単位質量および単位体積当たりの容量の低下を引き起こすため、電池の高容量化が困難となることがある。   The conductive auxiliary agent content, the binder content, and the positive electrode active material content in the positive electrode mixture layer are preferably as follows, and the positive electrode mixture layer having such a component composition can be formed. It is preferable to adjust the component composition in the mixture-containing composition. The content of the conductive assistant in the positive electrode mixture layer is 0.1% by mass or more, more preferably 0.5% by mass or more, and is preferably 8% by mass or less, more preferably 5% by mass or less. If the conductive auxiliary agent content is too small, it may be difficult to ensure the conductivity in the positive electrode mixture layer. If the conductive auxiliary agent content is too high, the positive electrode active material content in the positive electrode mixture layer decreases. Therefore, since the unit mass of the positive electrode mixture layer and the capacity per unit volume are reduced, it may be difficult to increase the capacity of the battery.

また、正極合剤層における結着剤含有量は、0.5質量%以上、より好ましくは1.0質量%以上であって、3.0質量%以下、より好ましくは2.0質量%以下であることが望ましい。結着剤含有量が少なすぎると、正極合剤層における正極活物質および導電助剤の結着性や、正極合剤層と集電体との接着性が不十分となることがあり、結着剤含有量が多すぎると、正極合剤層における正極活物質含有量が減少するため、正極合剤層の単位質量および単位体積当たりの容量の低下を引き起こすため、電池の高容量化が困難となることがある。   The binder content in the positive electrode mixture layer is 0.5% by mass or more, more preferably 1.0% by mass or more, and 3.0% by mass or less, more preferably 2.0% by mass or less. It is desirable that If the binder content is too small, the binding properties of the positive electrode active material and the conductive additive in the positive electrode mixture layer and the adhesion between the positive electrode mixture layer and the current collector may be insufficient. If the content of the adsorbent is too large, the content of the positive electrode active material in the positive electrode mixture layer will decrease, causing a decrease in the unit mass of the positive electrode mixture layer and the capacity per unit volume, making it difficult to increase the capacity of the battery. It may become.

更に、正極合剤層における活物質含有量は、90質量%以上、より好ましくは95質量%以上であって、99質量%以下、より好ましくは98質量%以下であることが望ましい。活物質含有量が少なすぎると、正極合剤層の単位質量および単位体積当たりの容量の低下を引き起こすため、電池の高容量化が困難となることがあり、活物質含有量が多すぎると、正極合剤層の導電性が低下し、電池の負荷特性が悪くなることがある。   Furthermore, the active material content in the positive electrode mixture layer is 90% by mass or more, more preferably 95% by mass or more, and is 99% by mass or less, more preferably 98% by mass or less. If the active material content is too low, the capacity per unit volume of the positive electrode mixture layer and the capacity per unit volume will be reduced, so it may be difficult to increase the capacity of the battery, and if the active material content is too high, The conductivity of the positive electrode mixture layer may decrease, and the load characteristics of the battery may deteriorate.

本発明に係る正極に用いる集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼などの箔、エキスパンドメタル、網などを用い得るが、アルミニウム箔が特に好ましい。集電体の厚みは、例えば、5μm以上、より好ましくは8μm以上であって、60μm以下、より好ましくは40μm以下であることが望ましい。   As the current collector used for the positive electrode according to the present invention, for example, foils such as aluminum, copper, nickel, and stainless steel, expanded metal, and nets can be used, and aluminum foil is particularly preferable. The thickness of the current collector is, for example, 5 μm or more, more preferably 8 μm or more, and preferably 60 μm or less, more preferably 40 μm or less.

正極の作製に当たっては、例えば、集電体の片面または両面に、正極合剤含有組成物を塗布し、乾燥して溶剤を除去した後、プレス処理により圧縮して正極合剤層の厚みと密度を調整する。正極合剤含有組成物の塗布方法としては、例えば、押出コーター、リバースコーター、ドクターブレードなどの公知の各種塗布方法が採用できる。   In preparation of the positive electrode, for example, the positive electrode mixture-containing composition is applied to one or both sides of the current collector, dried to remove the solvent, and then compressed by press treatment to obtain the thickness and density of the positive electrode mixture layer. Adjust. As a method for applying the positive electrode mixture-containing composition, for example, various known application methods such as an extrusion coater, a reverse coater, and a doctor blade can be employed.

プレス処理による圧縮後の正極合剤層の厚みとしては、例えば、片面当たり、30μm以上、より好ましくは50μm以上であって、300μm以下、より好ましくは150μm以下とすることが望ましい。また、プレス処理による圧縮後の正極合剤層の密度は、例えば、3.55g/cm以上、より好ましくは3.75g/cm以上であって、4.0g/cm以下、より好ましくは3.95g/cm以下とすることが望ましい。よって、プレス処理時の圧縮条件は、圧縮後の正極合剤層の厚み、密度がこのような値となるように調整することが好ましい。 The thickness of the positive electrode mixture layer after compression by the press treatment is, for example, 30 μm or more, more preferably 50 μm or more, and 300 μm or less, more preferably 150 μm or less per side. Further, the density of the positive electrode mixture layer after compression by the press process, for example, 3.55 g / cm 3 or more, more preferably be at 3.75 g / cm 3 or more, 4.0 g / cm 3 or less, more preferably Is desirably 3.95 g / cm 3 or less. Therefore, it is preferable to adjust the compression conditions at the time of the press treatment so that the thickness and density of the positive electrode mixture layer after compression have such values.

正極のリード体は、上記のようにして作製された正極に、抵抗溶接、超音波溶接などにより正極集電体の露出部分(正極合剤層を形成していない部分)に溶接される。リード体の断面積としては、大電流が流れた場合の抵抗を低減して発熱量を抑えるために、例えば、0.1mm以上、より好ましくは0.2mm以上であって、0.8mm以下、より好ましくは0.5mm以下とすることが望ましい。正極のリード体の材質としては、特に限定されないが、アルミニウムが一般に用いられる。 The lead body of the positive electrode is welded to the exposed positive electrode current collector (the portion where the positive electrode mixture layer is not formed) by resistance welding, ultrasonic welding, or the like. The cross-sectional area of the lead body is, for example, 0.1 mm 2 or more, more preferably 0.2 mm 2 or more, and 0.8 mm in order to reduce the resistance when a large current flows and suppress the heat generation amount. 2 or less, more preferably 0.5 mm 2 or less. The material of the positive electrode lead body is not particularly limited, but aluminum is generally used.

次に、本発明の非水二次電池の構成を詳細に説明する。本発明の非水二次電池は、上記本発明の製造方法によって製造される非水二次電池用正極を正極として有していればよく、その他の構成については特に限定されず、従来公知の非水二次電池における各種構成が採用できる。   Next, the configuration of the non-aqueous secondary battery of the present invention will be described in detail. The non-aqueous secondary battery of the present invention only needs to have the positive electrode for a non-aqueous secondary battery produced by the production method of the present invention as a positive electrode, and the other configurations are not particularly limited, and are conventionally known. Various configurations in the non-aqueous secondary battery can be adopted.

負極としては、例えば、負極活物質や結着剤を含有する負極合剤層を、負極集電体の片面または両面に形成してなるものが使用できる。   As a negative electrode, what formed the negative mix layer containing a negative electrode active material and a binder on the single side | surface or both surfaces of a negative electrode collector can be used, for example.

負極活物質としては、リチウムイオンをドープ、脱ドープできるものであればよい。例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などの炭素材料;Si、Sn、Inなどの金属元素を含有する合金;Liに近い低電圧で充放電できるSi、Sn、Inなどの酸化物;などを用いることができる。   Any negative electrode active material may be used as long as it can dope and dedope lithium ions. For example, carbon materials such as graphite, pyrolytic carbons, cokes, glassy carbon, organic polymer compound fired bodies, mesocarbon microbeads, carbon fibers, activated carbon, etc .; containing metal elements such as Si, Sn, and In Alloys; oxides such as Si, Sn, and In that can be charged and discharged at a low voltage close to Li; and the like can be used.

なお、負極活物質として上記例示の炭素材料を用いる場合、該炭素材料としては、(002)面の面間距離(d002)と、c軸方向の結晶子の大きさ(Lc)が以下の数値を有するものが好ましく使用できる。d002については、0.35nm以下であることが好ましく、0.345nm以下であることがより好ましく、0.34nm以下であることが更に好ましい。また、Lcについては、3nm以上であることが好ましく、8nmであることがより好ましく、25nm以上であることが更に好ましい。また、上記例示の炭素材料の平均粒径としては、8μm以上、より好ましくは10μm以上であって、20μm以下、より好ましくは15μm以下であることが望ましく、その純度は、99.9質量%以上であることが好ましい。 When the above-exemplified carbon material is used as the negative electrode active material, the carbon material has a (002) face-to-face distance (d 002 ) and a c-axis direction crystallite size (Lc) of Those having numerical values can be preferably used. d 002 is preferably 0.35 nm or less, more preferably 0.345 nm or less, and still more preferably 0.34 nm or less. Further, Lc is preferably 3 nm or more, more preferably 8 nm, and further preferably 25 nm or more. The average particle size of the carbon material exemplified above is 8 μm or more, more preferably 10 μm or more, preferably 20 μm or less, more preferably 15 μm or less, and its purity is 99.9% by mass or more. It is preferable that

負極は、例えば、上記の負極活物質および結着剤を有し、更に必要に応じて導電助剤も有し、これらが溶剤に分散・溶解してなる負極合剤含有組成物(ペースト、スラリーなど)を負極集電体の片面または両面に塗布し、乾燥して溶剤を除去した後、カレンダー成形などのプレス処理により負極合剤層を圧縮して、その厚みおよび密度を調整することで作製される。   The negative electrode includes, for example, the above-described negative electrode active material and binder, and further includes a conductive auxiliary agent as necessary, and a negative electrode mixture-containing composition (paste, slurry) in which these are dispersed and dissolved in a solvent. Etc.) is applied to one or both sides of the negative electrode current collector, dried to remove the solvent, and then the negative electrode mixture layer is compressed by pressing such as calendering, and the thickness and density thereof are adjusted. Is done.

負極合剤含有組成物に用い得る結着剤としては、正極合剤含有組成物に係る結着剤として上で例示した各種結着剤が使用できる。なお、正極合剤含有組成物の場合と同様に、結着剤は予め溶剤に溶解させた溶液の状態で用いることも好ましい。また、溶剤、および必要に応じて使用される負極用の導電助剤も、正極合剤含有組成物に係る溶剤や導電助剤として上で例示したものが使用できる。   As the binder that can be used in the negative electrode mixture-containing composition, various binders exemplified above as the binder according to the positive electrode mixture-containing composition can be used. As in the case of the positive electrode mixture-containing composition, the binder is preferably used in the state of a solution previously dissolved in a solvent. Moreover, what was illustrated above as a solvent and conductive support agent which concerns on a positive electrode mixture containing composition can also be used for the solvent and the conductive support agent for negative electrodes used as needed.

負極に用いる集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼などの箔、エキスパンドメタル、網などを用い得るが、銅箔が特に好ましい。集電体の厚みは、例えば、5μm以上、より好ましくは8μm以上であって、60μm以下、より好ましくは40μm以下であることが望ましい。   As the current collector used for the negative electrode, for example, a foil such as aluminum, copper, nickel, and stainless steel, an expanded metal, a net, and the like can be used, and a copper foil is particularly preferable. The thickness of the current collector is, for example, 5 μm or more, more preferably 8 μm or more, and preferably 60 μm or less, more preferably 40 μm or less.

負極合剤含有組成物の調製方法については特に制限は無く、従来公知の分散機や混練機などを用いる調製方法が採用できる。また、本発明の正極の製造方法に係る正極合剤含有組成物の調製方法と同じ方法で負極合剤含有組成物を調製してもよい。   There is no restriction | limiting in particular about the preparation method of a negative mix containing composition, The preparation method using a conventionally well-known disperser, a kneader, etc. is employable. Further, the negative electrode mixture-containing composition may be prepared by the same method as the positive electrode mixture-containing composition preparation method according to the positive electrode manufacturing method of the present invention.

負極合剤含有組成物を集電体表面に塗布する方法としては、正極合剤含有組成物を集電体表面に塗布する方法として上で例示した各種塗布方法が採用できる。   As a method for applying the negative electrode mixture-containing composition to the current collector surface, the various application methods exemplified above as a method for applying the positive electrode mixture-containing composition to the current collector surface can be employed.

また、プレス処理による圧縮後の負極合剤層の厚みとしては、例えば、片面当たり、30μm以上、より好ましくは50μm以上であって、300μm以下、より好ましくは150μm以下とすることが望ましい。また、プレス処理による圧縮後の負極合剤層の密度は、例えば、1.50g/cm以上、より好ましくは1.55g/cm以上であって、1.75g/cm以下、より好ましくは1.65g/cm以下とすることが望ましい。よって、プレス処理時の圧縮条件は、圧縮後の負極合剤層の厚み、密度がこのような値となるように調整することが好ましい。 Further, the thickness of the negative electrode mixture layer after being compressed by the press treatment is desirably 30 μm or more, more preferably 50 μm or more, and 300 μm or less, more preferably 150 μm or less per one surface. Further, the density of the negative electrode mixture layer after compression by the press process, for example, 1.50 g / cm 3 or more, more preferably 1.55 g / cm 3 or more, 1.75 g / cm 3 or less, more preferably Is preferably 1.65 g / cm 3 or less. Therefore, it is preferable to adjust the compression conditions at the time of a press process so that the thickness and density of the negative mix layer after compression may become such a value.

負極のリード体は、上記のようにして作製された負極に、抵抗溶接、超音波溶接などにより負極集電体の露出部分(負極合剤層を形成していない部分)に溶接される。リード体の断面積としては、大電流が流れた場合の抵抗を低減して発熱量を抑えるために、例えば、0.1mm以上、より好ましくは0.3mm以上であって、1.0mm以下、より好ましくは0.7mm以下とすることが望ましい。負極のリード体の材質としては、ニッケルが一般に用いられるが、銅、チタン、ステンレス鋼なども用いることができる。 The negative electrode lead body is welded to the exposed negative electrode current collector (the portion where the negative electrode mixture layer is not formed) by resistance welding, ultrasonic welding, or the like. The cross-sectional area of the lead body is, for example, 0.1 mm 2 or more, more preferably 0.3 mm 2 or more, and 1.0 mm in order to reduce resistance when a large current flows and suppress the amount of heat generation. 2 or less, more preferably 0.7 mm 2 or less. Nickel is generally used as the material for the negative electrode lead body, but copper, titanium, stainless steel, and the like can also be used.

本発明の非水二次電池は、例えば、上記のようにして作製される正極(シート状正極)と負極(シート状負極)との間に、セパレータを介在させて渦巻状に巻回した渦巻状電極体、または積層した積層電極体を、ニッケルメッキを施した鉄やステンレス鋼製の電池ケース、若しくは金属ラミネートフィルム内に挿入し、非水電解質(以下、単に「電解質」という)を注入した後、封口する工程を経て作製される。また、上記電池には、通常、電池内部で発生したガスによって所定圧力まで内圧が上昇した段階で、該ガスを電池外部に排出して電池の破裂を防止するための公知の防爆構造が取り入れられる。   The nonaqueous secondary battery of the present invention is, for example, a spiral wound in a spiral shape with a separator interposed between a positive electrode (sheet positive electrode) and a negative electrode (sheet negative electrode) produced as described above. The electrode assembly or the laminated electrode assembly was inserted into a nickel-plated iron or stainless steel battery case or metal laminate film, and a non-aqueous electrolyte (hereinafter simply referred to as “electrolyte”) was injected. Then, it is produced through a sealing step. In addition, the battery generally incorporates a known explosion-proof structure for discharging the gas to the outside of the battery to prevent the battery from bursting when the internal pressure is increased to a predetermined pressure by the gas generated inside the battery. .

正極と負極との間に介在させるセパレータとしては、強度があり、しかも電解液を多く保持できるものが好ましく、そのような観点から、例えば、厚みが10〜50μmで、開孔率が30〜70%の微孔性フィルムや不織布などが好適である。また、セパレータの素材としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体などのポリオレフィン;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル;などが挙げられる。   As the separator interposed between the positive electrode and the negative electrode, those having strength and capable of holding a large amount of electrolyte are preferable. From such a viewpoint, for example, the thickness is 10 to 50 μm and the porosity is 30 to 70. % Of microporous film and nonwoven fabric are suitable. Examples of the material for the separator include polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymer; polyesters such as polyethylene terephthalate and polybutylene terephthalate;

本発明の電池に係る電解質としては、通常、液状電解質(以下、「電解液」という)が用いられる。電解液としては、有機溶媒に溶質を溶解させた有機溶媒系の非水電解液が用いられる。電解液の溶媒は、特に制限は無いが、例えば、鎖状エステルを主溶媒して用いることが好ましい。電解液溶媒として好適な鎖状エステルとしては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、酢酸エチル(EA)、プロピオン酸メチル(MP)などの鎖状のCOO−結合を有するものが挙げられる。なお、これらの鎖状エステルが電解液の主溶媒である、ということは、これらの鎖状エステルが、全電解液溶媒中の50体積%より多い体積を占めることを意味しており、特に鎖状エステルが、全電解液溶媒中の、65体積%以上を占めていることが好ましく、70体積%以上を占めていることがより好ましく、75体積%以上を占めていることが更に好ましい。   As the electrolyte according to the battery of the present invention, a liquid electrolyte (hereinafter referred to as “electrolytic solution”) is usually used. As the electrolytic solution, an organic solvent-based nonaqueous electrolytic solution in which a solute is dissolved in an organic solvent is used. The solvent of the electrolytic solution is not particularly limited. For example, it is preferable to use a chain ester as a main solvent. Examples of chain esters suitable as the electrolyte solvent include chain esters such as dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), ethyl acetate (EA), and methyl propionate (MP). Those having a COO-bond are mentioned. The fact that these chain esters are the main solvent of the electrolytic solution means that these chain esters occupy more than 50% by volume in the total electrolyte solvent, The ester-like ester preferably accounts for 65% by volume or more, more preferably 70% by volume or more, and still more preferably 75% by volume or more in the total electrolyte solvent.

ただし、電池容量の向上を図る観点から、電解液溶媒としては、上記鎖状エステルのみで構成したものよりも、上記鎖状エステルに誘電率の高いエステル(例えば、誘電率が30以上のエステル)を混合した混合溶媒であることが好ましい。このような誘電率の高いエステルの全電解液溶媒中に占める量としては、例えば、10体積%以上であることが好ましく、20体積%以上であることが更に好ましい。   However, from the viewpoint of improving the battery capacity, the electrolyte solvent is an ester having a higher dielectric constant than the chain ester alone (for example, an ester having a dielectric constant of 30 or more). The mixed solvent is preferably mixed. The amount of the ester having such a high dielectric constant in the total electrolyte solvent is, for example, preferably 10% by volume or more, and more preferably 20% by volume or more.

上記の誘電率の高いエステルとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、γ−ブチロラクトン(γ−BL)、エチレングリコールサルファイト(EGS)などが挙げられる。中でも、EC、PCなどの環状構造を有するものが好ましく、環状カーボネートが更に好ましく、ECが特に好ましい。   Examples of the ester having a high dielectric constant include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), γ-butyrolactone (γ-BL), ethylene glycol sulfite (EGS), and the like. . Among these, those having a cyclic structure such as EC and PC are preferred, cyclic carbonates are more preferred, and EC is particularly preferred.

また、上記の鎖状エステルおよび上記の誘電率の高いエステル以外に併用可能な溶媒としては、例えば、1,2−ジメトキシエタン(1,2−DME)、1,3−ジオキソラン(1,3−DO)、テトラヒドロフラン(THF)、2−メチル−テトラヒドロフラン(2−Me−THF)、ジエチルエーテル(DEE)などが挙げられる。その他、アミン系またはイミド系有機溶媒や、含イオウ系または含フッ素系有機溶媒なども用いることができる。   Examples of the solvent that can be used in addition to the chain ester and the ester having a high dielectric constant include 1,2-dimethoxyethane (1,2-DME), 1,3-dioxolane (1,3- DO), tetrahydrofuran (THF), 2-methyl-tetrahydrofuran (2-Me-THF), diethyl ether (DEE) and the like. In addition, amine-based or imide-based organic solvents, sulfur-containing or fluorine-containing organic solvents, and the like can also be used.

電解液の溶質としては、例えば、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)などが挙げられ、これらを1種単独で、または2種以上を併用して用いることができる。特にLiPFやLiCSOなどが、電池の充放電特性をより良好にできることから好ましい。電解液中における溶質の濃度は、特に制限は無いが、例えば、0.3mol/l以上、より好ましくは0.4mol/l以上であって、1.7mol/l以下、より好ましくは1.5mol/l以下とすることが望ましい。 The solute of the electrolyte solution, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), etc., and these may be used alone or in combination of two or more. Can be used. In particular, LiPF 6 and LiC 4 F 9 SO 3 are preferable because they can improve the charge / discharge characteristics of the battery. The concentration of the solute in the electrolytic solution is not particularly limited, but is, for example, 0.3 mol / l or more, more preferably 0.4 mol / l or more, and 1.7 mol / l or less, more preferably 1.5 mol. / L or less is desirable.

また、上記電解液には、添加剤としてベンゼン環にアルキル基が結合した化合物を含有させておくことが好ましい。ベンゼン環にアルキル基が結合した化合物は、過充電時における電池の安全性の向上に寄与し得るものである。これは、非水二次電池が過充電状態になると、ベンゼン環にアルキル基が結合した化合物が、正極側で酸化されて重合し、二量体異常のオリゴマーまたはポリマーを正極表面に生成し、このオリゴマーまたはポリマーにより正極表面に皮膜が形成されることで、過充電に対する安全性が向上するものと考えられる。   The electrolyte solution preferably contains a compound having an alkyl group bonded to a benzene ring as an additive. A compound in which an alkyl group is bonded to a benzene ring can contribute to improvement of battery safety during overcharge. This is because when a non-aqueous secondary battery is overcharged, a compound in which an alkyl group is bonded to a benzene ring is oxidized and polymerized on the positive electrode side to generate a dimer abnormal oligomer or polymer on the positive electrode surface, It is considered that the safety against overcharging is improved by forming a film on the surface of the positive electrode with the oligomer or polymer.

ベンゼン環にアルキル基が結合した化合物としては、例えば、シクロヘキシルベンゼン、イソプロピルベンゼン、n−ブチルベンゼン、オクチルベンゼン、トルエン、キシレンなどが挙げられる。特に、ベンゼン環に結合しているアルキル基において、ベンゼン環と直接結合している炭素原子が少なくとも1個の水素原子と結合していることが、過充電時における電池の安全性向上の観点から、より好ましい。また、上記アルキル基は、炭素数が4以上であるなど、ある程度長いことが好ましく、更に、分岐構造を有するなどにより立体的に嵩張る構造のものであることが好ましい。このような理由から、ベンゼン環にアルキル基が結合した化合物としては、シクロヘキシルベンゼンが特に好ましい。   Examples of the compound having an alkyl group bonded to the benzene ring include cyclohexylbenzene, isopropylbenzene, n-butylbenzene, octylbenzene, toluene, xylene and the like. In particular, in the alkyl group bonded to the benzene ring, the carbon atom directly bonded to the benzene ring is bonded to at least one hydrogen atom from the viewpoint of improving battery safety during overcharge. More preferable. The alkyl group preferably has a certain length such as 4 or more carbon atoms, and preferably has a structure that is three-dimensionally bulky due to having a branched structure. For these reasons, cyclohexylbenzene is particularly preferred as the compound having an alkyl group bonded to the benzene ring.

ベンゼン環にアルキル基が結合した化合物の電解液中の含有量は、多いほど効果が大きくなるが、多すぎると電解液のイオン伝導性を低下させる傾向にある。そのため、ベンゼン環にアルキル基が結合した化合物の電解液中の含有量は、例えば、1質量%以上であって、10質量%以下、より好ましくは5質量%以下とすることが望ましい。   The larger the content of the compound having an alkyl group bonded to the benzene ring in the electrolytic solution, the greater the effect. However, when the content is too large, the ionic conductivity of the electrolytic solution tends to be lowered. Therefore, the content of the compound in which the alkyl group is bonded to the benzene ring in the electrolytic solution is, for example, 1% by mass or more, 10% by mass or less, and more preferably 5% by mass or less.

また、上記電解液には、ベンゼン環にアルキル基を結合した化合物と共に、ビニレンカーボネートなどの、充放電サイクル特性の向上に寄与し得る添加剤を含有させてもよい。このビニレンカーボネートなどの電解液中の含有量は、例えば、0.1質量%以上であって、5質量%以下、より好ましくは2質量%以下とすることが望ましい。   Moreover, you may make the said electrolyte solution contain the additive which can contribute to the improvement of charging / discharging cycling characteristics, such as vinylene carbonate, with the compound which couple | bonded the alkyl group with the benzene ring. The content of the vinylene carbonate or the like in the electrolytic solution is, for example, 0.1% by mass or more, 5% by mass or less, and more preferably 2% by mass or less.

本発明の電池では、電解質としては、上記の電解液以外にも、固体状またはゲル状の電解質を用いることができる。このような電解質としては、公知の無機固体電解質の他、ポリエチレンオキサイド、ポリプロピレンオキサイドまたはこれらの誘導体などを主剤とする有機固体電解質などが挙げられる。   In the battery of the present invention, a solid or gel electrolyte can be used as the electrolyte in addition to the above electrolyte. Examples of such electrolytes include known inorganic solid electrolytes and organic solid electrolytes mainly composed of polyethylene oxide, polypropylene oxide, or derivatives thereof.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

実施例1
<正極の作製>
まず、図1に示す構造の一軸押出機を用いて、正極活物質と導電助剤を混合した。正極活物質として、LiCoO(平均粒径:10μm、比表面積0.4m/g):163質量部と、導電助剤であるケッチェンブラック:3.2質量部を、粉体供給ユニット11にある定量フィーダー内に投入し、一軸押出機に供給した。一軸押出機の回転軸12の回転数は200rpmとし、回転ブレード14と固定ブレード15とのクリアランスは1mmとした。なお、一軸押出機の混合物排出口18は、次工程で使用する図2に示す構造の二軸押出機の粉体供給ユニット21に合うように設置している。
Example 1
<Preparation of positive electrode>
First, the positive electrode active material and the conductive additive were mixed using a single screw extruder having the structure shown in FIG. As a positive electrode active material, LiCoO 2 (average particle diameter: 10 μm, specific surface area 0.4 m 2 / g): 163 parts by mass and Ketjen black: 3.2 parts by mass as a conductive auxiliary agent, powder supply unit 11 Was fed into a fixed quantity feeder and supplied to a single screw extruder. The rotational speed of the rotary shaft 12 of the single screw extruder was 200 rpm, and the clearance between the rotary blade 14 and the fixed blade 15 was 1 mm. In addition, the mixture discharge port 18 of the single screw extruder is installed so as to fit the powder supply unit 21 of the twin screw extruder having the structure shown in FIG. 2 used in the next step.

一軸押出機で連続的に混合し、送り出した正極活物質と導電助剤との混合物を、二軸押出機の粉体供給ユニット21に連続的に供給し、更に、二軸押出機の結着剤供給ユニット22に、PVDFのNMP溶液(固形分濃度が12質量%)を投入し、二軸押出機の混練部で粉体と結着剤溶液との混練を行った。更に、二軸押出機の溶剤供給ユニット23に、溶剤であるNMPを、定量ポンプを用いて投入し、二軸押出機の希釈部で、粉体と結着剤溶液との混練物と、溶剤との混練を行い、正極合剤含有組成物を調製した。なお、二軸押出機の回転軸24の回転数は100rpmとした。また、粉体投入量と結着剤供給ユニット22に供給する結着剤溶液の量を調整して、二軸押出機の混練部における粉体と結着剤溶液との混練物の固形分濃度が常に94質量%となるように制御した。そして溶剤供給ユニット23に供給するNMPの量を調整して、最終的に得られる正極合剤含有組成物の固形分濃度が80質量%となるように制御した。正極合剤含有組成物の粘度は8Pa・sであった。   The mixture of the positive electrode active material and the conductive additive that are continuously mixed and sent out by the single screw extruder is continuously supplied to the powder supply unit 21 of the twin screw extruder, and the binding of the twin screw extruder is further performed. An NMP solution of PVDF (solid content concentration: 12% by mass) was charged into the agent supply unit 22, and the powder and the binder solution were kneaded in the kneading part of the twin screw extruder. Further, NMP, which is a solvent, is charged into the solvent supply unit 23 of the twin screw extruder using a metering pump, and the kneaded product of the powder and the binder solution and the solvent are mixed in the diluting part of the twin screw extruder. And a positive electrode mixture-containing composition was prepared. The rotational speed of the rotary shaft 24 of the twin screw extruder was 100 rpm. Further, the solid content concentration of the kneaded product of the powder and the binder solution in the kneading part of the twin screw extruder is adjusted by adjusting the amount of the powder and the amount of the binder solution supplied to the binder supply unit 22. Was always controlled to be 94% by mass. And the quantity of NMP supplied to the solvent supply unit 23 was adjusted, and it controlled so that solid content concentration of the positive mix containing composition finally obtained might be 80 mass%. The viscosity of the positive electrode mixture-containing composition was 8 Pa · s.

二軸押出機の排出口29から排出された正極合剤含有組成物を、70メッシュの網を通過させて大きな未分散体を取り除いた後、リバースコーター塗布機を用いて、厚みが15μmのアルミニウム箔である正極集電体の両面に均一に塗布し、乾燥して正極合剤層を形成した。正極合剤含有組成物の乾燥後の塗布量は、片面当たり22.4mg/mとした。次にプレス処理により正極合剤層を圧縮して、その厚みと密度を調整した後、所定の電極幅に切断し、集電体の露出部分にアルミニウム製リード体を溶接して、正極合剤層を両面に有するシート状正極を得た。 The positive electrode mixture-containing composition discharged from the discharge port 29 of the twin-screw extruder is passed through a 70-mesh net to remove a large undispersed material, and then an aluminum having a thickness of 15 μm is used using a reverse coater coating machine. It apply | coated uniformly on both surfaces of the positive electrode electrical power collector which is foil, and it dried and formed the positive mix layer. The coating amount after drying of the positive electrode mixture-containing composition was 22.4 mg / m 2 per side. Next, the positive electrode mixture layer is compressed by pressing, and the thickness and density thereof are adjusted. Then, the positive electrode mixture layer is cut into a predetermined electrode width, and an aluminum lead body is welded to the exposed portion of the current collector. A sheet-like positive electrode having layers on both sides was obtained.

<負極の作製>
負極活物質として黒鉛系炭素材料(平均粒径:18μm)300質量部を、CMC水溶液(固形分濃度:1.2質量%)300質量部とSBR系樹脂の水分散体(固形分濃度:40質量%)6.5質量部を混合して負極合剤含有組成物(ペースト)を調製した。さらに水を加え、粘度を調整した。この負極合剤含有組成物の固形分濃度は45質量%であり、塗料粘度は9Pa・sであった。この負極合剤含有組成物を、70メッシュの網を通過させて大きな未分散体を取り除いた後、厚みが10μmの帯状の銅箔からなる負極集電体の両面に均一に塗布し、乾燥して負極合剤層を形成した。次にプレス処理により負極合剤層を圧縮して、その厚みと密度を調整した後、所定の電極幅に切断し、集電体の露出部分にニッケル製リード体を溶接して、負極合剤層を両面に有するシート状負極を得た。
<Production of negative electrode>
300 parts by mass of graphite-based carbon material (average particle size: 18 μm) as a negative electrode active material, 300 parts by mass of CMC aqueous solution (solid content concentration: 1.2% by mass) and an aqueous dispersion of SBR resin (solid content concentration: 40) (Mass%) 6.5 mass parts was mixed and the negative mix containing composition (paste) was prepared. Further, water was added to adjust the viscosity. This negative electrode mixture-containing composition had a solid content concentration of 45% by mass and a paint viscosity of 9 Pa · s. This negative electrode mixture-containing composition was passed through a 70-mesh net to remove a large undispersed material, and then uniformly applied to both sides of a negative electrode current collector made of a strip-shaped copper foil having a thickness of 10 μm and dried. Thus, a negative electrode mixture layer was formed. Next, the negative electrode mixture layer is compressed by press treatment, and the thickness and density thereof are adjusted. Then, the negative electrode mixture layer is cut into a predetermined electrode width, and a nickel lead body is welded to the exposed portion of the current collector. A sheet-like negative electrode having layers on both sides was obtained.

<電解液の調製>
MECとECとを体積比2:1で混合した混合溶媒に、LiPFを1.2mol/lの濃度となるように溶解し、更に2質量%のシクロヘキシルベンゼンを添加して電解液を調製した。
<Preparation of electrolyte>
LiPF 6 was dissolved in a mixed solvent in which MEC and EC were mixed at a volume ratio of 2: 1 so as to have a concentration of 1.2 mol / l, and further 2% by mass of cyclohexylbenzene was added to prepare an electrolytic solution. .

<非水二次電池の作製>
上記の正極および負極を乾燥処理した。その後、正極と負極を、厚みが20μmの微孔性ポリエチレンフィルムからなるセパレータを介して重ね、これを渦巻き状に巻回し、巻回電極体とした。この巻回電極体を、アルミニウム製の角形缶内に挿入し、正極リード体を蓋に、負極リード体を、蓋にパッキングを介して取り付けられている端子に取り付けられているリード板に溶接した後、蓋と缶とをシーム溶接した。その後、蓋に設けられた電解液注入口から上記電解液を注入し、該注入口を封止した後、3時間室温で放置して正負極およびセパレータに電解液を十分に含浸させて、高さ 50mm×幅 34mm×厚み 4.6mmで容量が900mAhの角形非水二次電池を作製した。
<Production of non-aqueous secondary battery>
The above positive electrode and negative electrode were dried. Thereafter, the positive electrode and the negative electrode were overlapped via a separator made of a microporous polyethylene film having a thickness of 20 μm, and this was wound in a spiral shape to obtain a wound electrode body. This wound electrode body was inserted into an aluminum rectangular can, and the positive electrode lead body was welded to a lid, and the negative electrode lead body was welded to a lead plate attached to a terminal attached to the lid via a packing. Thereafter, the lid and the can were seam welded. Thereafter, the electrolyte is injected from the electrolyte inlet provided on the lid, and the inlet is sealed, and then left at room temperature for 3 hours to fully impregnate the positive and negative electrodes and the separator with the electrolyte. A square nonaqueous secondary battery having a size of 50 mm × width 34 mm × thickness 4.6 mm and a capacity of 900 mAh was produced.

比較例1
正極活物質であるLiCoO:163質量部と、導電助剤であるケッチェンブラック:3.2質量部との混合を、プラネタリーミキサーを用い、30rpmの回転数で30分間の条件で実施し、この混合物粉末をプラネタリーミキサーから取り出して二軸押出機の粉体供給ユニット21に供給した以外は、実施例1と同様にして正極合剤含有組成物の調製、正極の作製、および非水二次電池の作製を行った。最終的に得られた正極合剤含有組成物の粘度は、9Pa・sであった。
Comparative Example 1
Mixing of 163 parts by mass of LiCoO 2 as the positive electrode active material and 3.2 parts by mass of Ketjen black as the conductive auxiliary agent was carried out using a planetary mixer at 30 rpm for 30 minutes. The preparation of the positive electrode mixture-containing composition, the production of the positive electrode, and the non-aqueous solution were conducted in the same manner as in Example 1 except that the mixture powder was taken out of the planetary mixer and supplied to the powder supply unit 21 of the twin screw extruder. A secondary battery was produced. The viscosity of the positive electrode mixture-containing composition finally obtained was 9 Pa · s.

比較例2
正極活物質であるLiCoO:184質量部と、導電助剤であるケッチェンブラック:6質量部とを、予備混合することなく、それぞれ直接に二軸押出機の粉体供給ユニット21に供給した以外は、実施例1と同様にして正極合剤含有組成物の調製、正極の作製、および非水二次電池の作製を行った。ただし、二軸押出機での混練を終えて得られた正極合剤含有組成物は、粘度が高すぎて、集電体であるアルミニウム箔への塗布が困難であったため、粘度を調整すべく、更にNMPを加えて正極合剤含有組成物の固形分濃度を78質量%にした後に、正極の作製に供した。なお、粘度調整後の正極合剤含有組成物の粘度は、9.5Pa・sであった。
Comparative Example 2
LiCoO 2 as a positive electrode active material: 184 parts by mass and Ketjen black as a conductive auxiliary agent: 6 parts by mass were directly supplied to the powder supply unit 21 of the twin-screw extruder without being premixed. Except that, the preparation of the positive electrode mixture-containing composition, the production of the positive electrode, and the production of the nonaqueous secondary battery were performed in the same manner as in Example 1. However, the positive electrode mixture-containing composition obtained after kneading in the twin-screw extruder was too high in viscosity to be applied to the aluminum foil as a current collector, so the viscosity should be adjusted. Further, NMP was added to make the solid content concentration of the positive electrode mixture-containing composition 78% by mass, and then the positive electrode was prepared. In addition, the viscosity of the positive electrode mixture-containing composition after the viscosity adjustment was 9.5 Pa · s.

比較例3
まず、導電助剤分散液の調製を、実施例1で使用したものと同じ二軸押出機を用いて以下のように行った。導電助剤であるケッチェンブラック:10質量部を粉体供給ユニット21から、結着剤であるPVDFのNMP溶液(固形分濃度が12質量%):37.5質量部を結着剤供給ユニット22から、更に溶剤であるNMP:52.5質量部を溶剤供給ユニット23から、それぞれ二軸押出機に投入し、回転軸24の回転数を100rpm地として混練を行い、導電助剤分散液を調製した。
Comparative Example 3
First, the conductive auxiliary agent dispersion was prepared using the same twin screw extruder as used in Example 1 as follows. Ketjen Black as a conductive aid: 10 parts by mass from the powder supply unit 21 and NDF solution of PVDF as a binder (solid content concentration: 12% by mass): 37.5 parts by mass as a binder supply unit 22 and 52.5 parts by mass of NMP, which is a solvent, are added from a solvent supply unit 23 to a twin-screw extruder, kneaded at a rotational speed of the rotary shaft 24 of 100 rpm, and a conductive auxiliary agent dispersion is obtained. Prepared.

次に、実施例1で使用したものと同じ二軸押出機をもう1台用意しておき、その粉体供給ユニット21からLiCoO:163質量部を、また、結着剤供給ユニット22から上記導電助剤分散液:32.8質量部を、それぞれ二軸押出機に供給し、回転軸24の回転数を100rpmとして混練を行い、スラリー状の正極合剤含有組成物を調製した。この際、粉体投入量と結着剤供給ユニット22に供給する導電助剤分散液の量を調整して、二軸押出機の混練部におけるLiCoOと導電助剤分散液との混練物の固形分濃度が常に86質量%となるように制御した。そして溶剤供給ユニット23に供給するNMPの量を調整して、最終的に得られる正極合剤含有組成物の固形分濃度が80質量%となるように制御した。しかし、二軸押出機での混練を終えて得られた正極合剤含有組成物は、粘度が高すぎて、集電体であるアルミニウム箔への塗布が困難であったため、粘度を調整すべく更にNMPを加えて正極合剤含有組成物の固形分濃度を75質量%にした。粘度調整後の正極合剤含有組成物の粘度は9Pa・sであった。この正極合剤含有組成物を用いた他は、実施例1と同様にして、正極の作製および非水二次電池の作製を行った。 Next, another two-screw extruder same as that used in Example 1 was prepared, LiCoO 2 : 163 parts by mass from the powder supply unit 21, and the binder supply unit 22 from the above Conductive auxiliary agent dispersion: 32.8 parts by mass were respectively supplied to a twin screw extruder and kneaded at a rotation speed of the rotary shaft 24 of 100 rpm to prepare a slurry-like positive electrode mixture-containing composition. At this time, the amount of the charged powder and the amount of the conductive auxiliary agent dispersion supplied to the binder supply unit 22 are adjusted, and the mixture of the LiCoO 2 and the conductive auxiliary agent dispersion in the kneading part of the twin screw extruder is adjusted. The solid content concentration was always controlled to be 86% by mass. And the quantity of NMP supplied to the solvent supply unit 23 was adjusted, and it controlled so that solid content concentration of the positive mix containing composition finally obtained might be 80 mass%. However, the positive electrode mixture-containing composition obtained after the kneading in the twin-screw extruder has a viscosity that is too high to be applied to the aluminum foil as a current collector. Further, NMP was added to adjust the solid content concentration of the positive electrode mixture-containing composition to 75% by mass. The viscosity of the positive electrode mixture-containing composition after adjusting the viscosity was 9 Pa · s. A positive electrode and a non-aqueous secondary battery were produced in the same manner as in Example 1 except that this positive electrode mixture-containing composition was used.

比較例4
比較例3と同じ方法で、二軸押出機の混練部におけるLiCoOと導電助剤分散液との混練物の固形分濃度が、実施例1と同じ94質量%の正極合剤含有組成物を調製するために、実施例1で使用したものと同じ二軸押出機を用い、導電助剤であるケッチェンブラック:20質量部を粉体供給ユニット21から、結着剤であるPVDFのNMP溶液(固形分濃度が12質量%):37.5質量部を結着剤供給ユニット22から、更に溶剤であるNMP:47.5質量部を溶剤供給ユニット23から、それぞれ二軸押出機に投入し、回転軸24の回転数を100rpmとして混練を行った。しかし、ケッチェンブラックの比表面積が大きいために、この比率が高くなることでケッチェンブラックがNMPを吸収してしまい、導電助剤分散液を作製することができなかった。
Comparative Example 4
In the same manner as in Comparative Example 3, a positive electrode mixture-containing composition having a solid content concentration of the kneaded product of LiCoO 2 and the conductive additive dispersion in the kneading part of the twin screw extruder was 94% by mass as in Example 1. In order to prepare, the same twin screw extruder as used in Example 1 was used, and 20 parts by mass of Ketjen black as a conductive auxiliary agent was supplied from the powder supply unit 21 to an NMP solution of PVDF as a binder. (Solid content concentration is 12% by mass): 37.5 parts by mass from the binder supply unit 22 and 47.5 parts by mass of NMP as a solvent from the solvent supply unit 23 to the twin screw extruder. The kneading was performed with the rotational speed of the rotary shaft 24 set to 100 rpm. However, since the specific surface area of ketjen black is large, the ketjen black absorbs NMP by increasing this ratio, and a conductive auxiliary agent dispersion cannot be prepared.

上記実施例1および比較例1〜3の非水二次電池に係る正極におけるプレス処理による圧縮前後の正極合剤層密度を以下のようにして求めた。正極を所定面積で切り取り、その重量を、最小目盛り1mgの電子天秤を用いて測定し、この重量から集電体の重量を差し引いて正極合剤層の重量を算出した。また、上記正極の全厚を最小目盛り1μmのマイクロメーターで10点測定し、この厚みから集電体の厚みを差し引いて正極合剤層の厚みを算出し、その平均値と面積から正極合剤層の体積を算出し、この体積で上記の正極合剤層の重量を割ることにより、正極合剤層の密度を算出した。その結果を表1に示す。なお、表1には、実施例および比較例における二軸押出機での混練の際の、混練部での混練物の固形分濃度と、最終的に得られた正極合剤含有組成物の固形分濃度を併記する。   The density of the positive electrode mixture layer before and after compression by pressing in the nonaqueous secondary batteries of Example 1 and Comparative Examples 1 to 3 was determined as follows. The positive electrode was cut out in a predetermined area, the weight was measured using an electronic balance having a minimum scale of 1 mg, and the weight of the positive electrode mixture layer was calculated by subtracting the weight of the current collector from this weight. Further, the total thickness of the positive electrode was measured at 10 points with a micrometer having a minimum scale of 1 μm, and the thickness of the positive electrode mixture layer was calculated by subtracting the thickness of the current collector from this thickness, and the positive electrode mixture was calculated from the average value and area. The density of the positive electrode mixture layer was calculated by calculating the volume of the layer and dividing the weight of the positive electrode mixture layer by this volume. The results are shown in Table 1. In Table 1, the solid content concentration of the kneaded product in the kneading part at the time of kneading with the twin-screw extruder in Examples and Comparative Examples, and the solid content of the finally obtained positive electrode mixture-containing composition The concentration is also shown.

また、実施例1および比較例1〜3の非水二次電池について、以下の電池特性評価を行った。まず充放電電流をCで示した場合、900mAを1Cとして、1Cの電流で、4.2Vまで充電を行い、0.2Cの電流で3.0Vまで放電し、初期放電容量を求めた。   Moreover, the following battery characteristic evaluation was performed about the non-aqueous secondary battery of Example 1 and Comparative Examples 1-3. First, when the charge / discharge current is indicated by C, 900 mA is set to 1C, the battery is charged to 4.2V with a current of 1C, discharged to 3.0V with a current of 0.2C, and the initial discharge capacity was obtained.

更に、1Cの電流で4.2Vまで充電を行い、1Cで放電する充放電サイクル試験を行った。400サイクル目の放電容量および内部インピーダンスを測定し、400サイクル目の放電容量については、これを1サイクル目の放電容量で除した容量維持率で評価した。更に、この容量維持率および内部インピーダンスの結果は、比較例1の電池を100とした場合の相対比で評価した。結果を表2に示す。   Further, a charge / discharge cycle test was performed in which the battery was charged to 4.2 V with a current of 1 C and discharged at 1 C. The discharge capacity and internal impedance at the 400th cycle were measured, and the discharge capacity at the 400th cycle was evaluated by a capacity maintenance ratio obtained by dividing this by the discharge capacity at the first cycle. Furthermore, the results of the capacity retention ratio and the internal impedance were evaluated by the relative ratio when the battery of Comparative Example 1 was set to 100. The results are shown in Table 2.

Figure 0005072061
Figure 0005072061

Figure 0005072061
Figure 0005072061

表1および表2から、以下のことが分かる。正極合剤層と導電助剤を予め連続的に混合し、送り出す上記の工程(A)と、該工程(A)で得られた混合物と結着剤を二軸押出機で混練し、更に溶剤を該二軸押出機に供給して混練する工程(B)を経て調製した正極合剤含有組成物を用いて作製した実施例1に係る正極では、プレス処理による圧縮前の正極合剤層密度が高く、プレス処理による圧縮処理後の正極合剤密度も高くなっている。そして、この正極を用いた実施例1の非水二次電池では、放電容量が高く、また、正極合剤層中における正極活物質と導電助剤との分散が良好であることから、400サイクル後の容量維持率および内部インピーダンスも良好である。   From Tables 1 and 2, the following can be understood. The above-mentioned step (A) in which the positive electrode mixture layer and the conductive additive are continuously mixed and sent out in advance, and the mixture obtained in the step (A) and the binder are kneaded with a twin screw extruder, and further the solvent In the positive electrode according to Example 1 manufactured using the positive electrode mixture-containing composition prepared through the step (B) of supplying the kneaded product to the twin-screw extruder, the positive electrode mixture layer density before compression by press treatment The positive electrode mixture density after the compression treatment by press treatment is also high. And in the nonaqueous secondary battery of Example 1 using this positive electrode, the discharge capacity is high, and the positive electrode active material and the conductive additive in the positive electrode mixture layer are well dispersed. The subsequent capacity maintenance rate and internal impedance are also good.

これに対し、工程(A)に代えて、正極活物質と導電助剤の混合を、バッチ式のプラネタリーミキサーで行った比較例1では、正極合剤含有組成物の調製工程が非効率で生産性が劣っている。また、比較例1では、実施例1に比べて正極合剤含有組成物の混練度合いが低く、これを用いて作製した正極を有する非水二次電池では、実施例1の非水二次電池に比べて、放電容量やインピーダンス特性が劣っている。   On the other hand, instead of the step (A), in the comparative example 1 in which the mixing of the positive electrode active material and the conductive auxiliary was performed with a batch type planetary mixer, the preparation step of the positive electrode mixture-containing composition was inefficient. Productivity is inferior. Further, in Comparative Example 1, the degree of kneading of the positive electrode mixture-containing composition was lower than that in Example 1, and in the non-aqueous secondary battery having a positive electrode produced using the composition, the non-aqueous secondary battery of Example 1 was used. Compared with, discharge capacity and impedance characteristics are inferior.

また、工程(A)に相当する工程を経ずに調製した正極合剤含有組成物を用いた比較例2では、正極活物質と導電助剤との分散が劣っており、圧縮前後のいずれにおいても、正極合剤層の密度が小さくなり、この正極を用いた非水二次電池では、放電容量、400サイクル目における容量維持率および内部インピーダンスのいずれもが、実施例1の非水二次電池に比べて劣っている。   Moreover, in Comparative Example 2 using the positive electrode mixture-containing composition prepared without going through the step corresponding to step (A), the dispersion of the positive electrode active material and the conductive additive was inferior, and before and after compression However, the density of the positive electrode mixture layer is reduced, and in the nonaqueous secondary battery using this positive electrode, the discharge capacity, the capacity retention ratio at the 400th cycle, and the internal impedance are all the same as those of the nonaqueous secondary battery of Example 1. It is inferior to the battery.

更に、予め導電助剤分散液を調製してから正極合剤含有組成物を調製し、これを正極の作製に用いた比較例3では、正極合剤含有組成物の固形分濃度が小さいために、プレス処理による圧縮前の正極合剤層密度が低く、正極集電体の破損を防止しつつプレス処理を行うと、圧縮後の正極合剤層密度を、実施例1の程度にまで高めることはできなかった。そのため、この正極を用いた非水二次電池では、実施例1の非水二次電池に比べて放電容量が劣っている。また、正極合剤含有組成物の練りの程度が低いために、実施例1の非水二次電池に比べて、特にインピーダンス特性が劣っている。なお、上記の通り、比較例3における正極合剤含有組成物の調製方法と同じ方法で、実施例1に係る正極合剤含有組成物と同じ高固形分濃度の正極合剤含有組成物の調製を試みた比較例4では、正極合剤含有組成物が調製できなかった。   Furthermore, in the comparative example 3 which prepared the positive electrode mixture containing composition after preparing a conductive support agent dispersion liquid beforehand, and used this for preparation of a positive electrode, since solid content concentration of a positive electrode mixture containing composition is small. When the press treatment is performed while the positive electrode mixture layer density before compression by pressing is low and the positive electrode current collector is prevented from being damaged, the positive electrode mixture layer density after compression is increased to the level of Example 1. I couldn't. Therefore, in the non-aqueous secondary battery using this positive electrode, the discharge capacity is inferior to the non-aqueous secondary battery of Example 1. Further, since the degree of kneading of the positive electrode mixture-containing composition is low, the impedance characteristics are particularly inferior as compared with the nonaqueous secondary battery of Example 1. In addition, as above-mentioned, it is the same method as the preparation method of the positive mix containing composition in the comparative example 3, and preparation of the positive mix containing composition of the same high solid content concentration as the positive mix containing composition which concerns on Example 1 In Comparative Example 4 which attempted the above, a positive electrode mixture-containing composition could not be prepared.

工程(A)に用い得る押出機の一例を示す縦断面概略図である。It is a longitudinal cross-sectional schematic diagram which shows an example of the extruder which can be used for a process (A). 工程(B)に用い得る二軸押出機の一例を示す縦断面概略図である。It is a longitudinal cross-sectional schematic diagram which shows an example of the twin-screw extruder which can be used for a process (B).

符号の説明Explanation of symbols

11、21 粉体供給ユニット
12 24 回転軸
13 フィールドスクリュー
14 回転ブレード
15 固定ブレード
16 メーターリングスクリュー
17、28 バレル
18 混合物排出口
22 結着剤供給ユニット
23 溶剤供給ユニット
25 スクリュー
26 パドル
27 スペーサー
29 正極合剤含有組成物排出口
DESCRIPTION OF SYMBOLS 11, 21 Powder supply unit 12 24 Rotating shaft 13 Field screw 14 Rotating blade 15 Fixed blade 16 Metering screw 17, 28 Barrel 18 Mixture discharge port 22 Binder supply unit 23 Solvent supply unit 25 Screw 26 Paddle 27 Spacer 29 Positive electrode Mixture-containing composition outlet

Claims (3)

正極合剤含有組成物を導電性基体に塗布し、乾燥して正極合剤層を形成する工程を経由して非水二次電池用正極を製造するに当たり、
正極活物質と導電助剤とを連続的に混合し、送り出す工程(A)と、
上記工程(A)により得られた正極活物質と導電助剤の混合物と結着剤を二軸押出機に供給して混練し、更に該二軸押出機に溶剤を供給して混練することにより正極合剤含有組成物を調製する工程(B)を有することを特徴とする非水二次電池用正極の製造方法。
In producing a positive electrode for a non-aqueous secondary battery through a step of applying a positive electrode mixture-containing composition to a conductive substrate and drying to form a positive electrode mixture layer,
A step of continuously mixing and feeding out the positive electrode active material and the conductive auxiliary agent (A);
By supplying and kneading the mixture of the positive electrode active material and conductive additive obtained in the step (A) and the binder to a twin screw extruder, and further supplying the solvent to the twin screw extruder and kneading. A method for producing a positive electrode for a non-aqueous secondary battery, comprising the step (B) of preparing a positive electrode mixture-containing composition.
工程(A)において、正極活物質と導電助剤とを連続的に混合し、送り出す装置として、一軸押出機または二軸押出機を使用する請求項1に記載の非水二次電池用正極の製造方法。   In the step (A), the positive electrode active material and the conductive additive are continuously mixed, and a single-screw extruder or a twin-screw extruder is used as an apparatus for feeding out the positive electrode for a non-aqueous secondary battery according to claim 1. Production method. 請求項1または2に記載の非水二次電池用正極の製造方法により製造された正極を有することを特徴とする非水二次電池。 A non-aqueous secondary battery comprising a positive electrode produced by the method for producing a positive electrode for a non-aqueous secondary battery according to claim 1.
JP2006042065A 2006-02-20 2006-02-20 Method for producing positive electrode for non-aqueous secondary battery and non-aqueous secondary battery Active JP5072061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006042065A JP5072061B2 (en) 2006-02-20 2006-02-20 Method for producing positive electrode for non-aqueous secondary battery and non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006042065A JP5072061B2 (en) 2006-02-20 2006-02-20 Method for producing positive electrode for non-aqueous secondary battery and non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2007220581A JP2007220581A (en) 2007-08-30
JP5072061B2 true JP5072061B2 (en) 2012-11-14

Family

ID=38497610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006042065A Active JP5072061B2 (en) 2006-02-20 2006-02-20 Method for producing positive electrode for non-aqueous secondary battery and non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP5072061B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169033B (en) * 2010-12-08 2013-04-03 北京科技大学 Fixed-point non-destructive testing method for internal residual stress of aluminum alloy plate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6080044B2 (en) * 2013-01-21 2017-02-15 パナソニックIpマネジメント株式会社 Nonaqueous secondary battery plate manufacturing method
JP6764677B2 (en) * 2015-05-11 2020-10-07 出光興産株式会社 Manufacturing method of electrode mixture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4448704B2 (en) * 2004-02-04 2010-04-14 日立マクセル株式会社 Method for producing positive electrode paint for lithium ion secondary battery and lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169033B (en) * 2010-12-08 2013-04-03 北京科技大学 Fixed-point non-destructive testing method for internal residual stress of aluminum alloy plate

Also Published As

Publication number Publication date
JP2007220581A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP5187791B1 (en) Method for producing composition for forming positive electrode mixture layer and method for producing lithium ion secondary battery
JP5220273B2 (en) Electrode and non-aqueous secondary battery using the same
KR100781709B1 (en) Method of preparation of cathode coat-materials for lithium ion secondary battery and the same
JP5156406B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2019515465A (en) Positive electrode for secondary battery and lithium secondary battery including the same
JP2012174569A (en) Preparation method of slurry for forming positive electrode mixture layer, and method of manufacturing nonaqueous electrolyte secondary battery
JP4988169B2 (en) Lithium secondary battery
JP2019164967A (en) Negative electrode active material, negative electrode abd lithium ion secondary battery
JP2019175657A (en) Lithium ion secondary battery
JP4357857B2 (en) Slurries for electrode mixture layers, electrode plates, and non-aqueous electrolyte batteries
JP5072061B2 (en) Method for producing positive electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP4971646B2 (en) Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same
JP4979049B2 (en) Non-aqueous secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2012129126A (en) Method of producing electrode paint of lithium ion secondary battery using continuous biaxial kneader
JP4220867B2 (en) Slurry for forming positive electrode of nonaqueous electrolyte secondary battery, positive electrode of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013073779A (en) Method of preparing composition for positive electrode mixture layer formation, and method of manufacturing nonaqueous electrolytic solution secondary battery
JP2001196095A (en) Manufacturing method for non-aqueous electrolytic solvent secondary battery
JP7363443B2 (en) Lithium ion secondary battery
JP2022181360A (en) lithium ion secondary battery
JP2014143064A (en) Secondary battery and method for manufacturing the same
KR20220057715A (en) Negative electrode active material for lithium secondary battery, negative electrode and lithium secondary battery
JP2015201283A (en) Manufacturing method of cathode for nonaqueous secondary battery, and cathode for nonaqueous secondary battery
JP4155392B2 (en) Method for producing positive electrode for non-aqueous secondary battery
JP2005327642A (en) Manufacturing method of anode plate for nonaqueous electrolyte solution secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110518

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Ref document number: 5072061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250