JP5068221B2 - Manufacturing method of spark plug - Google Patents

Manufacturing method of spark plug Download PDF

Info

Publication number
JP5068221B2
JP5068221B2 JP2008151558A JP2008151558A JP5068221B2 JP 5068221 B2 JP5068221 B2 JP 5068221B2 JP 2008151558 A JP2008151558 A JP 2008151558A JP 2008151558 A JP2008151558 A JP 2008151558A JP 5068221 B2 JP5068221 B2 JP 5068221B2
Authority
JP
Japan
Prior art keywords
spark plug
intermediate member
electrode
base material
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008151558A
Other languages
Japanese (ja)
Other versions
JP2009301733A (en
Inventor
靖 坂倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2008151558A priority Critical patent/JP5068221B2/en
Publication of JP2009301733A publication Critical patent/JP2009301733A/en
Application granted granted Critical
Publication of JP5068221B2 publication Critical patent/JP5068221B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spark Plugs (AREA)

Description

本発明は、スパークプラグの製造方法に関する。   The present invention relates to a method for manufacturing a spark plug.

スパークプラグには、メンテナンスフリー達成のための長寿命化のみならず、電極の小型化による着火性の向上や燃焼効率の向上が求められ、こうした要求に応えるため、中心電極や接地電極における火花放電部位に貴金属チップ部材を接合したスパークプラグが知られている。このようなスパークプラグにおいて、貴金属チップ部材と電極母材との間に、貴金属チップ部材の線膨張係数と電極母材の線膨張係数との中間の値の線膨張係数を有する中間部材を配置する技術が知られている(例えば、特許文献1)。   Spark plugs are required not only to have a long life to achieve maintenance-free, but also to improve ignitability and combustion efficiency by miniaturizing the electrodes. To meet these demands, spark discharge at the center electrode and ground electrode is required. A spark plug in which a noble metal tip member is joined to a part is known. In such a spark plug, an intermediate member having a linear expansion coefficient that is an intermediate value between the linear expansion coefficient of the noble metal tip member and the linear expansion coefficient of the electrode base material is disposed between the noble metal tip member and the electrode base material. A technique is known (for example, Patent Document 1).

特開昭60−262374号公報JP 60-262374 A 特開昭59−94391号公報JP 59-94391 A 特開平6−60959号公報JP-A-6-60959

このような構成を採用することにより、貴金属チップ部材の電極母材からの剥離を抑制している。   By adopting such a configuration, peeling of the noble metal tip member from the electrode base material is suppressed.

しかしながら、貴金属チップ部材と中間部材を含む複数の部材を母材に接合する際の工程の簡略化や、溶接精度の向上など、製造方法の改善が求められていた。   However, there has been a demand for improvement in the manufacturing method such as simplification of a process when joining a plurality of members including a noble metal tip member and an intermediate member to a base material, and improvement in welding accuracy.

本発明は、チップ部材と中間部材を含む複数の部材を電極母材に接合したスパークプラグにおいて、その製造方法を改善することを目的とする。   An object of the present invention is to improve a manufacturing method of a spark plug in which a plurality of members including a tip member and an intermediate member are joined to an electrode base material.

本発明は、上述の課題の少なくとも一部を解決するために、以下の形態または適用例を取ることが可能である。   In order to solve at least a part of the problems described above, the present invention can take the following forms or application examples.

[適用例1](a)電極母材を準備する工程と、
(b)前記電極母材の上に、少なくとも1つの中間部材を挟んで、チップ部材を積層する工程と、
(c)前記電極母材と前記中間部材との間と、前記中間部材と前記チップ部材との間とを抵抗溶接する工程と、
を備える、スパークプラグの製造方法。
こうすれば、電極母材と中間部材との間と、中間部材とチップ部材との間とを同時に抵抗溶接するので、スパークプラグを製造するための工程数を削減できる。
[Application Example 1] (a) a step of preparing an electrode base material;
(B) a step of laminating a chip member on at least one intermediate member on the electrode base material;
(C) resistance welding between the electrode base material and the intermediate member and between the intermediate member and the tip member;
A method for manufacturing a spark plug.
By doing so, resistance welding is simultaneously performed between the electrode base material and the intermediate member and between the intermediate member and the tip member, so that the number of steps for manufacturing the spark plug can be reduced.

[適用例2]適用例1に記載のスパークプラグの製造方法であって、
前記(c)工程は、
(c1)前記中間部材と前記チップ部材をチャックで把持することにより前記中間部材と前記チップ部材の積層方向と垂直な方向への移動を規制する工程と、
(c2)前記中間部材と前記チップ部材を前記チャックで把持した状態で、抵抗溶接用電極を前記チップ部材の端面に当接させる工程と、
(c3)前記抵抗溶接電極を前記チップ部材の端面に当接した状態で、前記チャックによる把持を解除する工程と、
(c4)前記抵抗溶接電極を前記チップ部材の端面に当接し、前記チャックによる把持を解除した状態で、前記抵抗溶接電極を介して、前記チップ部材および前記中間部材および前記電極母材に通電し、前記抵抗溶接を行う工程と、
を備え、
前記チャックの前記積層方向の厚さは、前記中間部材の前記積層方向の厚さの合計より大きく、前記中間部材と前記チップ部材の前記積層方向の厚さの合計より小さい、スパークプラグの製造方法。
こうすれば、チャックの厚さが、中間部材の厚さの合計より大きく、中間部材とチップ部材の厚さの合計より小さいので、該チャックは、チップ部材と中間部材とを同時に把持できると共に、チャックで把持した状態でチップ部材の端面全体に抵抗溶接用電極を当接させることができる。この結果、チップ部材と中間部材と電極母材を精度良く抵抗溶接することができる。
[Application Example 2] A spark plug manufacturing method according to Application Example 1,
The step (c)
(C1) regulating the movement of the intermediate member and the chip member in a direction perpendicular to the stacking direction by gripping the intermediate member and the chip member with a chuck;
(C2) bringing the resistance welding electrode into contact with the end surface of the tip member in a state where the intermediate member and the tip member are held by the chuck;
(C3) releasing the gripping by the chuck while the resistance welding electrode is in contact with the end surface of the tip member;
(C4) Energizing the tip member, the intermediate member, and the electrode base material through the resistance welding electrode in a state where the resistance welding electrode is in contact with the end surface of the tip member and released from the chuck. Performing the resistance welding;
With
The spark plug manufacturing method, wherein a thickness of the chuck in the stacking direction is larger than a total thickness of the intermediate member in the stacking direction and smaller than a total thickness of the intermediate member and the chip member in the stacking direction. .
In this way, the chuck thickness is larger than the total thickness of the intermediate member and smaller than the total thickness of the intermediate member and the tip member, so that the chuck can grip the tip member and the intermediate member simultaneously, The resistance welding electrode can be brought into contact with the entire end surface of the tip member while being held by the chuck. As a result, the tip member, the intermediate member, and the electrode base material can be resistance-welded with high accuracy.

[適用例3]適用例1または適用例2に記載のスパークプラグの製造方法であって、
前記チップ部材の前記積層方向の厚さをTaとし、
前記中間部材の前記積層方向の厚さをTbとした場合において、
Tb>Ta
を満たす、スパークプラグの製造方法。
こうすれば、抵抗溶接された中間部材と貴金属チップ部材との間に発生する応力を抑制することができる。この結果、貴金属チップ部材と中間部材との剥離を抑制することができる。
[Application Example 3] A spark plug manufacturing method according to Application Example 1 or Application Example 2,
The thickness of the chip member in the stacking direction is Ta,
When the thickness of the intermediate member in the stacking direction is Tb,
Tb> Ta
A spark plug manufacturing method that satisfies the requirements.
If it carries out like this, the stress which generate | occur | produces between the intermediate member and noble metal tip member which were resistance-welded can be suppressed. As a result, peeling between the noble metal tip member and the intermediate member can be suppressed.

[適用例4]
適用例1ないし適用例3のいずれかに記載のスパークプラグの製造方法であって、
前記中間部材のヤング率は、前記チップ部材のヤング率および前記電極母材のヤング率より小さい、スパークプラグの製造方法。
こうすれば、中間部材のヤング率が貴金属チップ部材のヤング率および電極母材のヤング率より小さいので、中間部材と貴金属チップ部材との間、および、中間部材と電極母材との間に発生する応力を抑制することができる。この結果、中間部材と貴金属チップ部材と剥離、および、中間部材と電極母材との剥離を抑制することができる。
[Application Example 4]
A spark plug manufacturing method according to any one of Application Examples 1 to 3,
The spark plug manufacturing method, wherein a Young's modulus of the intermediate member is smaller than a Young's modulus of the tip member and a Young's modulus of the electrode base material.
By doing so, the Young's modulus of the intermediate member is smaller than the Young's modulus of the noble metal tip member and the Young's modulus of the electrode base material, so that it occurs between the intermediate member and the noble metal tip member and between the intermediate member and the electrode base material. Stress to be suppressed. As a result, separation between the intermediate member and the noble metal tip member and separation between the intermediate member and the electrode base material can be suppressed.

[適用例5]
適用例1ないし適用例4のいずれかに記載のスパークプラグの製造方法であって、
前記中間部材の線膨張係数は、前記チップ部材の線膨張係数より大きく、前記電極母材の線膨張係数より小さい、スパークプラグの製造方法。
こうすれば、中間部材の線膨張係数は、貴金属チップ部材の線膨張係数より大きく、電極母材の線膨張係数より小さいので、中間部材と貴金属チップ部材との間、および、中間部材と電極母材との間に発生する応力を抑制することができる。この結果、中間部材と貴金属チップ部材と剥離、および、中間部材と電極母材との剥離を抑制することができる。
[Application Example 5]
A spark plug manufacturing method according to any one of Application Examples 1 to 4,
The spark plug manufacturing method, wherein a linear expansion coefficient of the intermediate member is larger than a linear expansion coefficient of the tip member and smaller than a linear expansion coefficient of the electrode base material.
In this case, the linear expansion coefficient of the intermediate member is larger than the linear expansion coefficient of the noble metal tip member and smaller than the linear expansion coefficient of the electrode base material, and therefore, between the intermediate member and the noble metal tip member, and between the intermediate member and the electrode base member. The stress which generate | occur | produces between materials can be suppressed. As a result, separation between the intermediate member and the noble metal tip member and separation between the intermediate member and the electrode base material can be suppressed.

[適用例6]
適用例1ないし適用例5のいずれかに記載のスパークプラグの製造方法であって、
前記中間部材は、
i)パラジウム(Pd)
ii)金(Au)
iii)金パラジウム合金(AuPd合金)
のうちのいずれかを主成分とする材料で形成されている、スパークプラグの製造方法。
こうすれば、上記ヤング率の条件と、線膨張係数の条件を満たす中間部材を形成することができる。
[Application Example 6]
A spark plug manufacturing method according to any one of Application Examples 1 to 5,
The intermediate member is
i) Palladium (Pd)
ii) Gold (Au)
iii) Gold palladium alloy (AuPd alloy)
A method for producing a spark plug, wherein the spark plug is made of a material mainly comprising any one of the above.
In this way, an intermediate member that satisfies the conditions of the Young's modulus and the linear expansion coefficient can be formed.

[適用例7]
適用例1ないし適用例6のいずれかに記載のスパークプラグの製造方法であって、
前記スパークプラグは、中心電極と接地電極とを備え、
前記中心電極および前記接地電極の少なくとも一方は、前記工程(a)〜(c)に従って製造され、
前記中心電極と前記接地電極は、前記スパークプラグの軸線方向に火花ギャップを形成する、スパークプラグの製造方法。
こうすれば、縦放電型のスパークプラグを容易に製造することができる。
[Application Example 7]
A spark plug manufacturing method according to any one of Application Example 1 to Application Example 6,
The spark plug includes a center electrode and a ground electrode,
At least one of the center electrode and the ground electrode is manufactured according to the steps (a) to (c),
The spark plug manufacturing method, wherein the center electrode and the ground electrode form a spark gap in an axial direction of the spark plug.
In this way, a longitudinal discharge type spark plug can be easily manufactured.

[適用例8]
適用例1ないし適用例6のいずれかに記載のスパークプラグの製造方法であって、
前記スパークプラグは、中心電極と接地電極とを備え、
前記中心電極および前記接地電極の少なくとも一方は、前記工程(a)〜(c)に従って製造され、
前記中心電極と前記接地電極は、前記スパークプラグの軸線方向と垂直な方向に火花ギャップを形成する、スパークプラグの製造方法。
こうすれば、横放電型のスパークプラグを容易に製造することができる。
[Application Example 8]
A spark plug manufacturing method according to any one of Application Example 1 to Application Example 6,
The spark plug includes a center electrode and a ground electrode,
At least one of the center electrode and the ground electrode is manufactured according to the steps (a) to (c),
The spark plug manufacturing method, wherein the center electrode and the ground electrode form a spark gap in a direction perpendicular to an axial direction of the spark plug.
In this way, a transverse discharge type spark plug can be easily manufactured.

[適用例9]
適用例1ないし適用例8のいずれかに記載のスパークプラグの製造方法であって、
前記チップ部材は、前記積層方向と垂直な断面が直径Daの円である円筒形状を有し、
前記中間部材は、前記積層方向と垂直な断面が直径Dbの円である円筒形状を有し、
Db>Da
を満たす、スパークプラグの製造方法。
こうすれば、貴金属チップ部材は、中間部材より小さく、円筒形上の底面全体で中間部材と抵抗溶接されるので、貴金属チップ部材の中間部材からの剥離を抑制することができる。
[Application Example 9]
A method for manufacturing a spark plug according to any one of Application Example 1 to Application Example 8,
The chip member has a cylindrical shape whose cross section perpendicular to the stacking direction is a circle with a diameter Da,
The intermediate member has a cylindrical shape whose cross section perpendicular to the stacking direction is a circle having a diameter Db,
Db> Da
A spark plug manufacturing method that satisfies the requirements.
In this way, the noble metal tip member is smaller than the intermediate member and is resistance-welded to the intermediate member over the entire bottom surface on the cylindrical shape, so that peeling of the noble metal tip member from the intermediate member can be suppressed.

[適用例10]
適用例1ないし適用例9のいずれかに記載のスパークプラグの製造方法であって、
前記中間部材における前記積層方向と垂直な断面の面積をSbとし、
前記中間部材における積層方向の厚さをTbとした場合において、
25πTb2>Sb(πは円周率)
を満たす、スパークプラグの製造方法。
こうすれば、円筒形状の中間部材と貴金属チップ部材との間に発生する応力を抑制することができる。この結果、貴金属チップ部材と円筒形状の中間部材との剥離を抑制することができる。
[Application Example 10]
A spark plug manufacturing method according to any one of Application Example 1 to Application Example 9,
The area of the cross section perpendicular to the stacking direction in the intermediate member is Sb,
When the thickness in the stacking direction of the intermediate member is Tb,
25πTb2> Sb (π is the circumference)
A spark plug manufacturing method that satisfies the requirements.
If it carries out like this, the stress which generate | occur | produces between a cylindrical intermediate member and a noble metal tip member can be suppressed. As a result, peeling between the noble metal tip member and the cylindrical intermediate member can be suppressed.

[適用例11]
適用例10に記載のスパークプラグの製造方法であって、
前記中間部材は、積層方向と垂直な断面が直径Dbの円形である円筒形状を有し、
10Tb>Db
を満たす、スパークプラグの製造方法。
こうすれば、円筒形状の中間部材と貴金属チップ部材との間に発生する応力を抑制することができる。この結果、貴金属チップ部材と円筒形状の中間部材との剥離を抑制することができる。
[Application Example 11]
A method of manufacturing a spark plug according to Application Example 10,
The intermediate member has a cylindrical shape whose cross section perpendicular to the stacking direction is a circle having a diameter Db,
10Tb> Db
A spark plug manufacturing method that satisfies the requirements.
If it carries out like this, the stress which generate | occur | produces between a cylindrical intermediate member and a noble metal tip member can be suppressed. As a result, peeling between the noble metal tip member and the cylindrical intermediate member can be suppressed.

A.第1実施形態:
・スパークプラグの構成:
以下、本発明の実施の態様を実施形態に基づいて説明する。図1は本発明の一実施形態としてのスパークプラグ100の部分断面図である。なお、図1において、スパークプラグ100の軸線方向ODを図面における上下方向とし、下側をスパークプラグ100の先端側、上側を後端側として説明する。
A. First embodiment:
・ Spark plug configuration:
Hereinafter, embodiments of the present invention will be described based on the embodiments. FIG. 1 is a partial cross-sectional view of a spark plug 100 as an embodiment of the present invention. In FIG. 1, the axial direction OD of the spark plug 100 will be described as the vertical direction in the drawing, the lower side will be described as the front end side, and the upper side as the rear end side.

図1に示すように、スパークプラグ100は、絶縁体としての絶縁碍子10と、この絶縁碍子10を保持する主体金具50と、絶縁碍子10内に軸線方向ODに保持された中心電極20と、接地電極30と、絶縁碍子10の後端部に設けられた端子金具40とを備える。   As shown in FIG. 1, the spark plug 100 includes an insulator 10 as an insulator, a metal shell 50 that holds the insulator 10, a center electrode 20 that is held in the insulator 10 in the axial direction OD, A ground electrode 30 and a terminal fitting 40 provided at the rear end of the insulator 10 are provided.

絶縁碍子10は周知のようにアルミナ等を焼成して形成され、軸中心に軸線方向ODへ延びる軸孔12が形成された筒形状を有する。軸線方向ODの略中央には外径が最も大きな鍔部19が形成されており、それより後端側(図1における上側)には後端側胴部18が形成されている。鍔部19より先端側(図1における下側)には、後端側胴部18よりも外径の小さな先端側胴部17が形成され、さらにその先端側胴部17よりも先端側に、先端側胴部17よりも外径の小さな脚長部13が形成されている。脚長部13は先端側ほど縮径され、スパークプラグ100が内燃機関のエンジンヘッド200に取り付けられた際には、その燃焼室に曝される。脚長部13と先端側胴部17との間には段部15が形成されている。   As is well known, the insulator 10 is formed by firing alumina or the like, and has a cylindrical shape in which an axial hole 12 extending in the axial direction OD is formed at the axial center. A flange portion 19 having the largest outer diameter is formed substantially at the center in the axial direction OD, and a rear end side body portion 18 is formed on the rear end side (upper side in FIG. 1). A front end side body portion 17 having a smaller outer diameter than the rear end side body portion 18 is formed on the front end side from the flange portion 19 (lower side in FIG. 1), and further, on the front end side from the front end side body portion 17, A leg length portion 13 having an outer diameter smaller than that of the distal end side body portion 17 is formed. The long leg portion 13 is reduced in diameter toward the tip side, and is exposed to the combustion chamber when the spark plug 100 is attached to the engine head 200 of the internal combustion engine. A step portion 15 is formed between the long leg portion 13 and the front end side body portion 17.

主体金具50は、内燃機関のエンジンヘッド200にスパークプラグ100を固定するための円筒状の金具である。主体金具50は、絶縁碍子10を、その後端側胴部18の一部から脚長部13にかけての部位を取り囲むようにして内部に保持している。主体金具50は低炭素鋼材より形成され、図示しないスパークプラグレンチが嵌合する工具係合部51と、内燃機関の上部に設けられたエンジンヘッド200の取付ネジ孔201に螺合するネジ山が形成された取付ネジ部52とを備えている。本実施形態では、この取付ネジ部52を、その外径M(呼び径)が標準的な外径であるM14、或いは、M10〜M18とした。   The metal shell 50 is a cylindrical metal fitting for fixing the spark plug 100 to the engine head 200 of the internal combustion engine. The metal shell 50 holds the insulator 10 inside so as to surround a portion from a part of the rear end side body part 18 to the leg long part 13. The metal shell 50 is formed of a low carbon steel material, and has a thread engaging with a tool engaging portion 51 into which a spark plug wrench (not shown) is fitted and a mounting screw hole 201 of the engine head 200 provided at the upper part of the internal combustion engine. And a formed mounting screw portion 52. In the present embodiment, the mounting screw portion 52 is M14 or M10 to M18 whose outer diameter M (nominal diameter) is a standard outer diameter.

主体金具50の工具係合部51と取付ネジ部52との間には、鍔状のシール部54が形成されている。取付ネジ部52とシール部54との間のネジ首59には、板体を折り曲げて形成した環状のガスケット5が嵌挿されている。ガスケット5は、スパークプラグ100をエンジンヘッド200に取り付けた際に、シール部54の座面55と取付ネジ孔201の開口周縁部205との間で押し潰されて変形する。このガスケット5の変形により、スパークプラグ100とエンジンヘッド200間が封止され、取付ネジ孔201を介したエンジン内の気密漏れが防止される。   Between the tool engaging portion 51 and the mounting screw portion 52 of the metal shell 50, a bowl-shaped seal portion 54 is formed. An annular gasket 5 formed by bending a plate is fitted into a screw neck 59 between the mounting screw portion 52 and the seal portion 54. When the spark plug 100 is attached to the engine head 200, the gasket 5 is crushed and deformed between the seat surface 55 of the seal portion 54 and the opening peripheral edge portion 205 of the attachment screw hole 201. Due to the deformation of the gasket 5, the gap between the spark plug 100 and the engine head 200 is sealed, and airtight leakage in the engine through the mounting screw hole 201 is prevented.

主体金具50の工具係合部51より後端側には薄肉の加締部53が設けられている。また、シール部54と工具係合部51との間には、加締部53と同様に薄肉の座屈部58が設けられている。工具係合部51から加締部53にかけての主体金具50の内周面と絶縁碍子10の後端側胴部18の外周面との間には、円環状のリング部材6,7が介在されており、さらに両リング部材6,7間にタルク(滑石)9の粉末が充填されている。加締部53を内側に折り曲げるようにして加締めることにより、リング部材6,7およびタルク9を介し、絶縁碍子10が主体金具50内で先端側に向け押圧される。これにより、主体金具50の内周で取付ネジ部52の位置に形成された段部56に、環状の板パッキン8を介し、絶縁碍子10の段部15が支持されて、主体金具50と絶縁碍子10とが一体にされる。このとき、主体金具50と絶縁碍子10との間の気密性は、板パッキン8によって保持され、燃焼ガスの流出が防止される。座屈部58は、加締めの際に、圧縮力の付加に伴い外向きに撓み変形するように構成されており、タルク9の軸線方向ODの圧縮長を長くして主体金具50内の気密性を高めている。なお、段部56よりも先端側における主体金具50と絶縁碍子10との間には、所定寸法のクリアランスが設けられている。   A thin caulking portion 53 is provided on the rear end side of the metal fitting 50 from the tool engaging portion 51. Further, a thin buckled portion 58 is provided between the seal portion 54 and the tool engaging portion 51, similarly to the caulking portion 53. Between the inner peripheral surface of the metal shell 50 from the tool engagement portion 51 to the crimping portion 53 and the outer peripheral surface of the rear end side body portion 18 of the insulator 10, annular ring members 6 and 7 are interposed. Further, talc (talc) 9 powder is filled between the ring members 6 and 7. By crimping the crimping portion 53 so as to be bent inward, the insulator 10 is pressed toward the front end side in the metal shell 50 via the ring members 6, 7 and the talc 9. As a result, the step portion 15 of the insulator 10 is supported by the step portion 56 formed at the position of the mounting screw portion 52 on the inner periphery of the metal shell 50 via the annular plate packing 8 so as to be insulated from the metal shell 50. The insulator 10 is integrated. At this time, the airtightness between the metal shell 50 and the insulator 10 is maintained by the plate packing 8, and the outflow of combustion gas is prevented. The buckling portion 58 is configured to bend outwardly and deform as the compression force is applied during caulking. The compression length in the axial direction OD of the talc 9 is increased to increase the airtightness in the metal shell 50. Increases sex. A clearance having a predetermined dimension is provided between the metal shell 50 and the insulator 10 on the tip side of the step portion 56.

図2は、第1実施形態におけるスパークプラグ100の中心電極20の先端付近の拡大図である。中心電極20は、インコネル(商標名)600等のニッケルまたはニッケルを主成分とする合金から形成された電極母材21の内部に、電極母材21よりも熱伝導性に優れる銅または銅を主成分とする合金からなる芯材25を埋設した構造を有する棒状の電極である。通常、中心電極20は、有底筒状に形成された電極母材21の内部に芯材25を詰め、底側から押出成形を行って引き延ばすことで作製される。芯材25は、胴部分においては略一定の外径をなすものの、先端側においては先細り形状に形成される。   FIG. 2 is an enlarged view of the vicinity of the tip of the center electrode 20 of the spark plug 100 according to the first embodiment. The center electrode 20 is mainly made of copper or copper having higher thermal conductivity than the electrode base material 21 inside the electrode base material 21 made of nickel or an alloy containing nickel as a main component, such as Inconel (trade name) 600. It is a rod-shaped electrode having a structure in which a core material 25 made of an alloy as a component is embedded. Usually, the center electrode 20 is produced by filling a core material 25 inside an electrode base material 21 formed in a bottomed cylindrical shape, and performing extrusion molding from the bottom side and stretching it. The core member 25 has a substantially constant outer diameter at the body portion, but is formed in a tapered shape at the distal end side.

中心電極20、詳しくは、電極母材21は、その先端部分に、先端に向かって小径となるテーパ状の電極母材台座22と溶融部23と電極チップ90とを備え、この電極チップ90を含む電極母材台座22よりも先端側の部分は絶縁碍子10の先端部11よりも突出されている。電極チップ90は、耐火花消耗性を向上するために、高融点の貴金属を主成分として形成されている。この電極チップ90としては、例えば、イリジウム(Ir)や、Irを主成分として、白金(Pt)、ロジウム(Rh)、ルテニウム(Ru)、パラジウム(Pd)、レニウム(Re)のうち、1種類あるいは2種類以上を添加したIr合金によって形成され、Ir−5Pt合金(5質量%の白金を含有したイリジウム合金)などが多用される。   The center electrode 20, more specifically, the electrode base material 21, includes a tapered electrode base material base 22, a melting portion 23, and an electrode tip 90 having a small diameter toward the front end. The portion on the tip side of the electrode base material pedestal 22 is protruded from the tip portion 11 of the insulator 10. The electrode tip 90 is formed with a high melting point noble metal as a main component in order to improve spark wear resistance. Examples of the electrode chip 90 include iridium (Ir) and one type of platinum (Pt), rhodium (Rh), ruthenium (Ru), palladium (Pd), and rhenium (Re) mainly containing Ir. Alternatively, an Ir alloy to which two or more kinds are added is used, and an Ir-5Pt alloy (iridium alloy containing 5% by mass of platinum) or the like is frequently used.

溶融部23は、電極母材台座22への電極チップ90の溶接、例えばレーザを照射してその熱により電極母材台座22と電極チップ90とを溶融させるレーザ溶接を経て形成される。つまり、電極母材台座22の先端面に電極チップ90を配置した状態で、電極母材台座22と電極チップ90との境界面を狙ってレーザを照射しつつ、その照射箇所を境界面全周に亘って一周させる。このレーザ溶接では、レーザの照射により両材料(電極母材台座22の構成材と電極チップ90の貴金属)が溶融して混ざり合うため、電極チップ90と電極母材台座22とが強固に接合されると共に、電極母材台座22と電極チップ90とを繋ぐ溶融部23が形成される。この溶融部23は、上記両材料の溶融により両材料の合金として形成される。   The melting part 23 is formed through welding of the electrode tip 90 to the electrode base material pedestal 22, for example, laser welding that irradiates a laser and melts the electrode base material base 22 and the electrode tip 90 by the heat. That is, in a state where the electrode tip 90 is disposed on the tip surface of the electrode base material pedestal 22, while irradiating a laser aiming at the boundary surface between the electrode base material base 22 and the electrode tip 90, the irradiated portion is arranged around the entire boundary surface. Make one round. In this laser welding, since both materials (the constituent material of the electrode base material base 22 and the noble metal of the electrode tip 90) are melted and mixed by laser irradiation, the electrode tip 90 and the electrode base material base 22 are firmly joined. At the same time, a melting portion 23 that connects the electrode base material base 22 and the electrode tip 90 is formed. The melting portion 23 is formed as an alloy of both materials by melting the both materials.

中心電極20は軸孔12内を後端側に向けて延設され、シール体4およびセラミック抵抗3(図1参照)を経由して、後方(図1における上方)の端子金具40に電気的に接続されている。端子金具40には高圧ケーブル(図示外)がプラグキャップ(図示外)を介して接続され、高電圧が印加される。   The center electrode 20 extends in the shaft hole 12 toward the rear end side, and is electrically connected to the terminal fitting 40 on the rear side (upper side in FIG. 1) via the seal body 4 and the ceramic resistor 3 (see FIG. 1). It is connected to the. A high voltage cable (not shown) is connected to the terminal fitting 40 via a plug cap (not shown), and a high voltage is applied.

接地電極30の電極母材は耐腐食性の高い金属から構成され、一例として、ニッケル合金が用いられる。本実施形態では、インコネル(商標名)600(INC600)と呼ばれるニッケル合金が用いられている。この接地電極30は、自身の長手方向と直交する方向における横断面が略長方形を有している。接地電極30の母材基端部(一端部)32は、主体金具50の先端面57に溶接にて接合されている。接地電極30の母材先端部(他端部)31の一側面は、中心電極20の電極チップ90と、軸線O上で軸線方向ODに対向するように屈曲されている。そして、この接地電極30の母材先端部31の一側面と電極チップ90の先端面との間には火花ギャップが形成される。この火花ギャップは、例えば、0.2〜0.6mm程度である。   The electrode base material of the ground electrode 30 is made of a metal having high corrosion resistance. As an example, a nickel alloy is used. In this embodiment, a nickel alloy called Inconel (trade name) 600 (INC600) is used. The ground electrode 30 has a substantially rectangular cross section in a direction orthogonal to its longitudinal direction. The base end portion (one end portion) 32 of the ground electrode 30 is joined to the distal end surface 57 of the metal shell 50 by welding. One side surface of the base end portion (other end portion) 31 of the ground electrode 30 is bent so as to face the electrode tip 90 of the center electrode 20 on the axis O in the axial direction OD. A spark gap is formed between one side surface of the base material tip 31 of the ground electrode 30 and the tip surface of the electrode tip 90. This spark gap is, for example, about 0.2 to 0.6 mm.

接地電極30の母材先端部31において、電極チップ90と対向する側面には、2層部材300が電極母材に抵抗溶接されている。2層部材300は、貴金属チップ部材310と、中間部材320とを有している。貴金属チップ部材310と中間部材320とは、電極チップ90と対向する方向(第1実施形態では、軸線方向OD)に積層されている。貴金属チップ部材310の下側の面と中間部材320の上側の面との間は、抵抗溶接されている。中間部材320の下側の面は、接地電極30の電極母材と抵抗溶接されている。貴金属チップ部材310には、例えば、Pt(白金)または、Ptを主成分とする合金が用いられる。本実施形態では、Pt−20Ir合金(20質量%のイリジウムを含有した白金合金)が用いられている。中間部材320には、Pd(パラジウム)またはPdを主成分とする合金、Au(金)またはAuを主成分とする合金、AuPd合金、Pt合金が用いられる。本実施形態では、Pdや、Pt−20Ni(20質量%のニッケルを含有した白金合金)が用いられている。中間部材320は、中間部材320の下側が接地電極30の電極母材に埋設されているのは、2層部材300を電極母材に抵抗溶接する際に、中間部材320より融点の低い電極母材が溶けるため、中間部材320の下側部分が電極部材の内部に沈みこむためである。中間部材320の積層方向(第1実施形態では、軸線方向OD)の厚さTbは、貴金属チップ部材310の積層方向の厚さTaより大きい(Tb>Ta)。   A two-layer member 300 is resistance-welded to the electrode base material at the side surface facing the electrode tip 90 at the base material tip 31 of the ground electrode 30. The two-layer member 300 includes a noble metal tip member 310 and an intermediate member 320. The noble metal tip member 310 and the intermediate member 320 are stacked in a direction facing the electrode tip 90 (in the first embodiment, the axial direction OD). Resistance welding is performed between the lower surface of the noble metal tip member 310 and the upper surface of the intermediate member 320. The lower surface of the intermediate member 320 is resistance-welded to the electrode base material of the ground electrode 30. For the noble metal tip member 310, for example, Pt (platinum) or an alloy containing Pt as a main component is used. In this embodiment, a Pt-20Ir alloy (a platinum alloy containing 20% by mass of iridium) is used. For the intermediate member 320, Pd (palladium) or an alloy containing Pd as a main component, Au (gold) or an alloy containing Au as a main component, an AuPd alloy, or a Pt alloy is used. In this embodiment, Pd or Pt-20Ni (a platinum alloy containing 20% by mass of nickel) is used. The intermediate member 320 has the lower side of the intermediate member 320 embedded in the electrode base material of the ground electrode 30 when the two-layer member 300 is resistance welded to the electrode base material. This is because the lower part of the intermediate member 320 sinks into the electrode member because the material melts. The thickness Tb of the intermediate member 320 in the stacking direction (in the first embodiment, the axial direction OD) is larger than the thickness Ta of the noble metal tip member 310 in the stacking direction (Tb> Ta).

図3は、接地電極30の母材先端部31を、軸線方向ODに見た図である。貴金属チップ部材310は、厚さ方向に垂直な方向の断面が直径Daの円形である。中間部材320は、厚さ方向に垂直な方向の断面が直径Dbの円形である。すなわち、貴金属チップ部材310および中間部材320は、円筒形状を有している。中間部材320の直径Dbは、貴金属チップ部材310の直径Daより大きく、貴金属チップ部材310と中間部材320の厚さ方向に垂直な方向の断面は、同心円である。したがって、中間部材320の外縁部は、厚さ方向から見て、貴金属チップ部材310の外縁より外側にはみ出している。   FIG. 3 is a view of the base material tip 31 of the ground electrode 30 as viewed in the axial direction OD. The noble metal tip member 310 has a circular cross section with a diameter Da in a direction perpendicular to the thickness direction. The intermediate member 320 has a circular shape with a diameter Db in a cross section perpendicular to the thickness direction. That is, the noble metal tip member 310 and the intermediate member 320 have a cylindrical shape. The diameter Db of the intermediate member 320 is larger than the diameter Da of the noble metal tip member 310, and the cross section in the direction perpendicular to the thickness direction of the noble metal tip member 310 and the intermediate member 320 is concentric. Therefore, the outer edge portion of the intermediate member 320 protrudes outside the outer edge of the noble metal tip member 310 when viewed from the thickness direction.

ここで本実施形態では、中間部材320の直径Dbと、中間部材320の厚さTbとは、10Tb>Dbを満たす。なお、この式を、中間部材320の上側の面の面積Sbは、Sb=π(Db/2)2であるので、10Tb>Dbの式を、Sbを用いて表すと、25π2>Sbとなる。 Here, in the present embodiment, the diameter Db of the intermediate member 320 and the thickness Tb of the intermediate member 320 satisfy 10Tb> Db. In addition, since the area Sb of the upper surface of the intermediate member 320 is Sb = π (Db / 2) 2 in this equation, when the equation of 10Tb> Db is expressed using Sb, 25π T b 2 > Sb.

以下に、接地電極30の電極母材の材料(INC600)と、貴金属チップ部材310の材料(Pt−20Ir)と、中間部材320の材料(PdまたはPt−20Ni)の特性を示す。   The characteristics of the electrode base material (INC 600) of the ground electrode 30, the material of the noble metal tip member 310 (Pt-20Ir), and the material of the intermediate member 320 (Pd or Pt-20Ni) are shown below.

Figure 0005068221
Figure 0005068221

表1から解るように、中間部材320のヤング率は、貴金属チップ部材310のヤング率および接地電極30の電極母材のヤング率より小さい。そして、中間部材320の線膨張係数は、貴金属チップ部材310の線膨張係数より大きく、接地電極30の電極母材の線膨張係数より小さい。   As can be seen from Table 1, the Young's modulus of the intermediate member 320 is smaller than the Young's modulus of the noble metal tip member 310 and the electrode base material of the ground electrode 30. The linear expansion coefficient of the intermediate member 320 is larger than the linear expansion coefficient of the noble metal tip member 310 and smaller than the linear expansion coefficient of the electrode base material of the ground electrode 30.

以上説明した本実施形態によれば、中間部材320の積層方向の厚さTbは、貴金属チップ部材310の積層方向の厚さTaより大きい(Tb>Ta)ので、貴金属チップ部材310と中間部材320との剥離が抑制される。   According to the present embodiment described above, the thickness Tb of the intermediate member 320 in the stacking direction is larger than the thickness Ta of the noble metal tip member 310 in the stacking direction (Tb> Ta). Peeling is suppressed.

図4は、中間部材320と貴金属チップ部材310との間(抵抗溶接部)に発生する応力を示すグラフである。このグラフは、シミュレーションによって計算された値である。このシミュレーションでは、中間部材320の直径Daを2.9mm、貴金属チップ部材310の直径Dbを3.0mm、貴金属チップ部材310の厚さTaを0.3mmと設定している。そして、貴金属チップ部材310の材料特性はPt−20Ir、接地電極30の電極母材の材料特性はINC600の特性値をそれぞれ用いている。また、このシミュレーションでは、中間部材320の材料としては、Pd(丸印)とPt−20Ni(四角印)の2種類について計算し、中間部材320の厚さTbとしては、0.2mm〜0.5mmまで0.1mm刻みで計算した。このグラフの縦軸は、貴金属チップ部材と中間部材の間に発生する応力について、中間部材320の材料がPt−20NiであってTbが0.2mmのときの応力を1としたときの比を表す。 FIG. 4 is a graph showing the stress generated between the intermediate member 320 and the noble metal tip member 310 (resistance welding portion). This graph is a value calculated by simulation. In this simulation, the diameter Da of the intermediate member 320 is set to 2.9 mm, the diameter Db of the noble metal tip member 310 is set to 3.0 mm, and the thickness Ta of the noble metal tip member 310 is set to 0.3 mm. The material characteristic of the noble metal tip member 310 is Pt-20Ir, and the material characteristic of the electrode base material of the ground electrode 30 is the characteristic value of INC600. Further, in this simulation, two types of materials, Pd (circle) and Pt-20Ni (square), are calculated as the material of the intermediate member 320, and the thickness Tb of the intermediate member 320 is 0.2 mm to 0.2 mm. The calculation was performed in increments of 0.1 mm up to 5 mm. The vertical axis of this graph represents the ratio of the stress generated between the noble metal tip member and the intermediate member when the material of the intermediate member 320 is Pt-20Ni and Tb is 0.2 mm and the stress is 1. To express.

図4に示すシミュレーション結果から解るように、Tb>Taが満たされる領域では、貴金属チップ部材310と中間部材320との間に発生する応力が、Tb≦Taが満たされる領域より、顕著に抑制される。その結果、貴金属チップ部材310と中間部材320との剥離を抑制することができる。   As can be seen from the simulation results shown in FIG. 4, in the region where Tb> Ta is satisfied, the stress generated between the noble metal tip member 310 and the intermediate member 320 is significantly suppressed as compared with the region where Tb ≦ Ta is satisfied. The As a result, peeling between the noble metal tip member 310 and the intermediate member 320 can be suppressed.

また、本実施形態では、中間部材320の積層方向の厚さTbと、中間部材320の上側の面の直径Dbとの間は、10Tb>Dbの関係式を満たすので、貴金属チップ部材310と中間部材320との剥離が抑制される。   In the present embodiment, the relationship between the thickness Tb of the intermediate member 320 in the stacking direction and the diameter Db of the upper surface of the intermediate member 320 satisfies the relational expression of 10Tb> Db. Separation from the member 320 is suppressed.

図4に示すシミュレーション結果から解るように、10Tb>Dbが満たされる領域では、貴金属チップ部材310と中間部材320との間に発生する応力が、10Tb≦Dbが満たされる領域より、顕著に抑制される。その結果、貴金属チップ部材310と中間部材320との剥離を抑制することができる。   As can be seen from the simulation results shown in FIG. 4, in the region where 10Tb> Db is satisfied, the stress generated between the noble metal tip member 310 and the intermediate member 320 is significantly suppressed compared to the region where 10Tb ≦ Db is satisfied. The As a result, peeling between the noble metal tip member 310 and the intermediate member 320 can be suppressed.

中間部材320は、貴金属チップ部材310および接地電極30の電極母材よりヤング率が低い、すなわち、弾性変形しやすい材料である。このような中間部材320が貴金属チップ部材310と接地電極30の電極母材との間にクッションとして介在することによって、貴金属チップ部材310と接地電極30の抵抗溶接面に発生する応力を緩和することができる。このような応力緩和能力が十分に発揮されるためには、中間部材320はある程度の厚さTbが必要になると考えられる。そして、この応力緩和能力が十分に発揮されるために厚さTbが満たすべき条件が、10Tb>Dbや、Tb>Taであると考えられる。   The intermediate member 320 is a material having a lower Young's modulus than the electrode base material of the noble metal tip member 310 and the ground electrode 30, that is, a material that is easily elastically deformed. The intermediate member 320 is interposed as a cushion between the noble metal tip member 310 and the electrode base material of the ground electrode 30 to relieve stress generated on the resistance welding surface of the noble metal tip member 310 and the ground electrode 30. Can do. It is considered that the intermediate member 320 needs a certain thickness Tb in order to sufficiently exhibit such stress relaxation ability. And, it is considered that the conditions that the thickness Tb should satisfy in order to sufficiently exhibit the stress relaxation ability are 10Tb> Db and Tb> Ta.

また、本実施形態では、中間部材320の線膨張係数は、貴金属チップ部材310の線膨張係数より大きく、接地電極30の電極母材の線膨張係数より小さいので、温度変化により中間部材と貴金属チップ部材との間、および、中間部材と電極母材との間に発生する応力を抑制することができる。この結果、中間部材320と貴金属チップ部材310と剥離、および、中間部材320と接地電極30の電極母材との剥離をより抑制することができる。   Further, in this embodiment, the linear member has a linear expansion coefficient larger than that of the noble metal tip member 310 and smaller than that of the electrode base material of the ground electrode 30, so that the intermediate member and the noble metal tip are changed due to temperature change. Stress generated between the members and between the intermediate member and the electrode base material can be suppressed. As a result, separation between the intermediate member 320 and the noble metal tip member 310 and separation between the intermediate member 320 and the electrode base material of the ground electrode 30 can be further suppressed.

・スパークプラグの製造方法:
上記したスパークプラグ100は、例えば、以下のような製造方法によって製造することが可能である。まず、上述した電極チップ90が溶融部23を介在させて電極母材台座22に接合された中心電極20と、絶縁碍子10と、主体金具50と、接地電極30とを用意する。次いで、中心電極20の先端部(詳しくは、電極チップ90と溶融部23と電極母材台座22)を露出させつつ中心電極20の外周を覆うように絶縁碍子10に中心電極20を組み付ける。その後、絶縁碍子10の外周に、絶縁碍子10の先端部が主体金具50の先端面から1.5mm程度或いはそれ以上突出するように、主体金具50を組み付けると共に、接地電極30の母材基端部32を主体金具50の先端面57に接合する。接合された接地電極30の母材先端部31に、貴金属チップ部材310および中間部材320を積層して抵抗溶接する。その後、接地電極30の母材先端部31が中心電極20の先端部と対向するように接地電極30を屈曲する。
・ Spark plug manufacturing method:
The spark plug 100 described above can be manufactured, for example, by the following manufacturing method. First, the center electrode 20, the insulator 10, the metal shell 50, and the ground electrode 30 in which the above-described electrode tip 90 is joined to the electrode base material base 22 with the melting part 23 interposed are prepared. Next, the center electrode 20 is assembled to the insulator 10 so as to cover the outer periphery of the center electrode 20 while exposing the tip of the center electrode 20 (specifically, the electrode tip 90, the melting portion 23, and the electrode base material base 22). Thereafter, the metal shell 50 is assembled on the outer periphery of the insulator 10 so that the tip of the insulator 10 protrudes from the tip surface of the metal shell 50 by about 1.5 mm or more, and the base end of the base electrode of the ground electrode 30 The part 32 is joined to the front end surface 57 of the metal shell 50. The noble metal tip member 310 and the intermediate member 320 are laminated on the base material tip 31 of the joined ground electrode 30, and resistance welding is performed. Thereafter, the ground electrode 30 is bent so that the base material tip 31 of the ground electrode 30 faces the tip of the center electrode 20.

図5は、母材先端部31に貴金属チップ部材310および中間部材320を抵抗溶接する工程を示すフローチャートである。ステップS10では、貴金属チップ部材310および中間部材320が抵抗溶接される前の接地電極30(電極母材)が準備される。ステップS20では、準備された電極母材の母材先端部31の上に、中間部材320と、貴金属チップ部材310とを積層する。   FIG. 5 is a flowchart showing a process of resistance welding the noble metal tip member 310 and the intermediate member 320 to the base material tip 31. In step S10, the ground electrode 30 (electrode base material) before the noble metal tip member 310 and the intermediate member 320 are resistance-welded is prepared. In step S20, the intermediate member 320 and the noble metal tip member 310 are laminated on the base end portion 31 of the prepared electrode base material.

図6は、図5のステップS20の状態を示す図である。図6(A)は、母材先端部31を中間部材320と貴金属チップ部材310の積層の方向(以下、単に積層方向と言う)から見た図であり、図6(B)は、図6(A)におけるB−B断面を示す図である。中間部材320および貴金属チップ部材310は、積層方向の上側から見て同心円状となるように積層される。なお、図示は省略するが、母材先端部31は、積層方向の下側の端部が設置台に設置されており、設置台を介して電気的に接地されている。   FIG. 6 is a diagram showing the state of step S20 in FIG. 6A is a view of the base material tip 31 viewed from the direction of stacking of the intermediate member 320 and the noble metal tip member 310 (hereinafter simply referred to as the stacking direction), and FIG. It is a figure which shows the BB cross section in (A). The intermediate member 320 and the noble metal tip member 310 are stacked so as to be concentric when viewed from the upper side in the stacking direction. In addition, although illustration is abbreviate | omitted, as for the base material front-end | tip part 31, the lower end part of the lamination direction is installed in the installation base, and is electrically grounded through the installation base.

ステップS30では、把持治具400により、貴金属チップ部材310と中間部材320が、母材先端部31と共に把持される。   In step S <b> 30, the noble metal tip member 310 and the intermediate member 320 are held together with the base material tip 31 by the holding jig 400.

図7は、図5のステップS30の状態を示す図である。把持治具400は、第1チャック部410と、第2チャック部420と、治具本体430とを備えている。把持治具400が閉じた状態で、第1チャック部410は、貴金属チップ部材310を把持する。本実施形態では、第1チャック部410の内側端は、把持治具400が閉じた状態で、積層方向から見て正方形を有している。この正方形の一辺の長さは、概ね貴金属チップ部材310の円筒形状の直径に等しく、把持治具400が閉じた状態で、第1チャック部410の内側端面は、正方形の各辺の中央部にて、貴金属チップ部材310の側面に当接する。したがって、第1チャック部410は、4点の当接によって、貴金属チップ部材310を把持する。第1チャック部410の厚さCaは、貴金属チップ部材310の厚さTaより小さい。第1チャック部の内端側は積層方向から見て正方形としたが、これに限らず貴金属チップ部材310を把持することができれば丸型やその他の形状でも良い。   FIG. 7 is a diagram showing the state of step S30 in FIG. The gripping jig 400 includes a first chuck part 410, a second chuck part 420, and a jig body 430. In a state where the gripping jig 400 is closed, the first chuck portion 410 grips the noble metal tip member 310. In the present embodiment, the inner end of the first chuck portion 410 has a square shape when viewed from the stacking direction with the gripping jig 400 closed. The length of one side of the square is approximately equal to the diameter of the cylindrical shape of the noble metal tip member 310. With the gripping jig 400 closed, the inner end surface of the first chuck portion 410 is at the center of each side of the square. Then, it contacts the side surface of the noble metal tip member 310. Therefore, the first chuck portion 410 grips the noble metal tip member 310 by the contact of four points. The thickness Ca of the first chuck portion 410 is smaller than the thickness Ta of the noble metal tip member 310. Although the inner end side of the first chuck portion is square when viewed from the stacking direction, the shape is not limited to this and may be a round shape or other shapes as long as the noble metal tip member 310 can be gripped.

把持治具400が閉じた状態で、第2チャック部420は、中間部材320を把持する。本実施形態では、第2チャック部420の内側端は、第1チャック部410と同様に、把持治具400が閉じた状態で、積層方向から見て正方形を有している。この正方形の一辺の長さは、概ね中間部材320の円筒形状の直径に等しく、把持治具400が閉じた状態で、第2チャック部420の内側端面は、正方形の各辺の中央部にて、中間部材320の側面に当接する。したがって、第2チャック部420は、4点の当接によって、中間部材320を把持する。中間部材320の厚さCbは、中間部材320の厚さTbと概ね等しい。第2チャック部の内端側は積層方向から見て正方形としたが、これに限らず中間部材320を把持することができれば丸型やその他の形状でも良い。   With the gripping jig 400 closed, the second chuck portion 420 grips the intermediate member 320. In the present embodiment, the inner end of the second chuck portion 420 has a square shape when viewed from the stacking direction with the gripping jig 400 closed, as with the first chuck portion 410. The length of one side of this square is approximately equal to the diameter of the cylindrical shape of the intermediate member 320. With the gripping jig 400 closed, the inner end surface of the second chuck portion 420 is at the center of each side of the square. , Abuts against the side surface of the intermediate member 320. Therefore, the second chuck portion 420 grips the intermediate member 320 by four points of contact. The thickness Cb of the intermediate member 320 is approximately equal to the thickness Tb of the intermediate member 320. The inner end side of the second chuck portion is square when viewed from the stacking direction, but is not limited thereto, and may be a round shape or other shapes as long as the intermediate member 320 can be gripped.

以上の説明から解るように、チャック部の厚さ、すなわち、第1チャック部410と第2チャック部420の厚さの和Ca+Cbは、中間部材320の厚さTbより大きく、中間部材320と貴金属チップ部材310の厚さの和Ta+Tbより小さい。したがって、貴金属チップ部材310の積層方向の上側の端面は、第1チャック部410の同方向の端面より高い位置になる。   As understood from the above description, the thickness of the chuck portion, that is, the sum Ca + Cb of the thicknesses of the first chuck portion 410 and the second chuck portion 420 is larger than the thickness Tb of the intermediate member 320, and the intermediate member 320 and the noble metal The sum of the thicknesses of the chip members 310 is smaller than Ta + Tb. Accordingly, the upper end surface of the noble metal tip member 310 in the stacking direction is positioned higher than the end surface of the first chuck portion 410 in the same direction.

把持治具400が閉じた状態で、治具本体430は、母材先端部31を把持する。治具本体430の内側には、母材先端部31の外形に対応する形状が成形されている。これにより、把持治具400が閉じた状態で、貴金属チップ部材310および中間部材320が、母材先端部31に対して位置決めされる。そして、貴金属チップ部材310および中間部材320の、積層方向と垂直な方向への母材先端部31に対する移動が規制される。   With the gripping jig 400 closed, the jig body 430 grips the base material tip 31. A shape corresponding to the outer shape of the base material tip 31 is formed inside the jig main body 430. Thereby, the noble metal tip member 310 and the intermediate member 320 are positioned with respect to the base material tip 31 in a state where the gripping jig 400 is closed. Then, the movement of the noble metal tip member 310 and the intermediate member 320 with respect to the base material tip 31 in the direction perpendicular to the stacking direction is restricted.

ステップS40では、把持治具400を閉じた状態を維持しつつ、抵抗溶接用電極500により、貴金属チップ部材310の積層方向の上側端面を、積層方向の下向きに押圧する。   In step S40, the upper end surface of the noble metal tip member 310 in the stacking direction is pressed downward in the stacking direction by the resistance welding electrode 500 while the gripping jig 400 is kept closed.

図8は、図5のステップS40の状態を示す図である。抵抗溶接用電極500は、積層方向と垂直な断面が円形であり、積層方向の断面が矩形の円筒形状を有している。抵抗溶接用電極500の円筒形状の直径は、貴金属チップ部材310の円筒形状の直径より大きい。このため、抵抗溶接用電極500が、貴金属チップ部材310の積層方向の上方から下降してくると、把持治具400の下側端面は、貴金属チップ部材310の上側端面の全体に亘って当接する。貴金属チップ部材310と中間部材320は、把持治具400により把持されているので、抵抗溶接用電極500が貴金属チップ部材310に当接した瞬間に、貴金属チップ部材310および中間部材320が母材先端部31に対してずれることを抑制できる。図8の状態で、抵抗溶接用電極500は、所定の圧力で貴金属チップ部材310の上側端面を概ね均一に押圧する。   FIG. 8 is a diagram showing the state of step S40 in FIG. The resistance welding electrode 500 has a circular cylindrical cross section perpendicular to the stacking direction and a rectangular cross section in the stacking direction. The cylindrical diameter of the resistance welding electrode 500 is larger than the cylindrical diameter of the noble metal tip member 310. Therefore, when the resistance welding electrode 500 descends from above in the stacking direction of the noble metal tip member 310, the lower end surface of the gripping jig 400 abuts over the entire upper end surface of the noble metal tip member 310. . Since the noble metal tip member 310 and the intermediate member 320 are gripped by the gripping jig 400, the noble metal tip member 310 and the intermediate member 320 are at the tip of the base material at the moment when the resistance welding electrode 500 contacts the noble metal tip member 310. It can suppress that it shifts to part 31. In the state of FIG. 8, the resistance welding electrode 500 presses the upper end surface of the noble metal tip member 310 substantially uniformly with a predetermined pressure.

ステップS50では、貴金属チップ部材310、中間部材320、母材先端部31に対する把持治具400による把持が解除される。   In step S50, the gripping by the gripping jig 400 on the noble metal tip member 310, the intermediate member 320, and the base material tip 31 is released.

図9は、図5のステップS50の状態を示す図である。図9に示すように、抵抗溶接用電極500による貴金属チップ部材310の上側端面に対する押圧が維持された状態で、把持治具400が、積層方向と垂直な方向に開く。この結果、貴金属チップ部材310、中間部材320、母材先端部31の側面に対する把持治具400による把持が解除される。   FIG. 9 is a diagram showing the state of step S50 in FIG. As shown in FIG. 9, the holding jig 400 opens in a direction perpendicular to the stacking direction in a state in which the pressure against the upper end surface of the noble metal tip member 310 by the resistance welding electrode 500 is maintained. As a result, the gripping by the gripping jig 400 on the side surfaces of the noble metal tip member 310, the intermediate member 320, and the base material tip 31 is released.

ステップS60では、図9に示す状態で抵抗溶接が実行される。具体的には、抵抗溶接用電極500の電位が母材先端部31の接地電位に対して高電圧にされ、その結果、抵抗溶接用電極500を介して、貴金属チップ部材310、中間部材320、母材先端部31に大電流が流れる。この結果、貴金属チップ部材310の積層方向の下側面と、当該下側面と接触している中間部材320の積層方向の上側面とが抵抗溶接されると共に、中間部材320の積層方向の下側面と、当該下側面と接触している母材先端部31の積層方向の上側面とが抵抗溶接される。すなわち、貴金属チップ部材310と中間部材320との間と、中間部材320と母材先端部31との間とが、略同時に抵抗溶接される。   In step S60, resistance welding is performed in the state shown in FIG. Specifically, the potential of the resistance welding electrode 500 is set to a high voltage with respect to the ground potential of the base material tip 31, and as a result, the noble metal tip member 310, the intermediate member 320, A large current flows through the base material tip 31. As a result, the lower surface of the noble metal tip member 310 in the stacking direction and the upper surface of the intermediate member 320 in contact with the lower surface are resistance welded, and the lower surface of the intermediate member 320 in the stacking direction The upper surface of the base material tip 31 in contact with the lower surface is resistance welded. That is, resistance welding is performed almost simultaneously between the noble metal tip member 310 and the intermediate member 320 and between the intermediate member 320 and the base material tip 31.

図10は、抵抗溶接が完了した直後の様子を示す図である。中間部材320の積層方向の下側は、母材先端部31の上面が溶けたことによって、母材先端部31に埋設される。また、貴金属チップ部材310の側面および中間部材320の側面には、それぞれ、溶接ダレRdが生じる。抵抗溶接が完了すると、抵抗溶接用電極500は、上昇して貴金属チップ部材310は、押圧状態から解放される。   FIG. 10 is a diagram illustrating a state immediately after resistance welding is completed. The lower side of the intermediate member 320 in the stacking direction is embedded in the base material tip 31 by melting the upper surface of the base material tip 31. Further, welding sag Rd is generated on the side surface of the noble metal tip member 310 and the side surface of the intermediate member 320, respectively. When the resistance welding is completed, the resistance welding electrode 500 rises and the noble metal tip member 310 is released from the pressed state.

以上説明した第1実施形態のスパークプラグの製造方法によれば、貴金属チップ部材310と中間部材320との間と、中間部材320と母材先端部31との間とが、同時に抵抗溶接されるので、別々に溶接する場合と比較して、工程数および治具数を削減できる。さらに、第1実施形態では、貴金属チップ部材310を精度良く、中間部材320上に抵抗溶接できる。   According to the spark plug manufacturing method of the first embodiment described above, resistance welding is simultaneously performed between the noble metal tip member 310 and the intermediate member 320 and between the intermediate member 320 and the base end portion 31. Therefore, the number of steps and the number of jigs can be reduced as compared with the case of welding separately. Further, in the first embodiment, the noble metal tip member 310 can be resistance-welded on the intermediate member 320 with high accuracy.

図11は、比較形態における抵抗溶接について説明する図である。比較形態では、第1の溶接工程で、中間部材320を溶接し、その後の第2の溶接工程で、中間部材320の上に貴金属チップ部材310を抵抗溶接する。図11は、第2の溶接工程において、把持治具400を閉めた状態を示している。比較形態では、第1の溶接工程において発生した溶接ダレRdの存在のために、第2の溶接工程において、貴金属チップ部材310を把持するための把持治具400Aを完全に閉じられないおそれがある。この結果、400Aを閉じた状態において、隙間GAが生じてしまい、貴金属チップ部材310の中間部材320に対する位置ズレが生じ易くなる。   FIG. 11 is a diagram for explaining resistance welding in the comparative embodiment. In the comparative form, the intermediate member 320 is welded in the first welding process, and the noble metal tip member 310 is resistance-welded on the intermediate member 320 in the subsequent second welding process. FIG. 11 shows a state in which the gripping jig 400 is closed in the second welding process. In the comparative embodiment, due to the presence of the welding sag Rd generated in the first welding process, the gripping jig 400A for gripping the noble metal tip member 310 may not be completely closed in the second welding process. . As a result, in the state where 400A is closed, the gap GA is generated, and the positional deviation of the noble metal tip member 310 with respect to the intermediate member 320 is likely to occur.

次に、実施例として、上述の第1実施形態の製造方法によりスパークプラグを製造した結果を示す。また、比較例として、上述の比較形態の製造方法によりスパークプラグを製造した結果を示す。第1実施例および比較例ともに、貴金属チップ部材310の中間部材320に対する位置ズレの量(ズレ量)を測定した。   Next, as an example, the result of manufacturing a spark plug by the manufacturing method of the first embodiment described above will be shown. In addition, as a comparative example, a result of manufacturing a spark plug by the manufacturing method of the above-described comparative embodiment is shown. In both the first example and the comparative example, the amount of displacement (amount of displacement) of the noble metal tip member 310 with respect to the intermediate member 320 was measured.

図12は、実施例と比較例における貴金属チップ部材310の中間部材320に対する位置ズレの量を示すグラフである。図12から解るように、比較例では、比較的大きなズレ量が発生する確率が高いのに対して、実施例では、小さなズレ量で収まる確率が極めて高いことが解る。   FIG. 12 is a graph showing the amount of misalignment of the noble metal tip member 310 relative to the intermediate member 320 in the example and the comparative example. As can be seen from FIG. 12, in the comparative example, the probability that a relatively large amount of deviation occurs is high, whereas in the example, it is understood that the probability of being accommodated with a small amount of deviation is extremely high.

さらに、第1実施形態によれば、第1チャック部410と第2チャック部420の厚さの和Ca+Cbは、中間部材320の厚さTbより大きく、中間部材320と貴金属チップ部材310の厚さの和Ta+Tbより小さい。この結果、チャック部(第1チャック部410と第2チャック部420)の積層方向上側の端面は、中間部材320の積層方向の端面より高く、貴金属チップ部材310の積層方向の上側の端面より低くなる。従って、貴金属チップ部材310と中間部材320との把持を確保しつつ、抵抗溶接用電極500が、把持治具400と干渉することを抑制することができる。   Further, according to the first embodiment, the sum Ca + Cb of the thicknesses of the first chuck portion 410 and the second chuck portion 420 is larger than the thickness Tb of the intermediate member 320, and the thicknesses of the intermediate member 320 and the noble metal tip member 310. Less than Ta + Tb. As a result, the end surfaces on the upper side in the stacking direction of the chuck portions (the first chuck portion 410 and the second chuck portion 420) are higher than the end surfaces in the stacking direction of the intermediate member 320 and lower than the end surfaces on the upper side in the stacking direction of the noble metal tip member 310. Become. Therefore, it is possible to prevent the resistance welding electrode 500 from interfering with the holding jig 400 while securing the holding of the noble metal tip member 310 and the intermediate member 320.

B.第2実施形態:
図13は、第2実施形態におけるスパークプラグ100Aの中心電極20の先端付近の拡大図である。第2実施形態におけるスパークプラグ100Aが、第1実施形態におけるスパークプラグ100と異なる点は、接地電極30Aの構成である。第2実施形態の接地電極30Aの母材先端部31Aは、第1実施形態と異なり、電極チップ90の側面と対向するように形成されている。すなわち、母材先端部31の端面は、電極チップ90の側面と、軸線方向ODと垂直な方向に対向する。そして、母材先端部31の端面には、電極チップ90との対向方向に2層部材300Aが抵抗溶接されている。2層部材300Aを構成する貴金属チップ部材310Aおよび中間部材320Aの構成および抵抗溶接の方法は、積層方向が軸線方向ODと垂直な方向であることを除いて、第1実施形態と同じである。このように、本発明は、第1実施形態のような軸線方向ODに火花ギャップが設けられた縦放電タイプのスパークプラグだけでなく、第2実施形態のような軸線方向ODに垂直な方向に火花ギャップが設けられた横放電タイプのスパークプラグにも適用可能である。第2実施形態においても、第1実施形態と同様の作用・効果が得られる。また、第2実施形態のスパークプラグ100Aは、上記第1実施形態と同様の製造方法で作製することができる。すなわち、母材先端部31の端面に、貴金属チップ部材310Aおよび中間部材320Aを同時に抵抗溶接して作製することができる。
B. Second embodiment:
FIG. 13 is an enlarged view of the vicinity of the tip of the center electrode 20 of the spark plug 100A in the second embodiment. The spark plug 100A in the second embodiment is different from the spark plug 100 in the first embodiment in the configuration of the ground electrode 30A. Unlike the first embodiment, the base material tip 31A of the ground electrode 30A of the second embodiment is formed to face the side surface of the electrode tip 90. That is, the end surface of the base material tip 31 faces the side surface of the electrode chip 90 in a direction perpendicular to the axial direction OD. The two-layer member 300 </ b> A is resistance-welded to the end surface of the base material tip 31 in the direction facing the electrode tip 90. The configuration of the noble metal tip member 310A and the intermediate member 320A constituting the two-layer member 300A and the resistance welding method are the same as those in the first embodiment except that the stacking direction is a direction perpendicular to the axial direction OD. As described above, the present invention is not limited to the vertical discharge type spark plug in which the spark gap is provided in the axial direction OD as in the first embodiment, but also in the direction perpendicular to the axial direction OD as in the second embodiment. The present invention can also be applied to a transverse discharge type spark plug provided with a spark gap. Also in the second embodiment, the same operations and effects as in the first embodiment can be obtained. Further, the spark plug 100A of the second embodiment can be manufactured by the same manufacturing method as that of the first embodiment. That is, the noble metal tip member 310A and the intermediate member 320A can be simultaneously resistance-welded to the end surface of the base material tip 31.

C.第3実施形態:
図14は、第3実施形態におけるスパークプラグ100Bの中心電極20Bの先端付近の拡大図である。第3実施形態におけるスパークプラグ100Bが、第1実施形態におけるスパークプラグ100と異なる点は、接地電極30Bの構成と、中心電極20Bの先端付近の構成である。第3実施形態の接地電極30Bの母材先端部31Bは、第1実施形態と異なり、2層部材300が配置されていない。一方、第3実施形態の中心電極20Bの電極母材21Bの先端部分には、第1実施形態の溶融部23および電極チップ90に代えて、2層部材300Bが形成されている。2層部材300Bを構成する貴金属チップ部材310Bおよび中間部材320Bの構成および抵抗溶接の方法は、電極母材21Bが上側にあることに対応して、中間部材320Bが上側に貴金属チップ部材310Bが下側にあることを除いて、第1実施形態と同じである。このように、本発明は、第1実施形態および第2実施形態の2層部材300、300Aのように接地電極に適用されるだけでなく、第3実施形態の2層部材300Bのように中心電極にも適用可能である。中心電極に適用した場合においても、接地電極に適用した場合と同様の作用・効果が得られる。また、第3実施形態のスパークプラグ100Bは、上記第1実施形態と同様の製造方法で作製することができる。すなわち、電極母材21Bの端面に、貴金属チップ部材310Bおよび中間部材320Bを同時に抵抗溶接して作製することができる。
C. Third embodiment:
FIG. 14 is an enlarged view of the vicinity of the tip of the center electrode 20B of the spark plug 100B in the third embodiment. The spark plug 100B in the third embodiment is different from the spark plug 100 in the first embodiment in the configuration of the ground electrode 30B and the configuration in the vicinity of the tip of the center electrode 20B. Unlike the first embodiment, the base material tip 31B of the ground electrode 30B of the third embodiment is not provided with the two-layer member 300. On the other hand, a two-layer member 300B is formed at the tip of the electrode base material 21B of the center electrode 20B of the third embodiment in place of the melting part 23 and the electrode tip 90 of the first embodiment. The configuration of the noble metal tip member 310B and the intermediate member 320B constituting the two-layer member 300B and the resistance welding method are such that the intermediate member 320B is on the upper side and the noble metal tip member 310B is on the lower side, corresponding to the electrode base material 21B being on the upper side. Except for being on the side, it is the same as the first embodiment. Thus, the present invention is not only applied to the ground electrode as in the two-layer members 300 and 300A in the first and second embodiments, but also in the center as in the two-layer member 300B in the third embodiment. It can also be applied to electrodes. Even when applied to the center electrode, the same actions and effects as those applied to the ground electrode can be obtained. Further, the spark plug 100B of the third embodiment can be manufactured by the same manufacturing method as that of the first embodiment. That is, the noble metal tip member 310B and the intermediate member 320B can be simultaneously resistance welded to the end surface of the electrode base material 21B.

D.変形例:
・第1変形例:
上記実施形態では、中間部材320は、1つであるが、複数の中間部材320を貴金属チップ部材310と母材先端部31との間に挟んでも良い。例えば、一番下の層である母材先端部31から一番上の層である貴金属チップ部材310まで、積層順に線膨張係数が小さくなっていくように複数の中間部材320の材質を選択しても良い。かかる場合には、抵抗溶接を行う際に用いる把持治具において、チャック部の積層方向の厚さは、複数の中間部材320の積層方向の厚さの合計より大きく、複数の中間部材320と貴金属チップ部材310の積層方向の厚さの合計より小さくしても良い。そうすれば、一度の溶接で、複数の中間部材320と貴金属チップ部材310と母材先端部31とを精度良く抵抗溶接することができる。
D. Variations:
・ First modification:
In the above embodiment, the number of intermediate members 320 is one, but a plurality of intermediate members 320 may be sandwiched between the noble metal tip member 310 and the base material tip 31. For example, the material of the plurality of intermediate members 320 is selected so that the coefficient of linear expansion decreases from the base material tip 31 that is the lowermost layer to the noble metal tip member 310 that is the uppermost layer in the stacking order. May be. In such a case, in the gripping jig used for resistance welding, the thickness in the stacking direction of the chuck portion is larger than the total thickness in the stacking direction of the plurality of intermediate members 320, and the plurality of intermediate members 320 and the noble metal You may make it smaller than the sum total of the thickness of the lamination direction of the chip member 310. FIG. If it does so, the several intermediate member 320, the noble metal tip member 310, and the preform | base_material front-end | tip part 31 can be resistance-welded with sufficient precision by one-time welding.

・第2変形例:
上記実施形態では、貴金属チップ部材310の直径Daを、中間部材320の直径Dbより小さくしたが、これに限られない。例えば、貴金属チップ部材310の直径Daと中間部材320の直径Dbとを等しくしても良い。こうすれば、把持治具400において、第1チャック部410と第2チャック部420を設けることなく、1つのチャック部を設けるだけで良いので、把持治具400の構成を簡便にすることができる。
・ Second modification:
In the above embodiment, the diameter Da of the noble metal tip member 310 is smaller than the diameter Db of the intermediate member 320, but the present invention is not limited to this. For example, the diameter Da of the noble metal tip member 310 and the diameter Db of the intermediate member 320 may be made equal. In this way, the gripping jig 400 can be simply configured without providing the first chuck part 410 and the second chuck part 420 in the gripping jig 400, so that the configuration of the gripping jig 400 can be simplified. .

・第3変形例:
上記実施形態では、2層部材300、300A、300Bは、接地電極か中心電極のいずれか一方に配置されているが、両方に配置しても良い。
Third modification:
In the above embodiment, the two-layer members 300, 300A, and 300B are disposed on either the ground electrode or the center electrode, but may be disposed on both.

・第4変形例:
上記実施形態では、2層部材300、300A、300Bを構成する貴金属チップ部材310、310A、310B、および、中間部材320、320B、320Aは、積層方向から見た形状が円形であるが、これに限られない。例えば、貴金属チップ部材310、310A、310B、および、中間部材320、320B、320Aは、四角形、六角形などの多角形であってもよいし、楕円形であっても良い。また、中間部材と貴金属チップ部材の形状が異なっていても良い。いずれの形状であっても、全周に亘って、中間部材の外縁部は、貴金属チップ部材の外縁より外側にあることが好ましい。また、中間部材の厚さTbと中間部材の積層方向の上面の面積Sbは、25πTb2>Sb(πは円周率)の関係式を満たしていることが好ましい。
-Fourth modification:
In the above embodiment, the noble metal tip members 310, 310A, 310B and the intermediate members 320, 320B, 320A constituting the two-layer members 300, 300A, 300B are circular in shape when viewed from the stacking direction. Not limited. For example, the noble metal tip members 310, 310 </ b> A, 310 </ b> B and the intermediate members 320, 320 </ b> B, 320 </ b> A may be a polygon such as a quadrangle, a hexagon, or an ellipse. Moreover, the shapes of the intermediate member and the noble metal tip member may be different. In any shape, it is preferable that the outer edge portion of the intermediate member is outside the outer edge of the noble metal tip member over the entire circumference. Moreover, it is preferable that the thickness Tb of the intermediate member and the area Sb of the upper surface in the stacking direction of the intermediate member satisfy the relational expression of 25πTb 2 > Sb (π is the circumference).

・第5変形例:
上記実施形態では、10Tb>Dbの関係式と、Tb>Taの関係式の両方を満たしているが、いずれか一方を満たしているだけでも良い。
-5th modification:
In the above embodiment, both the relational expression of 10Tb> Db and the relational expression of Tb> Ta are satisfied, but only one of them may be satisfied.

・第6変形例:
上記実施形態のように、中間部材320、320A、320Bのヤング率は、貴金属チップ部材310、310A、310Bのヤング率および電極母材21、21Bのヤング率より小さいことが好ましく、中間部材320、320A、320Bの線膨張係数は、貴金属チップ部材310、310A、310Bの線膨張係数より大きく、電極母材21、21Bの線膨張係数より小さいことが好ましい。貴金属チップ部材310、310A、310Bが白金または白金を主成分とした合金であり、電極母材がニッケル合金である一般的な構成である場合、このような条件を満たす中間部材320、320A、320Bの材料としては、i)パラジウム(Pd)、ii)金(Au)、iii)金パラジウム合金(AuPd合金)のうちのいずれかを主成分とする材料がある。
-6th modification:
As in the above embodiment, the Young members of the intermediate members 320, 320A, 320B are preferably smaller than the Young's modulus of the noble metal tip members 310, 310A, 310B and the Young's modulus of the electrode base materials 21, 21B. The linear expansion coefficient of 320A, 320B is preferably larger than the linear expansion coefficient of the noble metal tip members 310, 310A, 310B and smaller than the linear expansion coefficient of the electrode base materials 21, 21B. When the noble metal tip members 310, 310A, 310B are platinum or an alloy containing platinum as a main component and the electrode base material is a nickel alloy, the intermediate members 320, 320A, 320B satisfying such conditions are used. As the material, there is a material mainly comprising any one of i) palladium (Pd), ii) gold (Au), and iii) gold-palladium alloy (AuPd alloy).

・第7変形例:
上記実施形態では、横放電型と縦放電型を例として説明したが、接地電極の先端部と、中心電極20の先端部との位置関係は、スパークプラグの用途や、必要とされる性能等に応じて適宜設定することが可能である。また、1つの中心電極に対して複数の接地電極が設けられても良い。
-Seventh modification:
In the above embodiment, the horizontal discharge type and the vertical discharge type have been described as examples. However, the positional relationship between the tip portion of the ground electrode and the tip portion of the center electrode 20 depends on the use of the spark plug, the required performance, etc. It is possible to set appropriately according to the situation. A plurality of ground electrodes may be provided for one central electrode.

以上、本発明の実施形態および変形例について説明したが、本発明はこれらの実施形態および変形例になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々の態様での実施が可能である。   As mentioned above, although embodiment and modification of this invention were described, this invention is not limited to these embodiment and modification at all, and implementation in a various aspect is possible within the range which does not deviate from the summary. It is.

本発明の一実施形態としてのスパークプラグ100の部分断面図である。It is a fragmentary sectional view of spark plug 100 as one embodiment of the present invention. 第1実施形態におけるスパークプラグ100の中心電極20の先端付近の拡大図である。It is an enlarged view near the front-end | tip of the center electrode 20 of the spark plug 100 in 1st Embodiment. 接地電極30の母材先端部31を軸線方向ODに見た図である。It is the figure which looked at the base material front-end | tip part 31 of the ground electrode 30 in the axial direction OD. 中間部材320と貴金属チップ部材310との間(抵抗溶接部)に発生する応力を示すグラフである。It is a graph which shows the stress which generate | occur | produces between the intermediate member 320 and the noble metal tip member 310 (resistance welding part). 母材先端部31に貴金属チップ部材310および中間部材320を抵抗溶接する工程を示すフローチャートである。3 is a flowchart showing a process of resistance welding a noble metal tip member 310 and an intermediate member 320 to a base material tip 31. 図5のステップS20の状態を示す図である。It is a figure which shows the state of step S20 of FIG. 図5のステップS30の状態を示す図である。It is a figure which shows the state of step S30 of FIG. 図5のステップS40の状態を示す図である。It is a figure which shows the state of step S40 of FIG. 図5のステップS50の状態を示す図である。It is a figure which shows the state of step S50 of FIG. 抵抗溶接が完了した直後の様子を示す図である。It is a figure which shows a mode immediately after resistance welding is completed. 比較形態における抵抗溶接について説明する図である。It is a figure explaining resistance welding in a comparison form. 実施例と比較例における貴金属チップ部材310の中間部材320に対する位置ズレの量を示すグラフである。It is a graph which shows the amount of position shift with respect to the intermediate member 320 of the noble metal tip member 310 in an Example and a comparative example. 第2実施形態におけるスパークプラグ100Aの中心電極20の先端付近の拡大図である。It is an enlarged view near the front-end | tip of the center electrode 20 of the spark plug 100A in 2nd Embodiment. 第3実施形態におけるスパークプラグ100Bの中心電極20Bの先端付近の拡大図である。It is an enlarged view near the front-end | tip of the center electrode 20B of the spark plug 100B in 3rd Embodiment.

符号の説明Explanation of symbols

3…セラミック抵抗
4…シール体
5…ガスケット
6…リング部材
8…板パッキン
9…タルク
10…絶縁碍子
11…先端部
12…軸孔
13…脚長部
15…段部
17…先端側胴部
18…後端側胴部
19…鍔部
20、20B…中心電極
21、21B…電極母材
22…電極母材台座
23…溶融部
25…芯材
30、30A、30B…接地電極
31…母材先端部
40…端子金具
50…主体金具
51…工具係合部
52…取付ネジ部
53…加締部
54…シール部
55…座面
56…段部
57…先端面
58…座屈部
59…ネジ首
90…電極チップ
100、100A、100B…スパークプラグ
200…エンジンヘッド
201…取付ネジ孔
205…開口周縁部
300、300A、300B…2層部材
310、310A、310B…貴金属チップ部材
320、320A、320B…中間部材
400…把持治具
410…第1チャック部
420…第2チャック部
430…治具本体
500…抵抗溶接用電極
DESCRIPTION OF SYMBOLS 3 ... Ceramic resistance 4 ... Sealing body 5 ... Gasket 6 ... Ring member 8 ... Plate packing 9 ... Talc 10 ... Insulator 11 ... Tip part 12 ... Shaft hole 13 ... Leg long part 15 ... Step part 17 ... Tip side trunk | drum 18 ... Rear end side body portion 19: collar portion 20, 20B ... center electrode 21, 21B ... electrode base material 22 ... electrode base material base 23 ... melting portion 25 ... core material 30, 30A, 30B ... ground electrode 31 ... tip end portion of base material DESCRIPTION OF SYMBOLS 40 ... Terminal metal fitting 50 ... Main metal fitting 51 ... Tool engaging part 52 ... Mounting screw part 53 ... Clamping part 54 ... Sealing part 55 ... Seat surface 56 ... Step part 57 ... Tip end surface 58 ... Buckling part 59 ... Screw neck 90 ... Electrode tips 100, 100A, 100B ... Spark plug 200 ... Engine head 201 ... Mounting screw hole 205 ... Peripheral edge 300, 300A, 300B ... Two-layer member 310, 310A, 310B ... Precious metal -Up member 320,320A, 320B ... intermediate member 400 ... gripping tool 410 ... first chuck portion 420 ... second chuck 430 ... jig main body 500 ... resistance welding electrode

Claims (9)

(a)電極母材を準備する工程と、
(b)前記電極母材の上に、少なくとも1つの中間部材を挟んで、チップ部材を積層する工程と、
(c)前記電極母材と前記中間部材との間と、前記中間部材と前記チップ部材との間とを抵抗溶接する工程と、
を備え
前記(c)工程は、
(c1)前記中間部材と前記チップ部材をチャックで把持することにより前記中間部材と前記チップ部材の積層方向と垂直な方向への移動を規制する工程と、
(c2)前記中間部材と前記チップ部材を前記チャックで把持した状態で、抵抗溶接用電極を前記チップ部材の端面に当接させる工程と、
(c3)前記抵抗溶接電極を前記チップ部材の端面に当接した状態で、前記チャックによる把持を解除する工程と、
(c4)前記抵抗溶接電極を前記チップ部材の端面に当接し、前記チャックによる把持を解除した状態で、前記抵抗溶接電極を介して、前記チップ部材および前記中間部材および前記電極母材に通電し、前記抵抗溶接を行う工程と、
を備え、
前記チャックの前記積層方向の厚さは、前記中間部材の前記積層方向の厚さの合計より大きく、前記中間部材と前記チップ部材の前記積層方向の厚さの合計より小さく、
前記チップ部材の前記積層方向の厚さをTaとし、前記中間部材の前記積層方向の厚さをTbとした場合において、Tb>Taを満たす、
スパークプラグの製造方法。
(A) preparing an electrode base material;
(B) a step of laminating a chip member on at least one intermediate member on the electrode base material;
(C) resistance welding between the electrode base material and the intermediate member and between the intermediate member and the tip member;
Equipped with a,
The step (c)
(C1) regulating the movement of the intermediate member and the chip member in a direction perpendicular to the stacking direction by gripping the intermediate member and the chip member with a chuck;
(C2) bringing the resistance welding electrode into contact with the end surface of the tip member in a state where the intermediate member and the tip member are held by the chuck;
(C3) releasing the gripping by the chuck while the resistance welding electrode is in contact with the end surface of the tip member;
(C4) Energizing the tip member, the intermediate member, and the electrode base material through the resistance welding electrode in a state where the resistance welding electrode is in contact with the end surface of the tip member and released from the chuck. Performing the resistance welding;
With
The thickness of the chuck in the stacking direction is larger than the total thickness of the intermediate member in the stacking direction, and smaller than the total thickness of the intermediate member and the chip member in the stacking direction,
When the thickness of the chip member in the stacking direction is Ta and the thickness of the intermediate member in the stacking direction is Tb, Tb> Ta is satisfied.
Spark plug manufacturing method.
請求項1に記載のスパークプラグの製造方法であって、
前記中間部材のヤング率は、前記チップ部材のヤング率および前記電極母材のヤング率より小さい、スパークプラグの製造方法。
It is a manufacturing method of the spark plug according to claim 1 ,
The spark plug manufacturing method, wherein a Young's modulus of the intermediate member is smaller than a Young's modulus of the tip member and a Young's modulus of the electrode base material.
請求項1または2に記載のスパークプラグの製造方法であって、
前記中間部材の線膨張係数は、前記チップ部材の線膨張係数より大きく、前記電極母材の線膨張係数より小さい、スパークプラグの製造方法。
A spark plug manufacturing method according to claim 1 or 2 ,
The spark plug manufacturing method, wherein a linear expansion coefficient of the intermediate member is larger than a linear expansion coefficient of the tip member and smaller than a linear expansion coefficient of the electrode base material.
請求項1ないし請求項のいずれかに記載のスパークプラグの製造方法であって、
前記中間部材は、
i)パラジウム(Pd)
ii)金(Au)
iii)金パラジウム合金(AuPd合金)
のうちのいずれかを主成分とする材料で形成されている、スパークプラグの製造方法。
A spark plug manufacturing method according to any one of claims 1 to 3 ,
The intermediate member is
i) Palladium (Pd)
ii) Gold (Au)
iii) Gold palladium alloy (AuPd alloy)
A method for producing a spark plug, wherein the spark plug is made of a material mainly comprising any one of the above.
請求項1ないし請求項のいずれかに記載のスパークプラグの製造方法であって、
前記スパークプラグは、中心電極と接地電極とを備え、
前記中心電極および前記接地電極の少なくとも一方は、前記工程(a)〜(c)に従って製造され、
前記中心電極と前記接地電極は、前記スパークプラグの軸線方向に火花ギャップを形成する、スパークプラグの製造方法。
A method for manufacturing a spark plug according to any one of claims 1 to 4 ,
The spark plug includes a center electrode and a ground electrode,
At least one of the center electrode and the ground electrode is manufactured according to the steps (a) to (c),
The spark plug manufacturing method, wherein the center electrode and the ground electrode form a spark gap in an axial direction of the spark plug.
請求項1ないし請求項のいずれかに記載のスパークプラグの製造方法であって、
前記スパークプラグは、中心電極と接地電極とを備え、
前記中心電極および前記接地電極の少なくとも一方は、前記工程(a)〜(c)に従って製造され、
前記中心電極と前記接地電極は、前記スパークプラグの軸線方向と垂直な方向に火花ギャップを形成する、スパークプラグの製造方法。
A method for manufacturing a spark plug according to any one of claims 1 to 4 ,
The spark plug includes a center electrode and a ground electrode,
At least one of the center electrode and the ground electrode is manufactured according to the steps (a) to (c),
The spark plug manufacturing method, wherein the center electrode and the ground electrode form a spark gap in a direction perpendicular to an axial direction of the spark plug.
請求項1ないし請求項のいずれかに記載のスパークプラグの製造方法であって、
前記チップ部材は、前記積層方向と垂直な断面が直径Daの円である円筒形状を有し、
前記中間部材は、前記積層方向と垂直な断面が直径Dbの円である円筒形状を有し、
Db>Da
を満たす、スパークプラグの製造方法。
A method for manufacturing a spark plug according to any one of claims 1 to 6 ,
The chip member has a cylindrical shape whose cross section perpendicular to the stacking direction is a circle with a diameter Da,
The intermediate member has a cylindrical shape whose cross section perpendicular to the stacking direction is a circle having a diameter Db,
Db> Da
A spark plug manufacturing method that satisfies the requirements.
請求項1ないし請求項のいずれかに記載のスパークプラグの製造方法であって、
前記中間部材における前記積層方向と垂直な断面の面積をSbとし、
前記中間部材における積層方向の厚さをTbとした場合において、
25πTb2>Sb(πは円周率)
を満たす、スパークプラグの製造方法。
A method for manufacturing a spark plug according to any one of claims 1 to 7 ,
The area of the cross section perpendicular to the stacking direction in the intermediate member is Sb,
When the thickness in the stacking direction of the intermediate member is Tb,
25πTb 2 > Sb (π is the circumference)
A spark plug manufacturing method that satisfies the requirements.
請求項に記載のスパークプラグの製造方法であって、
前記中間部材は、積層方向と垂直な断面が直径Dbの円形である円筒形状を有し、
10Tb>Db
を満たす、スパークプラグの製造方法。
It is a manufacturing method of the spark plug according to claim 8 ,
The intermediate member has a cylindrical shape whose cross section perpendicular to the stacking direction is a circle having a diameter Db,
10Tb> Db
A spark plug manufacturing method that satisfies the requirements.
JP2008151558A 2008-06-10 2008-06-10 Manufacturing method of spark plug Expired - Fee Related JP5068221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008151558A JP5068221B2 (en) 2008-06-10 2008-06-10 Manufacturing method of spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008151558A JP5068221B2 (en) 2008-06-10 2008-06-10 Manufacturing method of spark plug

Publications (2)

Publication Number Publication Date
JP2009301733A JP2009301733A (en) 2009-12-24
JP5068221B2 true JP5068221B2 (en) 2012-11-07

Family

ID=41548454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008151558A Expired - Fee Related JP5068221B2 (en) 2008-06-10 2008-06-10 Manufacturing method of spark plug

Country Status (1)

Country Link
JP (1) JP5068221B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5325342B2 (en) * 2011-04-14 2013-10-23 日本特殊陶業株式会社 Manufacturing method of spark plug
JP5820323B2 (en) * 2012-03-29 2015-11-24 日本特殊陶業株式会社 Manufacturing method of spark plug

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273965A (en) * 2000-01-19 2001-10-05 Ngk Spark Plug Co Ltd Spark plug for internal combustion engine
JP4419321B2 (en) * 2000-12-26 2010-02-24 株式会社デンソー Manufacturing method of spark plug

Also Published As

Publication number Publication date
JP2009301733A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
EP2270937B1 (en) Spark plug
US8624473B2 (en) Spark plug
US8841827B2 (en) Spark plug with improved resistance to spark-induced erosion of the ground electrode tip
JP4889768B2 (en) Spark plug and manufacturing method thereof
WO2013008371A1 (en) Spark plug
JP5167211B2 (en) Spark plug manufacturing apparatus and manufacturing method
JP4680513B2 (en) Spark plug manufacturing method and spark plug
JPWO2018168000A1 (en) Spark plug
JP4564741B2 (en) Manufacturing method of spark plug
JP5068221B2 (en) Manufacturing method of spark plug
JP5090898B2 (en) Spark plug
US9368943B2 (en) Spark plug having multi-layer sparking component attached to ground electrode
EP2226912A1 (en) Spark plug
JP2013149623A (en) Spark plug
JP5690702B2 (en) Spark plug
JP5058114B2 (en) Spark plug and method for manufacturing the spark plug.
JP4837688B2 (en) Spark plug
JP5599840B2 (en) Spark plug and spark plug manufacturing method
JP5798203B2 (en) Spark plug
JP5683409B2 (en) Spark plug and method of manufacturing spark plug
JP5335290B2 (en) Spark plug
JP5995912B2 (en) Spark plug and method of manufacturing spark plug
JP2011253826A (en) Spark plug
JP6077397B2 (en) Manufacturing method of spark plug
JP5451676B2 (en) Manufacturing method of spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5068221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees