JP5055617B2 - Dispensing device - Google Patents

Dispensing device Download PDF

Info

Publication number
JP5055617B2
JP5055617B2 JP2007139787A JP2007139787A JP5055617B2 JP 5055617 B2 JP5055617 B2 JP 5055617B2 JP 2007139787 A JP2007139787 A JP 2007139787A JP 2007139787 A JP2007139787 A JP 2007139787A JP 5055617 B2 JP5055617 B2 JP 5055617B2
Authority
JP
Japan
Prior art keywords
flow path
capillary
forming member
path forming
dispensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007139787A
Other languages
Japanese (ja)
Other versions
JP2008292379A (en
Inventor
振 楊
直樹 市川
壮平 松本
龍太郎 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007139787A priority Critical patent/JP5055617B2/en
Publication of JP2008292379A publication Critical patent/JP2008292379A/en
Application granted granted Critical
Publication of JP5055617B2 publication Critical patent/JP5055617B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

この発明は内部に流路を形成して外部から注入した液体の反応等の処理を行い、反応後
の液体を外部に抽出することができるようにした流路形成部を用いて分注を行う分注装置に関する。
In the present invention, a flow path is formed inside, a reaction such as reaction of liquid injected from the outside is performed, and dispensing is performed using a flow path forming section that can extract the liquid after reaction to the outside. It relates to a dispensing device.

現在は医学・農学・理学・薬学等の広い分野で、例えば抗体、抗原等の免疫物質、DNAやRNA等の遺伝子物質、最近、その他の医療薬品等の有用物質について、目的物質の分離、抽出または回収を行うために、それに関連する反応、分注、単離、濃縮、攪拌、清澄、懸濁、希釈等の処理または作業を行うことが多くなっている。   Currently, in a wide range of fields such as medicine, agriculture, science and pharmacy, for example, separation and extraction of target substances for immune substances such as antibodies and antigens, genetic substances such as DNA and RNA, and recently useful substances such as other medical drugs Or, in order to carry out recovery, processes or operations such as reaction, dispensing, isolation, concentration, stirring, clarification, suspension, dilution and the like are frequently performed.

このような処理は微少な量の液体を用いることが好ましいため、マイクロメータ単位の流路及び処理室をチップ上に形成し、その流路等に極微少な量の所定の液体を注入し、例えば1μリットル未満或いは数μリットル程度の処理室内で反応等の処理を行い、その液体について更なる反応を起こさせるため、或いは反応生成物の分析等を行うために外部に注出することが行われている。   Since it is preferable to use a very small amount of liquid for such processing, a micrometer unit flow path and a processing chamber are formed on the chip, and a very small amount of a predetermined liquid is injected into the flow path, for example. Processing such as reaction is performed in a processing chamber of less than 1 μl or several μl, and the liquid is poured out to cause further reaction or to analyze the reaction product. ing.

このような微少な量の液体を取り扱うため、例えば図10(a)に示すようなマイクロ流路61の溝を表面に形成したPDMS(ポリジメチルシロキサン)等からなる流路基板62を用い、これを基盤63上に貼ると共に、表面をガラスや樹脂等からなるカバー64を貼ってマイクロ流路61の上方を閉じる。   In order to handle such a small amount of liquid, for example, a flow path substrate 62 made of PDMS (polydimethylsiloxane) or the like having a groove of a micro flow path 61 as shown in FIG. And a cover 64 made of glass, resin, or the like is pasted to close the top of the microchannel 61.

このようにして形成されたマイクロ流路61に液体を注入するため、カバー64に対してマイクロ流路61に通じる図中3個の注入孔65を備え、この注入孔65にノズル等を当接させて、外部から反応に必要な所定の液体を圧入或いは真空引き等により注入し、各々バッファ部66を介して反応室67内に各液体を供給する。反応室67で反応した液体、或いはここで生成された蛋白質等の物質は、外部の検査装置等で検査し或いは更に反応処理を行うため、反応室67に通じる排出流路68の端部に設けた外部に通じる注出孔69から、ここに当接させたノズル等を介して外部に注出する。ここで抽出する前記のような蛋白質等を含む液体は単なる液体ということはできないが、以降説明の都合上これらの各種物質を含む液体も「液体」と称する。   In order to inject the liquid into the microchannel 61 formed in this way, the cover 64 is provided with three injection holes 65 in the drawing leading to the microchannel 61, and a nozzle or the like is brought into contact with the injection hole 65. Then, a predetermined liquid required for the reaction is injected from the outside by press-fitting or evacuation or the like, and each liquid is supplied into the reaction chamber 67 through the buffer unit 66. The liquid reacted in the reaction chamber 67 or a substance such as protein produced here is provided at the end of the discharge channel 68 leading to the reaction chamber 67 for inspection by an external inspection device or for further reaction processing. From the pouring hole 69 communicating with the outside, it is poured out through a nozzle or the like brought into contact therewith. The liquid containing the protein or the like extracted here cannot be called a mere liquid, but a liquid containing these various substances is also referred to as a “liquid” for convenience of explanation.

上記のような作業を行うため、例えば図10(b)に示すような分注装置71を用いる。なお、同図の装置は、図10(a)のようなマイクロチップ70を利用して所望の反応等を行わせる装置の一例の概要を示すものである。図に示す分注装置71においては、上記のようなマイクロチップ70を反転させて、流路を備えた載置台72上に固定すると共にし、この載置台72を基台73に固定している。基台73には注入部74と排出部75とを備えるとともに、注入部74からの液体をマイクロチップ70の注入孔65に供給可能とし、マイクロチップ70の注出孔69から排出部75に供給可能としている。   In order to perform the above operations, for example, a dispensing device 71 as shown in FIG. In addition, the apparatus of the same figure shows the outline | summary of an example of the apparatus which performs a desired reaction etc. using the microchip 70 like Fig.10 (a). In the dispensing device 71 shown in the figure, the microchip 70 as described above is inverted and fixed on a mounting table 72 provided with a flow path, and the mounting table 72 is fixed to a base 73. . The base 73 includes an injection part 74 and a discharge part 75, and allows the liquid from the injection part 74 to be supplied to the injection hole 65 of the microchip 70 and supplied to the discharge part 75 from the extraction hole 69 of the microchip 70. It is possible.

また、注入部74に設けた注入口76にはピペット77等により所定の量の液体を滴下可能とし、また排出部75には排出管77を介してポンプ78を接続し、注入部74に注入した液体を、マイクロチップ70内に吸引し、更にマイクロチップ70内で処理が終わった液体を吸引し、廃液タンク79に排出している。なお、基台73を温度調節装置80上に載置し、所定の温度条件で反応できるようにすることもある。なお、マイクロチップを用いて所望の反応等を行わせる装置としては、多数の反応を効率的に行わせるため、1つのチップ上に例えば図10(a)のようなマイクロ流路を多数形成配置することも行われており、このような技術は例えば特開2006−126011号公報等に開示されている。   In addition, a predetermined amount of liquid can be dripped into the injection port 76 provided in the injection unit 74 by a pipette 77 or the like, and a pump 78 is connected to the discharge unit 75 via a discharge pipe 77 to inject into the injection unit 74. The liquid is sucked into the microchip 70, and the liquid that has been processed in the microchip 70 is sucked and discharged to the waste liquid tank 79. In addition, the base 73 may be placed on the temperature control device 80 so that the reaction can be performed under a predetermined temperature condition. In addition, as an apparatus for performing a desired reaction or the like using a microchip, in order to efficiently perform a large number of reactions, for example, a large number of microchannels as shown in FIG. Such a technique is disclosed in, for example, Japanese Patent Laid-Open No. 2006-126011.

従来は上記のようなマイクロチップを用いて前記のような所定の作業を行うに際しては、作業者がピペット77などで一つ一つ手作業により液体の定量・分注操作を行わなければならなかった。米国国立労働衛生研究所のレポートでは、こうした作業は一人あたり平均6000回/日行っており、実際に行っている人たちにとって重労働となっている。その対策としてこれらの作業を自動的に行うことができる自動分注装置も開発されている。   Conventionally, when performing the above-described predetermined work using the microchip as described above, the operator must manually perform the liquid quantification / dispensing operation one by one with the pipette 77 or the like. It was. According to a report from the US National Institute of Occupational Health, this work is done on average 6000 times per person per day, which is hard work for those who actually do it. As a countermeasure, an automatic dispensing device that can automatically perform these operations has been developed.

前記のような自動分注装置としては例えば特開2001−13152号公報等に開示されており、この装置においては多数のマイクロウェルを有するチッププレートに対して、各マイクロウェルに対向して上方に配置した多数のノズルから、所定の液体を同時に供給することができるようにしている。通常用いられている自動分注装置はこのように、チッププレートの多数のマイクロウェルに、或いは前記図10(a)に示すようなマイクロチップの注入孔に、その上方からノズルにより液体を供給することとなる。   Such an automatic dispensing apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 2001-13152. In this apparatus, a chip plate having a large number of microwells is disposed above each microwell. A predetermined liquid can be simultaneously supplied from a number of arranged nozzles. In this way, the automatic dispensing device that is usually used supplies liquid from above to a large number of microwells of the chip plate or to the injection holes of the microchip as shown in FIG. 10 (a). It will be.

また、マイクロチップについては図10(a)のような矩形のもののほか、例えば特開2006−126010号公報、及び特開2005−523728号公報に開示されているような円板状のものに放射状にマイクロ流路を多数形成することも提案されている。
特開2006−126011号公報 特開2001−13152号公報 特開2006−126010号公報 特開2005−523728号公報
In addition to the rectangular shape of the microchip as shown in FIG. 10A, for example, a circular shape such as disclosed in JP-A-2006-126010 and JP-A-2005-523728 is radial. It has also been proposed to form a large number of microchannels.
JP 2006-126011 A JP 2001-13152 A JP 2006-126010 A JP 2005-523728 A

従来の自動分注装置においてマイクロ流路を形成したマイクロチップの液体注入孔に対して液体を供給する際は、前記特許文献2に記載されているような装置を用いて、マイクロチップの上方からノズルを降下し、分注を行うこととなる。更に、反応が終了した液体を注出孔から外部に注出する際には、同様に注出孔の上方から排出管を降下させ、注出孔に密着させ、ポンプにより吸引し、その作業の終了後に排出管を上昇させることとなる。   When supplying a liquid to a liquid injection hole of a microchip in which a microchannel is formed in a conventional automatic dispensing device, an apparatus such as that described in Patent Document 2 is used from above the microchip. The nozzle is lowered and dispensing is performed. Furthermore, when the reaction-completed liquid is poured out from the pouring hole, the discharge pipe is lowered from above the pouring hole, brought into close contact with the pouring hole, and sucked by a pump. The exhaust pipe will be raised after completion.

そのため、従来の分注装置ではマイクロチップを載置する台から上方にノズルや排出管の移動スペースを必要とし、更にその移動を行わせるための駆動装置を配置することとなるため、装置全体の高さが高くならざるを得ず、装置が大がかりなものとなっていた。特にマイクロチップの反応室で反応させた後の液体を、他のマイクロ流路を備えたマイクロチップに分注する際には、片方のマイクロチップの注出孔から他方のマイクロチップの注入孔に液体を分注しながら移動する複雑な機構が必要となり、この部分の機構が大がかりなものとならざるを得ない。   For this reason, the conventional dispensing device requires a moving space for the nozzle and the discharge pipe above the stage on which the microchip is placed, and a driving device for moving the nozzle is disposed. The height was inevitably high, and the equipment was large. In particular, when the liquid that has been reacted in the reaction chamber of the microchip is dispensed into a microchip equipped with another microchannel, the liquid is discharged from the discharge hole of one microchip to the injection hole of the other microchip. A complicated mechanism that moves while dispensing liquid is required, and this portion of the mechanism is inevitably large.

このことは前記のようなマイクロメータ単位の大きさの流路を形成したマイクロチップとしての流路形成部材を用いるときのほか、例えば断面の高さや幅が1mmを超えるような比較的大きな流路を形成した流路形成部材での分注に際しても同様の問題を生じる。   This is not only when using a flow path forming member as a microchip in which a flow path having a size of a micrometer unit as described above, but for example, a relatively large flow path whose cross-sectional height or width exceeds 1 mm. The same problem arises when dispensing with the flow path forming member in which is formed.

したがって本発明は、従来手作業で行っていた分注作業を自動化し、且つ分注装置の高さを低いものとし、全体として小型化することができ、特に機構が大型化する原因となる、流路形成部材内で処理した液体をキャピラリ内に、更には他の流路形成部材内の流路内に分注する機構について、その部分の高さを低くすることにより、分注装置全体を小型化することができる流路形成部材、及びその流路形成部材を用いた分注装置を提供することを主たる目的としている。   Therefore, the present invention automates the dispensing work that has been performed manually, and makes the dispensing device low in height, and can be downsized as a whole, particularly causing the mechanism to be upsized. By reducing the height of the part of the mechanism for dispensing the liquid processed in the flow path forming member into the capillary and further into the flow path in the other flow path forming member, the entire dispensing apparatus is The main object is to provide a flow path forming member that can be reduced in size and a dispensing device that uses the flow path forming member.

本発明に係る流路形成部材は、上記課題を解決するため、注入部と注出部を備えた液体の流路を内部に形成してなる平板状の流路形成部材において、内部の流路に連通する前記注入部または注出部の少なくともいずれかを前記流路形成部材の側面に開口し、前記側面に開口する注入部の注入開口部或いは注出部の注出開口部には該開口部を密封する密封部材を設け、前記開口から前記開口部の密封部材の間に、密封部材を貫通して流路内の液体吸引用のキャピラリを案内するガイド部材を設けた流路形成部材を備え、前記流路形成部材の前記開口とキャピラリ把持装置で把持したキャピラリの端部とが対向し、キャピラリの軸線が密封部材表面と垂直になるように、流路形成部材とキャピラリ把持装置の少なくとも片方を移動可能に設け、前記流路形成部材とキャピラリの少なくとも片方を相対的に移動することにより、キャピラリの端部を、前記ガイド部材で案内しつつ、前記密封部材を貫通して内部の流路内に挿入し、前記流路内の液体を所定量キャピラリ内に吸引した後、前記移動によりキャピラリを外部に引き抜く操作を繰り返すことにより、前記流路内の液体を分注する分注機構を備えたことを特徴とする。  In order to solve the above-described problems, a flow path forming member according to the present invention is a flat flow path forming member formed with a liquid flow path provided with an injecting portion and a dispensing portion. At least one of the injection portion and the extraction portion communicating with the flow passage is opened on a side surface of the flow path forming member, and the injection opening portion of the injection portion opening on the side surface or the extraction opening portion of the extraction portion has the opening A flow path forming member provided with a guide member for guiding a liquid suction capillary in the flow path through the sealing member between the opening and the sealing member of the opening. At least one of the flow path forming member and the capillary gripping device so that the opening of the flow path forming member and the end of the capillary gripped by the capillary gripping device are opposed to each other, and the capillary axis is perpendicular to the surface of the sealing member. One side is movably provided, front By relatively moving at least one of the flow path forming member and the capillary, the capillary end is inserted into the internal flow path through the sealing member while being guided by the guide member. After dispensing a predetermined amount of liquid in the channel into the capillary, a dispensing mechanism for dispensing the liquid in the flow path by repeating the operation of pulling the capillary out by the movement is provided.

また、本発明に係る他の分注装置は、前記分注装置において、前記所定量の液体を吸引したキャピラリを、前記流路形成部材と同様の密封部材を備えた他の流路における密封部材の壁を貫通し、前記他の流路形成部材内部の流路に前記所定量の液体を供給して分注することを特徴とする。   Further, another dispensing apparatus according to the present invention is the above-described dispensing apparatus, wherein the capillary that sucks the predetermined amount of liquid is used as a sealing member in another channel including a sealing member similar to the channel forming member. The predetermined amount of liquid is supplied and dispensed into a flow path inside the other flow path forming member.

また、本発明に係る他の分注装置は、前記分注装置において、前記キャピラリ把持装置をキャピラリ移動装置に固定し、前記キャピラリ移動装置は、キャピラリ把持装置によりキャピラリ供給位置の未使用キャピラリを把持して分注位置に移動し、前記他の流路内部に液体を供給して分注した後のキャピラリの把持を解放して、該キャピラリを使用済みキャピラリ集積位置に集積することを特徴とする。   Further, another dispensing apparatus according to the present invention is such that, in the dispensing apparatus, the capillary gripping device is fixed to a capillary moving device, and the capillary moving device grips an unused capillary at a capillary supply position by the capillary gripping device. Then, it moves to the dispensing position, releases the grip of the capillary after supplying and dispensing the liquid into the other flow path, and accumulates the capillary at the used capillary accumulation position. .

また、本発明に係る他の分注装置は、前記分注装置において、前記円板状の流路形成部材を連続回転及び所定角度ずつ回転するモータを設け、前記モータの作動により前記流路形成部材の連続回転によって流路内の液体を前記注出部側に移動し、また前記流路形成部材の所定角度ずつの回転により複数のマイクロ流路構成部における各注出部の開口を注出位置に回転移動することを特徴とする。   Another dispensing apparatus according to the present invention is the dispensing apparatus, wherein a motor that continuously rotates the disk-shaped flow path forming member and rotates by a predetermined angle is provided in the dispensing apparatus, and the flow path is formed by operating the motor. The liquid in the flow path is moved to the extraction section side by continuous rotation of the member, and the openings of the extraction sections in the plurality of micro flow path constituent sections are discharged by rotation of the flow path forming member by a predetermined angle. It is characterized by rotating to a position.

また、本発明に係る他の分注装置は、前記分注装置において、前記流路形成部材のたわみを押さえる押さえ具を備え、前記押さえ具には前記把持装置で把持したキャピラリ端部を流路開口に導くガイドを備えたことを特徴とする。   Further, another dispensing apparatus according to the present invention includes a pressing tool for pressing the deflection of the flow path forming member in the dispensing apparatus, and the pressing tool has a capillary end gripped by the gripping device in the flow path. A guide for guiding to the opening is provided.

本発明は上記のように構成したので、従来手作業で重労働であった分注作業を自動化し、且つ分注装置の高さを低いものとし、全体として小型化することができる。特にマイクロ流路の場合、重力より表面力が支配的となり、溶液を垂直方向的に取扱う制限がなくなる。そのため、重力を利用しない平面構造の分注を効果的に行うことができる結果、機構が大型化する原因が解消され、マイクロチップ内で反応させた液体を同じあるいは他のマイクロチップ内のマイクロ流路内に分注する機構を単純化し、分注装置全体の小型化することにより分注装置の大幅な低コスト化が可能となる。また、それによりこの種の分注装置のより広範囲な普及に寄与することもできる。   Since the present invention is configured as described above, it is possible to automate the dispensing work, which has conventionally been a heavy labor by manual work, and to reduce the height of the dispensing apparatus, thereby reducing the overall size. In particular, in the case of a microchannel, the surface force becomes more dominant than gravity, and there is no restriction on handling the solution in the vertical direction. Therefore, as a result of effective dispensing of a planar structure that does not use gravity, the cause of the increase in the size of the mechanism is eliminated, and the liquid reacted in the microchip can be microfluidized in the same or other microchip. By simplifying the mechanism for dispensing into the channel and reducing the size of the entire dispensing device, the cost of the dispensing device can be greatly reduced. It can also contribute to the wider spread of this type of dispensing device.

本発明は従来の分注装置の高さを低くし、小型の分注装置とするという課題を、注入部と注出部を備えた液体の流路を内部に形成してなる平板状の流路形成部材において、内部の流路に連通する前記注出部を前記流路形成部材の側面に開口し、前記注出部の開口には該開口を密封する弾性密封部材を設け、前記弾性密封部材は、キャピラリを前記平板状の流路形成部材の側面から前記弾性密封部材の壁を貫通して内部の流路内に挿入し、前記流路内の液体を所定量キャピラリ内に吸引した後外部に引き抜くとき、自己弾性によりキャピラリが貫通した壁部分を密封するように構成した流路形成部材を用いることにより解決し、また、前記の流路形成部材を用い、その流路形成部材の注出部に対向する位置にキャピラリ把持装置を移動可能に設け、前記流路形成部材とキャピラリの少なくとも片方を相対的に移動することにより、キャピラリの端部を、前記弾性密封部材を貫通して内部の流路内に挿入し、前記流路内の液体を所定量キャピラリ内に吸引した後、前記移動によりキャピラリを外部に引き抜く操作を繰り返すことにより、前記流路内の液体を分注する分注機構を備えた分注装置とすることにより解決したものである。   The present invention solves the problem of reducing the height of a conventional dispensing device and making it a small-sized dispensing device. A flat flow formed by forming a liquid flow path having an injection portion and a dispensing portion therein. In the path forming member, the extraction portion communicating with an internal flow path is opened in a side surface of the flow path forming member, and an elastic sealing member for sealing the opening is provided in the opening of the extraction portion, and the elastic sealing The member inserts the capillary through the wall of the elastic sealing member from the side surface of the plate-like channel forming member and inserts the capillary into the inner channel, and sucks a predetermined amount of the liquid in the channel into the capillary. The problem is solved by using a flow path forming member configured to seal the wall portion through which the capillary penetrates by self-elasticity when pulled out to the outside. Capillary gripping device can be moved to a position facing the exit The end of the capillary is inserted into the internal flow path through the elastic sealing member by relatively moving at least one of the flow path forming member and the capillary, and the liquid in the flow path is This is achieved by providing a dispensing device having a dispensing mechanism for dispensing the liquid in the flow path by repeating the operation of drawing the capillary into the outside by the movement after a predetermined amount is sucked into the capillary. is there.

図1は本発明に用いる流路形成部材1の説明図であり、同図(c)の断面図に示すように、従来のマイクロチップと同様にPDMS、アクリル樹脂、ポリカーボネイト、ガラス等の流路形成基板2の表面に、深さマイクロメータオーダーの所定平面形状の流路溝3を形成し、後にガラスやアクリル樹脂等からなるカバー4を設けることによって内部にマイクロ流路5を形成するものであり、特にPDMSのように柔軟性のある流路形成板2の場合には、その裏側に剛性の高い樹脂等からなる基板6を貼り付けて用いる。図示の例では流路形成部材1をCDのディスクと同様の円板状に形成し、その中心から放射方向に延びる、全体として1つのマイクロ流路構成部7を形成し、これを円周上に図中9個設けて1枚の流路形成部材1としている。なお、本発明による流路形成部材は、多くの場合従来のものと同様のマイクロチップとして用いられるが、それ以外に、より流路断面の大きなものにも用いることを考慮し、流路形成部材1と称して説明する。   FIG. 1 is an explanatory view of a flow path forming member 1 used in the present invention. As shown in the sectional view of FIG. 1 (c), the flow path of PDMS, acrylic resin, polycarbonate, glass, etc. as in the conventional microchip. A microchannel 5 is formed inside by forming a channel groove 3 having a predetermined planar shape with a depth of micrometer order on the surface of the formation substrate 2 and then providing a cover 4 made of glass, acrylic resin, or the like. In particular, in the case of a flexible flow path forming plate 2 such as PDMS, a substrate 6 made of a highly rigid resin or the like is attached to the back side thereof. In the example shown in the drawing, the flow path forming member 1 is formed in a disk shape similar to a CD disk, and a single micro flow path configuration portion 7 extending in the radial direction from its center is formed, and this is formed on the circumference. In FIG. 9, nine flow path forming members 1 are provided. The flow path forming member according to the present invention is often used as a microchip similar to the conventional one, but in addition to that, considering that it is also used for one having a larger flow path cross section, the flow path forming member This will be described as 1.

図1(a)に示す1つのマイクロ流路構造7は、同図(b)に拡大して示すように、前記図10(a)と同様の流路構造をなす例を示しており、図示の例ではカバー4に対してマイクロ流路5に通じる図中3個の注入部としての注入部8を備え、この注入部8にノズル等を当接させて、外部から反応に必要な所定の液体を圧入等により注入し、各々バッファ部9を介して反応室10内に各液体を供給する。反応室10で反応した液体、或いはここで生成された蛋白質等の物質は、外部の検査装置等で検査し或いは更に反応処理を行うため、反応室10に通じる排出流路11の端部に設けた比較的幅の広いマイクロ流路部分である注出部12を備えている。したがってこの注出部12は、円板状の流路形成部材1の側面における開口Mに開口する。   One micro-channel structure 7 shown in FIG. 1A shows an example of a channel structure similar to that shown in FIG. 10A, as shown in FIG. In this example, the cover 4 is provided with injection parts 8 as three injection parts in the drawing that lead to the micro flow path 5, and a nozzle or the like is brought into contact with the injection part 8 to provide a predetermined required for reaction from the outside. Liquids are injected by press-fitting or the like, and each liquid is supplied into the reaction chamber 10 through the buffer unit 9. The liquid reacted in the reaction chamber 10 or a substance such as a protein produced here is provided at the end of the discharge channel 11 leading to the reaction chamber 10 for inspection by an external inspection device or for further reaction processing. In addition, an extraction portion 12 which is a relatively wide microchannel portion is provided. Therefore, the pouring part 12 opens to the opening M on the side surface of the disk-shaped flow path forming member 1.

注出部12の端部に形成される注出開口部13は、PDMS等の弾性体からなり図示実施例では平面視円弧状の弾性密封部材14の中心部に形成されるシール機能部15によって密封状態に保っている。この流路形成板2が例えば剛性の高いアクリル樹脂等の樹脂やガラス製であるときには、弾性密封部材14はPDMS等の弾性の大きな別の部材によって形成され、その際には例えば図2(a)に示すような弾性密封部材14を用いる。この弾性密封部材14はその中心部のシール機能部15が、同図(b)に示すような注出部12の端部における注出開口部13に接して密封するように、弾性密封部材収納部16に収納される。それにより、図2(b)に示すような弾性密封部材収納部16に、同図(a)に示すような弾性密封部材14を、同図(c)に示すように互いに密着状態で収納する。   The extraction opening 13 formed at the end of the extraction portion 12 is made of an elastic body such as PDMS, and in the illustrated embodiment, the extraction opening 13 is formed by a sealing function portion 15 formed at the center of the elastic sealing member 14 having an arc shape in plan view. It is kept sealed. When the flow path forming plate 2 is made of, for example, a highly rigid resin such as acrylic resin or glass, the elastic sealing member 14 is formed by another member having high elasticity such as PDMS. In this case, for example, FIG. The elastic sealing member 14 as shown in FIG. The elastic sealing member 14 is housed in an elastic sealing member so that the sealing function portion 15 at the center of the elastic sealing member 14 is sealed in contact with the dispensing opening 13 at the end of the dispensing portion 12 as shown in FIG. It is stored in the part 16. Thereby, the elastic sealing member 14 as shown in FIG. 2A is stored in the elastic sealing member storage portion 16 as shown in FIG. 2B in close contact with each other as shown in FIG. .

弾性密封部材14は図1及び図2に示すように円弧状をなしている結果、その内側に空間が形成され、その部分に後述するような注出用のキャピラリの挿入を案内するガイド部材17を設けることができる。図2に示す実施例ではこのガイド部材17は流路形成板2と一体的に形成しており、互いに所定の間隙からなるガイド部18が形成されるように、2つのガイド19、19を対向させて配置している。同図に示すガイド19の互いに対向する面には、後述するキャピラリが円滑に案内できるように外方に向けてラッパ状に開口させ、開口Mとしている。   As shown in FIG. 1 and FIG. 2, the elastic sealing member 14 has an arc shape. As a result, a space is formed inside the elastic sealing member 14, and a guide member 17 for guiding insertion of a dispensing capillary as will be described later is formed in that portion. Can be provided. In the embodiment shown in FIG. 2, the guide member 17 is formed integrally with the flow path forming plate 2, and the two guides 19 and 19 are opposed to each other so that a guide portion 18 having a predetermined gap is formed. It is arranged. On the mutually opposing surfaces of the guide 19 shown in the figure, an opening M is formed as a trumpet opening outward so that a capillary to be described later can be guided smoothly.

図2に示す弾性密封部材14は、流路形成板2が例えばアクリル樹脂、ポリカーボネイト等の剛性の高い樹脂やガラス製であることによりこれとは別部材とし、PDMS等の弾性の大きな素材から形成する例を示している。またガイド部材17は流路形成板2と一体形成した例を示したが、その他例えば図3(a)に示すように、ガイド部材17を弾性密封部材13と同一部材として一体成型してもよい。   The elastic sealing member 14 shown in FIG. 2 is made of a material having high elasticity such as PDMS because the flow path forming plate 2 is made of a highly rigid resin such as acrylic resin or polycarbonate, or glass. An example is shown. Further, the guide member 17 is integrally formed with the flow path forming plate 2. However, as shown in FIG. 3A, for example, the guide member 17 may be integrally formed as the same member as the elastic sealing member 13. .

前記図2の実施例においては、弾性密封部材14の中心部をガイド部材17としての2個のガイド19、19の端部と接触させ、弾性密封部材14をガイド19、19と弾性密封部材収納部16の円弧状壁面との間に挟み込んだ例を示したが、例えば図3(b)のように、2個のガイド19、19の端部21、21を弾性密封部材14から離して配置し、この部分で弾性密封部材14の自由な移動を可能としてもよい。また、図3(a)に示す実施例では弾性密封部材14とガイド部材17を一体的に形成するに際して、図2に示す実施例の態様のまま一体化した例を示したが、その他例えば図3(c)に示すように、弾性密封部材14とガイド部18を備えた一体化した部材を、弾性密封部材収納部16の形状と同様に形成してもよい。   In the embodiment of FIG. 2, the center of the elastic sealing member 14 is brought into contact with the ends of the two guides 19 and 19 serving as the guide member 17, and the elastic sealing member 14 is accommodated in the guides 19 and 19 and the elastic sealing member. In the example shown in FIG. 3B, the end portions 21 and 21 of the two guides 19 and 19 are arranged away from the elastic sealing member 14 as shown in FIG. However, the elastic sealing member 14 may be freely moved at this portion. Further, in the embodiment shown in FIG. 3A, when the elastic sealing member 14 and the guide member 17 are integrally formed, an example in which the embodiment shown in FIG. 2 is integrated is shown. As shown in 3 (c), an integrated member including the elastic sealing member 14 and the guide portion 18 may be formed in the same manner as the shape of the elastic sealing member storage portion 16.

また流路形成板2がPDMS等の弾性の大きな素材から形成されるときは、図4(a)に示すように前記弾性シール部材14は単に注出開口部13を塞ぐ弾性壁として一体成形し、この部分をシール機能部15としても良い。その際には中心にガイド部18を備えるように互いに対向してガイド19、19を同様に一体成形することもできる。その時例えば図4(b)に示すように、互いに対向するガイド19を膜状連結部26で連結し、2個のガイド19、19の成形時にこの部分に円滑に液体状のPDMSを流し、後に凝固させることによって正確なガイドを形成するようにしても良い。このとき、ガイド部18を膜状連結部26が封鎖することとなるが、後述するようにこの部分にキャピラリが挿通されるとき、特に障害となることなく貫通することができる。図4(c)には同図(a)のガイド19、19を独立させることなく、全て一体成形した例を示し、このような成形により容易にガイドを形成することができる。   When the flow path forming plate 2 is formed of a material having high elasticity such as PDMS, the elastic seal member 14 is integrally formed as an elastic wall that simply closes the dispensing opening 13 as shown in FIG. This portion may be used as the sealing function portion 15. In this case, the guides 19 and 19 can be similarly integrally formed facing each other so as to have the guide portion 18 at the center. At that time, for example, as shown in FIG. 4B, guides 19 facing each other are connected by a film-like connecting portion 26, and liquid PDMS is smoothly flowed to this portion when the two guides 19 and 19 are formed. An accurate guide may be formed by solidification. At this time, the film-like connecting portion 26 seals the guide portion 18, but when the capillary is inserted through this portion as will be described later, the guide portion 18 can penetrate without any particular obstacle. FIG. 4C shows an example in which the guides 19 and 19 in FIG. 4A are all integrally formed without being made independent, and the guide can be easily formed by such molding.

上記のような構成からなる流路形成部材1を用いて、反応部10で反応した液体、或いは蛋白質等を含む液体等を外部に抽出する際には、例えば図5に示すようにして行う。図5に示す例においては、前記図2の実施例の弾性密封部材14とガイド部材17の構成を備え、分注用のキャピラリ22をガイド部材17の2個のガイド19、19間のガイド部18に挿入するとき、これらのガイド19、19の対向する内面に案内され、弾性密封部材14のシール機能部15における外側面23に当接し、シール機能部15を外側から注出部12側に向けて押圧する。なお、この際、反応部10から弾性密封部材14のシール機能部15までは、例えば遠心力などを用いて液を満たすようにし、内部に気泡などが残らないことが重要である。また、分注用のキャピラリ22が数マイクロメータ程度の極めて細いときには、キャピラリ22の先端が正確にガイド部18に挿入されにくいので、そのようなときのためにキャピラリ保持ガイド27を設け、その上面或いは内部等に形成したキャピラリ保持ガイド部28にキャピラリ22を嵌合することにより、キャピラリ先端の開口Mへの確実な位置合わせと、安定した摺動が可能となる。   When the flow path forming member 1 having the above-described configuration is used to extract the liquid reacted in the reaction unit 10 or the liquid containing protein or the like to the outside, for example, as shown in FIG. In the example shown in FIG. 5, the structure of the elastic sealing member 14 and the guide member 17 of the embodiment of FIG. 2 is provided, and the capillary 22 for dispensing is guided between the two guides 19 and 19 of the guide member 17. When being inserted into the guide 18, the guides 19 are guided by the opposing inner surfaces of the guides 19, abut against the outer surface 23 of the sealing function portion 15 of the elastic sealing member 14, and move the sealing function portion 15 from the outer side to the dispensing portion 12 side. Press toward it. At this time, it is important that the reaction part 10 to the sealing function part 15 of the elastic sealing member 14 are filled with the liquid using, for example, centrifugal force so that no bubbles remain inside. Further, when the dispensing capillary 22 is extremely thin, such as several micrometers, the tip of the capillary 22 is difficult to be accurately inserted into the guide portion 18, and therefore, a capillary holding guide 27 is provided for such a case. Alternatively, by fitting the capillary 22 into the capillary holding guide portion 28 formed in the interior or the like, it is possible to perform reliable alignment with the opening M at the tip of the capillary and stable sliding.

その際、キャピラリ保持ガイド27におけるキャピラリ保持ガイド部28へのキャピラリ22の挿入を容易にするため、キャピラリ保持ガイド27のキャピラリ挿入側にキャピラリ受け面29を設ける。それにより、キャピラリ把持装置で把持されたキャピラリの先端がこのキャピラリ受け面29に当接し、このキャピラリ受け面及び周囲の案内壁面に案内されて、容易にキャピラリ保持ガイド部28に導くことができるようにする。   At that time, in order to facilitate the insertion of the capillary 22 into the capillary holding guide portion 28 in the capillary holding guide 27, a capillary receiving surface 29 is provided on the capillary insertion side of the capillary holding guide 27. As a result, the tip of the capillary gripped by the capillary gripping device comes into contact with the capillary receiving surface 29 and is guided to the capillary receiving surface and the surrounding guide wall surface so that it can be easily guided to the capillary holding guide portion 28. To.

更に、流路形成部材1は必ずしも厳密に平板ではないときがあり、500μm程度のたわみを生じていることがある。このようなときでも確実にキャピラリ把持装置に把持されたキャピラリの先端を前記のように流路形成部材1の開口Mに導くため、例えば図5(c)に示すような押さえ具30を用いることができる。図示する押さえ具30においては、先端を流路形成部材1を回転するテーブルの中心支持部に嵌合する嵌合孔を備え、他端側に前記図5(a)に示すようなキャピラリ保持ガイド部28を備えたキャピラリ保持ガイド27を一体的に設けている。このような押さえ具30を用いることにより、図5(c)に示す状態でテーブル上に載置された流路形成部材を上方から押さえ、流路形成部材1内の流路の開口が所定の位置になった状態で、キャピラリ把持装置で把持されたキャピラリの先端をキャピラリ受け面29及び周囲の案内面により案内してキャピラリ保持ガイド部28に導き、以降は前記図5(a)と同様の態様によりキャピラリ先端を開口に確実に導くことができるようになる。   Furthermore, the flow path forming member 1 is not necessarily strictly a flat plate, and may have a deflection of about 500 μm. Even in such a case, in order to reliably guide the tip of the capillary held by the capillary holding device to the opening M of the flow path forming member 1 as described above, for example, a pressing tool 30 as shown in FIG. Can do. The holding tool 30 shown in the figure has a fitting hole for fitting the tip to the center support portion of the table that rotates the flow path forming member 1, and the capillary holding guide as shown in FIG. 5A on the other end side. A capillary holding guide 27 having a portion 28 is integrally provided. By using such a pressing tool 30, the flow path forming member placed on the table in the state shown in FIG. 5C is pressed from above, and the opening of the flow path in the flow path forming member 1 is predetermined. In this state, the tip of the capillary gripped by the capillary gripping device is guided by the capillary receiving surface 29 and the surrounding guide surface and guided to the capillary holding guide portion 28, and thereafter the same as in FIG. According to the aspect, the capillary tip can be reliably guided to the opening.

キャピラリ22を開口Mから挿入し、シール機能部15を押圧する状態は図6(a)、(b)に断面図で示しており、(a)のようにキャピラリ22をキャピラリ保持ガイド27で案内しながら、流路形成板2側に前記のように移動させ、同図(b)のようにシール機能部15における外側面23を押圧する。それにより弾性密封部材14のシール機能部15は同図(b)に示すように弾性変形する。なお、図示の例ではキャピラリ22を流路形成板2、即ち流路形成部材1側に移動する例を示したが、キャピラリを同図(a)の位置に配置した後、流路形成部材1をキャピラリ側に移動しても同様の機能を行うことができる。また、図6(a)(b)の例においては、前記弾性密封部材14のシール機能部15において、未だ後述するようにキャピラリが挿入されたことのない状態でのキャピラリの挿入操作を示している。   The state in which the capillary 22 is inserted from the opening M and the seal function unit 15 is pressed is shown in cross-sectional views in FIGS. 6A and 6B, and the capillary 22 is guided by the capillary holding guide 27 as shown in FIG. While moving to the flow path forming plate 2 side as described above, the outer surface 23 of the sealing function portion 15 is pressed as shown in FIG. Thereby, the sealing function part 15 of the elastic sealing member 14 is elastically deformed as shown in FIG. In the illustrated example, the capillary 22 is moved to the flow path forming plate 2, that is, the flow path forming member 1 side. However, after the capillary is arranged at the position of FIG. The same function can be performed even if the is moved to the capillary side. 6 (a) and 6 (b) show an operation of inserting a capillary in a state where the capillary has not yet been inserted in the sealing function portion 15 of the elastic sealing member 14 as will be described later. Yes.

図6に示す例において、同図(b)の状態から更にキャピラリ22を分注部12側に移動すると、同図(c)に示すように弾性密封部材14のシール機能部15がキャピラリ22の先端で突き破られ、キャピラリ22の先端が分注部12内に挿入される。このように弾性密封部材14が突き破られる位置は予め実験によって得ておき、それよりも余裕をもって幾分先にキャピラリ22が移動する位置をキャピラリ22の停止位置としておく。   In the example shown in FIG. 6, when the capillary 22 is further moved to the dispensing unit 12 side from the state shown in FIG. 6B, the sealing function part 15 of the elastic sealing member 14 is moved to the capillary 22 as shown in FIG. The tip is pierced by the tip, and the tip of the capillary 22 is inserted into the dispensing part 12. The position at which the elastic sealing member 14 is pierced in this way is obtained in advance by experiments, and the position where the capillary 22 moves somewhat earlier than that is set as the stop position of the capillary 22.

図6(c)のようにキャピラリ22が分注部12内に挿入されると、分注部12の液体24がキャピラリ22の毛細管現象により管内に吸い込まれる。したがってキャピラリ22の内径と長さにより分注量を決定することができる。なお、キャピラリ22の内径が大きいとき、或いはその材質が毛細管現象では充分液体を吸い込まないときには、キャピラリ22の別の端部からポンプ等により吸引してもよい。このような作用によりキャピラリ22内に所定の量の液体が吸い込まれた後、キャピラリ22を同図(d)のように抜き取る。   When the capillary 22 is inserted into the dispensing unit 12 as shown in FIG. 6C, the liquid 24 in the dispensing unit 12 is sucked into the tube by capillary action of the capillary 22. Therefore, the dispensing amount can be determined by the inner diameter and length of the capillary 22. When the inner diameter of the capillary 22 is large or when the material is not sufficiently sucked by capillary action, the capillary 22 may be sucked by a pump or the like from another end. After a predetermined amount of liquid is sucked into the capillary 22 by such an action, the capillary 22 is extracted as shown in FIG.

このとき前記のようにキャピラリ22で突き破られた弾性密封部材14のシール機能部15は、例えばこの弾性密封部材14がPDMSで作成されているときには、図5(a)の一部拡大図として示す同図(b)において、分注部12の幅Lが600μm、弾性密封部材14において最も薄く、キャピラリ22が挿入される部分の厚さTが60μm、キャピラリの直径Dが200μmのものを作成し、キャピラリ22を前記のように挿入した後引き抜く実験を行ったところ、弾性密封部材14の自己弾性及び自己粘着性によりキャピラリが突き破った部分は自動的に密封されることを確認した。図6(d)にはこの部分を自己密封部25として破線で示している。   At this time, the sealing function part 15 of the elastic sealing member 14 pierced by the capillary 22 as described above is, for example, a partially enlarged view of FIG. 5A when the elastic sealing member 14 is made of PDMS. In FIG. 5B, a dispensing part 12 having a width L of 600 μm, the thinnest elastic sealing member 14 having a thickness T of 60 μm and a capillary diameter D of 200 μm is inserted. When the capillary 22 was inserted and pulled out as described above, it was confirmed that the portion of the elastic sealing member 14 through which the capillary broke due to self-elasticity and self-adhesiveness was automatically sealed. In FIG. 6 (d), this portion is indicated by a broken line as a self-sealing portion 25.

その後この自己密封部25に他のキャピラリを前記と同様に挿入し引き抜く作業を繰り返した結果、少なくとも数回程度は充分自己粘着性による密封が継続した。このことから、更に多数回のキャピラリの挿入及び引き抜きの操作が可能であることがわかった。したがって、分注部12内に存在する液体は少なくとも数本分のキャピラリ22に分注することが可能となる。また、この密封効果をより高めるためには、自己密封部25にあらかじめ切れ込みを入れておくと良いものと考えられる。   Thereafter, another capillary was inserted into and pulled out of the self-sealing portion 25 in the same manner as described above, and as a result, sealing with sufficient self-adhesion was continued at least several times. From this, it was found that the operation of inserting and extracting the capillary many more times is possible. Therefore, the liquid present in the dispensing unit 12 can be dispensed into at least several capillaries 22. In order to further enhance the sealing effect, it is considered that the self-sealing portion 25 should be cut in advance.

上記のような構成からなる流路形成部材を用いる本発明の分注装置は、例えば図7に示すような装置によって分注作業を実施することができる。同図(a)に示す装置においては、中央部に設けたキャピラリ把持搬送装置31を挟んで図中左側に前記CDのような円板状をなす第1流路形成部材32を第1モータ33により回転自在に配置し、第1流路形成部材32とは内部のマイクロ流路が適宜変更される第2流路形成部材34を、第2モータ35により回転自在に図中右側に配置している。   The dispensing apparatus of the present invention using the flow path forming member having the above-described configuration can perform dispensing work by using an apparatus as shown in FIG. 7, for example. In the apparatus shown in FIG. 6A, a first flow path forming member 32 having a disk shape like the CD is provided on the left side of the figure across a capillary gripping and conveying apparatus 31 provided at the center. The second flow path forming member 34 whose inner micro flow path is appropriately changed is disposed on the right side in the figure so as to be rotatable by the second motor 35. Yes.

例えば第1流路形成部材32については、その断面を図7(b)に示すような第1流路形成部材回転・移動装置38によって回転させ、またその位置をキャピラリ把持搬送装置31側に進退自在に移動することができるようにしている。同図に示す例においては、第1モータ33で回転駆動されるテーブル36上に第1流路形成部材32を載置し、クランプ37により回転自在に挟み、その状態で第1モータ33を連続的に回転することにより第1流路形成部材32を適宜の高速で回転させ、また一定角度ずつ回転可能としている。   For example, the cross section of the first flow path forming member 32 is rotated by a first flow path forming member rotating / moving device 38 as shown in FIG. 7B, and the position is advanced and retracted toward the capillary gripping and conveying apparatus 31 side. It can be moved freely. In the example shown in the figure, a first flow path forming member 32 is placed on a table 36 that is rotationally driven by a first motor 33, and is sandwiched rotatably by a clamp 37. In this state, the first motor 33 is continuously provided. Therefore, the first flow path forming member 32 is rotated at an appropriate high speed and is rotated by a certain angle.

また、クランプ37を駆動し、モータ33を載置する第1流路形成部材駆動装置38は、フレーム等に固定される第1流路形成部材駆動装置移動部材39のピストン40により、図7(b)のように図中左右に移動可能としている。それにより、第1流路形成部材32の前記のような分注部の開口Mが、前記キャピラリ把持搬送装置31で把持されたキャピラリ22の先端と前記図6(a)のように対向している状態で、第1流路形成部材駆動装置移動部材39のピストン40の作動により、第1流路形成部材駆動装置38をキャピラリ22側に移動すると、前記図6(a)(b)のような作動によって、キャピラリ22の先端が弾性密封部材14を突き破って分注部12内に挿入され、前記のように毛細管現象によって分注部内の液体はキャピラリ22内にその全長に抽出され、所定量抽出することができる。なお、このとき図7(b)に示すように、前記図5に示したようなキャピラリ保持ガイド27を設けることのより、キャピラリ22の先端を確実に開口Mの位置に合うように、またキャピラリ22の先端がシール機能部を突き破るときの力によりキャピラリ22が曲がらないようにすることができる。特に前記図5(b)のような抑え具30を用いることにより、流路形成部材のたわみを押さえ、直径数μm程度のキャピラリ22でも確実な挿入を行うことができる。   Further, the first flow path forming member driving device 38 for driving the clamp 37 and placing the motor 33 is driven by the piston 40 of the first flow path forming member driving device moving member 39 fixed to the frame or the like as shown in FIG. It is possible to move left and right in the figure as shown in b). Thereby, the opening M of the dispensing part as described above of the first flow path forming member 32 is opposed to the tip of the capillary 22 held by the capillary holding / conveying device 31 as shown in FIG. When the first flow path forming member driving device 38 is moved to the capillary 22 side by the operation of the piston 40 of the first flow path forming member driving device moving member 39 in the state shown in FIGS. 6 (a) and 6 (b). As a result of the operation, the tip of the capillary 22 penetrates the elastic sealing member 14 and is inserted into the dispensing part 12, and the liquid in the dispensing part is extracted into the capillary 22 to its full length by capillary action as described above, and a predetermined amount Can be extracted. At this time, as shown in FIG. 7B, by providing the capillary holding guide 27 as shown in FIG. 5, the tip of the capillary 22 is surely aligned with the position of the opening M, and the capillary It is possible to prevent the capillary 22 from being bent by a force when the tip of the 22 breaks through the seal function part. In particular, by using the suppressor 30 as shown in FIG. 5 (b), the deflection of the flow path forming member can be suppressed, and the capillary 22 having a diameter of about several μm can be reliably inserted.

一方キャピラリ把持搬送装置31は種々の装置によって実施することができるが、図7に示す例においては、左右のレール41、42上にキャピラリ22を多数載置可能とし、またレール41とレール42の間の間隙部43にキャピラリ把持装置44を配置している。図7(c)に示すキャピラリ把持装置44においては、キャピラリ22の片側に位置するクランプ受け部材45をL字形として、その基底部46をキャピラリ搬送装置47に固定し、図示されない駆動装置により図7(c)において例えば左方向等の片方に移動可能としている。   On the other hand, the capillary gripping and conveying device 31 can be implemented by various devices. In the example shown in FIG. 7, a large number of capillaries 22 can be placed on the left and right rails 41 and 42. A capillary gripping device 44 is disposed in the gap 43 therebetween. In the capillary gripping device 44 shown in FIG. 7 (c), the clamp receiving member 45 located on one side of the capillary 22 is L-shaped, and its base portion 46 is fixed to the capillary transport device 47. In (c), for example, it is possible to move in one direction such as leftward.

図7(c)の例ではクランプ受け部材45の基底部46上に把持駆動部材48を固定し、それにより図中左右に移動するピストン49によってクランプ部材50を図中左右に移動可能とし、それによりキャピラリ22の強固な把持と、把持の解放を行うことができるようにしている。上記のようなキャピラリ把持搬送装置31を用いることにより、図7(a)の例では、レール41、42の片方の長手方向端部側におけるキャピラリ供給位置51に多数載置され、このレールをキャピラリ供給位置51側から他側に向けて適宜下方に傾斜させておく。   In the example of FIG. 7 (c), a gripping drive member 48 is fixed on the base 46 of the clamp receiving member 45, so that the clamp member 50 can be moved left and right in the figure by a piston 49 that moves left and right in the figure. Thus, the capillary 22 can be firmly gripped and released. By using the capillary gripping and conveying apparatus 31 as described above, in the example of FIG. 7A, a large number of rails 41 and 42 are placed at the capillary supply position 51 on one end side in the longitudinal direction. It is inclined downward appropriately from the supply position 51 side toward the other side.

且つ図示されない上下に進退可能なストッパ等によってた最初のキャピラリ22が常にストッパの位置に存在する状態にして、前記のように別途の装置で移動するキャピラリ把持装置44をこの部分で上昇させ、最初のキャピラリ22を下側から挟み、且つクランプ部材50の移動によってキャピラリを強固に把持する。その後ストッパを降下させ、キャピラリ22を把持した状態で分注位置52に移動する。   In addition, the first capillary 22 by a stopper that can be moved up and down (not shown) is always present at the position of the stopper, and the capillary gripping device 44 that is moved by a separate device as described above is raised at this portion. The capillary 22 is sandwiched from below and the capillary is firmly held by the movement of the clamp member 50. Thereafter, the stopper is lowered and moved to the dispensing position 52 with the capillary 22 held.

この分注位置52においては、予め第1モータ33の駆動により図1のように多数放射状に配置されているマイクロ流路構造の内の一つを選択して、その分注部を分注位置52に回転させておき、キャピラリが前記のように分注位置に搬送されたときに、第1流路形成部材駆動装置移動部材39の作動により第1流路形成部材をキャピラリ側に移動すると、前記図6の態様により相対的にキャピラリ22が弾性密封部材を突き破って分注部に挿入され、キャピラリの長さ分だけ毛細管現象により注出する。この状態は本発明による分注装置の一連の作動を示す図8及び図9において、図8(a)の状態として示している。   At the dispensing position 52, one of the micro-channel structures arranged in a radial pattern as shown in FIG. 1 is selected in advance by driving the first motor 33, and the dispensing portion is placed at the dispensing position. When the first flow path forming member is moved to the capillary side by the operation of the first flow path forming member driving device moving member 39 when the capillary is transported to the dispensing position as described above, According to the embodiment shown in FIG. 6, the capillary 22 relatively penetrates the elastic sealing member and is inserted into the dispensing part, and is dispensed by the capillary phenomenon by the length of the capillary. This state is shown as the state of FIG. 8A in FIGS. 8 and 9 showing a series of operations of the dispensing device according to the present invention.

このような注出に必要な所定時間が経過した後、第1流路形成部材駆動装置移動部材39の作動により、第1流路形成部材32をキャピラリから離れる方向に移動する。それにより図8(b)のように第1流路形成部材32はキャピラリ22から引き離される。その後この実施例においては、レール41、42を中心として、第1流路形成部材32と反対側に対称的に配置した第2流路形成部材34に、前記のようにキャピラリ22に分注した液体を注入するようにしている。   After the elapse of a predetermined time required for such dispensing, the first flow path forming member 32 is moved away from the capillary by the operation of the first flow path forming member driving device moving member 39. As a result, the first flow path forming member 32 is pulled away from the capillary 22 as shown in FIG. Thereafter, in this embodiment, the capillary 22 is dispensed as described above into the second flow path forming member 34 symmetrically disposed on the opposite side of the first flow path forming member 32 with the rails 41 and 42 as the center. The liquid is injected.

そのため、図8(b)の状態で第2流路形成部材34を前記第1流路形成部材駆動装置移動部材39と同様の装置によって、第2流路形成部材34をキャピラリ把持搬送装置31側に移動する。その際、同図に示すように第2流路形成部材34内に形成された所定のマイクロ流路に対して、第1流路形成部材32の前記弾性密封部材14と同様の弾性密封部材を備えており、第2流路形成部材34の前記移動により、分注位置52に回転している注入部55をキャピラリ22側に移動する。   Therefore, in the state of FIG. 8B, the second flow path forming member 34 is moved to the capillary gripping and conveying apparatus 31 side by the same device as the first flow path forming member driving device moving member 39. Move to. At that time, an elastic sealing member similar to the elastic sealing member 14 of the first flow path forming member 32 is applied to a predetermined micro flow path formed in the second flow path forming member 34 as shown in FIG. The injection part 55 rotating to the dispensing position 52 is moved to the capillary 22 side by the movement of the second flow path forming member 34.

その結果図9(a)に示すように、キャピラリ22が第2流路形成部材34の弾性密封部材を貫通し、弾性密封部材の内部に形成したマイクロ流路内に挿入される。そのマイクロ流路には第1流路形成部材の注入部と同様の構成で設けている注出孔56に、ポンプの吸入孔と連通している真空配管を接続し、マイクロ流路を介してキャピラリ22内の液体を吸引する。キャピラリ22内の全ての液体を吸引するタイミングで真空配管のバルブを閉鎖する等により吸引を停止する。   As a result, as shown in FIG. 9A, the capillary 22 passes through the elastic sealing member of the second flow path forming member 34 and is inserted into the micro flow path formed inside the elastic sealing member. A vacuum pipe communicating with the suction hole of the pump is connected to an extraction hole 56 provided in the same configuration as the injection portion of the first flow path forming member, and the micro flow path is connected to the micro flow path via the micro flow path. The liquid in the capillary 22 is sucked. The suction is stopped by closing the valve of the vacuum pipe at the timing of sucking all the liquid in the capillary 22.

その後第2流路形成部材34をキャピラリ22と反対側に移動し、前記図8(b)の位置関係とする。但し、その後の作動は同じキャピラリを用い、或いは空になったキャピラリ22をキャピラリ集積位置53側に移動して新しいキャピラリをキャピラリ供給位置51から分注位置52に搬送する。その後分注位置52に把持されているキャピラリ22に対して、前記図8(a)のように第1流路形成部材32を移動して、前記と同様の作動により空のキャピラリ22に未だ残っている分注部の液体を注出する。上記のような作動を繰り返すことにより、第1流路形成部材32内の1つの分注部、或いは反応部に存在する液体を第2流路形成部材34のマイクロ流路に順に分注することができる。   Thereafter, the second flow path forming member 34 is moved to the side opposite to the capillary 22 to obtain the positional relationship shown in FIG. However, in the subsequent operation, the same capillary is used, or the empty capillary 22 is moved to the capillary accumulation position 53 side, and a new capillary is conveyed from the capillary supply position 51 to the dispensing position 52. Thereafter, the first flow path forming member 32 is moved with respect to the capillary 22 held at the dispensing position 52 as shown in FIG. 8A, and still remains in the empty capillary 22 by the same operation as described above. The liquid in the dispensing part is poured out. By repeating the operation as described above, the liquid existing in one dispensing part or the reaction part in the first flow path forming member 32 is sequentially dispensed into the micro flow path of the second flow path forming member 34. Can do.

その後第1流路形成部材32の1つのマイクロ流路構成部における分注部内の分注が終了した後は、図9(a)(b)に示すように、第1流路形成部材32を分注が終了したマイクロ流路構成部に隣接する次のマイクロ流路構成部の分注部が位置する迄回転する。なお、図9(b)には第2流路形成部材34も回転させた例を示しているが、これは第2流路形成部材34も第1流路形成部材32と同様に回転作動させることができる例を図示している。   Then, after the dispensing in the dispensing part in one micro-channel constituting part of the first channel forming member 32 is completed, the first channel forming member 32 is moved as shown in FIGS. Rotate until the dispensing part of the next microchannel constituent part adjacent to the microchannel constituent part that has been dispensed is located. FIG. 9B shows an example in which the second flow path forming member 34 is also rotated, but this also causes the second flow path forming member 34 to rotate as well as the first flow path forming member 32. An example that can be shown.

上記の例においては、第1流路形成部材32の1つのマイクロ流路構成部における分注部に存在する液体を分注するに際して、キャピラリ22の1本ずつを第1流路形成部材からの注出によるキャピラリ22内への分注と、その後直ちに第2流路形成部材34に対してそのキャピラリ22内の液体を注入するようにした例を示したが、その他、第1流路形成部材32の1つのマイクロ流路構成部における分注部に存在する液体について、キャピラリ22の挿入による分注を連続的に行い、液体が注入されたキャピラリをキャピラリ集積部に集積しておき、1つのマイクロ流路構成部の分注作業が全て終了した後、これらを順に分注位置に搬送し、第2流路形成部材34を所定角度ずつ回転させて、分注したキャピラリ22の液体を第2流路形成部材のマイクロ流路内に注入するようにしても良い。また、第1流路形成部材32にキャピラリの端部を挿入した状態で、同時にキャピラリの他端部を第2流路形成部材34に挿入し、第2流路形成部材側から直接吸引することにより、所定量の液体を第2流路形成部材のマイクロ流路に順に分注することもできる。   In the above example, when dispensing the liquid present in the dispensing part in one micro-channel constituting part of the first channel forming member 32, each of the capillaries 22 is removed from the first channel forming member. Although an example in which the liquid in the capillary 22 is dispensed into the capillary 22 by pouring and immediately after that the liquid in the capillary 22 is injected into the second flow path forming member 34 has been shown. For the liquid present in the dispensing part in one of the micro-channel constituent parts of 32, dispensing by inserting the capillary 22 is continuously performed, and the capillary into which the liquid has been injected is accumulated in the capillary collecting part, After all of the dispensing operations of the microchannel constituent parts are completed, these are sequentially conveyed to the dispensing position, the second channel forming member 34 is rotated by a predetermined angle, and the dispensed liquid in the capillary 22 is secondly Channel type It may be injected into the microchannel member. Further, with the end of the capillary inserted into the first flow path forming member 32, the other end of the capillary is simultaneously inserted into the second flow path forming member 34 and suctioned directly from the second flow path forming member side. Thus, a predetermined amount of liquid can be sequentially dispensed into the micro flow channel of the second flow channel forming member.

なお、第1流路形成部材32の1つのマイクロ流路構成部の分注量が多いときには、1枚の第2流路形成部材34のマイクロ流路のみでは不足することが考えられるが、その際には従来の音楽用CDのディスクチェンジャのように、同様の流路構成を備えた他の第2流路形成部材34と交換することにより、容易に対応することができる。このことは第1流路形成部材32についても同様であり、同じマイクロ流路で同様の反応を行わせるもの、或いは他のマイクロ流路構成を備えたものを複数用意し、ディスクチェンジャと同様に、分注を行う流路形成部材を順次交換し、分注作業を全て連続的に行わせることもできる。   It should be noted that when there is a large amount of dispensing of one microchannel constituent part of the first channel forming member 32, it is considered that only one microchannel of the second channel forming member 34 is insufficient. In this case, it is possible to easily cope with the problem by exchanging with another second flow path forming member 34 having a similar flow path configuration like a conventional disk changer for music CD. The same applies to the first flow path forming member 32. Prepare a plurality of the same flow path with the same micro flow path or those with other micro flow path configurations. Alternatively, the flow path forming members that perform dispensing can be sequentially replaced, and all dispensing operations can be performed continuously.

内部の液体を第2流路形成部材34に注入後のキャピラリ22は、レール41、42の前記供給側位置31と反対側の位置である分注済キャピラリ集積位置53に搬送する。このキャピラリ集積位置53の近傍で把持していたキャピラリを解放すると、前記のようにレールが傾斜していることによりキャピラリ集積位置の端部に設けたストッパ54側に順に集積される。なお、分注位置でキャピラリに分注が終了した後には、この部分でキャピラリ22の把持を解放することにより、キャピラリのレール上の転動によって分注済キャピラリをキャピラリ集積位置53に集積させることも可能である。同時にキャピラリ供給位置51で予め次のキャピラリを把持して待機していたキャピラリ把持搬送装置31により、次のキャピラリを前記と同様に分注位置52に移動する。この状態は図8(b)に示している。   After injecting the internal liquid into the second flow path forming member 34, the capillary 22 is transported to a dispensed capillary accumulation position 53, which is a position opposite to the supply side position 31 of the rails 41 and 42. When the capillaries held in the vicinity of the capillary accumulation position 53 are released, the rails are inclined as described above, so that they are sequentially accumulated on the stopper 54 provided at the end of the capillary accumulation position. After dispensing into the capillaries at the dispensing position, the capillaries 22 are released at this portion, and the dispensed capillaries are accumulated at the capillary accumulation position 53 by rolling on the rails of the capillaries. Is also possible. At the same time, the next capillary is moved to the dispensing position 52 in the same manner as described above by the capillary holding / conveying device 31 that has been holding and waiting in advance at the capillary supply position 51. This state is shown in FIG.

前記実施例においては第1流路形成部材と第2流路形成部材を用い、第1流路形成部材からキャピラリに所定量分注した液体を第2流路形成部材の流路に吸引供給する例を示したが、そのほか、第2流路形成部材を用いることなく、第1流路形成部材に前記第1流路形成部材と同様の反応室及び注出部を備えた流路を形成すると共に、同一部材の他の部分には前記第2流路形成部材と同様の分注液体を吸引する流路と密封部材を設け、1つの流路形成部材のみによって注出部からキャピラリへの分注、及びその後の分注した液体の吸引供給を行うようにしても良い。   In the embodiment, the first flow path forming member and the second flow path forming member are used, and a predetermined amount of liquid dispensed from the first flow path forming member to the capillary is sucked and supplied to the flow path of the second flow path forming member. Although an example has been shown, a flow path including a reaction chamber and an extraction portion similar to the first flow path forming member is formed in the first flow path forming member without using the second flow path forming member. In addition, the other part of the same member is provided with a channel and a sealing member for sucking the dispensed liquid similar to the second channel forming member, and only one channel forming member is used to separate the dispensing portion from the dispensing portion to the capillary. The suction and supply of the dispensed liquid after that may be performed.

なお、前記実施例においては、本発明について効率的に実施できるように流路形成部材をディスク状に形成した例を示したが、それ以外に例えば図10に示した矩形の流路形成部材を用い、内部に複数のマイクロ流路を形成したものを用いる等、種々の態様で実施することができる。   In addition, in the said Example, although the example which formed the flow-path formation member in the disk shape so that it could implement efficiently about this invention was shown, the rectangular flow-path formation member shown, for example in FIG. It can be carried out in various modes such as using a plurality of microchannels formed therein.

更に、前記実施例では本発明をマイクロ流路を形成した流路形成部材に適用した例を示したが、その他1mm以上の適宜の大きさの流路を形成した矩形やディスク状のチップを用いて、その分注部分に前記弾性密封部材を適用して本発明を実施することもできる。   Further, in the above embodiment, the present invention is applied to the flow path forming member in which the micro flow path is formed, but other rectangular or disk-shaped chips having a flow path of an appropriate size of 1 mm or more are used. The present invention can also be implemented by applying the elastic sealing member to the dispensing portion.

本発明の流路形成部材の実施例を示す図である。It is a figure which shows the Example of the flow-path formation member of this invention. 同実施例の分注部及び弾性密封部材部分の拡大図である。It is an enlarged view of the dispensing part and elastic sealing member part of the Example. 本発明の流路形成部材の他の各種実施例を示す図である。It is a figure which shows the other various Example of the flow-path formation member of this invention. 本発明の流路形成部材の更に他の各種実施例を示す図である。It is a figure which shows other various Examples of the flow-path formation member of this invention. 本発明の流路形成部材の実施例において、キャピラリを挿入するときの各種態様を示す図である。In the Example of the flow-path formation member of this invention, it is a figure which shows the various aspects when inserting a capillary. 本発明の流路形成部材の実施例において、キャピラリを貫通し引き抜く時の弾性密封部材の作用を説明する図である。In the Example of the flow-path formation member of this invention, it is a figure explaining the effect | action of an elastic sealing member when penetrating and pulling out a capillary. 本発明の流路形成部材を用いて分注を行う分注装置の実施例の模式図である。It is a schematic diagram of the Example of the dispensing apparatus which dispenses using the flow-path formation member of this invention. 同分注装置を用いて分注を行うときの例を示す図であり、(a)は第1の態様、(b)は第2の態様を示す図である。It is a figure which shows the example when dispensing using the same dispensing apparatus, (a) is a 1st aspect, (b) is a figure which shows a 2nd aspect. 同分注装置を用いて分注を行うときの例を示す図であり、(a)は第3の態様、(b)は第4の態様を示す図である。It is a figure which shows the example when dispensing using the same dispensing apparatus, (a) is a 3rd aspect, (b) is a figure which shows a 4th aspect. 従来の流路形成部材としてのマイクロチップ、及びそのマイクロチップを用いて分注を行う分注装置の例を示す図である。It is a figure which shows the example of the dispensing device which dispenses using the microchip as a conventional flow-path formation member, and the microchip.

符号の説明Explanation of symbols

1 流路形成部材
2 流路形成板
3 流路溝
4 カバー
5 マイクロ流路
6 基板
7 マイクロ流路構成部
8 注入部
9 バッファ部
10 反応室
11 排出流路
12 注出部
13 注出開口部
14 弾性密封部材
15 シール機能部
17 ガイド部材
M 開口
DESCRIPTION OF SYMBOLS 1 Flow path formation member 2 Flow path formation board 3 Flow path groove 4 Cover 5 Micro flow path 6 Substrate 7 Micro flow path component 8 Injection part 9 Buffer part 10 Reaction chamber 11 Discharge flow path 12 Outlet part 13 Outlet part 14 Elastic sealing member 15 Seal function part 17 Guide member M Opening

Claims (5)

注入部と注出部を備えた液体の流路を内部に形成してなる平板状の流路形成部材において、内部の流路に連通する前記注入部または注出部の少なくともいずれかを前記流路形成部材の側面に開口し、前記側面に開口する注入部の注入開口部或いは注出部の注出開口部には該開口部を密封する密封部材を設け、前記開口から前記開口部の密封部材の間に、密封部材を貫通して流路内の液体吸引用のキャピラリを案内するガイド部材を設けた流路形成部材を備え、
前記流路形成部材の前記開口とキャピラリ把持装置で把持したキャピラリの端部とが対向し、キャピラリの軸線が密封部材表面と垂直になるように、流路形成部材とキャピラリ把持装置の少なくとも片方を移動可能に設け、
前記流路形成部材とキャピラリの少なくとも片方を相対的に移動することにより、キャピラリの端部を、前記ガイド部材で案内しつつ、前記密封部材を貫通して内部の流路内に挿入し、前記流路内の液体を所定量キャピラリ内に吸引した後、前記移動によりキャピラリを外部に引き抜く操作を繰り返すことにより、前記流路内の液体を分注する分注機構を備えたことを特徴とする分注装置。
In a flat-plate-shaped flow path forming member formed with a liquid flow path provided with an injection part and an extraction part, at least one of the injection part and the extraction part communicating with the internal flow path is used as the flow path. A sealing member that seals the opening is provided at the injection opening of the injection portion or the extraction opening of the injection portion that opens to the side surface of the path forming member, and seals the opening from the opening. A flow path forming member provided with a guide member that guides a capillary for liquid suction in the flow path through the sealing member between the members,
At least one of the flow path forming member and the capillary gripping device is arranged so that the opening of the flow path forming member faces the end of the capillary gripped by the capillary gripping device and the capillary axis is perpendicular to the surface of the sealing member. Set up to be movable,
By relatively moving at least one of the flow path forming member and the capillary, the end of the capillary is guided by the guide member, inserted through the sealing member into the internal flow path, A dispensing mechanism is provided for dispensing the liquid in the flow path by repeating the operation of drawing the capillary in the flow path to the outside after the suction of the liquid in the flow path to a predetermined amount. Dispensing device.
前記所定量の液体を吸引したキャピラリを、前記流路形成部材と同様の密封部材を備えた他の流路における密封部材の壁を貫通し、
前記他の流路形成部材内部の流路に前記所定量の液体を供給して分注することを特徴とする請求項1記載の分注装置。
The capillary that sucks the predetermined amount of liquid passes through the wall of the sealing member in the other flow path provided with the same sealing member as the flow path forming member,
The dispensing apparatus according to claim 1, wherein the predetermined amount of liquid is supplied and dispensed into a flow path inside the other flow path forming member.
前記キャピラリ把持装置をキャピラリ移動装置に固定し、
前記キャピラリ移動装置は、キャピラリ把持装置によりキャピラリ供給位置の未使用キャピラリを把持して分注位置に移動し、
前記他の流路内部に液体を供給して分注した後のキャピラリの把持を解放して、該キャピラリを使用済みキャピラリ集積位置に集積することを特徴とする請求項1記載の分注装置。
Fixing the capillary gripping device to a capillary moving device;
The capillary moving device grips an unused capillary at a capillary supply position by a capillary gripping device and moves it to a dispensing position,
2. The dispensing apparatus according to claim 1, wherein gripping of the capillary after the liquid is supplied and dispensed into the other flow path is released and the capillary is accumulated at a used capillary accumulation position.
前記流路形成部材は、円板状に形成し、前記注入部と注出部間の所定形状の流路構成部を放射状に複数形成したものであり、流路形成部材を連続回転及び所定角度ずつ回転するモータを設け、前記モータの作動により前記流路形成部材の連続回転によって流路内の液体を前記注出部側に移動し、また前記流路形成部材の所定角度ずつの回転により複数のマイクロ流路構成部における各注出部の開口を注出位置に回転移動することを特徴とする請求項1記載の分注装置。  The flow path forming member is formed in a disk shape, and a plurality of predetermined shape flow path constituting portions between the injection portion and the extraction portion are radially formed. The flow path forming member is continuously rotated at a predetermined angle. A motor that rotates each time is provided, and the operation of the motor moves the liquid in the flow path to the dispensing portion side by continuous rotation of the flow path forming member, and a plurality of rotations by a predetermined angle of the flow path forming member The dispensing device according to claim 1, wherein the opening of each of the extraction portions in the micro-channel constituting portion is rotated to the extraction position. 前記流路形成部材のたわみを押さえる押さえ具を備え、
前記押さえ具には前記把持装置で把持したキャピラリ端部を流路開口に導くガイドを備えたことを特徴とする請求項1記載の分注装置。
A presser for pressing the flow path forming member is provided.
The dispensing apparatus according to claim 1, wherein the pressing tool includes a guide for guiding the end of the capillary gripped by the gripping device to the opening of the flow path.
JP2007139787A 2007-05-25 2007-05-25 Dispensing device Expired - Fee Related JP5055617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007139787A JP5055617B2 (en) 2007-05-25 2007-05-25 Dispensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007139787A JP5055617B2 (en) 2007-05-25 2007-05-25 Dispensing device

Publications (2)

Publication Number Publication Date
JP2008292379A JP2008292379A (en) 2008-12-04
JP5055617B2 true JP5055617B2 (en) 2012-10-24

Family

ID=40167244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007139787A Expired - Fee Related JP5055617B2 (en) 2007-05-25 2007-05-25 Dispensing device

Country Status (1)

Country Link
JP (1) JP5055617B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11478790B2 (en) 2017-11-10 2022-10-25 Nok Corporation Microfluidic chip and microfluidic device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915652A (en) * 1973-08-16 1975-10-28 Samuel Natelson Means for transferring a liquid in a capillary open at both ends to an analyzing system
JPS5977067U (en) * 1982-11-16 1984-05-24 株式会社島津製作所 Capillary type sampling device
JPH01195362A (en) * 1988-01-29 1989-08-07 Shimadzu Corp Sample injecting device
CA2062238C (en) * 1991-03-19 1996-06-25 Rudolf Bucheli Closure for reagent container
JP3348949B2 (en) * 1993-12-28 2002-11-20 オリンパス光学工業株式会社 Suction and discharge device
JPH10206748A (en) * 1997-01-17 1998-08-07 Daiichi Seimitsu Kk Capillary unit for stage installation of microscope, stage for microscope equipped with capillary unit, and microscope equipped with capillary unit
JP2002228669A (en) * 2001-01-31 2002-08-14 Shimadzu Corp Liquid transport device and reaction container
JP4244534B2 (en) * 2001-06-12 2009-03-25 横河電機株式会社 Biochip
JP4262674B2 (en) * 2002-04-30 2009-05-13 アークレイ株式会社 Analytical tool, sample analysis method and analytical device using analytical tool
JP2005214691A (en) * 2004-01-28 2005-08-11 Noritake Co Ltd Flow cell device
JP3967331B2 (en) * 2004-03-23 2007-08-29 株式会社東芝 Liquid mixing method, liquid mixing apparatus and microchip
JP3927978B2 (en) * 2004-11-02 2007-06-13 キヤノン株式会社 Biochemical reaction cartridge and biochemical processing system
SE0402731D0 (en) * 2004-11-10 2004-11-10 Gyros Ab Liquid detection and confidence determination
JP2007024656A (en) * 2005-07-15 2007-02-01 Yokogawa Electric Corp Cartridge for chemical reaction, and information management device

Also Published As

Publication number Publication date
JP2008292379A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP7110300B2 (en) Microfluidic system with fluidic pickup
US20230371865A1 (en) Devices, Systems and Methods for Gravity-Enhanced Microfluidic Collection, Handling and Transferring of Fluids
EP2869922B1 (en) Disposable cartridge for microfluidics systems
EP1427531B1 (en) Sample vessels
EP2178639B1 (en) Apparatus for delivering pipettable substances
US8568668B2 (en) Micro droplet operation device and reaction processing method using the same
US20110027904A1 (en) Sample mixing on a microfluidic device
JP2002243748A (en) Device for analysis of fluid and controlled conveyance of fluid
EP2423690A1 (en) Sample solution introduction kit and sample solution injector
WO2006123578A1 (en) Testing chip for analyzing target substance contained in analyte, and microscopic comprehensive analytical system
US11213824B2 (en) Microfluidic device and methods
CN110785649A (en) Sample filter device
CN101868730A (en) Microfluidic chip for analysis of fluid sample
US9987630B2 (en) Fluid handling device and method of using the same
US9844778B2 (en) Testing module and method for testing test sample
US20200164367A1 (en) Structures for automated, multi-stage processing of nanofluidic chips
EP2075586A1 (en) Dispenser
JP5055617B2 (en) Dispensing device
CN101588868A (en) Micro-fluid chip with the lateral opening that is used for the fluid introducing
JP2010065584A (en) Liquid sending pump and liquid sending method by this pump
JP4551123B2 (en) Microfluidic system and processing method using the same
TWI383146B (en) Can be accurate micro sampling and sample of microfluidic chip
CN107427834A (en) Microfluidic device and the analyzing device including the microfluidic device
US11524291B2 (en) Fluidic device
CN217093553U (en) Micro-fluidic detection chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5055617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees