JP5050226B2 - Manufacturing method of copper alloy material - Google Patents

Manufacturing method of copper alloy material Download PDF

Info

Publication number
JP5050226B2
JP5050226B2 JP2005101301A JP2005101301A JP5050226B2 JP 5050226 B2 JP5050226 B2 JP 5050226B2 JP 2005101301 A JP2005101301 A JP 2005101301A JP 2005101301 A JP2005101301 A JP 2005101301A JP 5050226 B2 JP5050226 B2 JP 5050226B2
Authority
JP
Japan
Prior art keywords
heat treatment
cold rolling
finish
copper alloy
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005101301A
Other languages
Japanese (ja)
Other versions
JP2006283060A (en
Inventor
勉 野中
秀樹 遠藤
康雄 猪鼻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2005101301A priority Critical patent/JP5050226B2/en
Publication of JP2006283060A publication Critical patent/JP2006283060A/en
Application granted granted Critical
Publication of JP5050226B2 publication Critical patent/JP5050226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、コネクタ等の電気・電子部品用材料として使用される強度、弾性、導電性の良好な銅合金材料であって、特にプレス打抜き性を改善した銅合金板材の製造法に関する。 The present invention is strength to be used as electric and electronic parts materials such as connectors, elastic, a good copper alloy material of the conductive relates to a process for the preparation of a copper alloy sheet material as specifically improving press-punching properties.

近年、エレクトロニクスの発達により、種々の機械の電気配線は複雑化、高集積化し、それに伴いコネクタ等の電気・電子部品製造用材料として伸銅品の需要が増加している。これら伸銅品は、金型を用いた高速のプレスにより打抜き加工されることが多いため、電気・電子部品用材料には、強度、導電性などの他、プレス打抜き性に優れていることが求められる。プレス加工の際、材料は金型のパンチによりせん断変形を生じた後、刃先からのクラック発生によって破断変形を生じて所定の形状に打抜かれる。   In recent years, with the development of electronics, the electrical wiring of various machines has become complicated and highly integrated, and accordingly, the demand for copper products is increasing as a material for manufacturing electrical and electronic parts such as connectors. Since these copper products are often punched by high-speed pressing using a mold, the materials for electric and electronic parts are excellent in press punchability in addition to strength and conductivity. Desired. At the time of pressing, the material undergoes shear deformation by a punch of a mold, and then breaks due to generation of a crack from the blade edge and is punched into a predetermined shape.

しかしプレス衝撃による材料の変形、または材料における異方性により、希望する形状を高精度で得ることは困難であり、プレス加工の方法において様々な工夫を行うことによって良好な寸法精度が達成されている。また一般にプレス打抜き面は平滑ではなく、ダレ部、せん断部、破断部により段差が生じるが、プレス面の平滑性を良くすることも重要な課題である。例えば音叉端子や接続ピンなどの場合、プレス抜き面が接触部(通電部)になるような態様で使用されるが、プレス打抜き面の平滑性が悪いと接触面積が小さく、発熱量の増加、保持力不足といった問題が生じる。   However, it is difficult to obtain the desired shape with high accuracy due to deformation of the material due to press impact or anisotropy in the material, and good dimensional accuracy has been achieved by various measures in the pressing method. Yes. In general, the press punched surface is not smooth, and a level difference is caused by a sag portion, a sheared portion, and a broken portion. However, improving the smoothness of the press surface is also an important issue. For example, in the case of a tuning fork terminal or a connection pin, it is used in such a manner that the punched surface becomes a contact portion (current-carrying portion). Problems such as insufficient holding power occur.

従来、プレス成形品の寸法精度を向上させる対策として、パンチ、ダイスの材質・形状、プレス速度、プレス潤滑油による潤滑性の改善や、各々の銅合金に適したクリアランスの設定等により対応してきた。ただし、これらの対策を講じても良好な寸法精度が得られない場合が多々あり、材料面からプレス加工性を改善する取り組みも重要になっている。
特許文献1には、材料の結晶方位を制御することによりプレス成形性を改善することが記載されている。
Conventionally, as measures to improve the dimensional accuracy of press-formed products, we have responded by improving the lubricity by punch and die material and shape, press speed, press lubricant, and setting the appropriate clearance for each copper alloy. . However, there are many cases where good dimensional accuracy cannot be obtained even if these measures are taken, and efforts to improve press workability from the material side are also important.
Patent Document 1 describes that press formability is improved by controlling the crystal orientation of a material.

特開2002−180165号公報JP 2002-180165 A

特許文献1の手法によれば、材料面からプレス成形性のレベル向上が図られ、特にプレス金型の磨耗低減に関して優れた効果が発揮された。しかしながら、打ち抜かれた部品の「寸法精度」についてはまだ十分な配慮がなされておらず、根本的な改善には至っていない。本発明はこのような現状に鑑み、コネクタ等の通電部品に使用される銅合金板材において、特に打抜き後の寸法精度を安定的に改善することを目的とする。   According to the method of Patent Document 1, the level of press formability is improved from the material surface, and particularly, an excellent effect in reducing wear of the press mold is exhibited. However, sufficient attention has not yet been given to the “dimensional accuracy” of the punched parts, and no fundamental improvement has been achieved. In view of such a current situation, an object of the present invention is to stably improve the dimensional accuracy particularly after punching in a copper alloy sheet material used for a current-carrying part such as a connector.

上記目的は、銅合金板材中間製品に「[1]仕上前冷間圧延、[2]仕上前熱処理、[3]仕上冷間圧延、[4]仕上熱処理」の加工・熱履歴を順次付与して板材を仕上げるに際し、上記[2]および[4]の工程をそれぞれ以下の条件で行う銅合金材料の製造法によって達成される。
[2]仕上前熱処理: [1]の仕上前冷間圧延後のビッカース硬さをH 0 (HV)とし、その硬さH 0 の材料を保持時間A(min)で加熱保持したときに0.8H 0 (HV)となる当該加熱保持温度をT 0.8 (℃)とするとき、
保持温度:T 0.8 +20(℃)以上、T 0.8 +60(℃)以下、
保持時間:A(min)、
を満たす条件で行う。
[4]仕上熱処理: 下記(1)式で定義されるY値が10以下となる保持温度・保持時間で行う。
Y=|L方向のヤング率/L方向の0.2%耐力−T方向のヤング率/T方向の0.2%耐力| ……(1)
ただし、L方向は圧延方向に対し平行方向、T方向は圧延方向に対し直角方向を意味する。ヤング率および0.2%耐力の単位はN/mm2とする。
The above-mentioned purpose is to sequentially apply the processing and thermal history of “[1] cold rolling before finishing, [2] heat treatment before finishing, [3] cold rolling after finishing, [4] finishing heat treatment” to the intermediate product of copper alloy sheet material. Te upon finishing the sheet material, [2] and [4] are step a is thus achieved to the preparation of the copper alloy material carried out in each of the following conditions.
[2] Pre-finish heat treatment: Vickers hardness after cold rolling before finish of [1] is set to H 0 (HV), and the material having the hardness H 0 is heated and held for holding time A (min). When the heating holding temperature at which 0.8 H 0 (HV) is set to T 0.8 (° C.),
Holding temperature: T 0.8 +20 (° C.) or more, T 0.8 +60 (° C.) or less,
Holding time: A (min),
Perform under conditions that satisfy
[4] Finish heat treatment: Performed at a holding temperature and holding time at which the Y value defined by the following formula (1) is 10 or less.
Y = | Young modulus in the L direction / 0.2% yield strength in the L direction−Young's modulus in the T direction / 0.2% yield strength in the T direction |
However, the L direction means a direction parallel to the rolling direction, and the T direction means a direction perpendicular to the rolling direction. The unit of Young's modulus and 0.2% proof stress is N / mm 2 .

ここで、前記銅合金板材中間製品として、以下のいずれかの組成を有する銅合金が採用される。
・質量%で、Sn:0.01〜10%、Zn:8〜30%を含有し、かつ前記各元素の合計含有量:30%以下を満たし、残部Cuおよび不可避的不純物からなる組成。
・質量%で、Sn:0.01〜10%、Zn:8〜30%、P:0.01〜0.2%を含有し、さらにNi、Fe、Mg、Coの1種以上を合計0.01〜3%含有し、かつ前記各元素の合計含有量:30%以下を満たし、残部Cuおよび不可避的不純物からなる組成。
・質量%で、Sn:0.01〜10%、Zn:8〜30%、P:0.01〜0.2%、Ni:0.01〜3%含有し、かつ前記各元素の合計含有量:30%以下を満たし、残部Cuおよび不可避的不純物からなる組成。
・質量%で、Sn:0.01〜10%、P:0.01〜0.2%を含有し、さらにNi、Fe、Mg、Coの1種以上を合計0.01〜3%含有し、かつ前記各元素の合計含有量:30%以下を満たし、残部Cuおよび不可避的不純物からなる組成。
・質量%で、Sn:0.01〜10%、P:0.01〜0.2%、Ni:0.01〜3%含有し、かつ前記各元素の合計含有量:30%以下を満たし、残部Cuおよび不可避的不純物からなる組成。
Here, as the copper alloy sheet material intermediate product, a copper alloy having any of the following compositions is employed.
A composition comprising , by mass%, Sn: 0.01 to 10%, Zn: 8 to 30%, and satisfying the total content of each element: 30% or less, and the balance Cu and inevitable impurities.
-By mass%, Sn: 0.01 to 10%, Zn: 8 to 30%, P: 0.01 to 0.2%, and one or more of Ni, Fe, Mg, and Co in total 0 A composition comprising 0.01 to 3% and a total content of each of the above elements: 30% or less, the balance being Cu and inevitable impurities.
-By mass%, Sn: 0.01 to 10%, Zn: 8 to 30%, P: 0.01 to 0.2%, Ni: 0.01 to 3%, and the total content of each of the above elements Amount: A composition satisfying 30% or less and composed of the balance Cu and inevitable impurities.
-By mass%, Sn: 0.01 to 10%, P: 0.01 to 0.2%, and one or more of Ni, Fe, Mg, Co are contained in a total of 0.01 to 3%. And the total content of said each element: The composition which satisfy | fills 30% or less, and consists of remainder Cu and an unavoidable impurity.
-By mass%, Sn: 0.01 to 10%, P: 0.01 to 0.2%, Ni: 0.01 to 3%, and the total content of the above elements: 30% or less , Balance Cu and inevitable impurities.

特に、前記[1]および[3]の工程を以下の条件で行う銅合金材料の製造法が提供される。
[1]仕上前冷間圧延: 圧延率60%以上で冷間圧延を行う。
[3]仕上冷間圧延: 圧延率50%以上で冷間圧延を行う。
なお、「加工・熱履歴」とは金属組織状態や物理的・機械的諸特性に変化をもたらす工程である。したがって、金属組織状態や物理的・機械的諸特性に変化をもたらさない工程、例えば酸洗等は、[1]〜[4]の工程途中あるいは工程後に適宜挿入して構わない。
In particular, a method for producing a copper alloy material in which the steps [1] and [3] are performed under the following conditions is provided.
[1] Cold rolling before finishing: Cold rolling is performed at a rolling rate of 60% or more.
[3] Finish cold rolling: Cold rolling is performed at a rolling rate of 50% or more.
“Processing / thermal history” is a process that brings about changes in the metallographic state and various physical and mechanical properties. Therefore, a process that does not change the metallographic state and physical / mechanical characteristics, such as pickling, may be appropriately inserted during or after the processes [1] to [4].

本発明によれば、コネクタ等の通電部材に要求される強度、弾性、導電性を有する銅合金において、プレス打抜き後の寸法精度に極めて優れたものが提供可能になった。特に、せん断面の平滑性と、異方性を低減したことによる打抜き真円度の改善を図ることができた。したがって本発明は、材料面から通電部品の品質・性能向上に寄与するものである。   According to the present invention, it is possible to provide a copper alloy having strength, elasticity, and conductivity required for a current-carrying member such as a connector, which is extremely excellent in dimensional accuracy after press punching. In particular, it was possible to improve the smoothness of the shear surface and the punching roundness by reducing the anisotropy. Therefore, the present invention contributes to improving the quality and performance of current-carrying parts from the material aspect.

プレス打抜き後の寸法精度(以下「プレス打抜き寸法精度」という)を向上させるには、
i) プレスせん断面の平滑性を高めること、
ii) 円形打抜きによって形成される打抜き円の真円度を高めること、
が重要である。
To improve dimensional accuracy after press punching (hereinafter referred to as “press punch dimensional accuracy”)
i) increase the smoothness of the press shear surface;
ii) increasing the roundness of the punched circle formed by circular punching,
is important.

発明者らは材料面から上記i)ii)を実現するための方策を種々検討した結果、i)には結晶粒を10μm以下に微細化すること、および0.2%耐力を板面の様々な方向において高めることが有効であり、ii)には結晶微細化、0.2%耐力の向上に加え、特に0.2%耐力とヤング率の異方性バランスを適正化することが極めて有効であることを見出した。
以下、本発明を特定するための事項について説明する。
As a result of studying various measures for realizing i) ii) from the viewpoint of materials, the inventors have found that i) refines crystal grains to 10 μm or less, and has 0.2% proof stress on various plate surfaces. In ii), in addition to crystal refinement and 0.2% yield strength improvement, it is extremely effective to optimize the balance of 0.2% yield strength and Young's modulus. I found out.
Hereinafter, matters for specifying the present invention will be described.

〔平均結晶粒径〕
プレス加工の際、材料は金型のパンチにより「せん断変形」を生じた後、刃先からのクラック発生によって「破断変形」を生じて所定の形状に打抜かれる。
[Average crystal grain size]
At the time of pressing, the material undergoes “shear deformation” by the punch of the die, and then “breaking deformation” due to generation of a crack from the blade edge, and is punched into a predetermined shape.

せん断変形は主に粒内すべりにより進行するが、せん断すべりの方向は結晶学的に決まっており、せん断変形によって生じたプレス面は各結晶粒のすべり面によって構成される。結晶粒の方位は一律ではないため、せん断変形によって生じたプレス面は平滑にはならず、結晶粒径に依存した凹凸が形成される。
破断変形は粒内破断により進行するが、粒内破断はすべり面上で起き易い。このため、破断変形によって生じるプレス面の凹凸も、せん断すべりの場合と同様、結晶粒径に依存する。
Shear deformation proceeds mainly by intragranular slip, but the direction of shear slip is determined crystallographically, and the press surface generated by shear deformation is constituted by the slip surface of each crystal grain. Since the orientation of crystal grains is not uniform, the press surface generated by shear deformation is not smooth, and irregularities depending on the crystal grain size are formed.
The fracture deformation proceeds by intragranular fracture, but intragranular fracture is likely to occur on the slip surface. For this reason, the unevenness of the press surface caused by fracture deformation also depends on the crystal grain size as in the case of shear slip.

これらのことから、プレスせん断面の平滑性を高めるには結晶粒径を微細化する必要がある。発明者らの詳細な検討により、プレス打抜きに供する銅合金板材においては平均結晶粒径を10μm以下とすることが極めて効果的であることがわかった。   For these reasons, it is necessary to refine the crystal grain size in order to improve the smoothness of the press shear surface. Detailed investigations by the inventors have revealed that it is extremely effective to set the average crystal grain size to 10 μm or less in the copper alloy sheet material subjected to press punching.

〔0.2%耐力〕
プレス加工の際、材料はせん断変形の前に圧縮される形となり、引張応力によりダレ部が形成される。0.2%耐力が小さいと圧縮応力に対する抵抗力が小さくなり、ダレ量は大きくなってしまう。その結果、プレスせん断面の平滑性が悪くなる。また、0.2%耐力が小さいとプレス時の衝撃により材料が大きく変形してしまうため、寸法精度が悪くなる。
[0.2% yield strength]
During the pressing process, the material is compressed before shear deformation, and a sag portion is formed by tensile stress. If the 0.2% proof stress is small, the resistance to compressive stress will be small and the amount of sag will be large. As a result, the smoothness of the press shear surface is deteriorated. Also, if the 0.2% proof stress is small, the material will be greatly deformed by the impact during pressing, resulting in poor dimensional accuracy.

圧延によって製造、調質されることの多い銅合金において、一般に0.2%耐力は異方性を示し、0.2%耐力が低い方位においてはダレ、変形量が大きくなってしまう。したがって、優れた寸法精度を得るためには圧延方向に対する様々な方向において十分に大きな0.2%耐力を有することが必要である。圧延で製造、調質される銅合金の場合、0.2%耐力の値は圧延方向に対し平行方向(L方向)または直角方向(T方向)において最小の値を示すため、L方向・T方向の0.2%耐力が共に高ければ、圧延方向に対するあらゆる方向において高い0.2%耐力を有すると言える。つまり、良好なプレス打抜き寸法精度を得るためには、L方向およびT方向の0.2%耐力が共に高い値を示すことが重要である。   In a copper alloy that is often manufactured and tempered by rolling, 0.2% yield strength generally shows anisotropy, and in an orientation with a low 0.2% yield strength, sagging and deformation amount increase. Therefore, in order to obtain excellent dimensional accuracy, it is necessary to have a sufficiently large 0.2% proof stress in various directions with respect to the rolling direction. In the case of a copper alloy manufactured and tempered by rolling, the 0.2% proof stress value is the minimum value in the direction parallel to the rolling direction (L direction) or perpendicular to the rolling direction (T direction). If the 0.2% yield strength of the direction is high, it can be said that the 0.2% yield strength is high in all directions with respect to the rolling direction. That is, in order to obtain good press punching dimensional accuracy, it is important that both the 0.2% proof stress in the L direction and the T direction show high values.

発明者らの研究によれば、通電部品用銅合金に望まれるプレス打抜き寸法精度を安定的に得るには、少なくとも0.2%耐力において、L方向およびT方向の値がいずれも650N/mm2以上となることが必要である。 According to the research by the inventors, in order to stably obtain the press punching dimensional accuracy desired for the copper alloy for current-carrying parts, at least 0.2% proof stress, the values in both the L direction and the T direction are both 650 N / mm. It is necessary to be 2 or more.

〔ヤング率〕
ヤング率は、0.2%耐力とともにプレス打抜き寸法精度に大きな影響を与える。プレス初期の圧縮によって発生する応力はヤング率によって決まり、高ヤング率の場合には高応力、低ヤング率の場合には低応力となる。ここで発生する応力による変形量は、ヤング率と0.2%耐力のバランスによって決定される。また、圧縮変形からせん断変形への移行は、パンチ刃先部における材料の降伏によって開始されるため、せん断変形の開始(ダレ部の終了)に関してもヤング率と0.2%耐力のバランスが重要となる。
〔Young's modulus〕
Young's modulus has a great influence on press punching dimensional accuracy as well as 0.2% proof stress. The stress generated by the compression in the initial stage of the press is determined by the Young's modulus. When the Young's modulus is high, the stress is high, and when the Young's modulus is low, the stress is low. The amount of deformation due to the stress generated here is determined by the balance between Young's modulus and 0.2% proof stress. In addition, since the transition from compressive deformation to shear deformation is initiated by the yielding of the material at the punch edge, the balance between Young's modulus and 0.2% proof stress is important for the start of shear deformation (end of the sag portion). Become.

ヤング率の値は主に合金組成により決定されるが、製造工程の影響も少なからず受け、圧延により製造、調質されることの多い銅合金のヤング率は異方性を示すのが一般的である。前述のように0.2%耐力も異方性を示すが、その程度はヤング率と同一ではないため、ヤング率と0.2%耐力のバランスも異方性を示す。つまり、単に0.2%耐力の異方性が小さく、かつヤング率の異方性が小さいということだけでは、必ずしもプレス打抜き寸法精度を十分に改善することはできないことがわかってきた。プレスによる材料の変形はヤング率と0.2%耐力のバランスによって決定されるため、プレス成形により優れた寸法精度を得るためには、「ヤング率と0.2%耐力のバランスにおいて異方性が小さいこと」が重要である。   The value of Young's modulus is mainly determined by the alloy composition, but the Young's modulus of copper alloys, which are often affected by the manufacturing process and are often manufactured and tempered by rolling, shows anisotropy. It is. As described above, the 0.2% proof stress also exhibits anisotropy, but since the degree is not the same as the Young's modulus, the balance between the Young's modulus and the 0.2% proof stress also exhibits anisotropy. In other words, it has been found that the press punching dimensional accuracy cannot always be improved sufficiently merely by the fact that the 0.2% yield strength anisotropy is small and the Young's modulus anisotropy is small. The material deformation due to pressing is determined by the balance between Young's modulus and 0.2% proof stress. To obtain excellent dimensional accuracy by press molding, "Anisotropy in the balance between Young's modulus and 0.2% proof stress" Is small.

種々検討の結果、そのバランスにおける異方性として、L方向とT方向それぞれの「ヤング率/0.2%耐力」についての差の絶対値をYと定めたとき、そのY値が10以下となるような銅合金材料において、プレス打抜き寸法精度(特に真円度)を安定的に改善することが可能になることがわかった。すなわち、下記(1)式で定義されるY値が10以下となるような特性を付与することが重要となる。この特性の付与は後述の製造法によって実現できる。
Y=|L方向のヤング率/L方向の0.2%耐力−T方向のヤング率/T方向の0.2%耐力| ……(1)
ここで、各ヤング率および0.2%耐力の値は同じ単位系(例えばN/mm2)の値が採用される。
As a result of various studies, when the absolute value of the difference between “Young's modulus / 0.2% proof stress” in the L direction and the T direction is defined as Y as anisotropy in the balance, the Y value is 10 or less. In such a copper alloy material, it has been found that press punching dimensional accuracy (particularly roundness) can be stably improved. That is, it is important to give the characteristic that the Y value defined by the following formula (1) is 10 or less. The provision of this characteristic can be realized by a manufacturing method described later.
Y = | Young modulus in the L direction / 0.2% yield strength in the L direction−Young's modulus in the T direction / 0.2% yield strength in the T direction |
Here, the value of the same unit system (for example, N / mm 2 ) is adopted for each Young's modulus and 0.2% proof stress value.

〔化学組成〕
コネクタ等の通電部材に要求される基本的な特性(導電率、引張強さ、0.2%耐力、伸び等)を維持し、その上で上記(1)式のようなヤング率と0.2%耐力の好バランスを実現するために、本発明では、Sn、Ni、P、Zn、Fe、MgおよびCoの1種または2種以上を合計0.01〜30質量%の範囲で含有し、残部がCuと不可避不純物からなる化学組成の銅合金を採用する。Sn、Ni、P、Zn、Fe、Mg、Coの総量が0.01質量%未満だと導電率は高くなるが、引張強さ、0.2%耐力等の特性が得られにくい。逆にこれらの総量が30質量%を超えると引張強さ、0.2%耐力は向上するが、導電率が低くなる。したがって、Sn、Ni、P、Zn、Fe、Mg、Coの総量は0.01〜30質量%の範囲とする必要がある。ただし、各元素は以下のような含有量範囲とする。
[Chemical composition]
Maintaining the basic characteristics (conductivity, tensile strength, 0.2% proof stress, elongation, etc.) required for current-carrying members such as connectors, and then the Young's modulus as shown in the above formula (1) and 0. In order to achieve a good balance of 2% yield strength, the present invention contains one or more of Sn, Ni, P, Zn, Fe, Mg, and Co in a total range of 0.01 to 30% by mass. A copper alloy having a chemical composition consisting of Cu and inevitable impurities is adopted as the balance. If the total amount of Sn, Ni, P, Zn, Fe, Mg, and Co is less than 0.01% by mass, the electrical conductivity increases, but it is difficult to obtain properties such as tensile strength and 0.2% proof stress. Conversely, if the total amount exceeds 30% by mass, the tensile strength and the 0.2% proof stress are improved, but the conductivity is lowered. Therefore, the total amount of Sn, Ni, P, Zn, Fe, Mg, and Co needs to be in the range of 0.01 to 30% by mass. However, each element shall be the amount in the following range.

Snは、Cuマトリックス中に固溶して強度、弾性を向上させる。また、ヤング率に対する影響が大きく、Sn添加によりヤング率を小さくすることができるので、良好なプレス打抜き性を得る上でSn添加は有利となる。このような作用を十分に引き出すには0.01質量%以上のSn含有量を確保することが望ましい。一方、Sn含有量が10質量%を超えると導電性の低下が著しくなり、また鋳造性や熱間加工性にも悪影響を及ぼす。したがってSnの添加は10質量%以下の範囲で行う必要があり、本発明では0.01〜10質量%とする。0.1〜4.5質量%が一層好ましい。 Sn is dissolved in the Cu matrix to improve strength and elasticity. Further, since the Young's modulus has a great influence and the Young's modulus can be reduced by adding Sn, the addition of Sn is advantageous in obtaining good press punchability. In order to sufficiently bring out such an effect, it is desirable to secure an Sn content of 0.01% by mass or more. On the other hand, if the Sn content exceeds 10% by mass, the electrical conductivity is remarkably lowered, and the castability and hot workability are adversely affected. Thus the addition of Sn must be in a range of 10 wt% or less, shall be the 0.01 to 10 mass% in the present invention. 0.1-4.5 mass% is still more preferable.

Znは、Cuマトリックス中に固溶して強度、弾性を向上させる。また、溶湯の脱酸効果を高め、Cuマトリックス中の溶質酸素元素を減少させる作用に加えて、はんだ耐候性および耐マイグレーション性を向上させる作用を呈する。ただし、Zn含有量が30質量%を超えると導電性の低下が問題となる場合があり、また、はんだ付け性が悪くなるとともに、他の元素と組み合わせても耐応力腐食割れ感受性が高くなり好ましくない。本発明では、Znを添加する場合は8〜30質量%の範囲で行う。8〜28質量%のZn含有を確保することが一層好ましい。 Zn is dissolved in the Cu matrix to improve strength and elasticity. Moreover, in addition to the effect | action which raises the deoxidation effect of a molten metal and reduces the solute oxygen element in Cu matrix, the effect | action which improves solder weather resistance and migration resistance is exhibited . However, there is a decline in the conductivity when the Zn content exceeds 30% by weight is an issue, also with solderability becomes poor, even in combination with other elements stress corrosion cracking susceptibility becomes high It is not preferable. In the present invention, it intends rows in the range of 8-30% by weight when adding Zn. It is more preferable to ensure the Zn content of 8 to 28% by mass.

Pは、溶解・鋳造時に溶湯の脱酸剤として作用するとともに、Ni、Fe、MgまたはCoと化合物を形成して分散析出することにより導電率を高め、さらに硬度と弾性を向上させる作用を有する。このような作用を十分に得るには0.01質量%以上のP含有量を確保することが望ましい。しかし、P含有量が0.2質量%を超えると、Ni、Fe、MgまたはCoの共存下でも導電率の低下が大きくなり、また、はんだ耐候性や熱間加工性の劣化を招く用になる。したがってPを添加する場合は0.01〜0.2質量%とする。
ことが望ましい。
P acts as a deoxidizer for molten metal during melting and casting, and has the effect of increasing conductivity by further forming a compound with Ni, Fe, Mg, or Co and dispersing it, and further improving hardness and elasticity. . In order to sufficiently obtain such an action, it is desirable to ensure a P content of 0.01% by mass or more. However, if the P content exceeds 0.2% by mass, the decrease in conductivity will increase even in the presence of Ni, Fe, Mg, or Co, and the solder weather resistance and hot workability will be deteriorated. Become. When adding P is thus shall be the 0.01 to 0.2 wt%.
It is desirable.

Ni、Fe、Mg、Coは、Pと共に添加することにより析出して化合物を形成し、強度、弾性、耐熱性を向上させる。また析出物によるピン止め効果が発揮され、結晶粒の成長が妨げられて微細な結晶粒が得やすくなる。例えばNiの場合、Ni−P化合物が析出することで上記のような効果が得られるが、NiをFe、Mg、Coで置換しても同様の効果が得られる。このような効果を十分に発揮させるには、Ni、Fe、Mg、Coの合計含有量を0.01質量%以上とすることが望ましい。ただし、導電性を維持し、製造時の適正熱処理温度が高くなることを防止するためには、これらの元素はいずれも3質量%以下の範囲とする必要がある。本発明においてNi、Fe、Mg、Coを添加する場合はNi、Fe、Mg、Coの合計含有量を0.01〜3質量%とる。 Ni, Fe, Mg, and Co are precipitated together with P to form a compound and improve strength, elasticity, and heat resistance. Further, the pinning effect by the precipitate is exhibited, and the growth of crystal grains is hindered, so that fine crystal grains can be easily obtained. For example, in the case of Ni, the above effect can be obtained by precipitation of the Ni—P compound, but the same effect can be obtained even if Ni is replaced by Fe, Mg, Co. In order to sufficiently exhibit such effects, it is desirable that the total content of Ni, Fe, Mg, and Co is 0.01% by mass or more. However, in order to maintain conductivity and prevent an appropriate heat treatment temperature from being increased during production, all of these elements need to be in a range of 3% by mass or less. In the present invention Ni, Fe, Mg, when adding Co is you N i, Fe, Mg, and 0.01 to 3 wt% of the total content of Co.

〔製造法〕
電気・電子機器に使用する通電部品用の銅合金材料は一般に、溶解、鋳造、熱間圧延を経た後、「冷間圧延、熱処理」の工程を繰り返して所定板厚の板材に仕上げられ、その後プレス等の成形加工に供される。本発明のプレス打抜き寸法精度に優れた銅合金材料も基本的にはこのような流れで製造することができる。ただし、本発明の銅合金材料の製造においては、前述の組織(結晶粒微細化)および特性(0.2%耐力の向上、ヤング率と0.2%耐力のバランス適正化)を実現するための工夫を要する。
[Production method]
In general, copper alloy materials for energized parts used in electrical and electronic equipment are usually melted, cast, and hot-rolled, and then the process of “cold-rolling and heat treatment” is repeated to finish a plate material with a predetermined thickness. Used for molding such as pressing. The copper alloy material excellent in press punching dimensional accuracy of the present invention can basically be manufactured in such a flow. However, in the production of the copper alloy material of the present invention, in order to realize the above-mentioned structure (crystal grain refinement) and characteristics (improvement of 0.2% yield strength, balance optimization between Young's modulus and 0.2% yield strength). Need some ingenuity.

発明者らは詳細な研究の結果、「冷間圧延、熱処理」を繰り返す工程において、製造条件をコントロールすることにより前記所望の組織・特性が工業的に十分実現できることを知見した。すなわち、「冷間圧延、熱処理」の工程のうち、最後の2回の「冷間圧延、熱処理」の工程において、特に熱処理条件を厳密にコントロールするのである。また、それらの熱処理に先立つ冷間圧延においても、圧延率を適切にコントロールすることが望ましい。
具体的には「[1]仕上前冷間圧延、[2]仕上前熱処理、[3]仕上冷間圧延、[4]仕上熱処理」の加工・熱履歴を順次付与して板材を仕上げるに際し、[2]と[4]の熱処理条件、あるいはさらに[1]と[3]の冷間圧延条件を工夫する。
As a result of detailed studies, the inventors have found that the desired structure and characteristics can be industrially sufficiently realized by controlling the production conditions in the process of repeating “cold rolling and heat treatment”. That is, among the “cold rolling and heat treatment” processes, the heat treatment conditions are particularly strictly controlled in the last two “cold rolling and heat treatment” processes. Further, it is desirable to appropriately control the rolling rate even in the cold rolling prior to the heat treatment.
Specifically, when finishing the plate by sequentially applying the processing and thermal history of “[1] cold rolling before finishing, [2] heat treatment before finishing, [3] cold rolling finishing, [4] finishing heat treatment”, The heat treatment conditions [2] and [4] or the cold rolling conditions [1] and [3] are devised.

上工程の溶解、鋳造、熱間圧延、および必要に応じて行われる中間段階での冷間圧延、熱処理については、従来一般的な銅合金の製造方法に従えばよい。また、酸洗等の加工・熱履歴を伴わない工程は適宜挿入することができる。   About the melting | dissolving of an upper process, casting, hot rolling, and the cold rolling and heat processing in the intermediate | middle stage performed as needed, what is necessary is just to follow the manufacturing method of a conventionally general copper alloy. In addition, a process without processing / heat history such as pickling can be appropriately inserted.

最後の2回の「冷間圧延、熱処理」工程を本明細書では「[1]仕上前冷間圧延、[2]仕上前熱処理、[3]仕上冷間圧延、[4]仕上熱処理」と記載している。
このうち、[1]の仕上前冷間圧延では、次の[2]の熱処理で微細結晶粒組織が得られるように、比較的大きめの冷間圧延率を確保することが望ましい。冷間圧延率を大きくすることで圧延集合組織が形成され、[2]の熱処理により再結晶集合組織を得ることができる。圧延集合組織、再結晶集合組織など、材料に異方性を持たせることにより、[4]熱処理におけるヤング率、0.2%耐力の変化量において、L方向、T方向の差が大きくなり、10以下のY値が得られやすくなる。[1]の仕上げ圧延は、60%以上の冷間圧延率で行うことが望ましく、例えば60〜90%の冷間圧延率とすればよい。
In the present specification, the last two “cold rolling and heat treatment” steps are referred to as “[1] pre-finish cold rolling, [2] pre-finish heat treatment, [3] finish cold rolling, and [4] finish heat treatment”. It is described.
Among these, in the cold rolling before finishing of [1], it is desirable to secure a relatively large cold rolling rate so that a fine grain structure can be obtained by the heat treatment of [2]. A rolling texture is formed by increasing the cold rolling rate, and a recrystallized texture can be obtained by the heat treatment [2]. By imparting anisotropy to the material such as a rolled texture or a recrystallized texture, [4] the difference in L direction and T direction in the amount of change in Young's modulus and 0.2% proof stress during heat treatment increases. A Y value of 10 or less is easily obtained. The finish rolling of [1] is desirably performed at a cold rolling rate of 60% or more, and may be a cold rolling rate of 60 to 90%, for example.

[2]の仕上前熱処理では、再結晶化により平均粒径10μm以下の微細結晶粒組織を得る。また、再結晶粒の粗大化を防ぎ、再結晶集合組織を維持する。再結晶後の結晶粒径は一般に再結晶焼鈍前の加工率が大きいほど小さくなり、また、焼鈍温度が低く、焼鈍時間が短いほど小さくなる。ただし、結晶粒の成長速度が大きい温度で熱処理を短時間で終了することにより微細結晶粒に調整することは、安定な組織状態を得る上で得策ではない。したがって、少なくとも10sec以上の熱処理時間を確保することが望ましい。   In the pre-finish heat treatment of [2], a fine crystal grain structure having an average grain size of 10 μm or less is obtained by recrystallization. Further, coarsening of recrystallized grains is prevented and a recrystallized texture is maintained. The crystal grain size after recrystallization generally becomes smaller as the processing rate before recrystallization annealing becomes larger, and becomes smaller as the annealing temperature becomes lower and the annealing time becomes shorter. However, adjusting to fine crystal grains by finishing the heat treatment in a short time at a temperature at which the crystal grain growth rate is high is not a good measure for obtaining a stable structure. Therefore, it is desirable to secure a heat treatment time of at least 10 seconds.

発明者らの研究によれば、平均結晶粒径10μm以下の微細再結晶組織を安定して得るためには、[2]の熱処理温度を、熱処理後のビッカース硬さが熱処理前の80%になる熱処理温度T0.8(℃)に対し+20℃〜+60℃の範囲の温度に設定すれば良いことがわかった。ただし、加熱保持時間はT0.8を設定した場合と同じとする。すなわち、[2]の仕上前熱処理を以下の条件で行えばよい。
[2]仕上前熱処理: [1]の仕上前冷間圧延後のビッカース硬さをH0(HV)とし、その硬さH0の材料を保持時間A(min)で加熱保持したときに0.8H0(HV)となる当該加熱保持温度をT0.8(℃)とするとき、
保持温度:T0.8+20(℃)以上、T0.8+60(℃)以下、
保持時間:A(min)、
を満たす条件で行う。
According to the research by the inventors, in order to stably obtain a fine recrystallized structure having an average crystal grain size of 10 μm or less, the heat treatment temperature of [2] is set so that the Vickers hardness after the heat treatment is 80% before the heat treatment. It was found that the temperature should be set in the range of + 20 ° C. to + 60 ° C. with respect to the heat treatment temperature T 0.8 (° C.). However, the heating holding time is the same as when T0.8 is set. That is, the pre-finish heat treatment [2] may be performed under the following conditions.
[2] Pre-finish heat treatment: Vickers hardness after cold rolling before finish of [1] is set to H 0 (HV), and the material having the hardness H 0 is heated and held for holding time A (min). When the heating holding temperature at which 0.8 H 0 (HV) is set to T 0.8 (° C.),
Holding temperature: T 0.8 +20 (° C.) or more, T 0.8 +60 (° C.) or less,
Holding time: A (min),
Perform under conditions that satisfy

このような適正熱処理条件は化学組成や[1]の冷間圧延率に依存して変動する。実際には、予め目標組成の銅合金を用いたシミュレーション実験を行って種々の圧延率、熱処理温度、熱処理時間についての軟化曲線のデータを採取しておき、そのデータに基づいて上記T0.8およびAを定め、適正な熱処理条件にコントロールすればよい。例えば、ある硬さH0の材料を保持時間A(min)で200〜700℃の間で50℃間隔で熱処理して軟化曲線を作成し、その軟化曲線から0.8H0となる加熱保持温度を予想する。次に当該H0の材料をその予想温度で保持時間Aの熱処理に供し、熱処理後の硬さを実測する。実測値と0.8H0の値とを比較し、そのずれが大きい場合は加熱保持温度の予想値を補正し、再度硬さH0の材料について補正後の条件で熱処理を実施して硬さを確認する。このような操作を必要に応じて繰り返すことにより、硬さH0の材料に対して0.8H0の硬さを与えるための熱処理条件を精度良く設定することができる。そして、実操業においては[1]の仕上前冷間圧延後の材料からサンプルを採取して実際のH0を測定し、予め求めてある前述の熱処理条件データを使って、T0.8+20〜T0.8+60(℃)となる範囲で保持時間Aの熱処理を施せばよい。
なお、一般的に[2]の加熱保持時間Aは10sec〜500minの間で設定することができ、加熱保持温度は例えばCu−28%Zn−1Sn系合金の場合だと300〜600℃程度の範囲内で設定できる。
Such proper heat treatment conditions vary depending on the chemical composition and the cold rolling rate of [1]. Actually, a simulation experiment using a copper alloy having a target composition is performed in advance to collect softening curve data for various rolling rates, heat treatment temperatures, and heat treatment times. Based on the data, the above T 0.8 and A And control to appropriate heat treatment conditions. For example, a material having a hardness H 0 is heat-treated at a holding time A (min) of 200 to 700 ° C. at intervals of 50 ° C. to create a softening curve, and the heating holding temperature at which the softening curve becomes 0.8H 0 Expect. Next, the H 0 material is subjected to a heat treatment at the expected temperature for a holding time A, and the hardness after the heat treatment is measured. Compare the measured value with the value of 0.8H 0 , and if the difference is large, correct the expected value of the heated holding temperature, and again heat-treat the material with the hardness H 0 under the corrected condition to obtain the hardness Confirm. By repeating such as required operation, the heat treatment conditions for providing the hardness of 0.8H 0 to the material hardness H 0 can be set accurately. In actual operation, a sample is taken from the material after cold rolling before finishing in [1], the actual H 0 is measured, and the above-mentioned heat treatment condition data obtained in advance is used to calculate T 0.8 +20 to T Heat treatment for holding time A may be performed within a range of 0.8 + 60 (° C.).
In general, the heating and holding time A of [2] can be set between 10 sec and 500 min, and the heating and holding temperature is about 300 to 600 ° C. in the case of a Cu-28% Zn-1Sn alloy, for example. Can be set within the range.

[3]の仕上冷間圧延では、目標板厚に調整するとともに、適度の加工歪みを材料中に導入し、0.2%耐力の向上を狙う。また、加工率を大きくすることで材料に異方性を持たせ、[4]の熱処理によって10以下のY値が得られやすくなる。そのために[3]の冷間圧延率は50%以上を確保することが望ましい。通常、50〜95%程度の圧延率とすれば良好な結果が得られる。   In the finish cold rolling of [3], while adjusting to the target plate thickness, an appropriate working strain is introduced into the material, aiming to improve the 0.2% proof stress. Further, by increasing the processing rate, the material is rendered anisotropic, and a Y value of 10 or less is easily obtained by the heat treatment [4]. Therefore, it is desirable to secure a cold rolling rate of [3] of 50% or more. Usually, good results can be obtained with a rolling rate of about 50 to 95%.

[4]の仕上熱処理では、ヤング率と0.2%耐力の異方性バランスを適正化する。すなわち、前記(1)式で定義されるY値が10以下の特性を付与する。Y値に対しては、化学組成、[3]の冷間圧延率や、[4]の加熱保持温度・時間が複雑に影響する。したがって、同じ組成の合金でも[4]の条件を一律に設定することはできず、操業条件によって厳密にコントロールする必要がある。実際には、[2]の条件設定の場合と同様に、予め目標組成の銅合金を用いたシミュレーション実験を行って種々の操業条件に適用できるデータを採取しておき、そのデータに基づいて[4]の加熱温度・時間を設定すればよい。例えば、[3]の仕上冷間圧延材を50〜500℃の範囲で保持時間B(min)の熱処理に供し、(1)式により熱処理後のYを求めて、Yと熱処理温度との関係を表す曲線を作成する。この曲線から当該仕上冷間圧延材についてYが10以下になる熱処理温度の範囲を予想する。次に、当該仕上冷間圧延材をその予想温度域において時間Bで熱処理し、Yの値を確認する。必要に応じてこのような操作を繰り返すことで、データの精度が向上する。ただし、[4]の熱処理では[3]以前の履歴(すなわち集合組織の状態)によって結果が異なってくるので、定常的な営業生産におけるデータを蓄積してデータ精度を高めることが望ましい。
なお、目安としては、0.2%耐力が最も高くなる温度をTM(℃)としたとき、TMに対し−30〜+60℃の範囲においてY値が10以下になる条件を見出すことができる場合が多い。一般的に[4]の加熱保持時間は5sec〜500minの間で設定することができ、加熱保持温度は例えばCu−28%Zn−1Sn系合金の場合だと150〜450℃程度の範囲内で設定できる。
In the finish heat treatment of [4], the anisotropic balance of Young's modulus and 0.2% proof stress is optimized. That is, the Y value defined by the equation (1) is 10 or less. The Y value has a complex influence on the chemical composition, the cold rolling rate of [3], and the heating and holding temperature / time of [4]. Therefore, even if the alloy has the same composition, the condition [4] cannot be set uniformly, and it is necessary to strictly control it according to the operating conditions. Actually, as in the case of the condition setting of [2], a simulation experiment using a copper alloy having a target composition is performed in advance to collect data applicable to various operating conditions, and based on the data, [4] The heating temperature and time may be set. For example, the finish cold-rolled material of [3] is subjected to a heat treatment with a holding time B (min) in the range of 50 to 500 ° C., Y after the heat treatment is obtained by the equation (1), and the relationship between Y and the heat treatment temperature. Create a curve that represents. From this curve, the heat treatment temperature range in which Y is 10 or less is predicted for the finished cold rolled material. Next, the finish cold-rolled material is heat-treated at time B in the expected temperature range, and the value of Y is confirmed. By repeating such operations as necessary, the accuracy of the data is improved. However, in the heat treatment of [4], the result varies depending on the history before [3] (that is, the state of the texture). Therefore, it is desirable to accumulate data in regular business production to improve data accuracy.
As a guideline, when the temperature at which the 0.2% proof stress is highest is T M (° C.), the condition that the Y value is 10 or less in the range of −30 to + 60 ° C. with respect to T M can be found. There are many cases where this is possible. Generally, the heating and holding time of [4] can be set between 5 sec and 500 min, and the heating and holding temperature is within a range of about 150 to 450 ° C. in the case of a Cu-28% Zn-1Sn alloy, for example. Can be set.

表1に示す銅合金を高周波誘導溶解炉で溶解し、300×200×40(mm)のサイズに鋳造したものを40×200×40(mm)のサイズに切り出し、試験材とした。溶解・鋳造時の雰囲気はArガス雰囲気とし、鋳造後直ちに水冷した。その後各鋳片を熱間圧延し、冷間圧延、熱処理を繰り返して板厚5.0mmの中間製品を得た。この中間製品を出発材料とし、下記A〜Cの工程で、[1]仕上前冷間圧延、[2]仕上前熱処理、[3]仕上冷間圧延、あるいはさらに[4]仕上熱処理を施し、板厚0.5mmの供試材を得た。このうち工程A、Dが本発明例であり、B、C、E、Fは比較例である。 A copper alloy shown in Table 1 was melted in a high-frequency induction melting furnace and cast into a size of 300 × 200 × 40 (mm) and cut into a size of 40 × 200 × 40 (mm) to obtain a test material. The atmosphere during melting and casting was an Ar gas atmosphere, and water cooling was performed immediately after casting. Thereafter, each slab was hot-rolled, and cold rolling and heat treatment were repeated to obtain an intermediate product having a thickness of 5.0 mm. Using this intermediate product as a starting material, in steps A to C below, [1] pre-finish cold rolling, [2] pre-finish heat treatment, [3] finish cold rolling, or further [4] finish heat treatment, A specimen having a thickness of 0.5 mm was obtained. Of these, steps A 1 and D are examples of the present invention, and B, C 1 , E, and F are comparative examples.

〔工程A〕
[1]仕上前冷間圧延: 圧延率71%で行った。
[2]仕上前熱処理: 各合金について予め[1]の冷間圧延条件で得た冷延材について60min保持の熱処理による軟化曲線を求めておき、ビッカース硬さが熱処理前の80%になる加熱温度T0.8を定めた。そして、加熱温度:T0.8+30℃、保持時間:60minの条件で行った。例えばNo.1の例ではT0.8は440℃であった。
[3]仕上冷間圧延: 圧延率65%で0.5mmまで圧延した。
[4]仕上熱処理: 各合金について予め[3]の冷間圧延条件で得た冷延材について10min保持の熱処理を種々の温度で行ったのち後述の方法で0.2%耐力とヤング率を測定してY値を求めておき、そのデータに基づいてY値が最も小さくなる温度TY(℃)を定めた。そして、加熱温度:TY(℃)、保持時間:10minの条件で行った。例えばNo.1の例ではTYは280℃であった。
[Process A]
[1] Cold rolling before finishing: It was performed at a rolling rate of 71%.
[2] Pre-finishing heat treatment: For each alloy, a softening curve by heat treatment for 60 minutes is obtained in advance for the cold-rolled material obtained under the cold rolling conditions of [1], and the Vickers hardness is 80% before the heat treatment. A temperature T 0.8 was determined. And it carried out on the conditions of heating temperature: T0.8 + 30 degreeC and holding time: 60min. For example, in the example of No. 1, T0.8 was 440 ° C.
[3] Finish cold rolling: Rolled to 0.5 mm at a rolling rate of 65%.
[4] Finish heat treatment: For each alloy, the cold-rolled material obtained in advance under the cold rolling conditions of [3] was subjected to heat treatment for 10 minutes and held at various temperatures, and then 0.2% proof stress and Young's modulus were obtained by the method described below. A Y value was obtained by measurement, and a temperature T Y (° C.) at which the Y value was minimized was determined based on the data. And it carried out on the conditions of heating temperature: TY (degreeC) and holding time: 10min. For example, in the example of No. 1, TY was 280 ° C.

〔工程B〕
工程Aと同じ条件で[1]〜[3]を実施し、[4]を未実施として、仕上冷間圧延ままの材料を得た。
[Process B]
[1] to [3] were carried out under the same conditions as in step A, and [4] was not carried out to obtain a material as finished cold rolled.

〔工程C〕
[1]仕上前冷間圧延: 工程Aと同様とした。
[2]仕上前熱処理: 工程Aと同様にしてT0.8(℃)を求めた。そして、加熱温度:T0.8+100℃、保持時間:60minの条件で行った。
[3]仕上冷間圧延: 工程Aと同様とした。
[4]仕上熱処理: 未実施である。
[Process C]
[1] Cold rolling before finishing: Same as step A.
[2] Pre-finish heat treatment: T 0.8 (° C.) was determined in the same manner as in step A. And it carried out on the conditions of heating temperature: T0.8 + 100 degreeC and holding time: 60min.
[3] Finish cold rolling: Same as step A.
[4] Finish heat treatment: Not implemented.

〔工程D〕
[1]仕上前冷間圧延: 圧延率73%で行った。
[2]仕上前熱処理: 各合金について予め[1]の冷間圧延条件で得た冷延材について60min保持の熱処理による軟化曲線を求めておき、ビッカース硬さが熱処理前の80%になる加熱温度T0.8を定めた。そして、加熱温度:T0.8+30℃、保持時間:60minの条件で行った。例えばNo.6の例ではT0.8は500℃であった。
[3]仕上冷間圧延: 圧延率80%で0.5mmまで圧延した。
[4]仕上熱処理: 各合金について予め[3]の冷間圧延条件で得た冷延材について10min保持の熱処理を種々の温度で行ったのち後述の方法で0.2%耐力とヤング率を測定してY値を求めておき、そのデータに基づいてY値が最も小さくなる温度 Y (℃)を定めた。そして、加熱温度: Y (℃)、保持時間:10minの条件で行った。例えばNo.6の例では Y は300℃であった。
[Process D]
[1] Cold rolling before finishing: It was performed at a rolling rate of 73%.
[2] Pre-finishing heat treatment: For each alloy, a softening curve by heat treatment for 60 minutes is obtained in advance for the cold-rolled material obtained under the cold rolling conditions of [1], and the Vickers hardness is 80% before the heat treatment. A temperature T 0.8 was determined. And it carried out on the conditions of heating temperature: T0.8 + 30 degreeC and holding time: 60min. For example, in the example of No. 6, T0.8 was 500 ° C.
[3] Finish cold rolling: Rolled to 0.5 mm at a rolling rate of 80%.
[4] Finish heat treatment: For each alloy, the cold-rolled material obtained in advance under the cold rolling conditions of [3] was subjected to heat treatment for 10 minutes and held at various temperatures, and then 0.2% proof stress and Young's modulus were obtained by the method described below. A Y value was obtained by measurement, and a temperature T Y (° C.) at which the Y value was minimized was determined based on the data. Then, heating temperature: T Y (° C.), retention time: was performed in the conditions of 10min. For example, in the example No.6 T Y was 300 ° C..

〔工程E〕
工程Dと同じ条件で[1]〜[3]を実施し、[4]を未実施として、仕上冷間圧延ままの材料を得た。
[Process E]
[1] to [3] were carried out under the same conditions as in Step D, and [4] was not carried out to obtain a material as finished cold rolled.

〔工程F〕
[1]仕上前冷間圧延: 工程Dと同様とした。
[2]仕上前熱処理: 工程Dと同様にしてT0.8(℃)を求めた。そして、加熱温度:T0.8+100℃、保持時間:60minの条件で行った。
[3]仕上冷間圧延: 工程Dと同様とした。
[4]仕上熱処理: 未実施である。
[Process F]
[1] Cold rolling before finishing: Same as step D.
[2] Pre-finish heat treatment: T 0.8 (° C.) was determined in the same manner as in Step D. And it carried out on the conditions of heating temperature: T0.8 + 100 degreeC and holding time: 60min.
[3] Finish cold rolling: Same as step D.
[4] Finish heat treatment: Not implemented.

工程A〜で得られた各供試材について、0.2%耐力、ヤング率、Y値、平均結晶粒径、打抜き後の真円度、せん断面の高低差を調べた。
0.2%耐力、およびヤング率は、供試材のL方向およびT方向についてJIS 5号引張試験片を用いてJIS Z2241に準じた引張試験を行って求めた。
Y値は、その0.2%耐力およびヤング率の測定値に基づき前記(1)式により算出した。
平均結晶粒径は、圧延方向および板厚方向に平行な断面(L断面)について光学顕微鏡により組織観察を行い、結晶粒度測定装置を用いた画像処理によって求めた。
Each test material obtained in Steps A to F was examined for 0.2% proof stress, Young's modulus, Y value, average crystal grain size, roundness after punching, and height difference of shear plane.
The 0.2% proof stress and Young's modulus were obtained by conducting a tensile test according to JIS Z2241 using a JIS No. 5 tensile test piece in the L direction and T direction of the specimen.
The Y value was calculated by the above formula (1) based on the measured values of 0.2% proof stress and Young's modulus.
The average crystal grain size was determined by image processing using a crystal grain size measuring device by observing the structure with an optical microscope for a cross section (L cross section) parallel to the rolling direction and the plate thickness direction.

打抜き後の真円度は、以下のようにして求めた。クリアランス3%にて直径5mmの円形打ち抜きを行い、打ち抜かれたサンプルの円形の穴の内周に沿って真円度を測定した。真円度の測定はOGP社製のSMART SCOPEを用いて12点測定により行った。   The roundness after punching was determined as follows. Circular punching with a diameter of 5 mm was performed with a clearance of 3%, and the roundness was measured along the inner periphery of the circular hole of the punched sample. The roundness was measured by 12-point measurement using SMART SCOPE manufactured by OGP.

せん断面の高低差は、以下のようにして求めた。前記円形打抜きを行ったサンプルの円形の穴の内周に沿って、L方向位置、T方向位置および45°方向位置の計8カ所(45°間隔)の位置を定め、各位置において、打抜きせん断面(ダレ部、せん断変形部および破断変形部を含む面)の高さ変化を板厚方向に測定して各位置での最大高低差を求め、8箇所の最大高低差の値を平均した値を、その材料のせん断面の高低差として採用した。
結果を表1に示す。
The height difference of the shear plane was determined as follows. A total of 8 positions (45 ° intervals) in the L direction position, T direction position and 45 ° direction position are determined along the inner periphery of the circular hole of the sample subjected to the circular punching. The maximum height difference at each position is obtained by measuring the height change of the cross-section (surface including the sag portion, shear deformation portion and fracture deformation portion) in the thickness direction, and the value obtained by averaging the maximum height difference values at eight locations. Was adopted as the height difference of the shear plane of the material.
The results are shown in Table 1.

Figure 0005050226
Figure 0005050226

表1から判るように、工程A、Dによって作製された本発明例の銅合金材料は、平均結晶粒径10μm以下、L方向およびT方向の0.2%耐力650N/mm2以上、Y値10以下の要件を満足したことにより、真円度0.01mm以下、せん断面の高低差9.3μm以下という、極めて良好なプレス打抜き寸法精度が安定して達成された。 As can be seen from Table 1, the copper alloy material of the example of the present invention produced by steps A and D has an average crystal grain size of 10 μm or less, a 0.2% proof stress in the L direction and the T direction of 650 N / mm 2 or more, and a Y value. By satisfying the requirement of 10 or less, extremely good press punching dimensional accuracy of a roundness of 0.01 mm or less and a shear surface height difference of 9.3 μm or less was stably achieved.

これに対し、工程B、Eによって作製された比較例No.10〜18は、[4]の仕上熱処理を施していないのでY値が大きくなり、その結果、真円度、せん断面の高低差とも発明例に比べ劣った。   On the other hand, Comparative Examples Nos. 10 to 18 produced by the processes B and E do not undergo the finish heat treatment of [4], so the Y value increases, and as a result, the roundness and the difference in height of the shear surface Both were inferior to the inventive examples.

工程C、Fによって作製された比較例No.19〜27は、[2]の仕上前熱処理の温度が高すぎたので平均結晶粒径が大きくなり、また0.2%耐力が低下した。さらに、[4]の仕上熱処理を施していないのでY値も大きくなった。その結果、真円度、せん断面の高低差とも、工程B、Eのものより更に劣った。   In Comparative Examples Nos. 19 to 27 produced by Steps C and F, the temperature of the heat treatment before finishing in [2] was too high, so the average crystal grain size was increased and the 0.2% yield strength was reduced. Furthermore, since the finish heat treatment [4] was not performed, the Y value also increased. As a result, both the roundness and the difference in height of the shear surface were inferior to those of Steps B and E.

実施例1の表1に示したNo.10の例([4]の仕上熱処理を施していないもの)をベースとして、[4]に相当する仕上熱処理を種々の温度で保持時間10minとして行い、実施例1と同様に0.2%耐力、ヤング率、Y値、平均結晶粒径、打抜き後の真円度、せん断面の高低差を調べた。結果を表2に示す。   Based on the example No. 10 shown in Table 1 of Example 1 (those not subjected to the finish heat treatment of [4]), the finish heat treatment corresponding to [4] is performed at various temperatures for a holding time of 10 minutes, In the same manner as in Example 1, 0.2% proof stress, Young's modulus, Y value, average crystal grain size, roundness after punching, and difference in height of the shear plane were examined. The results are shown in Table 2.

Figure 0005050226
Figure 0005050226

表2から判るように、当該組成の銅合金に工程Aの[1]〜[3]の処理を施して得た材料においては、0.2%耐力が最大となる熱処理温度に対し約−30〜+60℃の温度で保持時間10minの仕上熱処理を施すことにより、Y値が10以下の特性を付与することができ、プレス打抜き寸法精度の顕著な改善が達成できた。   As can be seen from Table 2, in the material obtained by subjecting the copper alloy having the above composition to the treatments [1] to [3] in step A, about -30 with respect to the heat treatment temperature at which the 0.2% proof stress becomes maximum. By performing a finish heat treatment at a temperature of ˜ + 60 ° C. and a holding time of 10 minutes, a characteristic having a Y value of 10 or less can be imparted, and a significant improvement in press punching dimensional accuracy can be achieved.

Claims (6)

質量%で、Sn:0.01〜10%、Zn:8〜30%を含有し、かつ前記各元素の合計含有量:30%以下を満たし、残部Cuおよび不可避的不純物からなる組成の銅合金板材中間製品に「[1]仕上前冷間圧延、[2]仕上前熱処理、[3]仕上冷間圧延、[4]仕上熱処理」の加工・熱履歴を順次付与して板材を仕上げるに際し、上記[2]および[4]の工程をそれぞれ以下の条件で行う銅合金材料の製造法。
[2]仕上前熱処理: [1]の仕上前冷間圧延後のビッカース硬さをH0(HV)とし、その硬さH0の材料を保持時間A(min)で加熱保持したときに0.8H0(HV)となる当該加熱保持温度をT0.8(℃)とするとき、
保持温度:T0.8+20(℃)以上、T0.8+60(℃)以下、
保持時間:A(min)、
を満たす条件で行う。
[4]仕上熱処理: 下記(1)式で定義されるY値が10以下となる保持温度・保持時間で行う。
Y=|L方向のヤング率/L方向の0.2%耐力−T方向のヤング率/T方向の0.2%耐力| ……(1)
ただし、L方向は圧延方向に対し平行方向、T方向は圧延方向に対し直角方向を意味する。ヤング率および0.2%耐力の単位はN/mm2とする。
Copper alloy having a composition of Sn: 0.01% to 10%, Zn: 8% to 30% and a total content of the above elements: 30% or less, the balance being Cu and inevitable impurities When finishing the plate by sequentially applying the processing and heat history of “[1] cold rolling before finishing, [2] heat treatment before finishing, [3] cold rolling after finishing, [4] finishing heat treatment” to the intermediate product of the plate, The manufacturing method of the copper alloy material which performs the process of said [2] and [4] on the following conditions, respectively.
[2] Pre-finish heat treatment: Vickers hardness after cold rolling before finish of [1] is set to H 0 (HV), and the material having the hardness H 0 is heated and held for holding time A (min). When the heating holding temperature at which 0.8 H 0 (HV) is set to T 0.8 (° C.),
Holding temperature: T 0.8 +20 (° C.) or more, T 0.8 +60 (° C.) or less,
Holding time: A (min),
Perform under conditions that satisfy
[4] Finish heat treatment: Performed at a holding temperature and holding time at which the Y value defined by the following formula (1) is 10 or less.
Y = | Young modulus in the L direction / 0.2% yield strength in the L direction−Young's modulus in the T direction / 0.2% yield strength in the T direction |
However, the L direction means a direction parallel to the rolling direction, and the T direction means a direction perpendicular to the rolling direction. The unit of Young's modulus and 0.2% proof stress is N / mm 2 .
前記銅合金板材中間製品が、質量%で、Sn:0.01〜10%、Zn:8〜30%、P:0.01〜0.2%を含有し、さらにNi、Fe、Mg、Coの1種以上を合計0.01〜3%含有し、かつ前記各元素の合計含有量:30%以下を満たし、残部Cuおよび不可避的不純物からなる組成を有するものである、請求項1に記載の銅合金材料の製造法。 The copper alloy sheet material intermediate product contains Sn: 0.01 to 10%, Zn: 8 to 30%, P: 0.01 to 0.2% by mass%, and Ni, Fe, Mg, Co The total content of said each element: 30% or less is satisfied, and it has a composition which consists of remainder Cu and an unavoidable impurity. Manufacturing method of copper alloy material. 前記銅合金板材中間製品が、質量%で、Sn:0.01〜10%、Zn:8〜30%、P:0.01〜0.2%、Ni:0.01〜3%含有し、かつ前記各元素の合計含有量:30%以下を満たし、残部Cuおよび不可避的不純物からなる組成を有するものである、請求項1に記載の銅合金材料の製造法。 The copper alloy sheet material intermediate product contains Sn: 0.01 to 10%, Zn: 8 to 30%, P: 0.01 to 0.2%, Ni: 0.01 to 3% by mass%, And the total content of said each element: The manufacturing method of the copper alloy material of Claim 1 which satisfy | fills 30% or less and has a composition which consists of remainder Cu and an unavoidable impurity. 質量%で、Sn:0.01〜10%、P:0.01〜0.2%を含有し、さらにNi、Fe、Mg、Coの1種以上を合計0.01〜3%含有し、かつ前記各元素の合計含有量:30%以下を満たし、残部Cuおよび不可避的不純物からなる組成の銅合金板材中間製品に「[1]仕上前冷間圧延、[2]仕上前熱処理、[3]仕上冷間圧延、[4]仕上熱処理」の加工・熱履歴を順次付与して板材を仕上げるに際し、上記[2]および[4]の工程をそれぞれ以下の条件で行う銅合金材料の製造法。
[2]仕上前熱処理: [1]の仕上前冷間圧延後のビッカース硬さをH0(HV)とし、その硬さH0の材料を保持時間A(min)で加熱保持したときに0.8H0(HV)となる当該加熱保持温度をT0.8(℃)とするとき、
保持温度:T0.8+20(℃)以上、T0.8+60(℃)以下、
保持時間:A(min)、
を満たす条件で行う。
[4]仕上熱処理: 下記(1)式で定義されるY値が10以下となる保持温度・保持時間で行う。
Y=|L方向のヤング率/L方向の0.2%耐力−T方向のヤング率/T方向の0.2%耐力| ……(1)
ただし、L方向は圧延方向に対し平行方向、T方向は圧延方向に対し直角方向を意味する。ヤング率および0.2%耐力の単位はN/mm2とする。
In mass%, Sn: 0.01 to 10%, P: 0.01 to 0.2%, further containing one or more of Ni, Fe, Mg, Co in a total of 0.01 to 3%, And the total content of each element: satisfying 30% or less , copper alloy sheet material intermediate composition having the balance Cu and unavoidable impurities , [[1] cold rolling before finishing, [2] heat treatment before finishing, [3 A process for producing a copper alloy material in which the steps [2] and [4] are each performed under the following conditions when finishing the plate by sequentially applying the processing and thermal history of “finish cold rolling and [4] finish heat treatment” .
[2] Pre-finish heat treatment: Vickers hardness after cold rolling before finish of [1] is set to H 0 (HV), and the material having the hardness H 0 is heated and held for holding time A (min). When the heating holding temperature at which 0.8 H 0 (HV) is set to T 0.8 (° C.),
Holding temperature: T 0.8 +20 (° C.) or more, T 0.8 +60 (° C.) or less,
Holding time: A (min),
Perform under conditions that satisfy
[4] Finish heat treatment: Performed at a holding temperature and holding time at which the Y value defined by the following formula (1) is 10 or less.
Y = | Young modulus in the L direction / 0.2% yield strength in the L direction−Young's modulus in the T direction / 0.2% yield strength in the T direction |
However, the L direction means a direction parallel to the rolling direction, and the T direction means a direction perpendicular to the rolling direction. The unit of Young's modulus and 0.2% proof stress is N / mm 2 .
質量%で、Sn:0.01〜10%、P:0.01〜0.2%、Ni:0.01〜3%含有し、かつ前記各元素の合計含有量:30%以下を満たし、残部Cuおよび不可避的不純物からなる組成の銅合金板材中間製品に「[1]仕上前冷間圧延、[2]仕上前熱処理、[3]仕上冷間圧延、[4]仕上熱処理」の加工・熱履歴を順次付与して板材を仕上げるに際し、上記[2]および[4]の工程をそれぞれ以下の条件で行う銅合金材料の製造法。
[2]仕上前熱処理: [1]の仕上前冷間圧延後のビッカース硬さをH0(HV)とし、その硬さH0の材料を保持時間A(min)で加熱保持したときに0.8H0(HV)となる当該加熱保持温度をT0.8(℃)とするとき、
保持温度:T0.8+20(℃)以上、T0.8+60(℃)以下、
保持時間:A(min)、
を満たす条件で行う。
[4]仕上熱処理: 下記(1)式で定義されるY値が10以下となる保持温度・保持時間で行う。
Y=|L方向のヤング率/L方向の0.2%耐力−T方向のヤング率/T方向の0.2%耐力| ……(1)
ただし、L方向は圧延方向に対し平行方向、T方向は圧延方向に対し直角方向を意味する。ヤング率および0.2%耐力の単位はN/mm2とする。
In mass%, Sn: 0.01 to 10%, P: 0.01 to 0.2%, Ni: 0.01 to 3%, and the total content of the above elements: 30% or less, Processing of “[1] cold rolling before finishing, [2] heat treatment before finishing, [3] cold rolling after finishing, [4] finishing heat treatment” on the intermediate product of the copper alloy sheet having the composition of the balance Cu and inevitable impurities A method for producing a copper alloy material, wherein the steps [2] and [4] are each performed under the following conditions when a thermal history is sequentially applied to finish a plate material.
[2] Pre-finish heat treatment: Vickers hardness after cold rolling before finish of [1] is set to H 0 (HV), and the material having the hardness H 0 is heated and held for holding time A (min). When the heating holding temperature at which 0.8 H 0 (HV) is set to T 0.8 (° C.),
Holding temperature: T 0.8 +20 (° C.) or more, T 0.8 +60 (° C.) or less,
Holding time: A (min),
Perform under conditions that satisfy
[4] Finish heat treatment: Performed at a holding temperature and holding time at which the Y value defined by the following formula (1) is 10 or less.
Y = | Young modulus in the L direction / 0.2% yield strength in the L direction−Young's modulus in the T direction / 0.2% yield strength in the T direction |
However, the L direction means a direction parallel to the rolling direction, and the T direction means a direction perpendicular to the rolling direction. The unit of Young's modulus and 0.2% proof stress is N / mm 2 .
請求項1〜5のいずれかに記載の製造法において、さらに[1]および[3]の工程を以下の条件で行う銅合金材料の製造法。
[1]仕上前冷間圧延: 圧延率60%以上で冷間圧延を行う。
[3]仕上冷間圧延: 圧延率50%以上で冷間圧延を行う。
The method for producing a copper alloy material according to any one of claims 1 to 5, wherein the steps [1] and [3] are further performed under the following conditions.
[1] Cold rolling before finishing: Cold rolling is performed at a rolling rate of 60% or more.
[3] Finish cold rolling: Cold rolling is performed at a rolling rate of 50% or more.
JP2005101301A 2005-03-31 2005-03-31 Manufacturing method of copper alloy material Active JP5050226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005101301A JP5050226B2 (en) 2005-03-31 2005-03-31 Manufacturing method of copper alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101301A JP5050226B2 (en) 2005-03-31 2005-03-31 Manufacturing method of copper alloy material

Publications (2)

Publication Number Publication Date
JP2006283060A JP2006283060A (en) 2006-10-19
JP5050226B2 true JP5050226B2 (en) 2012-10-17

Family

ID=37405275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101301A Active JP5050226B2 (en) 2005-03-31 2005-03-31 Manufacturing method of copper alloy material

Country Status (1)

Country Link
JP (1) JP5050226B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109338153A (en) * 2018-12-24 2019-02-15 南通金源智能技术有限公司 Laser 3D printing nozzle superalloy powder

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5055088B2 (en) * 2007-10-31 2012-10-24 Jx日鉱日石金属株式会社 Copper foil and flexible printed circuit board using the same
JP5380117B2 (en) * 2009-03-11 2014-01-08 三菱伸銅株式会社 Wire conductor manufacturing method, wire conductor, insulated wire, and wire harness
JP5039862B1 (en) * 2011-07-15 2012-10-03 Jx日鉱日石金属株式会社 Corson alloy and manufacturing method thereof
WO2013039201A1 (en) * 2011-09-16 2013-03-21 三菱伸銅株式会社 Copper alloy sheet and production method for copper alloy sheet
KR101427060B1 (en) * 2011-09-16 2014-08-05 미쓰비시 신도 가부시키가이샤 Copper alloy sheet and production method for copper alloy sheet
KR101476592B1 (en) * 2011-09-20 2014-12-24 미쓰비시 신도 가부시키가이샤 Copper alloy sheet and method for producing copper alloy sheet
JP5303678B1 (en) 2012-01-06 2013-10-02 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
TWI461549B (en) * 2012-02-14 2014-11-21 Jx Nippon Mining & Metals Corp Carbene alloy and its manufacturing method
JP6077755B2 (en) * 2012-03-30 2017-02-08 Jx金属株式会社 Cu-Zn-Sn-Ni-P-based alloy and manufacturing method thereof
JP5572753B2 (en) 2012-12-26 2014-08-13 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP5572754B2 (en) 2012-12-28 2014-08-13 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP5417523B1 (en) 2012-12-28 2014-02-19 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
CN104919066A (en) 2013-01-09 2015-09-16 三菱综合材料株式会社 Copper alloy for electronic or electrical device, copper alloy thin sheet for electronic or electrical device, process for manufacturing copper alloy for electronic or electrical device, conductive component for electronic or electrical device, and terminal
WO2014115307A1 (en) 2013-01-25 2014-07-31 三菱伸銅株式会社 Copper-alloy plate for terminal/connector material, and method for producing copper-alloy plate for terminal/connector material
JP5417539B1 (en) 2013-01-28 2014-02-19 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP5501495B1 (en) 2013-03-18 2014-05-21 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP5604549B2 (en) 2013-03-18 2014-10-08 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
WO2015004940A1 (en) 2013-07-10 2015-01-15 三菱マテリアル株式会社 Copper alloy for electronic/electrical equipment, copper alloy thin sheet for electronic/electrical equipment, conductive component for electronic/electrical equipment, and terminal
JP5690979B1 (en) 2013-07-10 2015-03-25 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
EP3050982B1 (en) * 2013-09-26 2019-03-20 Mitsubishi Shindoh Co., Ltd. Copper alloy and copper alloy sheet
EP3056578B1 (en) 2013-09-26 2018-10-31 Mitsubishi Shindoh Co., Ltd. Copper alloy
JP6000392B1 (en) * 2015-03-23 2016-09-28 株式会社神戸製鋼所 Conductive material for connecting parts
JP6162908B2 (en) * 2015-04-24 2017-07-12 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
JP6101750B2 (en) * 2015-07-30 2017-03-22 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
WO2018174259A1 (en) 2017-03-24 2018-09-27 株式会社Ihi Wear-resistant copper zinc alloy and mechanical device using same
KR20220041082A (en) 2019-08-06 2022-03-31 미쓰비시 마테리알 가부시키가이샤 A copper alloy plate, a copper alloy plate with a plating film, and their manufacturing method
JP7266540B2 (en) * 2020-01-14 2023-04-28 株式会社オートネットワーク技術研究所 Connecting terminal
CN116555773A (en) * 2023-05-31 2023-08-08 浙江惟精新材料股份有限公司 High-heat-conductivity high-electric-conductivity red copper alloy and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3550233B2 (en) * 1995-10-09 2004-08-04 同和鉱業株式会社 Manufacturing method of high strength and high conductivity copper base alloy
JP4294196B2 (en) * 2000-04-14 2009-07-08 Dowaメタルテック株式会社 Copper alloy for connector and manufacturing method thereof
JP4441669B2 (en) * 2000-09-13 2010-03-31 Dowaメタルテック株式会社 Manufacturing method of copper alloy for connectors with excellent resistance to stress corrosion cracking
JP2003293056A (en) * 2002-03-29 2003-10-15 Nippon Mining & Metals Co Ltd Phosphor bronze strip with excellent press workability
JP4787986B2 (en) * 2002-11-25 2011-10-05 Dowaメタルテック株式会社 Copper alloy and manufacturing method thereof
JP3999676B2 (en) * 2003-01-22 2007-10-31 Dowaホールディングス株式会社 Copper-based alloy and method for producing the same
JP2005060773A (en) * 2003-08-12 2005-03-10 Mitsui Mining & Smelting Co Ltd Special brass and method for increasing strength of the special brass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109338153A (en) * 2018-12-24 2019-02-15 南通金源智能技术有限公司 Laser 3D printing nozzle superalloy powder

Also Published As

Publication number Publication date
JP2006283060A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP5050226B2 (en) Manufacturing method of copper alloy material
EP2957646B1 (en) High-strength cu-ni-co-si base copper alloy sheet, process for producing same, and current-carrying component
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
CN106164306B (en) Copper alloy wire and method for producing same
JP6263333B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component
JP4857395B1 (en) Cu-Ni-Si alloy and method for producing the same
JP5140045B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
JPH08325681A (en) Production of copper-based alloy having improved combinationof ultimate tensile strength, electrical conductivity and stress relaxation resistance
JP4157899B2 (en) High strength copper alloy sheet with excellent bending workability
CN103443309B (en) Copper alloy sheet material and process for producing same
CN106460099A (en) Copper alloy sheet, connector comprising copper alloy sheet, and method for producing copper alloy sheet
JP6228725B2 (en) Cu-Co-Si alloy and method for producing the same
JP4642119B2 (en) Copper alloy and method for producing the same
JP6581755B2 (en) Copper alloy sheet and manufacturing method thereof
JP2013104082A (en) Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
WO2013069376A1 (en) Cu-co-si-based alloy and method for producing same
JP2016199808A (en) Cu-Co-Si-BASED ALLOY AND PRODUCTION METHOD THEREFOR
JP2009013499A (en) Copper alloy for connector
TWI621721B (en) Copper alloy sheet, connector, and method for manufacturing copper alloy sheet
JP6542817B2 (en) Copper alloy for electronic materials
JP4550148B1 (en) Copper alloy and manufacturing method thereof
WO2013058083A1 (en) Corson alloy and method for producing same
JP4461269B2 (en) Copper alloy with improved conductivity and method for producing the same
JP2020105546A (en) Copper alloy sheet material, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120703

R150 Certificate of patent or registration of utility model

Ref document number: 5050226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250