JP5049246B2 - 物体形状評価装置 - Google Patents

物体形状評価装置 Download PDF

Info

Publication number
JP5049246B2
JP5049246B2 JP2008278401A JP2008278401A JP5049246B2 JP 5049246 B2 JP5049246 B2 JP 5049246B2 JP 2008278401 A JP2008278401 A JP 2008278401A JP 2008278401 A JP2008278401 A JP 2008278401A JP 5049246 B2 JP5049246 B2 JP 5049246B2
Authority
JP
Japan
Prior art keywords
measurement
distance
points
point
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008278401A
Other languages
English (en)
Other versions
JP2010107300A (ja
Inventor
昌孝 戸田
聡彦 吉川
正志 神谷
俊一 金子
秀則 高氏
皓之 栢場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Hokkaido University NUC
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Hokkaido University NUC, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2008278401A priority Critical patent/JP5049246B2/ja
Publication of JP2010107300A publication Critical patent/JP2010107300A/ja
Application granted granted Critical
Publication of JP5049246B2 publication Critical patent/JP5049246B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Processing (AREA)

Description

本発明は、測定対象物の形状に対応する多数の測定点とこの測定点に対応する多数の基準点とを位置合わせすることで測定対象物の形状を評価する物体形状評価装置に関する。
測定点群と基準点群とを位置合わせ(マッチング)することで測定対象物に対する測定結果を評価する従来の技術として、ステレオ視とICP(Iterative Closest Point)アルゴリズムを組み合わせて、被計測物体の位置・姿勢を精度良く計測する画像計測方法が知られている(例えば、特許文献1参照)。このステレオ画像計測方法では、計測対象の3次元形状を複数台のカメラ画像をステレオ処理することにより計測点群が求められ、計測対象の既知の形状情報とステレオカメラの相対位置・姿勢とから可視部が予測され、予測された可視部の形状情報のみを用い前記計測点群の空間密度に合わせたモデル点群が決定され、前記計測点群とモデル点群の間でICPアルゴリズムを用いてマッチングさせ、最も評価関数が小さなモデル群に対応する位置・姿勢を計測結果として採用される。
しかしながら、ICPアルゴリズムは、原則として例外値を含まない位置データ同士の位置決めまたは融合(両データの最も一致する合同変換を求める問題)を行う手法である。従って、位置決め対象となる距離データ集合内に重複しない不一致部分、またはデータの追加部分などが含まれていると、それらが例外値として働き正しい状態への収束を阻害するという問題が生じる。
このようなICPアルゴリズムの問題点を解消するために、M推定を導入したICP位置決め法が提案されている(例えば、非特許文献1参照)。このM推定ICP位置決め法では、2つの点群(例えば、測定点群と基準点群)の対応関係を更新しながら合同変換を逐次収束させる際、残差量(例えば、測定点と基準点との距離)に応じて重みを設定する。この重みによって対応点毎に位置決めにおける評価価値を変化させることにより、例外値による悪影響を抑制することが可能となる。しかしながら、測定対象物の三次元形状を測定するような場合、測定装置の測定技術上の条件から、測定対象物の傾斜した面などに対しては測定誤差が大きくなり、測定点と基準点との距離に基づく重み付けだけでは、測定点群と基準点群との合同変換を適正に逐次収束させることが困難となる。
特開2008−14691号公報(段落番号0006、図1) 金子俊一・他著「M推定を導入したロバストICP位置決め法」精密工学会誌V0l.67,No.8,2001、1276-1280
上記実状に鑑み、本発明の目的は、測定装置の測定技術上の条件から、特定の測定領域でその測定誤差が大きくなるような場合においても測定点群と基準点群との合同変換が適正に行われ、その結果、測定対象物の物体形状評価が適正に行われる物体形状評価装置を提供することである。
上記目的を達成するため、本発明に係る物体形状評価装置の特徴構成は、測定対象物の形状に対応する多数の測定点の位置情報を含む測定点データを入力する測定データ入力部と、前記測定対象物の基準形状に対応する多数の基準点の位置情報を含む基準点データを格納する基準データ格納部と、対応する測定点と基準点との間の距離を逐次収束させる逐次収束処理に基づいて前記測定点と前記基準点とを位置合わせする位置合わせ処理手段と、前記位置合わせ処理手段による位置合わせ処理後の前記測定点データと前記基準点データとに基づいて前記測定対象物の形状を評価する形状評価手段とを含み、前記位置合わせ処理手段は隣接する前記測定点の間の隣接点間距離又は隣接する前記基準点の間の隣接点間距離に基づいて隣接点間距離重み係数を決定する重み係数決定手段を有し、当該隣接点間距離重み係数を前記逐次収束処理における逐次収束評価値を求める際に用いることである。
この特徴構成によれば、測定点群と基準点群のいずれかの点群においてその点群に属する各点(測定点又は基準点)に対して隣接する点との距離である隣接点間距離に基づいて重み係数が割り当てられる。割り当てられた重み係数は、対応する測定点と基準点との間の距離を逐次収束させる逐次収束処理における逐次収束評価値を求める際に用いられ、隣接点間距離によって逐次収束評価値に及ぼす影響度が調整される。例えば、隣接点間距離が他に比べて大きくなっている測定点、あるいは、隣接点間距離が他に比べて大きくなっている基準点に対応している測定点ではわずかな測定点のずれが測定点と基準点との間の位置座標値の大きな差となってしまう可能性がある。これは、レーザビームなどによる測定面が測定基準面に対して直角に近い角度で湾曲していたり傾斜していたりしている場合、測定走査ピッチの僅かなずれが測定点の大きなずれを導き、基準点と測定点との間の位置対応が悪くなるからである。このような測定状況においては、隣接点間距離が大きな点に対してより小さな重み係数を割り当てて、その点が逐次収束評価値に及ぼす影響を抑制することで、測定点群と基準点群との間の適正な合同変換が実現できる。その結果、測定対象物の物体形状評価が適正に行われることになる。
また、本発明に係る物体形状評価装置におけるさらなる特徴構成として、前記重み係数決定手段は前記対応する測定点と基準点との間の対応点間距離に基づいて対応点間距離重み係数を決定し、当該対応点間距離重み係数を前記位置合わせ処理手段が前記逐次収束処理における逐次収束評価値を求める際に用いることも好適である。この特徴は、いわゆるM推定法として知られているロバストICP(Iterative Closest Point)位置決め法であり、非特許文献1で詳しく説明されているのでここでの詳しい説明は省略するが、対応する測定点と基準点との間の対応点間距離に基づいて決定される対応点間距離重み係数が前記逐次収束処理における逐次収束評価値を求める際に用いられ、大きな対応点間距離をもつ測定点(いわゆる外れ点)によって逐次収束評価値に及ぼす影響度が調整される。これにより、この好適な物体形状評価装置では、対応する測定点と基準点との間の対応点間距離に基づいて決定される対応点間距離重み係数と、同一点群における隣接点間距離に基づいて決定される隣接点間距離重み係数とで、誤差を導くと推定される測定点データを排除またはその影響力を小さくすることができる。その結果、測定対象物の物体形状評価がさらに適正に行われることになる。
重み係数決定手段による隣接点間距離に基づく隣接点間距離重み係数の決定の際、測定点群における隣接点間距離と基準点群における隣接点間距離のうちのいずれを採用してもよいが、基準点群における隣接点間距離を採用する場合、測定の前に予め隣接点間距離重み係数を求めておくことができる。同形状の測定対象物が複数ある場合、共通の基準点データ(基準点群)から求められた隣接点間距離重み係数をそれぞれの物体形状評価において利用できるので効果的である。その際、予め求められた隣接点間距離重み係数が予め算定され、装置内でテーブル化されているとさらに好適である。
隣接点間距離重み係数は広すぎる隣接点間距離を有する点(測定点又は基準点)が逐次収束評価値に及ぼす影響を抑制することなので、前記隣接点間距離重み係数が隣接点間距離をパラメータとする閾値関数によって求められるようにするだけで効果的であり、またそれにより隣接点間距離重み係数を求める演算が簡単となる。その際、1つの閾値を境にして、「0ないしは0に近い数」と「1」を値としてもつ閾値関数が好適である。
本発明による物体形状評価装置は、隣接点間距離が大きな点に対してより小さな重み係数を割り当てることでその点が逐次収束評価値に及ぼす影響を抑制する。従って、測定走査ピッチの僅かなずれが測定点の大きなずれを導くことで基準点と測定点との間の位置対応が悪くなるような測定系の物体形状評価に特に適している。このことから、本発明による物体形状評価装置の測定点データがスリット光によって照射された前記測定対象物の撮影画像を処理することによって得られた距離画像から取り出された三次元位置データである場合に、適している。
まず、本発明による物体形状評価装置で採用されている、基準点群と測定点群との位置合わせを行う逐次収束処理における逐次収束評価に用いられる重み係数の算出原理を説明する。ここでは、逐次収束処理としてICPアルゴリズムに基づいた方法が採用されている。このICPアルゴリズムでは、図1で模式的に示されているように、基準点群(基準点データ)の各点について最も近い測定点群(測定点データ)の点を対応点とし、各対応点距離の2乗和を最小とする合同変換パラメータを推定して、逐次収束させていく。このようなICPアルゴリズムによる位置合わせでは、図1で示しているような等測定走査ピッチで測定点を決定していくような形状測定の場合、測定面の姿勢によっては僅かな走査ピッチのずれが大きな測定点のずれを導くことになる(図1では、測定点S4、S5、S6がこれに当てはまる)。従って、想定している位置座標と実際の位置座標との誤差が大きいことが予想される測定点とそれに対応する基準点とをそのまま逐次収束処理における逐次収束評価に用いることは好ましくない。このような問題を回避するため、本発明で適用されている改善されたICPアルゴリズムでは、以下に説明するような重み係数を取り入れている。
図1では、基準点群(基準点データ):Mに含まれる基準点はmで示されており、測定順序に対応させて添え字(自然数)が付与されている。測定点群(測定点データ):Sに含まれる測定点はsで示されており、基準点と同様に測定順序に対応させて添え字(自然数)が付与されている。測定点群を基準点群に重ねる位置決めのための従来のICPアルゴリズムを用いた逐次収束処理では、測定点群中の各測定点について基準点群の中で最も近い基準点を対応点とし、各対応点間の距離の2乗和が最小となる合同変換パラメータ(R、t)が求められる。ここで、Rは回転行列で、tは並進移動ベクトルである。その際、対応する基準点と測定点の組み合わせの中で、上述した大きい誤差が予想される測定点との組み合わせたものを他の組み合わせと同様に扱うと無視できない誤差の影響を受ける可能性がある。従って、測定点又は前記基準点の隣接点間距離に基づいて隣接点間距離重み係数を割り当て、その悪影響を抑制する。ここでは、基準点の間の隣接点間距離に基づいてその対応点間の距離に対する重み係数を算定することにするが、もちろん測定点の間の隣接点間距離に基づいてその対応点間の距離に対する重み係数を算定してもよい。
三次元座標(xi,yi,zi)を有する基準点:miの隣接点間距離:diは、三平方の定理で求められ、その二乗は、
i 2=xi 2+yi 2+zi 2となる。
隣接点間距離重み係数:γiは、重み関数をΓとすると、
γi=Γ(di 2)で求められる。
例えば、重み関数:Γを次のような閾値関数とすることと好都合である。
i 2が閾値:dth以上の時、γi=0.01
i 2が閾値:dth未満の時、γi=1
閾値:dthは基準点群や測定点群の特性によって適切に決めることにより、想定している位置座標と実際の位置座標との誤差が大きいことが予想される測定点とそれに対応する基準点とが逐次収束評価に及ぼす悪影響を抑制することができる。
なお、このようなICPアルゴリズムに基づく位置合わせにおいて、上述した非特許文献に開示されているようなM推定を用いることが有用である。図1を用いて、M推定を導入したICPアルゴリズムを簡単に説明する。このM推定の導入は、対応する測定点と基準点との間の対応点間距離に基づいて決定された対応点間距離重み係数を逐次収束処理における逐次収束評価に用いることである。例えば、対応点間距離をeiとすると、対応点間距離重み係数:ρiは、重み関数をΡとすると、
ρi=Ρ(ei) で求められる。ここでも、重み関数:Ρを次のような閾値関数とすることができる;
|ei|が設定幅:Bi以下の時、
ρi=(Bi 2/2 )(1−(1−(ei/Bi2
|ei|が設定幅:Biを越える時、
ρi=(Bi 2/2 )。
隣接点間距離重み係数:γiに加えて対応点間距離重み係数:ρiも逐次収束評価に用いる場合には、トータル重み係数:wは、隣接点間距離重み係数:γiと対応点間距離重み係数:ρiとをパラメータとする関数から導くことができる。従って、逐次収束処理における逐次収束評価値:Jは、対応点の数をNとすれば、対応点間距離:eiと対応点間距離重み係数:ρiと隣接点間距離重み係数:γiとをパラメータとする評価関数:Hを用いて導出することができる。
J=(1/N)ΣH(ei,ρi,γi
演算を簡単化するために、トータル重み係数:wiを各重み係数の乗算とすれば、
J=(1/N)ΣH(ei,wi)、wi=ρi×γi
となる。
次に、上述したアルゴリズムを用いて位置合わせされた基準点群(基準点データ)と測定点群(測定点データ)とから、効率的にめくり上がりなどの特定の表面欠陥を判定するアルゴリズムを図2の模式図を用いて説明する。
まず、対応点間距離:eiが予め設定されている対応点間距離閾値(第1閾値):TA以上となる連続した測定点群を誤対応領域として抽出する。図2では、測定点S4、S5、S6、S7が抽出されている。さらに、誤対応領域に属する測定点の分布密度が算定される。簡単に分布密度を算定するため、例えば、それらの測定点の隣接点間距離:diを用いることができる。つまり、隣接点間距離:diが予め設定されている隣接点間距離閾値(第2閾値):TL未満となる測定点を近傍測定点とみなす。これにより、所定以上の分布密度を有する対応点(近傍測定点)が抽出されたことになる。さらに、この近傍測定点の数が予め設定されている近傍点数閾値(第3閾値):TC以上となるかどうかチェックされる。近傍測定点の数が近傍点数閾値より大きい場合この近傍測定点群によって規定される領域、つまりこの近傍測定点群を含む表面領域が表面欠陥として判定される。この表面欠陥判定アルゴリズムは、めくり上がり欠陥など表面層が剥がれるような表面欠陥領域に対するレーザビームなどを用いた表面形状測定の結果、「その測定点群の対応点距離が正常領域に比べて大きくなる」、及び「その測定点群が互いに密集した点群として存在する」という本願発明者の知見に基づいている。
上述したような、基準点群と測定点群との位置合わせアルゴリズム及び表面欠陥判定アルゴリズムを採用した、表面欠陥評価装置の一例を説明する。この表面欠陥評価装置は、表面に多数の直線上の深溝が整列形成されている測定対象物の溝断面を検査する表面検査装置として構成されている。図3は、そのような表面検査装置の構成を模式的に示す斜視図である。
この表面検査装置は、測定装置部1と、この測定装置部1に対する制御及びその測定結果に対する評価を行うコントローラ100を備えている。測定装置部1は、測定系の主な構成要素として、スリット光を発生させるレーザタイプのスリット光源ユニット2と、測定対象物のスリット光が照射されている領域を撮像する撮像ユニット3とを備えている。このスリット光源ユニット2と撮像ユニット3とは測定ヘッドMHとして一体的に組み付けられている。また測定装置部1は、機構系の主な構成要素として、基台10と、基台10に立設された門形フレーム11、門形フレーム11の中央部分で測定ヘッドMHを昇降可能に支持している昇降機構12を備えている。さらに、測定対象物のポジショニング機構として、測定対象物を載置させるとともに回転する回転テーブル13、回転テーブル13をX−Y平面(スリット光軸に直交する平面)上で移動させるためのX−Y移動機構を構成するX方向移動可能なXステージ14及びY方向移動可能なYステージ15を備えている。
コントローラ100は、実質的にはコンピュータユニットとして形成されており、光源制御部80、画像メモリ81、画像処理部82、三次元測定データ演算部83、本発明に特に関係する評価モジュール90、昇降機構制御部84、回転テーブル制御部85、Xステージ制御部86、Yステージ制御部87を備えている。回転テーブル制御部85、Xステージ制御部86、Yステージ制御部87はそれぞれ、回転テーブル13、Xステージ14、Yステージ15の動作を制御して、測定対象物を測定平面(X−Y平面)内の適正な測定位置に設定する。昇降機構制御部84は、昇降機構12の動作を制御して、測定ヘッドMHの測定対象物までの高さを測定可能高さに設定する。
スリット光源ユニット2は、図4に示すように、スリット光源としてのレーザスリット投光器20と、レーザスリット投光器20から出たスリット光をその光軸に平行な平行光とするシリンドリカルレンズ21とを備えている。シリンドリカルレンズ21により、レーザスリット投光器20から出た扇状に拡がっていくスリット光はスリット光軸に平行な平行光に変換され、測定対象物を照射する。
撮像ユニット3は、テレセントリックレンズユニット30と、面状に配置された多数の受光素子(CCDやCMOS)からなる撮像部31と、テレセントリックレンズユニット30の被写体側に配置されたP偏光板32とを備えている。スリット光光源ユニット2からのスリット光が測定対象物の表面に照射され、そこで反射した反射光が、撮像ユニット3の撮像光軸に沿って、P偏光板32とテレセントリックレンズユニット30とを通過して撮像部31に達する様子が図5に示されている。スリット光光源ユニット2のスリット光軸と撮像ユニット3の撮像光軸とが交差する交差角、つまり撮像角αは、この実施の形態では約11度という極めて狭い角度を採用している。従って、図5において点線で示すように、撮像部31の撮像面31aが撮像光軸に直角となる姿勢であると、スリット光軸方向に沿った測定深さの範囲がテレセントリックレンズユニット30の被写界深度を超えていると測定深さの範囲においてピントの合わない領域が生じる。これを回避するため、撮像部31の撮像面31aを撮像光軸に対してあおり角βを作り出すように傾け、あおり撮影の原理で被写界深度を稼いでいる。これにより、テレセントリックレンズユニット30のもつ被写界深度以上の測定範囲においてもピンボケのない撮影画像が取得できる。
撮像ユニット3からコントローラ100に送られてきた撮像画像(画像データ)は、画像メモリ81に展開される。さらに、必要に応じて、画像処理部82によって座標変換やレベル補正、エッジ検出などの画像処理を施され、スリット光による光切断線Sが検出される。三次元測定データ演算部83は、スリット光の照射点や照射角度、スリット光軸と撮像光軸とのなす角度が既知なので、画像処理部82で検出された光切断線Sの座標値から三角測量法に基づいて演算することで、光切断線Sつまり複数の直線状深溝を形成している測定対象物の3次元断面形状に対応する多数の測定点データ(距離画像)を得ることができる。ここでいう距離画像とは、測定点としての画素にその三次元位置座標値を割り当てた測定データである。なお、三角測量法に基づく演算に代えて、その演算結果を格納したテーブルを用いる方法を採用してもよい。
三次元測定データ演算部83によって生成された測定点データは評価モジュール90に転送される。評価モジュール90は、図6に示すように、表面評価モジュール90Aと欠陥評価モジュール90Bからなる。表面評価モジュール90Aは、転送されてきた測定点データに上述した位置合わせアルゴリズムを適用して測定点群の基準点群への位置合わせを行い測定対象物の表面形状を評価する。欠陥評価モジュール90Bは、表面評価モジュール90Aから出力された測定点群の基準点群への位置合わせ結果に基づいて測定対象物の表面欠陥を評価する。表面評価モジュール90A及び欠陥評価モジュール90Bは、それぞれの評価を測定対象物において予め区分けされた所定ブロック単位で行う。
表面評価モジュール90Aは、測定データ入力部91と、基準点データ格納部92と、点群対応付け部93と、重み演算部94と、収束評価部95と、点群変換部96とを有する。測定データ入力部91は三次元測定データ演算部83から測定点データを受け取る。基準データ格納部92は、測定対象物の表面形状を示す基準点データを格納する。基準点データは、測定対象物において予め区分けされた所定ブロック毎に測定点に対応するように設定された理想的な仕上がり形状を示すデータである。点群対応付け部93は、前記所定ブロック単位で、前述した位置合わせアルゴリズムに基づいて測定点と基準点とを対応させる。重み演算部94は、前述したトータル重み係数:w、つまり隣接点間距離重み係数:γiと対応点間距離重み係数:ρiとを演算し、それらを乗算した値を求める。点群変換部96は、対応付けされた基準点群に測定点群を位置合わせするための合同変換パラメータを求め、この合同変換パラメータを用いて測定点群の位置座標を変換する。収束評価部95は、合同変換パラメータを用いて測定点群が基準点群に収束移動させようとする際にその逐次収束評価値を演算し、測定点群の移動が基準点群に逐次収束していくかどうかを評価する。この実施形態では、点群対応付け部93と重み演算部94と収束評価部95と点群変換部96とは、応する測定点と基準点との間の距離を逐次収束させる逐次収束処理に基づいて前記測定点と前記基準点とを位置合わせする位置合わせ処理手段を構成しており、特に重み演算部94は隣接点間距離重み係数と対応点間距離重み係数の2つの重み係数を決定する重み係数決定手段として構成されている。
表面欠陥評価手段として機能する表面欠陥評価モジュール90Bは、誤対応測定群抽出部97と欠陥判定部98とを有する。誤対応測定群抽出部97は、上述した表面欠陥判定アルゴリズムに基づいて、対応する測定点と基準点との間の対応点間距離が第1閾値より大きい測定点を誤対応測定点とみなしていくことで誤対応測定群(誤対応領域)を抽出する。欠陥判定部98は、抽出された誤対応測定点群に含まれる誤対応測定点のうち隣接する測定点との距離が第2閾値より小さい近傍測定点の数が第3閾値より大きい時に当該近傍測定点を含む領域を表面欠陥と判定する。
なお、この評価モジュール90では、レーザスリット光の拡散方向、ここではY方向における誤差は無視できるので、図1を用いながら説明したアルゴリズムの適用において、測定点データと基準点データとは、X座標値とZ座標値だけを考慮して実行することができる。
上述したように構成された表面検査装置を用いた、測定対象物の検査手順を図7に示されたフローチャートを用いて以下に説明する。ここでの測定対象物は、長方形のプレート体に表面に多数の直線状の深溝が形成されたもので、その測定領域は400mm×300mm程度である。この測定領域は100mm×15mmの測定ブロックに区分けされている。1回のX軸方向走査で4つの測定ブロックを走査して、走査ピッチと撮像解像度によって規定される測定単位での直線状深溝の3次元断面形状位置を表す測定点データを取得して、測定ブロック毎に区分けしてメモリに格納する。1回のX軸方向走査が完了する毎に所定ピッチでY軸方向移動を行い、次の測定ブロックに対するX軸方向走査を逆方向で行う。このような、X軸方向走査とY軸方向移動を繰り返すことで、全測定領域おける直線状深溝の測定点データを取得する。さらに、測定死角の発生を考慮して、測定対象物を90度回転させた状態で、再度同じ測定領域における測定を行う。なお、取得した測定点データを用いた測定対象物の測定結果に対する評価は、つまり測定対象物に対する検査は、各ブロック単位で行われ、各ブロック単位での検査結果をまとめて、最終的な総合判定が行われる。
上述した検査を行うために、測定対象物が回転テーブル13にセットされる(#01)。図示されていない測定開始ボタンが操作されると(#02Yes分岐)、測定が開始される。まず、光源制御部80によってレーザスリット投光器20がONされ、スリット光が照射される(#03)。測定開始ポイントである1番目の測定ブロックの左エッジがスリット光によって照射されるように、Xステージ14及びYステージ15、回転テーブル13を動作させる(#04)。
Xステージ14を正方向に定速移動させながらX軸方向走査を行う(#05)。それとともに、撮像ユニット3からの画像データを画像メモリ81に転送する(#06)。このX軸方向走査と画像データの取得は、スリット光が測定対象物の側端に達するまで行われる。スリット光が測定対象物の側端に達すると(#07Yes)、X軸方向走査を停止する(#08)。
X軸方向走査を停止すると、画像処理部82は、転送された画像データを処理し、その光切断線画素位置情報を生成する(#09)。この光切断線画素位置情報から、三次元測定データ演算部83は、画素位置とその画素位置から三角測量法に基づいて演算された3次元位置との関係を格納したテーブルを利用して、光切断線画素位置情報に基づき深溝の三次元座標値を読み出し、この値を測定点データとして各測定点に対応付けられたメモリアドレスに転送する(#10)。もちろん、テーブルを用いずに、その都度、光切断線画素位置情報を用いて三角測量法に基づく演算を行い、深溝の三次元座標値を求めて測定点データとしてもよい。
続いて、形状評価モジュール90Aが上述した位置合わせアルゴリズムを用いて測定点データと基準点データの位置合わせを行う位置合わせルーチンを実行する(#11)。この位置合わせルーチンでは、図8に示すように、測定点データ(測定点群の位置データ)が読み出され(#110)、さらにその測定点群に対応する基準点データ(基準点群の位置データ)が読み出される(#111)。最も小さい対応点距離を有するように測定点と基準点を対応付ける(#112)。上述した対応点間距離重み係数:ρiと隣接点間距離重み係数:γiとを算出し、これらを掛け合わせてトータル重み係数:wiを求める(#113)。さらに、このトータル重み係数:wiと対応点間距離をeiとを用いて、逐次収束評価値:Jを算出する(#114)。算出された逐次収束評価値に基づいてこの対応付けられた対応点群が逐次収束しているかどうかチェックされる(#115)。収束しない場合(#115No分岐)、ステップ#112に戻り再度測定点と基準点との対応付けを行う。収束する場合(#115Yes分岐)、対応点群ができる限り一致するような合同変換パラメータを生成する(#116)。生成された合同変換パラメータを用いて測定点群の位置座標を変換し、測定点群を移動させる(#117)。測定点群の移動後と移動前の位置座標からその平均移動量を算出する移動後測定点群と基準点群とから平均対応距離を算出する(#118)。算出された平均対応距離平均移動量と予め設定された閾値を比較して、終了条件が満たされたかどうかチェックされる(#119)。なお、このチェックステップにおいて、上限の繰り返し回数を付加的に設定しておくと好都合である。終了条件が満たされていない場合(#119No分岐)、ステップ#112に戻り、移動後の測定点と基準点との対応付けを行う。終了条件が満たされた場合(#119Yes分岐)、この位置合わせルーチンを終了する。
位置合わせルーチンが終了すると、欠陥評価モジュール90Bが上述した表面欠陥判定アルゴリズムを用いて表面欠陥領域の検出を行う欠陥判定ルーチンを実行する(#12)。この欠陥判定ルーチンでは、図9に示すように、まず、対応点間距離閾値である第1閾値を用いて、対応点間距離:eiが第1閾値以上となる測定点の集合体(特定測定点群)を誤対応領域として抽出する処理を実行する(#120)。誤対応領域が抽出されなかった場合(#121No分岐)、この欠陥判定ルーチンを終了する。誤対応領域が抽出された場合(#121Yes分岐)、誤対応領域に含まれている測定点間の隣接点間距離が予め設定されている隣接点間距離閾値としての第2閾値未満となる測定点を近傍測定点として特定していく(#122)。さらに、特定された近傍測定点の数をカウントする(#123)。近傍測定点のカウント数が予め設定されている近傍点数閾値としての第3閾値未満の場合(#124No分岐)、この誤対応領域を表面欠陥領域と判定できないとして、ステップ#120にジャンプして、次の誤対応領域の抽出を行う。近傍測定点のカウント数が第3閾値以上の場合(#124Yes分岐)、この誤対応領域を表面欠陥領域と判定し(#125)、この誤対応領域に含まれる測定点の3次元位置座標値などを表面欠陥領域に関する情報として記録する(#126)。
なお、ステップ#08でX軸方向走査を停止すると、位置合わせルーチン及び欠陥判定ルーチンが実行されている間に、Yステージ15が動作され、所定のピッチでY軸方向のシフトが行われる(#13)。つまり、ステップ#09から#12までの評価処理と、Y軸方向のシフト処理が同時に行われる。この評価処理とシフト処理の両方が終わると、X軸方向走査がまだ残っているかどうかのチェックが行われる(#14)。
ステップ#14のチェックでX軸方向走査がまだ残っている場合(#14Yes分岐)、X軸方向走査の方向を反転し(#15)、ステップ#05に戻ってX軸方向走査を行う。ステップ#14のチェックでX軸方向走査が残っていない場合(#14No分岐)、レーザスリット投光器20がOFFされ、スリット光の照射が停止する(#16)。さらに、回転テーブル13を90度回転測定死角の発生に伴う測定不能箇所の測定データを補完するために、回転テーブル13を90度回転させる必要があるかどうかをチェックする(#17)。回転テーブル13を90度回転させる必要がある場合は(#17Yes分岐)、回転テーブル13の90度回転動作を行い、再びステップ#03に戻り、この測定を繰り返す。なお、この90度の追加回転で不十分な場合には、さらに90度毎のあと2回までの回転(最初の姿勢位置に対する180度位置と270度位置)が行われる。回転テーブル13を90度回転させる必要がない場合は(#17No分岐)、全ての測定ブロックにおける欠陥評価結果に基づいて総合判定を行う(#17)。この総合判定において、欠陥の位置を測定対象物の全体を示す全体図の上でマーキングした欠陥位置表示図をモニタ又はプリントを通じて出力することができる。
以下、別実施形態を例示する。
(1)上記実施形態では、隣接点間距離重み係数は位置合わせルーチンにおいて算出していたが、この隣接点間距離重み係数を基準点群の隣接点間距離に基づいて求める場合、予め算定しておいてテーブル化しておくことで演算速度が高速化する。
(2)上記実施の形態では、判定条件として予め設定された多くの閾値が用いられていたが、この閾値を予め設定されたものではなく、測定対象物の表面形状あるいは測定結果の統計学的な特性から閾値が算定されるような構成を採用してもよい。
本発明で用いられている位置合わせアルゴリズムの説明図 本発明で用いられている表面欠陥判定アルゴリズムの説明図 本発明による位置合わせアルゴリズムを採用した表面検査装置の構成を模式的に示す模式図 表面検査装置の測定ヘッドの構成を示す図解斜視図 測定ヘッドにおけるスリット光軸と撮像光軸との関係及び撮像光軸と撮像面との関係を模式的に示す展開図 表面検査装置の評価モジュールの構成を示す機能ブロック図 表面検査装置における表面欠陥検出制御の流れを示すフローチャート 位置合わせルーチンを示すフローチャート 欠陥判定ルーチンを示すフローチャート
符号の説明
1: 測定装置部
2:スリット光源ユニット
3: 撮像ユニット
20:レーザスリット投光器
21:シリンドリカルレンズ
30:テレセントリックレンズユニット
31:撮像部
31a:撮像面
32:P偏光板
83:評価部
90:評価モジュール
90A:形状評価モジュール
90B:欠陥評価モジュール
91:データ入力部
92:点群対応付け部
93:基準点データ格納部
94:重み演算部
95:収束評価部
96:点群変換部
97:誤対応測定群抽出部
98:欠陥判定部
100:コントローラ

Claims (6)

  1. 測定対象物の形状に対応する多数の測定点の位置情報を含む測定点データを入力する測定データ入力部と、前記測定対象物の基準形状に対応する多数の基準点の位置情報を含む基準点データを格納する基準データ格納部と、対応する測定点と基準点との間の距離を逐次収束させる逐次収束処理に基づいて前記測定点と前記基準点とを位置合わせする位置合わせ処理手段と、前記位置合わせ処理手段による位置合わせ処理後の前記測定点データと前記基準点データとに基づいて前記測定対象物の形状を評価する形状評価手段とを含み、前記位置合わせ処理手段は隣接する前記測定点の間の隣接点間距離又は隣接する前記基準点の間の隣接点間距離に基づいて隣接点間距離重み係数を決定する重み係数決定手段を有し、当該隣接点間距離重み係数を前記逐次収束処理における逐次収束評価値を求める際に用いる物体形状評価装置。
  2. 前記重み係数決定手段は前記対応する測定点と基準点との間の対応点間距離に基づいて対応点間距離重み係数を決定し、当該対応点間距離重み係数を前記位置合わせ処理手段が前記逐次収束処理における逐次収束評価値を求める際に用いる請求項1に記載の物体形状評価装置。
  3. 前記隣接点間距離重み係数は前記基準点の隣接点間距離に基づいて決定される請求項1または2に記載の物体形状評価装置。
  4. 前記隣接点間距離重み係数は予め算定され、テーブル化されている請求項3に記載の物体形状評価装置。
  5. 前記隣接点間距離重み係数は前記隣接点間距離をパラメータとする閾値関数によって求められる請求項1から4のいずれか一項に記載の物体形状評価装置。
  6. 前記測定点データは、スリット光によって照射された前記測定対象物の撮影画像を処理することによって得られた距離画像から取り出された三次元位置データである請求項1から5のいずれか一項に記載の物体形状評価装置。
JP2008278401A 2008-10-29 2008-10-29 物体形状評価装置 Expired - Fee Related JP5049246B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008278401A JP5049246B2 (ja) 2008-10-29 2008-10-29 物体形状評価装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008278401A JP5049246B2 (ja) 2008-10-29 2008-10-29 物体形状評価装置

Publications (2)

Publication Number Publication Date
JP2010107300A JP2010107300A (ja) 2010-05-13
JP5049246B2 true JP5049246B2 (ja) 2012-10-17

Family

ID=42296892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278401A Expired - Fee Related JP5049246B2 (ja) 2008-10-29 2008-10-29 物体形状評価装置

Country Status (1)

Country Link
JP (1) JP5049246B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445848B2 (ja) * 2010-02-05 2014-03-19 アイシン精機株式会社 物体形状評価装置
JP2012122844A (ja) 2010-12-08 2012-06-28 Aisin Seiki Co Ltd 表面検査装置
JP5867787B2 (ja) * 2012-03-23 2016-02-24 アイシン精機株式会社 欠陥抽出装置および欠陥抽出方法
JP6219628B2 (ja) * 2013-07-17 2017-10-25 株式会社ディスコ 切削ブレード先端形状検出方法
JP6242619B2 (ja) * 2013-07-23 2017-12-06 株式会社ディスコ 加工装置
JP6384171B2 (ja) * 2014-07-23 2018-09-05 アイシン精機株式会社 欠陥抽出装置及び欠陥抽出方法
CN106802138B (zh) * 2017-02-24 2019-09-24 先临三维科技股份有限公司 一种三维扫描***及其扫描方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5715166A (en) * 1992-03-02 1998-02-03 General Motors Corporation Apparatus for the registration of three-dimensional shapes
JP3465988B2 (ja) * 1994-04-27 2003-11-10 松下電器産業株式会社 動き及び奥行き推定方法及びその装置
JPH11214289A (ja) * 1998-01-29 1999-08-06 Nikon Corp 位置計測方法、及び該方法を用いる露光方法
JP4306006B2 (ja) * 1999-03-30 2009-07-29 コニカミノルタセンシング株式会社 3次元データ入力方法及び装置
JP2003344040A (ja) * 2002-05-24 2003-12-03 Canon Inc 誤差配分方法
JP2007108835A (ja) * 2005-10-11 2007-04-26 Keyence Corp 画像処理装置
JP2008002848A (ja) * 2006-06-20 2008-01-10 Tateyama Machine Kk 棒状回転工具の欠陥検査装置と欠陥検査方法
JP4952267B2 (ja) * 2007-01-19 2012-06-13 コニカミノルタホールディングス株式会社 3次元形状処理装置、3次元形状処理装置の制御方法、および3次元形状処理装置の制御プログラム

Also Published As

Publication number Publication date
JP2010107300A (ja) 2010-05-13

Similar Documents

Publication Publication Date Title
JP5049246B2 (ja) 物体形状評価装置
JP5252184B2 (ja) 凹凸表面検査装置
JP2009198440A (ja) 補正パターン画像生成装置、パターン検査装置および補正パターン画像生成方法
JP5397537B2 (ja) 高さ測定方法、高さ測定用プログラム、高さ測定装置
JP2007256091A (ja) レンジファインダ校正方法及び装置
JP6980631B2 (ja) 検査方法および検査装置
JP5049247B2 (ja) 表面欠陥評価装置
JP7353757B2 (ja) アーチファクトを測定するための方法
JP2012050013A (ja) 撮像装置、画像処理装置、画像処理方法及び画像処理プログラム
JP5403367B2 (ja) 物体形状評価装置
JP5445848B2 (ja) 物体形状評価装置
KR102177726B1 (ko) 가공품 검사 장치 및 검사 방법
JP5136108B2 (ja) 三次元形状計測方法および三次元形状計測装置
JP6347169B2 (ja) 欠陥抽出装置及び欠陥抽出方法
JP2007033040A (ja) 光切断法による3次元形状計測装置における光学ヘッド部のキャリブレーション方法及び装置
JP4077755B2 (ja) 位置検出方法、その装置及びそのプログラム、並びに、較正情報生成方法
JP6906177B2 (ja) 交点検出装置、カメラ校正システム、交点検出方法、カメラ校正方法、プログラムおよび記録媒体
KR102222898B1 (ko) 레이저를 이용한 가공품 검사 장치 및 검사 방법
JP2006023133A (ja) 3次元形状測定装置および方法
JP4449596B2 (ja) 実装基板検査装置
JP5867787B2 (ja) 欠陥抽出装置および欠陥抽出方法
CN115638723A (zh) 形状检查装置和高度图像处理装置
JP7153514B2 (ja) 三次元形状検査装置、三次元形状検査方法、三次元形状検査プログラム、コンピュータ
JP4650813B2 (ja) レチクル欠陥検査装置およびレチクル欠陥検査方法
JP2009229555A (ja) 補正パターン画像生成装置、パターン検査装置および補正パターン画像生成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5049246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees