JP5045272B2 - Method for manufacturing single crystal silicon carbide substrate - Google Patents

Method for manufacturing single crystal silicon carbide substrate Download PDF

Info

Publication number
JP5045272B2
JP5045272B2 JP2007175164A JP2007175164A JP5045272B2 JP 5045272 B2 JP5045272 B2 JP 5045272B2 JP 2007175164 A JP2007175164 A JP 2007175164A JP 2007175164 A JP2007175164 A JP 2007175164A JP 5045272 B2 JP5045272 B2 JP 5045272B2
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
crystal silicon
carbide substrate
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007175164A
Other languages
Japanese (ja)
Other versions
JP2009012998A (en
Inventor
雅秀 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2007175164A priority Critical patent/JP5045272B2/en
Publication of JP2009012998A publication Critical patent/JP2009012998A/en
Application granted granted Critical
Publication of JP5045272B2 publication Critical patent/JP5045272B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、単結晶炭化珪素基板の製造方法に関し、更に詳しくは、単結晶炭化珪素の{0001}面を主面とする基板のマイクロパイプや転位の閉塞方法に関する。   The present invention relates to a method for manufacturing a single crystal silicon carbide substrate, and more particularly to a method for closing micropipes and dislocations on a substrate having a {0001} plane as a main surface of single crystal silicon carbide.

単結晶炭化珪素基板の結晶品質は近年飛躍的に向上し、パワー半導体デバイスの絶縁不良や短絡を招くマイクロパイプが全く存在しない基板が開発されるまでになっている。しかし、炭化珪素基板には他にも刃状転位・螺旋転位・基底面内転位といった転位欠陥が存在しており、マイクロパイプほど顕著ではないものの、やはりデバイスの漏れ電流特性や長期信頼性に深く関わっている。
現在、炭化珪素の単結晶インゴット(インゴット:棒状の塊)は主として改良レーリー法と呼ばれる一種の昇華再結晶法で育成されることはよく知られている。このインゴットを薄く輪切りに切断して単結晶炭化珪素基板を形成する。
即ち、種結晶(結晶成長時の核となる単結晶)として単結晶炭化珪素の小片もしくはウエハを用い、黒鉛からなる容器(るつぼ)の中に原料のSiC粉末を充填して、不活性ガス雰囲気中で2000℃以上に加熱する。原料は昇華した後、原料粉末側よりも低い温度に設定された種結晶側に移動し、単結晶表面で再び結晶化する。
炭化珪素は炭素(C)と珪素(Si)の2種類の元素からなる化合物半導体(SiC)であるため、組成が同じでも異なる結晶構造(結晶多形)を持つ物があり、工業的に主流となり得ると考えられている構造だけでも4H(六方晶)、6H(六方晶)、3C(立方晶)、の3種類が存在する。特定の結晶多形の単結晶を育成している最中、何らかの原因で局所的に他の結晶多形が混入すると、これを核として転位群が発生してしまう。また、マイクロパイプも発生してしまう。
The crystal quality of single-crystal silicon carbide substrates has improved dramatically in recent years, and substrates have been developed that do not have any micropipes that cause insulation defects or short circuits in power semiconductor devices. However, the silicon carbide substrate has other dislocation defects such as edge dislocations, screw dislocations, and dislocations in the basal plane, which are not as prominent as micropipes, but are also profound in device leakage current characteristics and long-term reliability. Is involved.
At present, it is well known that a single crystal ingot of silicon carbide (ingot: rod-like lump) is mainly grown by a kind of sublimation recrystallization method called an improved Rayleigh method. The ingot is thinly cut into circles to form a single crystal silicon carbide substrate.
That is, a single crystal silicon carbide piece or wafer is used as a seed crystal (single crystal serving as a nucleus during crystal growth), a raw material SiC powder is filled in a graphite vessel (crucible), and an inert gas atmosphere Heat to 2000 ° C or higher. After sublimation, the raw material moves to the seed crystal side set at a temperature lower than that of the raw material powder side, and crystallizes again on the surface of the single crystal.
Since silicon carbide is a compound semiconductor (SiC) composed of two kinds of elements, carbon (C) and silicon (Si), there is a substance having a different crystal structure (crystal polymorph) even if the composition is the same. There are three types of structures, 4H (hexagonal crystal), 6H (hexagonal crystal), and 3C (cubic crystal), which are considered to be possible only. While growing a single crystal of a specific crystal polymorph, if another crystal polymorph is mixed locally for some reason, a dislocation group is generated with this as a nucleus. In addition, micropipes are also generated.

また、改良レーリー法による結晶育成は転位を中心とした螺旋成長を基本としているため、種結晶自体が既に転位を含んでいる場合、転位は新たに成長した結晶の中にも引き継がれる。
上記の問題を解決するための方法として、{1−100}面もしくは{11−20}面を第1成長面として第1の成長結晶を育成し、次いで第1成長面から90°傾き且つ{0001}面から90°傾いた面を第2成長面として第2の成長結晶を作製し、最終成長面を{0001}面として最終の成長結晶を育成する方法が開示されている(例えば、特許文献1など)。転位の大半はほぼ結晶の成長方向に沿って伸びてゆくため、この方法によりマイクロパイプや各種転位を殆ど含まない単結晶インゴットを得ることができる。
一方、結晶成長の方向を変えず転位などの結晶欠陥の少ない単結晶インゴットを得る方法として、種結晶表面に形成した主として炭素からなるマスク層越しに結晶の育成を行って、転位の伝播を阻止する方法が開示されている(例えば、特許文献2)。
第1のマスク層にフォトリソグラフィを用いて予め開口部を設けておくと、結晶育成の際に縦方向だけでなく横方向にも結晶が成長し、最終的に隣接する開口部から伸びてきた結晶と合流して種結晶表面全体を覆い尽くす。これを一旦研磨して平坦化し、次に同じくフォトリソグラフィを用いて形成する第2のマスク層のマスク部(開口部に対する被覆部)がちょうど第1のマスク層の開口部と重なるようにすると、理論上は2回の結晶成長で種結晶中に存在していた全ての転位の伝播が阻止されることになる。
Further, since crystal growth by the modified Rayleigh method is based on helical growth centering on dislocations, when the seed crystal itself already contains dislocations, the dislocations are inherited in the newly grown crystals.
As a method for solving the above problem, the first growth crystal is grown with the {1-100} plane or the {11-20} plane as the first growth plane, and then tilted by 90 ° from the first growth plane and { A method is disclosed in which a second growth crystal is produced using a plane inclined by 90 ° from the 0001} plane as a second growth plane, and the final growth crystal is grown using the final growth plane as the {0001} plane (for example, a patent). Reference 1). Since most of the dislocations extend substantially along the crystal growth direction, a single crystal ingot containing almost no micropipes or various dislocations can be obtained by this method.
On the other hand, as a method to obtain a single crystal ingot with few crystal defects such as dislocations without changing the crystal growth direction, crystals are grown through a mask layer mainly made of carbon formed on the seed crystal surface to prevent dislocation propagation. Is disclosed (for example, Patent Document 2).
If an opening is provided in advance in the first mask layer using photolithography, the crystal grew not only in the vertical direction but also in the horizontal direction during crystal growth, and finally extended from the adjacent opening. Joins the crystal and covers the entire seed crystal surface. Once this is polished and flattened, and then the mask part of the second mask layer (covering part for the opening part) that is also formed using photolithography is just overlapped with the opening part of the first mask layer, Theoretically, propagation of all dislocations present in the seed crystal is prevented by two crystal growths.

また、特許文献3には、炭化珪素のエピタキシャル基板や単結晶基板に存在する中空欠陥(マイクロパイプ)および非中空欠陥の上部にエッチピットを形成する。このエッチピットを二酸化珪素膜などの絶縁膜や、アルゴン層などの不活性層や、バナジウム層などの半絶縁層を埋め込むことで修復領域を大きくする。この大きな修復領域により、ショットキー電極と中空欠陥および非中空欠陥が直接接触するのを防止して、電界強度を緩和し、漏れ電流の増大が防止できることが開示されている。
また、特許文献4には、マイクロパイプの表面近傍部分およびその周辺部に表面層と逆導電型のイオンを注入し、熱処理して再結晶領域を形成する。または、マイクロパイプの表面露出部を絶縁膜で覆うことでマイクロパイプの影響を無くした大面積の炭化珪素整流素子を歩留まりよく製造できることが開示されている。
特開2003−119097号公報 特開2003−176200号公報 特許第3801091号公報 特開2002−134760号公報
In Patent Document 3, etch pits are formed above hollow defects (micropipes) and non-hollow defects existing in an epitaxial substrate or a single crystal substrate of silicon carbide. The etch pit is filled with an insulating film such as a silicon dioxide film, an inert layer such as an argon layer, or a semi-insulating layer such as a vanadium layer, thereby increasing the repair region. It is disclosed that this large repair region prevents the Schottky electrode from directly contacting the hollow defect and the non-hollow defect, thereby relaxing the electric field strength and preventing an increase in leakage current.
In Patent Document 4, ions having a conductivity type opposite to that of the surface layer are implanted in the vicinity of the surface of the micropipe and in the periphery thereof, and heat treatment is performed to form a recrystallization region. Alternatively, it is disclosed that a silicon carbide rectifying element having a large area in which the influence of the micropipe is eliminated by covering the exposed surface of the micropipe with an insulating film can be manufactured with high yield.
Japanese Patent Laid-Open No. 2003-119097 JP 2003-176200 A Japanese Patent No. 38019101 JP 2002-134760 A

しかし、特許文献1では、少なくとも{1−100}面と{11−20}面の両方において所望の基板直径に相当する厚さの結晶育成を行わなくてはならず、最終的な高品質なインゴットを得るまでに多大な時間を要する。
また、特許文献2では、全ての転位を閉塞するまでにフォトリソグラフィ工程とエピタキシャル成長工程の組み合わせが最低でも2回必要となり、前者ほどではないが最終的なインゴットを得るまでには長時間を要する。
このようにマイクロパイプや転位の少ない高品質な炭化珪素基板(インゴットを切断した薄い板のこと)を得るためには、製造時間が長時間となる。
また、特許文献3、4においては、マイクロパイプや転位の少ない高品質の単結晶炭化珪素基板を製造する方法については記載されていない。
この発明の目的は、前記の課題を解決して、短い時間で高品質の単結晶炭化珪素基板を得ることができる単結晶炭化珪素基板の製造方法を提供することにある。
However, in Patent Document 1, it is necessary to grow a crystal having a thickness corresponding to a desired substrate diameter at least on both the {1-100} plane and the {11-20} plane. It takes a lot of time to get an ingot.
Further, in Patent Document 2, a combination of a photolithography process and an epitaxial growth process is required at least twice until all dislocations are blocked, and although not as much as the former, it takes a long time to obtain a final ingot.
Thus, in order to obtain a high-quality silicon carbide substrate (a thin plate obtained by cutting an ingot) with few micropipes and dislocations, a long manufacturing time is required.
Patent Documents 3 and 4 do not describe a method of manufacturing a high-quality single crystal silicon carbide substrate with few micropipes or dislocations.
An object of the present invention is to provide a method for manufacturing a single crystal silicon carbide substrate capable of solving the above-described problems and obtaining a high-quality single crystal silicon carbide substrate in a short time.

前記の目的を達成するために、{0001}面を主面とする種単結晶炭化珪素基板の線状欠陥の前記主面に露出する端部をピットに変え、全ての該ピットのみを炭素もしくは融点が炭化珪素のエピタキシャル成長時の温度より高い金属のマスクによって充填し、充填した後の前記種単結晶炭化珪素基板の前記主面に炭化珪素をエピタキシャル成長する製造方法とする。
また、前記金属が、モリブデンもしくはタングステンであるとよい。
また、前記ピットに変えるのが、前記種単結晶炭化珪素基板をエッチング液に浸漬する工程であり、全てのピットのみをマスクによって充填するのが、前記種単結晶炭化珪素基板の前記主面の全面をマスクで覆い、化学機械研磨もしくは機械研磨で前記ピット以外の箇所のマスクを除去する工程である製造方法とする。
また、前記エッチング液の組成が、強アルカリ溶融塩であるとよい。
また、前記強アルカリ溶融塩が、NaOHもしくはKOHであるとよい。[発明の効果]
In order to achieve the above-mentioned object, an end portion exposed to the main surface of a linear defect of a seed single crystal silicon carbide substrate having a {0001} plane as a main surface is changed to pits, and only all the pits are carbon or The manufacturing method includes filling with a metal mask having a melting point higher than the temperature during epitaxial growth of silicon carbide, and epitaxially growing silicon carbide on the main surface of the seed single crystal silicon carbide substrate after filling.
The metal may be molybdenum or tungsten.
Moreover, the pit is a step of immersing the seed single crystal silicon carbide substrate in an etching solution, and filling only all the pits with a mask is the main surface of the seed single crystal silicon carbide substrate. The manufacturing method is a process in which the entire surface is covered with a mask and the mask other than the pits is removed by chemical mechanical polishing or mechanical polishing.
The composition of the etching solution is preferably a strong alkali molten salt.
The strong alkali molten salt may be NaOH or KOH. [Effect of the invention]

この発明によれば、単結晶炭化珪素の{0001}面を主面とする種結晶基板の内部に含まれる転位を、まず強アルカリ溶融塩への浸漬でピットに変え、次いで種結晶基板の全面を炭素もしくはモリブデンなどの高融点金属からなるマスクによって充填し、化学機械研磨もしくは機械研磨でピット以外の部分のマスクを除去した後、新たに成長させたエピタキシャル成長層で種結晶基板の全面を覆い尽くすことで、短い時間で高品質の単結晶炭化珪素基板を製造することができる。 According to the present invention, the dislocations contained in the seed crystal substrate having the {0001} plane of single crystal silicon carbide as the main surface are first changed into pits by immersion in a strong alkali molten salt, and then the entire surface of the seed crystal substrate. Is filled with a mask made of a refractory metal such as carbon or molybdenum, the mask other than the pits is removed by chemical mechanical polishing or mechanical polishing, and then the entire surface of the seed crystal substrate is covered with a newly grown epitaxial growth layer. Thus, a high quality single crystal silicon carbide substrate can be manufactured in a short time.

発明の実施の形態を以下の実施例で説明する。   Embodiments of the invention will be described in the following examples.

図1は、この発明の第1実施例の単結晶炭化珪素基板の製造方法であり、同図(a)〜同図(e)は工程順に示した要部製造工程断面図である。
同図(a)において、種結晶基板1を準備する。種結晶基板1中には線状欠陥であるマイクロパイプ2や各種転位3が含まれている。これらのマイクロパイプ2や各種転位3の終端部は{0001}面を主面とする種結晶基板1の主面に露出している。使用する種結晶基板1の材質は{0001}面を主面とする単結晶炭化珪素基板であればベア基板でもエピタキシャル基板でも良いが、エピタキシャル基板ではベア基板中に存在する基底面内転位の9割程度が刃状転位に変化しており、より深いピット(穴)を形成することができるので好ましい。
同図(b)において、マイクロパイプ2や各種転位3の終端部(露出部)をピット4に変える。長時間の熱酸化によってもピット4を形成することは可能だが、簡便性の面から見て強アルカリ溶融塩(KOH、NaOHなど)によるエッチング(KOHの場合、液温は450℃〜500℃、時間は5分程度)でピット4(エッチピットのこと)を形成することが好ましい。エッチング液としては後工程で洗浄除去し易いKOHが好適である。
同図(c)において、ピット4形成後の種結晶基板1表面全体をマスク5で一様に覆う。マスク5としては炭素もしくはモリブデンやタングステンなどを始めとする炭化珪素のエピタキシャル成長温度(1600℃程度)よりも融点が高い高融点金属を用いることができるが、加工性の良さや汚染の可能性の低さから炭素が好ましい。なお、マスク5の形成には、例えば真空スパッタ法や蒸着法を用いることができる。炭素の場合には真空スパッタ法が好適である。
FIG. 1 shows a method for manufacturing a single crystal silicon carbide substrate according to a first embodiment of the present invention. FIGS. 1A to 1E are cross-sectional views showing a main part manufacturing process shown in the order of steps.
In FIG. 1A, a seed crystal substrate 1 is prepared. The seed crystal substrate 1 includes micropipes 2 and various dislocations 3 that are linear defects. The terminal portions of these micropipes 2 and various dislocations 3 are exposed on the main surface of the seed crystal substrate 1 having the {0001} plane as the main surface. The material of the seed crystal substrate 1 to be used may be a bare substrate or an epitaxial substrate as long as it is a single crystal silicon carbide substrate having a {0001} plane as a main surface. In an epitaxial substrate, however, the basal plane dislocations 9 exist in the bare substrate. The degree of splitting is changed to edge dislocation, which is preferable because deeper pits (holes) can be formed.
In FIG. 2B, the end portions (exposed portions) of the micropipes 2 and various dislocations 3 are changed to pits 4. Although it is possible to form the pits 4 by long-time thermal oxidation, from the viewpoint of simplicity, etching with a strong alkali molten salt (KOH, NaOH, etc.) (in the case of KOH, the liquid temperature is 450 ° C. to 500 ° C., It is preferable to form the pit 4 (etch pit) in about 5 minutes). As the etchant, KOH that is easy to wash and remove in a later step is suitable.
In FIG. 2C, the entire surface of the seed crystal substrate 1 after the formation of the pits 4 is uniformly covered with a mask 5. As the mask 5, a refractory metal having a melting point higher than the epitaxial growth temperature (about 1600 ° C.) of silicon carbide such as carbon or molybdenum or tungsten can be used, but the workability and the possibility of contamination are low. Therefore, carbon is preferable. For forming the mask 5, for example, a vacuum sputtering method or a vapor deposition method can be used. In the case of carbon, vacuum sputtering is preferred.

同図(d)において、種結晶基板1の表面を研磨し、ピット4を充填しているマスク6(マスク5の一部である)以外の箇所(平坦な箇所)のマスク5を全て除去する。研磨にはダイヤモンド微粒子、コロイダルシリカ、酸化セリウムなどの各種砥粒を含む研磨液を用いることができるが、種結晶基板1よりも硬度の低い砥粒を含む物を用いると種結晶基板1の無欠陥領域がストッパーとなり、且つ新たな転位の発生源となり得る研磨傷が入りにくいため好ましい。特に炭素からなるマスクを用いる場合、コロイダルシリカによる研磨などCMP(Chemical Mechanical Polishing:化学機械研磨)法が好適である。
同図(e)において、種結晶基板1の表面へ単結晶炭化珪素の層をエピタキシャル成長させて炭化珪素のエピタキシャル成長層7を形成する。成長温度は1600℃程度である。結晶成長は種結晶基板1の表面に対し垂直な方向だけでなく水平な方向にも起こり、最終的には種結晶基板1の全面がエピタキシャル成長層7によって覆い尽くされマイクロパイプ2や転位3のない高品質の単結晶炭化珪素基板が出来上がる。種結晶基板1に存在していたマイプロパイプ2や転位3は炭素からなるマスク6によって全て遮蔽されるため、極めて欠陥密度(転位密度)の低い結晶成長が実現される。
In FIG. 4D, the surface of the seed crystal substrate 1 is polished, and all the masks 5 other than the mask 6 (part of the mask 5) filling the pits 4 (flat portions) are removed. . For polishing, a polishing liquid containing various abrasive grains such as diamond fine particles, colloidal silica, and cerium oxide can be used. However, if a substance containing abrasive grains having a hardness lower than that of the seed crystal substrate 1 is used, the seed crystal substrate 1 can be removed. It is preferable because the defect region becomes a stopper and a polishing flaw that can be a new source of dislocations does not easily enter. In particular, when using a mask made of carbon, a CMP (Chemical Mechanical Polishing) method such as polishing with colloidal silica is suitable.
In FIG. 4E, a single crystal silicon carbide layer is epitaxially grown on the surface of the seed crystal substrate 1 to form an epitaxial growth layer 7 of silicon carbide. The growth temperature is about 1600 ° C. Crystal growth occurs not only in the direction perpendicular to the surface of the seed crystal substrate 1 but also in the horizontal direction. Finally, the entire surface of the seed crystal substrate 1 is covered by the epitaxial growth layer 7 and there is no micropipe 2 or dislocation 3. A high-quality single crystal silicon carbide substrate is completed. Since all of the mypropipes 2 and the dislocations 3 existing on the seed crystal substrate 1 are shielded by the mask 6 made of carbon, crystal growth with a very low defect density (dislocation density) is realized.

本発明の製造方法により、特許文献1、2で開示されている製造方法より短時間で高品質の単結晶炭化珪素基板を製造することができる。
本実施例では種結晶基板1として転位密度5.5×104個/cm2の基板を用い、1回のマスク形成とエピタキシャル成長でエピタキシャル成長層7の転位3の密度を大幅に低減することができる(1桁から2桁程度の低減)。また、マイクロパイプ2の密度を大幅に低減できる。このエピタキシャル成長層7にデバイスを形成することで、漏れ電流の少ない耐圧の高いデバイスを得ることができる。
尚、本発明の実施例ではマイクロパイプ2や転位3に適用した例を説明したが、マイクロパイプ2の場合には断面の幅が1μm以下の極めて小さなマイクロパイプに有効である。大きなマイクロパイプ2の場合にはピット4を形成しないで、直接終端部の表面を炭素などのマスク6で被覆することで目的を達成できる。
By the manufacturing method of the present invention, a high-quality single crystal silicon carbide substrate can be manufactured in a shorter time than the manufacturing methods disclosed in Patent Documents 1 and 2.
In this embodiment, a substrate having a dislocation density of 5.5 × 10 4 pieces / cm 2 is used as the seed crystal substrate 1, and the density of the dislocations 3 in the epitaxial growth layer 7 can be greatly reduced by a single mask formation and epitaxial growth. (Reduction of about 1 to 2 digits). Moreover, the density of the micropipe 2 can be significantly reduced. By forming a device in this epitaxial growth layer 7, a device having a high withstand voltage with little leakage current can be obtained.
In the embodiment of the present invention, the example applied to the micropipe 2 and the dislocation 3 has been described. However, the micropipe 2 is effective for an extremely small micropipe having a cross-sectional width of 1 μm or less. In the case of a large micropipe 2, the object can be achieved by directly coating the surface of the end portion with a mask 6 made of carbon or the like without forming the pits 4.

この発明の第1実施例の単結晶炭化珪素基板の製造方法であり、(a)〜(e)は工程順に示した要部製造工程断面図BRIEF DESCRIPTION OF THE DRAWINGS It is a manufacturing method of the single crystal silicon carbide substrate of 1st Example of this invention, (a)-(e) is principal part manufacturing process sectional drawing shown to process order

符号の説明Explanation of symbols

1 種結晶基板
2 マイクロパイプ
3 転位
4 ピット
5 マスク(主面全面を被覆)
6 マスク(ピットを充填被覆)

1 Seed crystal substrate 2 Micropipe 3 Dislocation 4 Pit 5 Mask (covers the entire main surface)
6 Mask (filling and covering the pit)

Claims (5)

{0001}面を主面とする種単結晶炭化珪素基板の線状欠陥の前記主面に露出する端部をピットに変え、全ての該ピットのみを炭素もしくは融点が炭化珪素のエピタキシャル成長時の温度より高い金属のマスクによって充填し、充填した後の前記種単結晶炭化珪素基板の前記主面に炭化珪素をエピタキシャル成長することを特徴とする単結晶炭化珪素基板の製造方法。 The temperature at the time of epitaxial growth of carbon carbide or melting point of silicon carbide is changed only to the pits at the ends exposed to the main surface of the linear defects of the seed single crystal silicon carbide substrate having the {0001} plane as the main surface. A method for producing a single crystal silicon carbide substrate, comprising filling with a higher metal mask and epitaxially growing silicon carbide on the main surface of the seed single crystal silicon carbide substrate after filling. 前記金属が、モリブデンもしくはタングステンであることを特徴とする請求項1に記載の単結晶炭化珪素基板の製造方法。 The method for manufacturing a single crystal silicon carbide substrate according to claim 1 , wherein the metal is molybdenum or tungsten . 前記ピットに変えるのが、前記種単結晶炭化珪素基板をエッチング液に浸漬する工程であり、全てのピットのみをマスクによって充填するのが、前記種単結晶炭化珪素基板の前記主面の全面をマスクで覆い、化学機械研磨もしくは機械研磨で前記ピット以外の箇所のマスクを除去する工程であることを特徴とする請求項1に記載の単結晶炭化珪素基板の製造方法。 Changing to the pit is a step of immersing the seed single crystal silicon carbide substrate in an etching solution, and filling only all the pits with a mask covers the entire main surface of the seed single crystal silicon carbide substrate. 2. The method for producing a single crystal silicon carbide substrate according to claim 1, wherein the method is a step of covering with a mask and removing the mask at portions other than the pits by chemical mechanical polishing or mechanical polishing . 前記エッチング液の組成が、強アルカリ溶融塩であることを特徴とする請求項3に記載の単結晶炭化珪素基板の製造方法。 The method for producing a single crystal silicon carbide substrate according to claim 3 , wherein the composition of the etching solution is a strong alkali molten salt . 前記強アルカリ溶融塩が、NaOHもしくはKOHであることを特徴とする請求項4に記載の単結晶炭化珪素基板の製造方法。 The method for producing a single crystal silicon carbide substrate according to claim 4 , wherein the strong alkali molten salt is NaOH or KOH .
JP2007175164A 2007-07-03 2007-07-03 Method for manufacturing single crystal silicon carbide substrate Expired - Fee Related JP5045272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007175164A JP5045272B2 (en) 2007-07-03 2007-07-03 Method for manufacturing single crystal silicon carbide substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007175164A JP5045272B2 (en) 2007-07-03 2007-07-03 Method for manufacturing single crystal silicon carbide substrate

Publications (2)

Publication Number Publication Date
JP2009012998A JP2009012998A (en) 2009-01-22
JP5045272B2 true JP5045272B2 (en) 2012-10-10

Family

ID=40354355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007175164A Expired - Fee Related JP5045272B2 (en) 2007-07-03 2007-07-03 Method for manufacturing single crystal silicon carbide substrate

Country Status (1)

Country Link
JP (1) JP5045272B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109642343A (en) * 2016-08-31 2019-04-16 昭和电工株式会社 SiC epitaxial wafer and its manufacturing method, big pit defect detection method, defect identification method
US11293115B2 (en) 2016-08-31 2022-04-05 Showa Denko K.K. Method for producing a SiC epitaxial wafer containing a total density of large pit defects and triangular defects of 0.01 defects/cm2 or more and 0.6 defects/cm2 or less
US11320388B2 (en) 2016-08-31 2022-05-03 Showa Denko K.K. SiC epitaxial wafer containing large pit defects with a surface density of 0.5 defects/CM2 or less, and production method therefor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5423568B2 (en) * 2010-04-30 2014-02-19 サンケン電気株式会社 Method for manufacturing compound semiconductor substrate
US20130228797A1 (en) * 2010-11-15 2013-09-05 Hoya Corporation Silicon carbide substrate and semiconductor device
JP5678622B2 (en) * 2010-12-03 2015-03-04 株式会社デンソー Method for producing silicon carbide single crystal
CN103534810B (en) * 2011-05-18 2017-05-17 罗姆股份有限公司 Semiconductor device and method for producing same
JP6341056B2 (en) * 2014-10-24 2018-06-13 日亜化学工業株式会社 Submount and manufacturing method thereof, semiconductor laser device and manufacturing method thereof
DE112016004679T8 (en) * 2015-10-13 2018-07-12 Sumitomo Electric Industries, Ltd. Semiconductor stack
JP6707140B2 (en) * 2016-08-25 2020-06-10 三菱電機株式会社 Method of manufacturing semiconductor device
CN115595663B (en) * 2022-12-01 2023-07-25 浙江大学杭州国际科创中心 Treatment method of silicon carbide seed crystal and growth method of silicon carbide crystal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716558B2 (en) * 2000-12-12 2011-07-06 株式会社デンソー Silicon carbide substrate
JP2003183097A (en) * 2001-12-17 2003-07-03 Nippon Steel Corp Silicon carbide single crystal ingot and its production method
JP3801091B2 (en) * 2002-05-09 2006-07-26 富士電機デバイステクノロジー株式会社 Silicon carbide semiconductor device and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109642343A (en) * 2016-08-31 2019-04-16 昭和电工株式会社 SiC epitaxial wafer and its manufacturing method, big pit defect detection method, defect identification method
CN109642343B (en) * 2016-08-31 2021-10-26 昭和电工株式会社 SiC epitaxial wafer, method for manufacturing same, method for detecting large pit defect, and method for identifying defect
US11293115B2 (en) 2016-08-31 2022-04-05 Showa Denko K.K. Method for producing a SiC epitaxial wafer containing a total density of large pit defects and triangular defects of 0.01 defects/cm2 or more and 0.6 defects/cm2 or less
US11320388B2 (en) 2016-08-31 2022-05-03 Showa Denko K.K. SiC epitaxial wafer containing large pit defects with a surface density of 0.5 defects/CM2 or less, and production method therefor
US11961736B2 (en) 2016-08-31 2024-04-16 Resonac Corporation SiC epitaxial wafer, production method therefor, and defect identification method

Also Published As

Publication number Publication date
JP2009012998A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP5045272B2 (en) Method for manufacturing single crystal silicon carbide substrate
JP6584428B2 (en) Method for producing silicon carbide single crystal and silicon carbide single crystal substrate
JP6237848B2 (en) Method for manufacturing silicon carbide single crystal substrate for epitaxial silicon carbide wafer and silicon carbide single crystal substrate for epitaxial silicon carbide wafer
JP4850960B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method
JP5706823B2 (en) SiC single crystal wafer and manufacturing method thereof
EP3045571B1 (en) Method for producing sic single crystal
CN106435733B (en) Silicon carbide single crystal and silicon carbide single crystal wafer
JP5304713B2 (en) Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer
KR20130137247A (en) Silicon carbide single crystal wafer and manufacturing method for same
JP4585359B2 (en) Method for producing silicon carbide single crystal
JP2008290898A (en) Low-resistivity silicon carbide single crystal substrate
EP2857562B1 (en) Sic single-crystal ingot and production method for same
JP2007119273A (en) Method for growing silicon carbide single crystal
JP2007284298A (en) Epitaxial silicon carbide single crystal substrate and method for producing the same
JP2006225232A (en) Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, silicon carbide single crystal substrate, silicon carbide epitaxial wafer and thin film epitaxial wafer
JP5418385B2 (en) Method for producing silicon carbide single crystal ingot
JP4690906B2 (en) Seed crystal for growing silicon carbide single crystal, method for producing the same, and method for producing silicon carbide single crystal
JP4408247B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP2010076954A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL, REACTION VESSEL FOR PRODUCING THE SAME AND APPARATUS FOR PRODUCING THE SAME
JP2009249207A (en) Method for manufacturing silicon carbide single crystal ingot
JP2004262709A (en) GROWTH METHOD FOR SiC SINGLE CRYSTAL
JP4976647B2 (en) Method for manufacturing silicon carbide semiconductor substrate
WO2017043215A1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP6645408B2 (en) Silicon single crystal manufacturing method and silicon single crystal wafer
JP2005029459A (en) Method for growing silicon carbide single crystal, silicon carbide seed crystal, and silicon carbide single crystal

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees