JP5040798B2 - Piezoelectric oscillator - Google Patents

Piezoelectric oscillator Download PDF

Info

Publication number
JP5040798B2
JP5040798B2 JP2008124358A JP2008124358A JP5040798B2 JP 5040798 B2 JP5040798 B2 JP 5040798B2 JP 2008124358 A JP2008124358 A JP 2008124358A JP 2008124358 A JP2008124358 A JP 2008124358A JP 5040798 B2 JP5040798 B2 JP 5040798B2
Authority
JP
Japan
Prior art keywords
temperature
output
circuit
temperature sensor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008124358A
Other languages
Japanese (ja)
Other versions
JP2009273087A5 (en
JP2009273087A (en
Inventor
秀人 成瀬
壮洋 山本
重久 黒後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008124358A priority Critical patent/JP5040798B2/en
Publication of JP2009273087A publication Critical patent/JP2009273087A/en
Publication of JP2009273087A5 publication Critical patent/JP2009273087A5/ja
Application granted granted Critical
Publication of JP5040798B2 publication Critical patent/JP5040798B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Description

本発明は、水晶振動子等の圧電振動子を使用した圧電発振器に関し、特に温度補償型圧
電発振器に備えられた温度センサの温度揺らぎによる出力周波数揺らぎを、簡単な付加回
路により低減した圧電発振器に関するものである。
The present invention relates to a piezoelectric oscillator using a piezoelectric vibrator such as a crystal vibrator, and more particularly to a piezoelectric oscillator in which output frequency fluctuation due to temperature fluctuation of a temperature sensor provided in a temperature compensated piezoelectric oscillator is reduced by a simple additional circuit. Is.

近年、圧電発振器は周波数安定度、小型軽量、低価格等により携帯電話等の通信機器か
ら水晶時計のような民生機器まで、多くの分野で用いられている。中でも圧電振動子の周
波数温度特性を補償した温度補償型圧電発振器(TCXO)は、周波数安定度を必要とす
る携帯電話等に広く用いられている。
特許文献1には位相雑音の低減化を図ったIC化TCXOが開示されている。この補償
方式では可変容量素子の非線形な領域を使用することで、補償電圧には線形の電圧を用い
ることが可能となる。
In recent years, piezoelectric oscillators are used in many fields from communication devices such as mobile phones to consumer devices such as quartz watches because of their frequency stability, small size and light weight, and low price. In particular, a temperature compensated piezoelectric oscillator (TCXO) that compensates for the frequency temperature characteristics of a piezoelectric vibrator is widely used in mobile phones and the like that require frequency stability.
Patent Document 1 discloses an IC TCXO in which phase noise is reduced. In this compensation method, a linear voltage can be used as the compensation voltage by using a non-linear region of the variable capacitance element.

図6は、特許文献1に開示された温度補償型圧電発振器の構成を示す回路図であり、温
度補償発振器30は、圧電振動子X、MOS型容量素子及び増幅回路を有するコルピッツ
型水晶発振器31と、温度センサ32と、補償電圧発生回路33と、を備えている。コル
ピッツ型水晶発振器31の圧電振動子Xと接地間に接続される可変容量回路は、低温補償
用のMOS型容量素子MLと高温補償用のMOS型容量素子MHとが、共に同一極性方向
に直列に接続され、更に直流阻止用の容量C13を介して接地されている。そして、低温
補償用容量素子ML、高温補償用容量素子MHには夫々抵抗R14、R15を介して低温
用温度補償電圧VL、高温用補償電圧VHが供給され、容量素子ML、MHの接続点には
抵抗R13を介して基準電圧Vref1が印加されるように構成されている。MOS型容
量素子のゲート電圧と容量との関係の一例は、周知のように図7に示すようなゲート電圧
−容量特性を呈する。
低温制御電圧VLは、25℃以下の範囲では0.5V〜3Vの範囲で一次的に変化し、
且つ25℃以上ではほぼ一定の0.5Vとなるような電圧とする。また高温制御電圧VH
は、25℃以上の範囲では0.5V〜3Vの範囲で一次的に変化し、且つ25℃以下では
ほぼ一定の0.5Vとなるような電圧とする。この補償方式の制御電圧は、低温制御電圧
、高温制御電圧と2つの電圧を必要とするが、温度に対して直線的に変化する線形電圧を
生成すればよく、回路構成が簡素化される。この温度補償方式を用いることにより、温度
に対し、右肩上がりの周波数温度特性を有する圧電振動子の温度補償が、可能になると開
示されている。
特開2001−60828公報
FIG. 6 is a circuit diagram showing the configuration of the temperature compensated piezoelectric oscillator disclosed in Patent Document 1. The temperature compensated oscillator 30 is a Colpitts crystal oscillator 31 having a piezoelectric vibrator X, a MOS capacitor, and an amplifier circuit. And a temperature sensor 32 and a compensation voltage generation circuit 33. In the variable capacitance circuit connected between the piezoelectric vibrator X of the Colpitts-type crystal oscillator 31 and the ground, the MOS capacitor element ML for low temperature compensation and the MOS capacitor element MH for high temperature compensation are both in series in the same polarity direction. And is grounded via a DC blocking capacitor C13. The low-temperature compensation capacitive element ML and the high-temperature compensation capacitive element MH are supplied with the low-temperature compensation voltage VL and the high-temperature compensation voltage VH through the resistors R14 and R15, respectively, and are connected to the connection points of the capacitive elements ML and MH. Is configured such that a reference voltage Vref1 is applied via a resistor R13. As is well known, an example of the relationship between the gate voltage and the capacitance of the MOS capacitor element exhibits a gate voltage-capacitance characteristic as shown in FIG.
The low-temperature control voltage VL changes primarily in the range of 0.5 V to 3 V in the range of 25 ° C. or lower,
In addition, the voltage is set to a substantially constant 0.5 V at 25 ° C. or higher. High temperature control voltage VH
Is a voltage that changes primarily in the range of 0.5 V to 3 V in the range of 25 ° C. or higher and becomes substantially constant 0.5 V in the range of 25 ° C. or lower. The control voltage of this compensation method requires a low temperature control voltage and a high temperature control voltage, but it is sufficient to generate a linear voltage that changes linearly with respect to the temperature, and the circuit configuration is simplified. It is disclosed that by using this temperature compensation method, temperature compensation of a piezoelectric vibrator having a frequency temperature characteristic that rises to the right with respect to temperature becomes possible.
JP 2001-60828 A

特許文献1に記載の圧電発振器は、常温近傍の補償感度を殆どゼロに等しく設定してい
るので、使用頻度の高い常温近傍における発振信号のC/N悪化を防止することができる
と開示されている。
しかしながら、温度補償型圧電発振器が小型化され、その熱容量が小さくなると、温度
センサは周囲の瞬間的な温度変化や風などによる温度変動(揺らぎ)に敏感に反応し、温
度補償型圧電発振器の出力周波数が微小に変動する(周波数が揺らぐ)ことになる。この
周波数の揺らぎが圧電発振器の高安定度を必要とする電子装置に、悪影響を及ぼすことが
あるという問題があった。
本発明は上記問題を解決するためになされたもので、周波数の揺らぎを低減した圧電発
振器を提供することにある。
The piezoelectric oscillator described in Patent Document 1 discloses that the compensation sensitivity in the vicinity of normal temperature is set almost equal to zero, so that it is possible to prevent the C / N deterioration of the oscillation signal in the vicinity of normal temperature that is frequently used. Yes.
However, if the temperature-compensated piezoelectric oscillator is downsized and its heat capacity is reduced, the temperature sensor reacts sensitively to ambient temperature fluctuations and fluctuations due to wind, etc., and the output of the temperature-compensated piezoelectric oscillator The frequency fluctuates slightly (the frequency fluctuates). There is a problem that this frequency fluctuation may adversely affect an electronic device that requires high stability of a piezoelectric oscillator.
The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a piezoelectric oscillator with reduced frequency fluctuations.

本発明は、上記の課題の少なくとも一部を解決するためになされたものであり、以下の
形態又は適用例として実現することが可能である。
SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]本発明に係る圧電発振器は、温度情報としての電圧信号である第1のセンサ出力と、前記第1のセンサ出力とは温度変化に対する電圧変化の傾向が逆の電圧信号である第2のセンサ出力と、を出力する温度センサ回路と、前記第1のセンサ出力と前記第2のセンサ出力とに基づいて出力信号を出力する周波数制御回路と、少なくとも、圧電振動子と、前記周波数制御回路の出力信号によって容量値が制御される電圧制御型の可変容量素子とを含発振回路と、高周波成分電圧信号を通過させるハイパスフィルタ回路と、を備え、記第1のセンサ出力を前記ハイパスフィルタ回路に入力し、前記ハイパスフィルタ回路の出力信号と前記第2のセンサ出力とを加算した信号を前記周波数制御回路に入力したことを特徴とする。
Application Example 1 In the piezoelectric oscillator according to the present invention, the first sensor output, which is a voltage signal as temperature information, and the first sensor output are voltage signals in which the tendency of voltage change with respect to temperature change is opposite. A temperature sensor circuit that outputs a second sensor output; a frequency control circuit that outputs an output signal based on the first sensor output and the second sensor output ; at least a piezoelectric vibrator ; includes a variable capacitance element of the voltage controlled capacitance value by the output signal of the frequency control circuit is controlled, and including oscillator circuit and a high pass filter circuit for passing a voltage No. signal of the high frequency components, the prior SL first The sensor output is input to the high-pass filter circuit, and a signal obtained by adding the output signal of the high-pass filter circuit and the second sensor output is input to the frequency control circuit.

以上のように温度センサ回路に第1及び第2のセンサ出力を設け、これらの出力が温度
に対し互いに逆特性となるようにすると共に、これらを加算することにより、圧電発振器
の周囲温度に揺らぎが生じた場合でも、揺らぎの高周波成分を互いに相殺するので、出力
周波数に温度揺らぎによる周波数揺らぎのない圧電発振器を構成することができるという
効果がある。
As described above, the first and second sensor outputs are provided in the temperature sensor circuit so that these outputs have opposite characteristics with respect to the temperature, and by adding these, the ambient temperature of the piezoelectric oscillator fluctuates. Even when this occurs, the high frequency components of the fluctuations cancel each other, so that there is an effect that it is possible to configure a piezoelectric oscillator free from frequency fluctuations due to temperature fluctuations in the output frequency.

[適用例2]また圧電発振器は、前記温度センサ回路は、前記第1のセンサ出力を出力する第1の温度センサ部と、前記第2のセンサ出力を出力する第2の温度センサ部とを含むことを特徴とする適用例1に記載の圧電発振器である。
Application Example 2 In the piezoelectric oscillator, the temperature sensor circuit includes a first temperature sensor unit that outputs the first sensor output, and a second temperature sensor unit that outputs the second sensor output. It is a piezoelectric oscillator as described in application example 1 characterized by including.

以上のように温度センサ回路に2つの温度センサ部を設けることにより、小型化が可能
であると共に、2つの温度センサ部の出力電圧はほぼ同じ電圧となるので、温度揺らぎに
よる高周波成分を十分に相殺することができるという利点がある。
As described above, by providing two temperature sensor units in the temperature sensor circuit, the size can be reduced and the output voltages of the two temperature sensor units are almost the same voltage. There is an advantage that it can be offset.

[適用例3]また圧電発振器は、前記温度センサ回路は、前記第1のセンサ出力または前記第2のセンサ出力のうち一方を出力する温度センサ部と、該温度センサ部のセンサ出力を反転し前記第1のセンサ出力または前記第2のセンサ出力のうち他方を出力する反転部と、を備えることを特徴とする適用例1に記載の圧電発振器である。

Application Example 3] The piezoelectric oscillator, the temperature sensor circuit, the first sensor output or the temperature sensor unit for outputting one of said second sensor output, the inverted sensor output of the temperature sensor unit And a reversing unit that outputs the other one of the first sensor output and the second sensor output .

以上のように温度センサ回路が、1つの温度センサ部と、該温度センサ部の出力を反転
する反転部と、を備えることにより、反転部の増幅度を調整することにより、2つの逆相
電圧の電圧値を等しく調整できるので、温度揺らぎによる高周波成分を完全に相殺するこ
とができるという利点がある。
As described above, the temperature sensor circuit includes one temperature sensor unit and an inversion unit that inverts the output of the temperature sensor unit. Therefore, there is an advantage that the high frequency component due to the temperature fluctuation can be completely canceled.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は、本発明の一実施
形態に係る圧電発振器1の構成を示すブロック回路図である。圧電発振器1は、温度を検
出する温度センサ回路6と、該温度センサ回路6のセンサ出力に基づいて周波数制御を行
う周波数制御回路7と、少なくとも、圧電振動子Xと電圧制御型の可変容量素子Mとを含
み、周波数制御回路7の出力信号により発振周波数を調整可能な発振回路5と、温度セン
サ回路6のセンサ出力に含まれる高域成分電圧信号のみを通過させるハイパスフィルタ回
路と、を備えている。
発振回路5は、例えば図6に示すコルピッツ発振回路31がある。コルピッツ発振回路
31は、発振用トランジスタTrのベース−接地間に、負荷容量の一部となるコンデンサ
C11とコンデンサC12との直列回路を接続し、この直列回路の接続中点と発振用トラ
ンジスタTrのエミッタとを接続し、更にエミッタと接地間との間にエミッタ抵抗Reを
接続する。更に、発振用トランジスタTrのベース−接地間に抵抗R21を接続し、ベー
ス−電源Vcc間に抵抗R22を接続し、ベースバイアス回路とする。更に発振用トラン
ジスタTrのベースと圧電振動子Xの一方の端子とを接続し、圧電振動子Xの他方の端子
と、可変容量素子ML、MH及び容量C13の直列回路とを接続し、容量C13の一方の
端子を接地する。可変容量素子ML、MHの接続中点には抵抗R13を介して基準電圧V
ref1を接続する。なお、必要に応じて、電源Vccに容量Cc(パスコン)を、トラ
ンジスタTrの出力には容量Coを接続して発振回路5を構成する。なお、図1の抵抗R
7、R8は、周波数制御回路7の出力を該抵抗R7、R8介して可変容量素子ML、MH
に印加する抵抗である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block circuit diagram showing a configuration of a piezoelectric oscillator 1 according to an embodiment of the present invention. The piezoelectric oscillator 1 includes a temperature sensor circuit 6 that detects temperature, a frequency control circuit 7 that performs frequency control based on the sensor output of the temperature sensor circuit 6, and at least the piezoelectric vibrator X and a voltage-controlled variable capacitance element. And an oscillation circuit 5 that can adjust the oscillation frequency by an output signal of the frequency control circuit 7 and a high-pass filter circuit that passes only a high-frequency component voltage signal included in the sensor output of the temperature sensor circuit 6. ing.
The oscillation circuit 5 includes, for example, a Colpitts oscillation circuit 31 shown in FIG. The Colpitts oscillation circuit 31 connects a series circuit of a capacitor C11 and a capacitor C12, which are part of the load capacitance, between the base and ground of the oscillation transistor Tr. The connection midpoint of this series circuit and the oscillation transistor Tr An emitter is connected, and an emitter resistor Re is connected between the emitter and the ground. Further, a resistor R21 is connected between the base of the oscillation transistor Tr and the ground, and a resistor R22 is connected between the base and the power supply Vcc to form a base bias circuit. Further, the base of the oscillation transistor Tr and one terminal of the piezoelectric vibrator X are connected, and the other terminal of the piezoelectric vibrator X is connected to the series circuit of the variable capacitance elements ML and MH and the capacitor C13, and the capacitor C13. Ground one of the terminals. The reference voltage V is connected via a resistor R13 to the connection middle point of the variable capacitance elements ML and MH.
Connect ref1. If necessary, the oscillation circuit 5 is configured by connecting a capacitor Cc (pass capacitor) to the power supply Vcc and a capacitor Co to the output of the transistor Tr. Note that the resistance R in FIG.
7, R8 outputs the output of the frequency control circuit 7 via the resistors R7, R8 to the variable capacitance elements ML, MH.
It is a resistance applied to.

周波数制御回路7の低温側制御電圧VLは、例えば図8(a)に示すように25℃以下
では0.5V〜3Vの範囲を一次的に変化し、25℃以上では0.5Vを保持する電圧と
する。また、高温側制御電圧VHは、例えば図8(b)に示すように25℃以下では0.
5Vを保持し、25℃以上では0.5V〜3Vの範囲を一次的に変化する電圧とする。周
波数制御回路7は、図8(a)、(b)に示すような制御電圧VL、VHを発生する機能
を有する回路である。
温度センサ回路6は、第1の温度センサ6aと、第2の温度センサ6bを備えており、
第1の温度センサ6aの温度に対する出力電圧特性と、第2の温度センサ6bの温度に対
する出力電圧特性と、は互いに逆特性を有している。
第2の温度センサ6bの出力は直接、周波数制御回路7の入力に接続する。第1の温度
センサ6aの出力は、ハイパスフィルタ回路8に入力され、該ハイパスフィルタ回路の出
力が周波数制御回路7の入力に加えられる。つまり、第2の温度センサ6bの出力に第1
の温度センサ6aの出力の高周波成分が加算され、この加算された電圧が周波数制御回路
7に入力される。
For example, as shown in FIG. 8A, the low-temperature side control voltage VL of the frequency control circuit 7 temporarily changes in the range of 0.5 V to 3 V at 25 ° C. or lower and maintains 0.5 V at 25 ° C. or higher. Voltage. Further, the high temperature side control voltage VH is, for example, as shown in FIG.
5 V is maintained, and the voltage range of 0.5 V to 3 V is set to be a primary voltage at 25 ° C. or higher. The frequency control circuit 7 is a circuit having a function of generating control voltages VL and VH as shown in FIGS.
The temperature sensor circuit 6 includes a first temperature sensor 6a and a second temperature sensor 6b.
The output voltage characteristic with respect to the temperature of the first temperature sensor 6a and the output voltage characteristic with respect to the temperature of the second temperature sensor 6b are opposite to each other.
The output of the second temperature sensor 6b is directly connected to the input of the frequency control circuit 7. The output of the first temperature sensor 6 a is input to the high pass filter circuit 8, and the output of the high pass filter circuit is added to the input of the frequency control circuit 7. That is, the output of the second temperature sensor 6b is the first
The high frequency component of the output of the temperature sensor 6 a is added, and this added voltage is input to the frequency control circuit 7.

図2(a)は、温度センサ回路6及びハイパスフィルタ回路8の一例を示す回路図であ
る。温度センサ回路6の第1の温度センサ6aは、ダイオードD1と抵抗R1とを直列接
続し、抵抗R1の一方の端子に基準電圧Vref2を加え、ダイオードD1の一方の端子
を接地する。第1の温度センサ6aの出力電圧Vs1は、ダイオードD1と抵抗R1との
接続点より得られ、温度t−電圧Vs1特性は、図2(b)に示すように温度の上昇に対
し、出力電圧Vs1が単調に低下する特性となる。また、第2温度センサ6bは、ダイオ
ードD2と抵抗R2とを直列接続し、ダイオードD2の一方の端子に基準電圧Vref2
を加え、抵抗R2の一方の端子を接地する。第2の温度センサ6bの出力電圧Vs2は、
ダイオードD2と抵抗R2との接続点より得られ、温度t−電圧Vs2特性は、図2(c
)に示すように温度の上昇に対し、出力電圧Vs2が単調に上昇する特性となる。
第1の温度センサ6aの温度t−電圧Vs1特性と、第2の温度センサ6bの温度t−
電圧Vs2特性とは逆特性となる。即ち、温度変化に対して第1の温度センサ6aの出力
である第1のセンサ出力と、第2の温度センサ6bの出力である第2のセンサ出力とでは
、極性が逆の変化特性である。そして、本実施形態の場合は、例えば、図2に示すように
第1のセンサ出力の係数は負係数、第2のセンサ出力の係数は正係数であるように温度変
化に対する温度センサ出力の変化特性の係数が逆である。なお、第1及び第2の温度セン
サ6a、6bの回路が、夫々1個のダイオードD1、D2を用いた回路を示したが、夫々
複数来のダイオードを直列接続した回路を用いて構成してもよい。
ハイパスフィルタ回路8の最も簡単な回路は、図2(a)に示すように、直列腕の容量
C1と並列腕の抵抗R3とで構成される回路である。また、OPアンプを使ったハイパス
フィルタ回路も用いられている。なお、ハイパスフィルタ回路8の出力は、接続によるイ
ンピーダンスの影響を避けるべく、容量C2を介して周波数制御回路7の入力に接続する

圧電発振器1の動作を説明する前に、第1の温度センサ6a及びハイパスフィルタ回路
8が無い一般的な温度補償型発振器について考える。第2の温度センサ6bが周囲の瞬間
的な温度変化や風等による微小な温度揺らぎにより、その出力電圧Vs2に揺らぎ(ノイ
ズ)が生じると、該電圧Vs2が周波数制御回路7に入力される。周波数制御回路7の出
力から揺らぎ成分が重畳した制御電圧VL、VHが出力され、この電圧が可変容量素子M
L、MHに印加される。一方、可変容量素子ML、MHの接続中点には抵抗R13を介し
て基準電圧Vref1が供給される。つまり、可変容量素子ML、MHの温度補償電圧(
VL−Vref1)、(Vref1−VH)に温度センサ回路の揺らぎ成分が重畳し、可
変容量素子ML、MHの容量に揺らぎが生じる。そのため、発振回路5の出力周波数に周
波数揺らぎ成分が重畳されることになる。
FIG. 2A is a circuit diagram illustrating an example of the temperature sensor circuit 6 and the high-pass filter circuit 8. The first temperature sensor 6a of the temperature sensor circuit 6 connects a diode D1 and a resistor R1 in series, applies a reference voltage Vref2 to one terminal of the resistor R1, and grounds one terminal of the diode D1. The output voltage Vs1 of the first temperature sensor 6a is obtained from the connection point between the diode D1 and the resistor R1, and the temperature t-voltage Vs1 characteristic is the output voltage with respect to the temperature rise as shown in FIG. Vs1 is monotonously lowered. The second temperature sensor 6b includes a diode D2 and a resistor R2 connected in series, and a reference voltage Vref2 is applied to one terminal of the diode D2.
And one terminal of the resistor R2 is grounded. The output voltage Vs2 of the second temperature sensor 6b is
The temperature t-voltage Vs2 characteristic obtained from the connection point between the diode D2 and the resistor R2 is shown in FIG.
), The output voltage Vs2 increases monotonously with increasing temperature.
The temperature t-voltage Vs1 characteristic of the first temperature sensor 6a and the temperature t- of the second temperature sensor 6b.
The characteristics are opposite to the voltage Vs2 characteristics. That is, the first sensor output, which is the output of the first temperature sensor 6a, and the second sensor output, which is the output of the second temperature sensor 6b, have opposite polarity change characteristics with respect to temperature changes. . In the case of this embodiment, for example, as shown in FIG. 2, the change in temperature sensor output with respect to the temperature change so that the coefficient of the first sensor output is a negative coefficient and the coefficient of the second sensor output is a positive coefficient. The characteristic coefficient is reversed. In addition, although the circuit of the 1st and 2nd temperature sensors 6a and 6b showed the circuit which used one diode D1 and D2, respectively, it comprised using the circuit which connected the several diode respectively in series. Also good.
As shown in FIG. 2A, the simplest circuit of the high-pass filter circuit 8 is a circuit including a series arm capacitor C1 and a parallel arm resistor R3. A high-pass filter circuit using an OP amplifier is also used. The output of the high-pass filter circuit 8 is connected to the input of the frequency control circuit 7 via the capacitor C2 so as to avoid the influence of impedance due to the connection.
Before explaining the operation of the piezoelectric oscillator 1, consider a general temperature compensated oscillator without the first temperature sensor 6 a and the high-pass filter circuit 8. When the second temperature sensor 6b has a fluctuation (noise) in its output voltage Vs2 due to an instantaneous temperature change in the surroundings or a minute temperature fluctuation due to wind or the like, the voltage Vs2 is input to the frequency control circuit 7. Control voltages VL and VH on which fluctuation components are superimposed are output from the output of the frequency control circuit 7, and these voltages are output from the variable capacitance element M.
Applied to L and MH. On the other hand, the reference voltage Vref1 is supplied to the midpoint of connection between the variable capacitance elements ML and MH via the resistor R13. That is, the temperature compensation voltage of the variable capacitance elements ML and MH (
The fluctuation components of the temperature sensor circuit are superimposed on (VL−Vref1) and (Vref1−VH), and fluctuations occur in the capacitances of the variable capacitance elements ML and MH. Therefore, a frequency fluctuation component is superimposed on the output frequency of the oscillation circuit 5.

本発明の第1の実施例の圧電発振器1のように、温度tの上昇に応じて出力電圧が増加
する第2の温度センサ6bと、温度tの上昇に応じて出力電圧が減少する第1の温度セン
サ6aと、を用い、第2の温度センサ6bの出力電圧Vs2は直接、周波数制御回路7の
入力に接続する。一方、第1の温度センサ6aの出力電圧Vs1は、ハイパスフィルタ8
に入力され、ハイパスフィルタ8により入力電圧の高周波成分のみが通過し、周波数制御
回路7の入力に加えられる。つまり、第2の温度センサ6bの出力電圧Vs2と、第1の
温度センサ6aの出力電圧Vs1の高周波成分のみとが加算される。第2の温度センサ6
bの出力電圧Vs2に重畳する温度揺らぎによる高周波成分(ノイズ)と、第1の温度セ
ンサ6aの出力電圧Vs1に重畳する温度揺らぎによる高周波成分(ノイズ)とは、互い
に逆相の関係にあるので、両者を加算すると相殺されて除去され、圧電発振器1の出力周
波数に温度揺らぎによる影響、周波数揺らぎは発生しない。
以上のように温度センサ回路に第1及び第2のセンサ出力を設け、これらの出力が温度
に対し互いに逆特性となるようにすると共に、これらを加算することにより、圧電発振器
の周囲温度に揺らぎが生じた場合でも、揺らぎの高周波成分を互いに相殺するので、出力
周波数に温度揺らぎによる周波数揺らぎのない圧電発振器を構成することができるという
効果がある。
また、温度センサ回路に2つの温度センサ部を設けることにより、小型化が可能である
と共に、2つの温度センサ部の出力電圧はほぼ同じ電圧となるので、温度揺らぎによる高
周波成分を十分に相殺することができるという利点がある。
尚、温度揺らぎによる高周波成分とは、上述の相殺機能が無かった場合に、温度揺らぎ
により実質的に起きる圧電振動子Xの周波数変動を温度補償するに必要な温度補償電圧に
対して、当該補償電圧を過剰に変動させようとする温度センサの検出出力に含まれる信号
成分である。
As in the piezoelectric oscillator 1 according to the first embodiment of the present invention, the second temperature sensor 6b whose output voltage increases as the temperature t increases, and the output voltage decreases as the temperature t increases. The output voltage Vs2 of the second temperature sensor 6b is directly connected to the input of the frequency control circuit 7. On the other hand, the output voltage Vs1 of the first temperature sensor 6a is a high-pass filter 8.
The high-pass filter 8 passes only the high-frequency component of the input voltage and is added to the input of the frequency control circuit 7. That is, the output voltage Vs2 of the second temperature sensor 6b and only the high frequency component of the output voltage Vs1 of the first temperature sensor 6a are added. Second temperature sensor 6
Since the high-frequency component (noise) due to temperature fluctuation superimposed on the output voltage Vs2 of b and the high-frequency component (noise) due to temperature fluctuation superimposed on the output voltage Vs1 of the first temperature sensor 6a are in opposite phase to each other. When both are added, they are canceled out and eliminated, and the output frequency of the piezoelectric oscillator 1 is not affected by temperature fluctuations and frequency fluctuations.
As described above, the first and second sensor outputs are provided in the temperature sensor circuit so that these outputs have opposite characteristics with respect to the temperature, and by adding these, the ambient temperature of the piezoelectric oscillator fluctuates. Even when this occurs, the high frequency components of the fluctuations cancel each other, so that there is an effect that it is possible to configure a piezoelectric oscillator free from frequency fluctuations due to temperature fluctuations in the output frequency.
Further, by providing two temperature sensor units in the temperature sensor circuit, the size can be reduced, and the output voltages of the two temperature sensor units are almost the same voltage, so that the high-frequency components due to temperature fluctuations are sufficiently canceled out. There is an advantage that you can.
The high-frequency component due to temperature fluctuation is the compensation for the temperature compensation voltage necessary for temperature compensation of the frequency fluctuation of the piezoelectric vibrator X substantially caused by the temperature fluctuation when the above-described canceling function is not provided. It is a signal component included in the detection output of the temperature sensor that attempts to change the voltage excessively.

図3は、図1に示した圧電発振器1を表面実装型圧電発振器で構成した一例の断面図で
ある。
この図3に示す圧電発振器1は、上面と下面に夫々凹所12、13を備えると共に矩形
環状の底面14に4つの実装端子15を備えた縦断面形状が略H型の絶縁容器(パッケー
ジ)11と、上面側凹所12内に設けた2つの上面側内部パッド16に圧電振動素子X上
の2つの励振電極を夫々電気的に接続した状態で該上面側凹所12を気密封止する金属リ
ッド17と、下面側凹所13の天井面13aに配置され各上面側内部パッド16、及び各
実装端子15と所定の配線パターンにより導通した下面側内部パッド18と、下面側内部
パッド18に実装されるIC部品19と、を備える。
IC部品19は、水晶振動素子X以外の電子回路を集積化したベアチップ部品である。
上面側凹所12を備えた絶縁容器11の上部と、上面側内部パッド16と、水晶振動素
子Xと、金属リッド17は、水晶振動子(圧電振動子)を構成している。即ち、水晶振動
子はセラミック等の絶縁材料からなる絶縁容器11の上面側凹所13内の上面側内側パッ
ド16上に水晶振動素子Xを導電性接着剤(導電性ペースト)20を用いて電気的・機械
的に接続し、絶縁容器11の外璧上面の導体リングに金属リッド17を溶接等によって電
気的・機械的に接続して上面側凹所12内を気密封止した構成である。
このような構成は、圧電発振器1の小型化を達成する為に直接又はポッティング樹脂を
介して外気に曝され易い状態で絶縁容器11に搭載されたIC部品19と、水晶振動素子
Xを気密空間に収容して外気から隔離した構成の圧電振動子とを備えた構造が特徴である

その為、IC部品19に内蔵した温度センサは周囲の瞬間的な温度変化や風などによる
温度変動(揺らぎ)に敏感に反応する一方、水晶振動素子Xはこのような温度変化や揺ら
ぎに対して反応が鈍い。従って、温度変更に対して温度センサと圧電振動素子との間で感
度差が生じ易い構造の一つである。
このような構造であっても本発明を適用すれば、圧電発振器1(温度補償型圧電発振器
)は、温度センサ回路6が圧電発振器1の内部及び周囲温度を感知し、その温度変化を電
圧に変換し、該電圧に基づいて周波数制御回路7が制御電圧を生成する。この制御電圧を
圧電振動子に直列接続された可変容量素子に印加し、圧電振動子の周波数を所定の周波数
に維持するように動作する。制御電圧には温度揺らぎによる高周波成分(ノイズ)は除去
されているので、周波数揺らぎのない圧電発振器が構成できる。
FIG. 3 is a cross-sectional view of an example in which the piezoelectric oscillator 1 shown in FIG.
The piezoelectric oscillator 1 shown in FIG. 3 includes an insulative container (package) having a substantially H-shaped vertical cross-section having recesses 12 and 13 on the upper surface and the lower surface, and four mounting terminals 15 on a rectangular annular bottom surface 14. 11 and two upper surface side internal pads 16 provided in the upper surface side recess 12 are hermetically sealed in the state where the two excitation electrodes on the piezoelectric vibration element X are electrically connected to each other. The metal lid 17, the upper surface side internal pads 16 disposed on the ceiling surface 13 a of the lower surface side recess 13, the lower surface side internal pads 18 that are electrically connected to the mounting terminals 15 by a predetermined wiring pattern, and the lower surface side internal pads 18 IC component 19 to be mounted.
The IC component 19 is a bare chip component in which electronic circuits other than the crystal resonator element X are integrated.
The upper part of the insulating container 11 having the upper surface side recess 12, the upper surface side internal pad 16, the crystal resonator element X, and the metal lid 17 constitute a crystal resonator (piezoelectric resonator). That is, the crystal resonator is electrically connected to the crystal resonator element X on the upper surface side inner pad 16 in the upper surface side recess 13 of the insulating container 11 made of an insulating material such as ceramic by using a conductive adhesive (conductive paste) 20. The metal lid 17 is electrically and mechanically connected to the conductor ring on the upper surface of the outer wall of the insulating container 11 by welding or the like, and the inside of the upper side recess 12 is hermetically sealed.
In such a configuration, the IC component 19 mounted on the insulating container 11 and the crystal resonator element X are easily sealed in an airtight space in a state where the piezoelectric oscillator 1 is easily exposed to the outside air directly or via a potting resin in order to reduce the size of the piezoelectric oscillator 1. It is characterized by a structure including a piezoelectric vibrator that is housed in and isolated from the outside air.
For this reason, the temperature sensor built in the IC component 19 responds sensitively to instantaneous temperature changes in the surroundings and temperature fluctuations (fluctuations) due to wind, etc., while the crystal resonator element X is sensitive to such temperature changes and fluctuations. The reaction is slow. Therefore, this is one of the structures in which a sensitivity difference is likely to occur between the temperature sensor and the piezoelectric vibration element with respect to temperature change.
Even with such a structure, if the present invention is applied to the piezoelectric oscillator 1 (temperature compensated piezoelectric oscillator), the temperature sensor circuit 6 senses the internal and ambient temperatures of the piezoelectric oscillator 1 and changes the temperature into a voltage. Based on the voltage, the frequency control circuit 7 generates a control voltage. This control voltage is applied to a variable capacitance element connected in series with the piezoelectric vibrator, and the frequency of the piezoelectric vibrator is maintained at a predetermined frequency. Since the high-frequency component (noise) due to temperature fluctuation is removed from the control voltage, a piezoelectric oscillator free from frequency fluctuation can be configured.

図4は、第2の実施例の圧電発振器2の構成を示すブロック回路図である。圧電発振器
2は、温度を検出する温度センサ回路6と、該温度センサ回路6のセンサ出力に基づいて
周波数制御を行う周波数制御回路7と、少なくとも、圧電振動子Xと電圧制御型の可変容
量素子Mとを含み、周波数制御回路7の出力信号により発振周波数を調整可能な発振回路
5と、位相を反転させる反転増幅器と、温度センサ回路6のセンサ出力に含まれる高域成
分電圧信号のみを通過させるハイパスフィルタ回路と、を備えている。
発振回路5と周波数制御回路7とは、第1の実施例で説明したので省略する。
温度センサ回路6の出力は2分割され、一方は直接、周波数制御回路7に接続する。他
方は反転増幅器9に接続し、該反転増幅器9の出力はハイパスフィルタ8の入力に接続し
、ハイパスフィルタ8の出力を周波数制御回路7に接続する。
FIG. 4 is a block circuit diagram showing the configuration of the piezoelectric oscillator 2 of the second embodiment. The piezoelectric oscillator 2 includes a temperature sensor circuit 6 that detects temperature, a frequency control circuit 7 that performs frequency control based on the sensor output of the temperature sensor circuit 6, and at least the piezoelectric vibrator X and a voltage-controlled variable capacitance element. M, and the oscillation circuit 5 that can adjust the oscillation frequency by the output signal of the frequency control circuit 7, the inverting amplifier that inverts the phase, and the high-frequency component voltage signal included in the sensor output of the temperature sensor circuit 6 only. A high-pass filter circuit.
Since the oscillation circuit 5 and the frequency control circuit 7 have been described in the first embodiment, a description thereof will be omitted.
The output of the temperature sensor circuit 6 is divided into two, and one is directly connected to the frequency control circuit 7. The other is connected to the inverting amplifier 9, the output of the inverting amplifier 9 is connected to the input of the high pass filter 8, and the output of the high pass filter 8 is connected to the frequency control circuit 7.

図5(a)は、温度センサ回路6、反転増幅器9及びハイパスフィルタ回路8の一例を
示す回路図である。温度センサ回路6は、ダイオードD1と抵抗R1とを直列接続し、抵
抗R1の一方の端子に基準電圧Vref2を印加し、ダイオードD1の一方の端子を接地
して構成される。温度センサ回路6の出力電圧Vsは、ダイオードD1と抵抗R1との接
続点より得られ、温度t−電圧Vs特性は図5(b)に示すようなに、温度tの増加に対
して出力電圧Vsが減少する特性となる。
反転増幅器9は、例えばオペアンプ10の逆相入力端子に抵抗R4を接続すると共に、
逆相入力端子と出力端子との間に抵抗R5を並列接続し、正相入力端子に基準電圧Vre
f3を印加して構成する。
ハイパスフィルタ回路8は、図2(a)で説明したので省略する。
FIG. 5A is a circuit diagram illustrating an example of the temperature sensor circuit 6, the inverting amplifier 9, and the high-pass filter circuit 8. The temperature sensor circuit 6 is configured by connecting a diode D1 and a resistor R1 in series, applying a reference voltage Vref2 to one terminal of the resistor R1, and grounding one terminal of the diode D1. The output voltage Vs of the temperature sensor circuit 6 is obtained from the connection point between the diode D1 and the resistor R1, and the temperature t-voltage Vs characteristic is the output voltage with respect to the increase of the temperature t as shown in FIG. Vs decreases.
For example, the inverting amplifier 9 has a resistor R4 connected to the negative phase input terminal of the operational amplifier 10, and
A resistor R5 is connected in parallel between the negative-phase input terminal and the output terminal, and the reference voltage Vre is applied to the positive-phase input terminal.
It is configured by applying f3.
The high-pass filter circuit 8 has been described with reference to FIG.

第2の実施例の圧電発振器2は、温度tの上昇に対して出力電圧Vsが減少する温度セ
ンサ回路6の出力を2分し、一方は直接、周波数制御回路7の入力に接続する。他方は、
反転増幅器9の入力に接続し、該反転増幅器9の出力をハイパスフィルタ8の入力に接続
し、該ハイパスフィルタ8の出力を容量C2を介して、周波数制御回路7の入力に接続す
る。温度センサ回路6が周囲の瞬間的な温度変化や風などによる温度変動(揺らぎ)を検
知すると、図5(b)に示す温度センサ回路6の出力電圧Vsに揺らぎ(ノイズ)による
高周波成分が重畳する。高周波成分が重畳した出力電圧Vsが周波数制御回路7に入力さ
れる。一方、揺らぎ(ノイズ)による高周波成分が重畳した出力電圧Vsが反転増幅器9
に入力されると、その電圧Vsが反転されると共に、重畳する高周波成分の位相も反転さ
れて、ハイパスフィルタ8に入力される。ハイパスフィルタ8では高周波成分のみが通過
し、周波数制御回路7に入力される。つまり、揺らぎ(ノイズ)による高周波成分が重畳
した温度センサ回路6の出力電圧Vsと、位相が反転した高周波成分とが、周波数制御回
路7の入力で加算される。そのため、揺らぎ(ノイズ)による高周波成分が除去(キャン
セル)された電圧が、周波数制御回路7に加えられることになる。その結果、圧電発振器
2の出力周波数に温度揺らぎによる影響、周波数揺らぎは発生しない。
以上のように温度センサ回路が、1つの温度センサ部と、該温度センサ部の出力を反転
する反転部と、を備えることにより、反転部の増幅度を調整することにより、2つの逆相
電圧の電圧値を等しく調整できるので、温度揺らぎによる高周波成分を完全に相殺するこ
とができるという利点がある。
The piezoelectric oscillator 2 of the second embodiment bisects the output of the temperature sensor circuit 6 at which the output voltage Vs decreases with increasing temperature t, and one is directly connected to the input of the frequency control circuit 7. The other is
The input of the inverting amplifier 9 is connected, the output of the inverting amplifier 9 is connected to the input of the high-pass filter 8, and the output of the high-pass filter 8 is connected to the input of the frequency control circuit 7 via the capacitor C2. When the temperature sensor circuit 6 detects a temperature change (fluctuation) due to an ambient temperature change or wind, a high frequency component due to fluctuation (noise) is superimposed on the output voltage Vs of the temperature sensor circuit 6 shown in FIG. To do. The output voltage Vs on which the high frequency component is superimposed is input to the frequency control circuit 7. On the other hand, the output voltage Vs on which the high frequency component due to fluctuation (noise) is superimposed is the inverting amplifier 9.
The voltage Vs is inverted and the phase of the high frequency component to be superimposed is also inverted and input to the high pass filter 8. In the high pass filter 8, only high frequency components pass and are input to the frequency control circuit 7. That is, the output voltage Vs of the temperature sensor circuit 6 on which the high frequency component due to fluctuation (noise) is superimposed and the high frequency component whose phase is inverted are added at the input of the frequency control circuit 7. Therefore, the voltage from which the high frequency component due to fluctuation (noise) has been removed (cancelled) is applied to the frequency control circuit 7. As a result, the output frequency of the piezoelectric oscillator 2 is not affected by temperature fluctuations and frequency fluctuations.
As described above, the temperature sensor circuit includes one temperature sensor unit and an inversion unit that inverts the output of the temperature sensor unit. Therefore, there is an advantage that the high frequency component due to the temperature fluctuation can be completely canceled.

本発明に係る第1実施例の圧電発振器の構成を示すブロック回路図。1 is a block circuit diagram showing a configuration of a piezoelectric oscillator according to a first embodiment of the present invention. (a)は温度センサ回路とハイパスフィルタ回路、(b)は第1の温度センサの温度tと出力電圧Vs1との関係を示す図、(c)は第2の温度センサの温度tと出力電圧Vs2との関係を示す図。(A) is a temperature sensor circuit and a high-pass filter circuit, (b) is a diagram showing the relationship between the temperature t of the first temperature sensor and the output voltage Vs1, and (c) is the temperature t and output voltage of the second temperature sensor. The figure which shows the relationship with Vs2. 本発明の圧電発振器の構成を示す断面図。Sectional drawing which shows the structure of the piezoelectric oscillator of this invention. 第2実施例の圧電発振器の構成を示すブロック回路図。The block circuit diagram which shows the structure of the piezoelectric oscillator of 2nd Example. (a)は温度センサ回路とハイパスフィルタ回路、(b)は温度センサの温度tと出力電圧Vsとの関係を示す図。(A) is a temperature sensor circuit and a high-pass filter circuit, (b) is a figure which shows the relationship between the temperature t of a temperature sensor, and the output voltage Vs. 従来の圧電発振器の構成を示す回路図。The circuit diagram which shows the structure of the conventional piezoelectric oscillator. MOS型容量素子のゲート電圧と容量との関係を示す図。The figure which shows the relationship between the gate voltage and capacity | capacitance of a MOS type capacitive element. (a)、(b)は周波数制御回路の出力電圧。(A), (b) is an output voltage of the frequency control circuit.

符号の説明Explanation of symbols

1、2…圧電発振器、5…発振回路、6…温度センサ回路、6a…第1の温度センサ、6
b…第2の温度センサ、7…周波数制御回路、8…ハイパスフィルタ回路、9…反転増幅
器、D1、D2…ダイオード、R1、R2、R3、R4、R5、R7、R8…抵抗、C1
、C2…容量、11…絶縁容器(パッケージ)、12、13…凹所、14…底面、15…
実装端子、16…上面側内部パッド、17…金属リッド、18…下面側内部パッド、19
…IC部品、20…導電性接着剤
DESCRIPTION OF SYMBOLS 1, 2 ... Piezoelectric oscillator, 5 ... Oscillation circuit, 6 ... Temperature sensor circuit, 6a ... 1st temperature sensor, 6
b ... second temperature sensor, 7 ... frequency control circuit, 8 ... high pass filter circuit, 9 ... inverting amplifier, D1, D2 ... diode, R1, R2, R3, R4, R5, R7, R8 ... resistor, C1
C2: Capacity, 11: Insulating container (package), 12, 13 ... Recess, 14 ... Bottom, 15 ...
Mounting terminal, 16... Upper surface side internal pad, 17... Metal lid, 18.
... IC parts, 20 ... Conductive adhesive

Claims (3)

温度情報としての電圧信号である第1のセンサ出力と、前記第1のセンサ出力とは温度変化に対する電圧変化の傾向が逆の電圧信号である第2のセンサ出力と、を出力する温度センサ回路と、
前記第1のセンサ出力と前記第2のセンサ出力とに基づいて出力信号を出力する周波数制御回路と、
少なくとも、圧電振動子と、前記周波数制御回路の出力信号によって容量値が制御される電圧制御型の可変容量素子とを含発振回路と、
高周波成分電圧信号を通過させるハイパスフィルタ回路と、を備え、
記第1のセンサ出力を前記ハイパスフィルタ回路に入力し、
前記ハイパスフィルタ回路の出力信号と前記第2のセンサ出力とを加算した信号を前記周波数制御回路に入力したことを特徴とする圧電発振器。
A temperature sensor circuit that outputs a first sensor output that is a voltage signal as temperature information, and a second sensor output that is a voltage signal in which the tendency of voltage change with respect to temperature change is opposite to that of the first sensor output. When,
A frequency control circuit that outputs an output signal based on the first sensor output and the second sensor output ;
At least, a piezoelectric vibrator, and a variable capacitance element of the voltage controlled capacitance value is controlled by the output signal of said frequency control circuit, and including an oscillation circuit,
Comprising a high-pass filter circuit for passing a voltage No. signal of the high-frequency component, and
Type a Symbol first sensor output to the high-pass filter circuit,
A piezoelectric oscillator , wherein a signal obtained by adding the output signal of the high-pass filter circuit and the second sensor output is input to the frequency control circuit.
前記温度センサ回路は、前記第1のセンサ出力を出力する第1の温度センサ部と、前記第2のセンサ出力を出力する第2の温度センサ部とを含むことを特徴とする請求項1に記載の圧電発振器。 2. The temperature sensor circuit includes a first temperature sensor unit that outputs the first sensor output and a second temperature sensor unit that outputs the second sensor output. The piezoelectric oscillator as described. 前記温度センサ回路は、前記第1のセンサ出力または前記第2のセンサ出力のうち一方を出力する温度センサ部と、該温度センサ部のセンサ出力を反転し前記第1のセンサ出力または前記第2のセンサ出力のうち他方を出力する反転部と、を備えることを特徴とする請求項1に記載の圧電発振器。 The temperature sensor circuit, a temperature sensor portion for outputting one of said first sensor output or the second sensor output, the temperature sensor portion of the sensor output inverts the first sensor output or the second The piezoelectric oscillator according to claim 1, further comprising: an inverting unit that outputs the other of the two sensor outputs .
JP2008124358A 2008-05-12 2008-05-12 Piezoelectric oscillator Expired - Fee Related JP5040798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008124358A JP5040798B2 (en) 2008-05-12 2008-05-12 Piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008124358A JP5040798B2 (en) 2008-05-12 2008-05-12 Piezoelectric oscillator

Publications (3)

Publication Number Publication Date
JP2009273087A JP2009273087A (en) 2009-11-19
JP2009273087A5 JP2009273087A5 (en) 2011-05-26
JP5040798B2 true JP5040798B2 (en) 2012-10-03

Family

ID=41439207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008124358A Expired - Fee Related JP5040798B2 (en) 2008-05-12 2008-05-12 Piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JP5040798B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5926578B2 (en) * 2012-02-29 2016-05-25 京セラクリスタルデバイス株式会社 Piezoelectric device
JP2013243606A (en) * 2012-05-22 2013-12-05 Seiko Epson Corp Temperature information generation circuit, oscillator, electronic apparatus, temperature compensation system, and temperature compensation method for electronic component
JP2014086937A (en) * 2012-10-25 2014-05-12 Kyocera Crystal Device Corp Crystal oscillator
JP2014103618A (en) * 2012-11-22 2014-06-05 Kyocera Crystal Device Corp Crystal resonator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3876594B2 (en) * 1999-06-17 2007-01-31 エプソントヨコム株式会社 Temperature compensated oscillator
JP2003046334A (en) * 2001-07-27 2003-02-14 Nec Microsystems Ltd Temperature compensation type crystal oscillator
JP2006135540A (en) * 2004-11-04 2006-05-25 Epson Toyocom Corp Temperature compensation piezoelectric oscillator

Also Published As

Publication number Publication date
JP2009273087A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP5747574B2 (en) Piezoelectric device and electronic equipment
JP5757786B2 (en) Crystal oscillator
US8564378B2 (en) Voltage-controlled oscillating circuit and crystal oscillator
JP5072418B2 (en) Temperature-compensated crystal oscillator for surface mounting
JP6123983B2 (en) Oscillation circuit, semiconductor integrated circuit device, vibration device, electronic device, and moving object
TW201308878A (en) Temperature-compensated crystal oscillator
US9013244B2 (en) Oscillating device, oscillating element and electronic apparatus
JP5040798B2 (en) Piezoelectric oscillator
JP2016174210A (en) Oscillator, electronic equipment, and mobile body
US11863124B2 (en) Circuit device and oscillator
JP2009272734A (en) Piezoelectric oscillator
JP2008263564A (en) Temperature-compensated piezoelectric oscillator
JP2009284045A (en) Piezoelectric oscillator
CN110880916B (en) Circuit device, oscillator, electronic apparatus, and moving object
JP6870291B2 (en) Oscillator circuits, circuit devices, oscillators, electronic devices and mobiles
JP6610641B2 (en) Electronics
JP2016123114A (en) Piezoelectric device and electronic apparatus
JP2009278218A (en) Piezoelectric resonator
JPH09191226A (en) Crystal oscillator
JP2002135051A (en) Piezoelectric oscillator
US11929710B2 (en) Oscillator
US11949380B2 (en) Method of manufacturing oscillator and oscillator
JP2004266820A (en) Piezoelectric oscillation circuit
JPH0533054Y2 (en)
JP5924365B2 (en) Piezoelectric device and electronic equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110412

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5040798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees