JP2006135540A - Temperature compensation piezoelectric oscillator - Google Patents

Temperature compensation piezoelectric oscillator Download PDF

Info

Publication number
JP2006135540A
JP2006135540A JP2004321098A JP2004321098A JP2006135540A JP 2006135540 A JP2006135540 A JP 2006135540A JP 2004321098 A JP2004321098 A JP 2004321098A JP 2004321098 A JP2004321098 A JP 2004321098A JP 2006135540 A JP2006135540 A JP 2006135540A
Authority
JP
Japan
Prior art keywords
temperature
frequency
low
voltage
piezoelectric oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004321098A
Other languages
Japanese (ja)
Inventor
Masayuki Ishikawa
匡亨 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2004321098A priority Critical patent/JP2006135540A/en
Publication of JP2006135540A publication Critical patent/JP2006135540A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the noise removing capability of a piezoelectric oscillator which compensates temperature by using a MOS varactor to improve phase noise of the piezoelectric oscillator which becomes worse at a low/high temperature end. <P>SOLUTION: This temperature compensation piezoelectric oscillator 100 is equipped with an oscillation circuit 12 and a frequency temperature compensating circuit. The frequency temperature compensating circuit comprises a temperature detection portion 3 whose parameter varies with ambient temperature, a temperature compensating voltage generation portion 2 which generates a voltage on the basis of the varying parameter, MOS varactors MH10 and ML11 which vary in capacity on the basis of the potential difference between temperature compensating voltages (VH, VL) generated by the temperature compensating voltage generating circuit 2 and the reference voltage (Vref), a MOS varactors (noise removing means) 4 and 5 which remove noise from the temperature compensating voltages, DC stopping capacitors 7 and 9, and fixed resistors 6 and 8. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水晶振動子等の圧電振動子を使用した圧電発振器に関し、特にMOS型バラクタを使用して温度補償を行う圧電発振器において、高温及び低温端部において悪化する位相雑音を改善する回路構成に関するものである。   The present invention relates to a piezoelectric oscillator using a piezoelectric vibrator such as a crystal vibrator, and more particularly to a circuit configuration for improving phase noise that deteriorates at high and low temperature ends in a piezoelectric oscillator that performs temperature compensation using a MOS varactor. It is about.

近年、水晶振動子等の圧電振動子に対して発振回路、温度補償回路等を付加した圧電発振器では周波数安定度は勿論のこと、小型化、低価格化等の要求が厳しく、更には、通信方式のデジタル化が進むにつれて、従来問題とならなかった位相雑音(SSB Phase Noise)の向上が望まれている。圧電発振器の出力周波数は種々の要因で変化するが、比較的周波数の安定度が高い水晶発振器においても、周囲温度、電源電圧及び出力負荷等の条件変化による周波数変動があり、これ等に対応する手段は種々のものが提案されている。例えば温度変化に関しては水晶発振器に温度補償回路を付加し、水晶振動子固有の温度−周波数特性変動(3次の温度特性)を相殺するような周波数制御をするようこの温度補償水晶発振器の発振ループの負荷容量を温度変化に対して制御するものがある。
図3は従来のMOS型バラクタ(MOS容量素子)を用いた温度補償回路の一例を示す図である。これは、低温補償用MOS型バラクタML43と、高温補償用MOS型バラクタMH46を用い、MOS型バラクタの両端には一方に基準電圧Vref、他方に制御電圧VL、VHが抵抗44、41、45を介して印加される。
図4(a)はMOS型バラクタのC−V特性を表す図である。この図から温度補償の原理を概略的に説明すると、MOS型バラクタのC−V特性50の立ち上がる領域(B領域)と立ち下がる領域(A領域)を利用して、それぞれ低温と高温の補償を行う構成である。図4(b)は図4(a)の特性を有するMOS型バラクタを使用したときの負荷容量と温度の関係(補償容量カーブ)を表す図である。低温領域Cは図3の低温部補償用のMOS型バラクタML43により生成され、高温領域Dは図3の高温部補償用のMOS型バラクタMH46により生成され、その結果、水晶振動子の周波数を温度補償するための容量カーブ51の特性を得ることができる。即ち、低温用と高温用にそれぞれMOS型バラクタが必要となる。
このような構成にすることで、水晶振動子の3次の温度特性を補償するために、温度に対する3次の容量変化(符号51)を得ている。またこのようなMOS型バラクタを用いた構成の間接温度補償方式においては、図2のように補償電圧VL、VHとして各補償温度の範囲内(例えば、VHでは25℃〜90℃、VLでは−40℃〜25℃)でリニア変化するもので良いので、規模の小さな回路となることが大きな特徴である。尚、MOS型バラクタのC−V特性における容量最小値付近の不安定領域を回避するために、度補償電圧が容量最小値のときの電位差にならないようにして、高温時の負荷容量変動を抑制した温度補償型圧電発振器については、同一出願人より特願2003−402098として出願されている。
また位相雑音を改善した従来例として、特開平11−251836号公報には、制御電圧発生回路から水晶発振回路へ伝達される雑音成分を除去して、位相雑音の少ない温度補償型発振器について開示されている。それによると、温度検出回路と、制御電圧発生回路と、周波数調整回路と、発振回路を備え、温度補償型発振器においては制御電圧発生回路から周波数調整回路を介して発振回路へ伝達される雑音成分が発振回路の発振出力の位相雑音を増加させるので、制御電圧発生回路と周波数調整回路の間にローパスフィルタを入れて、制御電圧発生回路から周波数調整回路を介して発振回路へ伝達される雑音成分を除去するとしている。
特願2003−402098 特開平11−251836号公報
In recent years, piezoelectric oscillators in which an oscillation circuit, a temperature compensation circuit, etc. are added to a piezoelectric vibrator such as a quartz crystal vibrator, have demanded not only frequency stability but also miniaturization and cost reduction, and further communication As the system becomes more digitized, it is desired to improve the phase noise (SSB Phase Noise), which has not been a problem in the past. The output frequency of a piezoelectric oscillator changes due to various factors. Even in a crystal oscillator with relatively high frequency stability, there are frequency fluctuations due to changes in conditions such as ambient temperature, power supply voltage, and output load. Various means have been proposed. For example, regarding a temperature change, a temperature compensation circuit is added to the crystal oscillator, and the oscillation loop of this temperature compensated crystal oscillator performs frequency control so as to cancel the temperature-frequency characteristic fluctuation (third-order temperature characteristic) inherent to the crystal oscillator. There is one that controls the load capacity of the battery with respect to temperature changes.
FIG. 3 is a diagram showing an example of a temperature compensation circuit using a conventional MOS varactor (MOS capacitance element). This uses a low-temperature compensation MOS type varactor ML43 and a high-temperature compensation MOS type varactor MH46. The MOS type varactor has resistances 44, 41 and 45 at one end and a control voltage VL and VH at the other end. Applied.
FIG. 4A is a diagram illustrating the CV characteristics of the MOS varactor. From this figure, the principle of temperature compensation is schematically explained. Using the rising region (B region) and falling region (A region) of the CV characteristic 50 of the MOS varactor, low temperature compensation and high temperature compensation can be performed. It is the structure to perform. FIG. 4B is a diagram showing the relationship between the load capacity and temperature (compensation capacity curve) when the MOS varactor having the characteristics shown in FIG. 4A is used. The low temperature region C is generated by the low temperature portion compensation MOS varactor ML43 in FIG. 3, and the high temperature region D is generated by the high temperature portion compensation MOS varactor MH46 in FIG. The characteristic of the capacity curve 51 for compensation can be obtained. That is, MOS type varactors are required for low temperature and high temperature, respectively.
With such a configuration, a third-order capacitance change (reference numeral 51) with respect to temperature is obtained in order to compensate for the third-order temperature characteristics of the crystal resonator. In the indirect temperature compensation method using such a MOS varactor, compensation voltages VL and VH are within the range of each compensation temperature as shown in FIG. 2 (for example, VH is 25 ° C. to 90 ° C., VL is − 40 ° C. to 25 ° C.), which is linearly changed, and a large feature is that the circuit is small in scale. In addition, in order to avoid an unstable region near the minimum capacitance value in the CV characteristics of the MOS varactor, the potential compensation voltage does not become a potential difference when the capacitance value is the minimum capacitance value, thereby suppressing load capacitance fluctuation at high temperature. The temperature-compensated piezoelectric oscillator has been filed as Japanese Patent Application No. 2003-402098 by the same applicant.
As a conventional example in which the phase noise is improved, Japanese Patent Application Laid-Open No. 11-251836 discloses a temperature compensated oscillator with less phase noise by removing a noise component transmitted from the control voltage generation circuit to the crystal oscillation circuit. ing. According to this, a temperature detection circuit, a control voltage generation circuit, a frequency adjustment circuit, and an oscillation circuit are provided. In a temperature compensated oscillator, a noise component transmitted from the control voltage generation circuit to the oscillation circuit via the frequency adjustment circuit Increases the phase noise of the oscillation output of the oscillation circuit. Insert a low-pass filter between the control voltage generation circuit and the frequency adjustment circuit to transmit the noise component from the control voltage generation circuit to the oscillation circuit via the frequency adjustment circuit. Is going to be removed.
Japanese Patent Application No. 2003-402098 Japanese Patent Application Laid-Open No. 11-251836

図3の回路方式での位相雑音は、キャリアに対しノイズが低い方が良好な結果になるので、キャリアと電圧ノイズが一定と考えた場合、バラクタ感度だけで考えると、常温付近では感度が低く、低温と高温に向かうに従い感度が高くなる関係がある。そしてバラクタ感度と位相雑音の関係は図5に示すように、感度が低い常温付近では電圧ノイズによる影響が小さいので位相雑音は良く(雑音電力が小さく)、感度が高い低温側と高温側では電圧ノイズによる影響が大きいので位相雑音が悪く(雑音電力が大きく)なる。
即ち、図4(b)のように低温と高温の温度端部(領域C、D)では図4(a)に示す電圧差−容量特性において、電圧差の変化に対して容量変化が大きい部分(電圧差0Vの近傍部分)を利用しているため電圧ノイズによる急激な電圧変動に対して負荷容量が大きく変化するため位相雑音の悪化は避けられないといった問題があった。
また特許文献2は、温度補償制御電圧を発振回路のバラクタに印加して、温度補償する方式において、制御電圧から発生するノイズをローパスフィルタにより除去して絶対ノイズを低減することで位相雑音の改善をおこなうものである。特許文献2に開示された温度補償型発振器は、制御電圧発生回路からローパスフィルタを介して可変容量ダイオードに温度制御電圧を印加することにより、発振器の周波数温度特性を安定化する機能を有するものである。そして、このような構成の場合、各可変容量ダイオードが共に発振器の動作温度範囲全域に亘り周波数制御する働きをするものであるから、当該可変容量ダイオードの電圧の経由点であるローパスフィルタは動作温度範囲全域に亘ってローパス機能を有しなければならなくなり、そのため、全温度範囲に亘って安定したローパス機能が得られるように固定された容量値を有する容量素子として大容量値の固定容量コンデンサを使用する必要がある。しかしながら、発振回路及び制御電圧発生回路等の水晶振動子以外の回路部分の集積化(IC化)を図った場合、特許文献2に開示された温度補償発振器の場合では、固定容量コンデンサが大規模な構造となってしまうためにIC部品の小型化が、ひいては水晶発振器の小型化が十分に達成できないという問題があった。
本発明は、かかる課題に鑑み、MOS型バラクタを使用して温度補償を行う圧電発振器において、低温と高温の温度端部において悪化する圧電発振器の位相雑音を改善するために、温度補償制御電圧にMOS型バラクタを接続することにより、温度端部において温度補償制御電圧が高いのを利用して容量を増加するようにしてノイズ除去能力を高めた温度補償型圧電発振器を提供することを目的する。
The phase noise in the circuit system of FIG. 3 is better when the noise is lower than that of the carrier. Therefore, when the carrier and voltage noise are considered to be constant, the sensitivity is low near room temperature when considering only the varactor sensitivity. There is a relationship in which the sensitivity increases as the temperature decreases toward higher temperatures. As shown in Fig. 5, the relationship between varactor sensitivity and phase noise is good because the influence of voltage noise is small near room temperature where the sensitivity is low (the noise power is small). Since the influence of noise is large, the phase noise is poor (noise power is large).
That is, as shown in FIG. 4B, at the low temperature and high temperature end portions (regions C and D), in the voltage difference-capacitance characteristics shown in FIG. Since (the vicinity of the voltage difference of 0 V) is used, there is a problem that the deterioration of the phase noise is unavoidable because the load capacitance changes greatly with respect to a sudden voltage fluctuation due to voltage noise.
Further, in Patent Document 2, in a method of applying temperature compensation control voltage to a varactor of an oscillation circuit and performing temperature compensation, noise generated from the control voltage is removed by a low pass filter to reduce absolute noise, thereby improving phase noise. It is to do. The temperature-compensated oscillator disclosed in Patent Document 2 has a function of stabilizing the frequency temperature characteristic of an oscillator by applying a temperature control voltage to a variable capacitance diode from a control voltage generation circuit via a low-pass filter. is there. In such a configuration, since each variable capacitance diode functions to control the frequency over the entire operating temperature range of the oscillator, the low-pass filter, which is the transit point of the voltage of the variable capacitance diode, operates at the operating temperature. A low-pass function must be provided over the entire range. Therefore, a large-capacity fixed capacitor is used as a capacitive element having a fixed capacitance value so that a stable low-pass function can be obtained over the entire temperature range. Must be used. However, when circuit parts other than the crystal unit such as the oscillation circuit and the control voltage generation circuit are integrated (integrated with IC), in the case of the temperature compensated oscillator disclosed in Patent Document 2, a fixed capacitor is large-scale. As a result, the size of the IC component and the size of the crystal oscillator cannot be sufficiently reduced.
In view of such problems, the present invention provides a temperature compensation control voltage in a piezoelectric oscillator that performs temperature compensation using a MOS varactor in order to improve the phase noise of the piezoelectric oscillator that deteriorates at a low temperature and a high temperature end. An object of the present invention is to provide a temperature-compensated piezoelectric oscillator having a noise removal capability enhanced by connecting a MOS-type varactor so as to increase the capacity by utilizing a high temperature-compensated control voltage at the temperature end.

本発明はかかる課題を解決するために、請求項1では、圧電振動子と、該圧電素子を励振させる発振用増幅回路と、圧電振動子の周波数温度特性を補償する周波数温度補償回路と、を備えた温度補償型圧電発振器であって、前記周波数温度補償回路は、発振用増幅回路の発振ループに挿入接続された可変容量部と、周囲の温度に応じた補償電圧を生成し前記可変容量部に供給する温度補償電圧発生部と、該度補償電圧発生部の出力と前記可変容量部との間に配置されるノイズ除去手段とを備えており、該ノイズ除去手段が少なくとも1つのMOS容量素子を用いて構成されていることを特徴とする。
なお、本明細書において、圧電素子とは、圧電基板の主面に励振電極、リード端子を形成した素子を指称し、圧電振動子とは、この圧電素子自体、或いは圧電素子を気密封止した電子部品を指称する。
請求項2は、前記圧電振動子の周波数温度特性は3次曲線を呈するものであり、該3次曲線の変曲点に対応する温度を基準温度とし、これを境として高温側と低温側とするとき、前記周波数温度補償回路は、低温側温度補償電圧発生部と低温側可変容量部とからなる低温側周波数温度補償回路と、高温側温度補償電圧発生部と高温側可変容量部とからなる高温側周波数温度補償回路とを備えており、低温側及び高温側周波数温度補償回路のそれぞれに前記ノイズ除去手段が配置されていることを特徴とする。
請求項3は、前記高温側周波数温度補償回路に配置された高温側のノイズ除去手段は基準温度より低温の所定温度以下にて容量値が最大となるように設定され、前記低温側周波数温度補償回路に配置された低温側のノイズ除去手段は基準温度より高温の所定温度以上にて容量値が最大となるように設定されていることを特徴とする。
請求項4は、前記ノイズ除去手段は、低温側及び高温側温度補償電圧発生部の各出力端と接地との間にMOS容量素子のアノード側が接地されるように挿入接続した構造であることを特徴とする。
請求項5は、前記低温側及び高温側可変容量部が何れも少なくとも1つのMOS容量素子を用いて構成されていることを特徴とする。
請求項6は、低温側及び高温側の各ノイズ除去手段と可変容量部との間にそれぞれ抵抗を挿入接続したことを特徴とする。
In order to solve such a problem, the present invention provides a piezoelectric vibrator, an oscillation amplifier circuit that excites the piezoelectric element, and a frequency temperature compensation circuit that compensates a frequency temperature characteristic of the piezoelectric vibrator. A temperature compensation type piezoelectric oscillator, wherein the frequency temperature compensation circuit generates a compensation voltage according to an ambient temperature, and a variable capacitor unit inserted and connected to an oscillation loop of an oscillation amplifier circuit. A temperature compensation voltage generation unit to be supplied to the output, and a noise removal unit disposed between the output of the compensation voltage generation unit and the variable capacitance unit, and the noise removal unit includes at least one MOS capacitance element It is characterized by using.
In this specification, the piezoelectric element refers to an element in which excitation electrodes and lead terminals are formed on the main surface of the piezoelectric substrate, and the piezoelectric vibrator refers to the piezoelectric element itself or the piezoelectric element hermetically sealed. An electronic component is designated.
According to a second aspect of the present invention, the frequency-temperature characteristic of the piezoelectric vibrator exhibits a cubic curve, and a temperature corresponding to the inflection point of the cubic curve is set as a reference temperature, and the high temperature side and the low temperature side are defined as boundaries. In this case, the frequency temperature compensation circuit includes a low temperature side frequency temperature compensation circuit including a low temperature side temperature compensation voltage generation unit and a low temperature side variable capacitance unit, and a high temperature side temperature compensation voltage generation unit and a high temperature side variable capacitance unit. And a high temperature side frequency temperature compensation circuit, wherein the noise removing means is disposed in each of the low temperature side and high temperature side frequency temperature compensation circuits.
According to a third aspect of the present invention, the high-temperature-side noise removing means arranged in the high-temperature-side frequency temperature compensation circuit is set so that the capacitance value becomes maximum at a predetermined temperature lower than a reference temperature, and the low-temperature-side frequency temperature compensation The noise removing means on the low temperature side arranged in the circuit is set so that the capacitance value is maximized at a predetermined temperature higher than the reference temperature.
According to a fourth aspect of the present invention, the noise removing means has a structure in which the anode side of the MOS capacitor element is inserted and connected between the output terminals of the low temperature side and high temperature side temperature compensation voltage generators and the ground. Features.
According to a fifth aspect of the present invention, both the low temperature side and high temperature side variable capacitance sections are configured using at least one MOS capacitor element.
According to a sixth aspect of the present invention, a resistor is inserted and connected between each of the low-temperature side and high-temperature side noise removing means and the variable capacitance section.

以上記載のごとく請求項1の発明によれば、温度補償回路に更にノイズ除去手段を備えるので、温度端部における位相雑音を改善することができる。
また請求項2では、ノイズ除去手段は、低温側温度補償電圧発生部及び高温側温度補償電圧発生部の各出力にそれぞれ接続されるので、各制御電圧発生部の電圧に重畳するノイズを除去することができる。
また請求項3では、ノイズ除去手段は、少なくとも1つ以上のMOS容量素子により構成されるので、各制御電圧発生部の電圧が高いときに容量が増大して温度端部におけるノイズを除去する能力を高めると共に、固定コンデンサに比べて少ない面積で同容量のコンデンサと同じ効果を発揮することができる。
また請求項4では、ノイズ除去手段は、低温側及び高温側温度補償電圧発生部の各出力端と接地との間にMOS容量素子のアノード側が接地されるように挿入接続したので、温度補償電圧発生部の電圧に対して逆バイアスとなり、大きな容量を得ることができる。
また請求項5では、低温側及び高温側可変容量部が何れも少なくとも1つのMOS容量素子を用いて構成されているので、各温度補償電圧発生部の電圧が高いときに容量が増大して温度端部におけるノイズを除去する能力を高めると共に、固定コンデンサに比べて少ない面積で同容量のコンデンサと同じ効果を発揮することができる。
また請求項6では、低温側及び高温側の各ノイズ除去手段と可変容量部との間にそれぞれ抵抗を挿入接続したので、発振ループの負荷容量に対して影響を最小限にすることができる。
As described above, according to the first aspect of the present invention, since the temperature compensation circuit is further provided with the noise removing means, the phase noise at the temperature end can be improved.
Further, in the second aspect, since the noise removing means is connected to each output of the low temperature side temperature compensation voltage generator and the high temperature side temperature compensation voltage generator, noise superimposed on the voltage of each control voltage generator is removed. be able to.
According to a third aspect of the present invention, since the noise removing means is composed of at least one MOS capacitor element, the capacity increases when the voltage of each control voltage generator is high, and the ability to remove noise at the temperature end. In addition, it is possible to achieve the same effect as a capacitor having the same capacity with a smaller area than a fixed capacitor.
According to the fourth aspect of the present invention, the noise removing means is inserted and connected so that the anode side of the MOS capacitor element is grounded between the output terminals of the low temperature side and high temperature side temperature compensation voltage generators and the ground. A reverse bias is generated with respect to the voltage of the generating section, and a large capacity can be obtained.
Further, in claim 5, since both the low temperature side and high temperature side variable capacitance parts are configured using at least one MOS capacitance element, the capacitance increases when the voltage of each temperature compensation voltage generation part is high and the temperature increases. In addition to enhancing the ability to remove noise at the end, the same effect as a capacitor of the same capacity can be achieved with a smaller area than a fixed capacitor.
According to the sixth aspect of the present invention, since the resistors are inserted and connected between the low-temperature side and high-temperature side noise removing means and the variable capacitance unit, the influence on the load capacity of the oscillation loop can be minimized.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。
図1は本発明の温度補償型圧電発振器の部分構成を示すブロック図である。この温度補償型圧電発振器100は、大きく分けて2つの部分から構成される。即ち、所定の周波数で励振される圧電素子を備えた水晶振動子Xと、この水晶振動子Xに電流を流して励振させる発振用増幅器からなる発振回路12と、温度変化による発振周波数の変化を補償する周波数温度補償回路1とを備えて構成される。尚、発振回路12は図ではコルピッツ発振回路であるが、他の発振回路でも構わない。
そして周波数温度補償回路1は、周囲温度によりパラメータが変化する温度検出部3と、この温度検出部3により変化したパラメータに基づいて電圧を発生する温度補償用電圧発生部2と、この温度補償用電圧発生部2により発生された温度補償用電圧(電圧VH、電圧VL)と基準電圧(電圧Vref)の電位差に基づいて容量が変化するMOS型バラクタ(MOS容量素子)MH10、ML11と、温度補償用電圧のノイズを除去するMOS型バラクタ(ノイズ除去手段)4、5と、直流阻止用の容量として例えば、コンデンサ7、9と、固定抵抗6、8とを備えて構成されている。
そしてML(低温部補償用MOS型バラクタ)11のゲート電極とコンデンサ7との接続点Pには抵抗6を介して低温制御電圧端子(以下、VLと記す)に接続され、さらにVLにMOS型バラクタ4のゲート電極が接続されている。またコンデンサ7の他端と接地間にコンデンサ9を接続し、その接続中点QがMH(高温部補償用MOS型バラクタ)10のゲート電極と接続され、且つ抵抗8を介して高温制御電圧端子(以下、VHと記す)に接続され、さらにVHにMOS型バラクタ5のゲート電極が接続されている。また、ML11のゲート電極とMH10の対向電極を接続した接続中点Rを圧電振動子(水晶振動子)Xに接続すると共に、抵抗13を介して基準電圧端子(以下、Vrefと記す)に接続されている。尚、本実施形態のノイズ除去手段としてのMOS型バラクタ4、5の対向電極はグランドに接続されている。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the components, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention only unless otherwise specified. .
FIG. 1 is a block diagram showing a partial configuration of a temperature compensated piezoelectric oscillator according to the present invention. The temperature compensated piezoelectric oscillator 100 is roughly composed of two parts. That is, a crystal resonator X having a piezoelectric element excited at a predetermined frequency, an oscillation circuit 12 including an oscillation amplifier that excites the crystal resonator X by passing a current, and changes in oscillation frequency due to temperature changes. And a frequency temperature compensation circuit 1 for compensation. The oscillation circuit 12 is a Colpitts oscillation circuit in the figure, but may be another oscillation circuit.
The frequency temperature compensation circuit 1 includes a temperature detection unit 3 whose parameters change depending on the ambient temperature, a temperature compensation voltage generation unit 2 that generates a voltage based on the parameters changed by the temperature detection unit 3, and the temperature compensation unit. MOS type varactors (MOS capacitive elements) MH10 and ML11 whose capacitance changes based on the potential difference between the temperature compensation voltage (voltage VH, voltage VL) and the reference voltage (voltage Vref) generated by the voltage generator 2, and temperature compensation MOS type varactors (noise removing means) 4 and 5 for removing noise from the operating voltage, and capacitors 7 and 9 and fixed resistors 6 and 8 as the DC blocking capacitors, for example.
A connection point P between the gate electrode of the ML (low-temperature portion compensation MOS varactor) 11 and the capacitor 7 is connected to a low-temperature control voltage terminal (hereinafter referred to as VL) via a resistor 6, and the MOS type is connected to VL. The gate electrode of the varactor 4 is connected. Further, a capacitor 9 is connected between the other end of the capacitor 7 and the ground, and a connection midpoint Q is connected to a gate electrode of an MH (high temperature portion compensation MOS varactor) 10 and a high temperature control voltage terminal via a resistor 8. (Hereinafter referred to as VH), and further, the gate electrode of the MOS varactor 5 is connected to VH. Further, a connection midpoint R connecting the gate electrode of ML11 and the counter electrode of MH10 is connected to a piezoelectric vibrator (quartz crystal) X and connected to a reference voltage terminal (hereinafter referred to as Vref) via a resistor 13. Has been. Note that the counter electrodes of the MOS type varactors 4 and 5 as noise removing means of this embodiment are connected to the ground.

このように周波数温度補償回路1は、周囲温度を検出する温度検出部3と、例えば温度検出部3が図示しないダイオード等の半導体温度センサの端子間電圧の変化に基づいて電圧を発生する補償電圧発生回路2と、端子間の電位差により図4(a)に示すような略3次の容量特性を有するMOS型バラクタ10、11により構成される。そして、補償電圧発生回路2の出力電圧(電圧VH、電圧VL、電圧Vref)は、図2に示すような特性であるから、対向電極側を基準電位としてMH10の端子間の電位差は、25℃近辺の低温域から90℃の間でマイナス電位であり且つ、温度上昇に伴い電位差が低くなる(0Vへ近づく)。
従って、MH10の端子間の容量値は、図4(a)に示す容量特性のうち、電位差0V以下の部分(0Vより左側の部分)の特性部分を利用するものであるから、25℃近辺から温度上昇するに伴い電位差0V側の容量特性へと推移するよう変化する。また、対向電極側を基準電位としてML11の端子間の電位差は、−40℃から25℃近辺の高温域の間でプラス電位であり且つ、温度低下に伴い電位差が低くなる(0Vへ近づく)。従って、MH10の端子間の容量値は図4(a)に示す容量特性のうち、電位差0V以上の部分の特性部分(0Vより右側の部分)を利用するものであるから、25℃近辺から温度低下するに伴い電位差0V側の容量特性へと推移するよう変化する。従って、図1に示すML11、MH10、コンデンサ7から成る補償回路の接続中点QとRとの間の負荷容量の温度特性は、図4(b)に示すような略3次となり、低温と高温の温度端部では温度変化に対して負荷容量が大きく変化する。そして位相雑音と補償感度の間には相関があり、補償電圧ノイズが一定とした場合、当該ノイズがML11、MH10へ供給されてしまうと補償感度が高い状態では位相雑音は悪化してしまうので、本実施形態では、上述したようにノイズ除去手段としてMOS型バラクタ4、5を備え、補償感度が上がる領域でのみ積極的に位相雑音を除去するものとした。即ち、MOS型バラクタ4のゲート電極には、常温より低い温度範囲で電圧が上昇する電圧VLを出力する低温制御電圧端子VLを接続し、MOS型バラクタ5のゲート電極には常温より高い温度範囲で電圧が上昇する電圧VHを出力する高温制御電圧端子VHを接続したので、MOS型バラクタ4、5は、温度端部の電圧が最大となるときに容量が最大となるようにしてノイズ除去効果を高めるものである(MOS型バラクタ4は低温時にて、MOS型バラクタ5は高温時にて容量値が最大となる)。
また低温側のMOS型バラクタML11に直列にコンデンサ7を接続することにより、高温側の電圧VHと低温側の電圧VLを直流的にカットする役目を持たせることができる。
As described above, the frequency temperature compensation circuit 1 includes a temperature detection unit 3 that detects the ambient temperature, and a compensation voltage that generates a voltage based on a change in voltage between terminals of the semiconductor temperature sensor such as a diode (not shown). The generation circuit 2 and MOS type varactors 10 and 11 having substantially third-order capacitance characteristics as shown in FIG. Since the output voltage (voltage VH, voltage VL, voltage Vref) of the compensation voltage generation circuit 2 has characteristics as shown in FIG. 2, the potential difference between the terminals of the MH10 with the counter electrode side as the reference potential is 25 ° C. It is a negative potential between 90 ° C. from the low temperature range in the vicinity, and the potential difference decreases with increasing temperature (approaching 0V).
Accordingly, the capacitance value between the terminals of the MH10 uses a characteristic portion of a portion having a potential difference of 0 V or less (a portion on the left side from 0 V) in the capacitance characteristics shown in FIG. As the temperature rises, it changes so as to shift to the capacitance characteristic on the potential difference 0V side. Further, the potential difference between the terminals of the ML 11 with the counter electrode side as a reference potential is a positive potential in a high temperature range from −40 ° C. to around 25 ° C., and the potential difference decreases as the temperature decreases (closes to 0V). Accordingly, the capacitance value between the terminals of the MH10 uses the characteristic portion (the portion on the right side of 0V) of the potential difference of 0 V or more among the capacitance characteristics shown in FIG. As the voltage decreases, the capacitance characteristic changes to a capacitance characteristic on the potential difference 0V side. Therefore, the temperature characteristic of the load capacitance between the connection midpoints Q and R of the compensation circuit composed of ML11, MH10, and capacitor 7 shown in FIG. 1 is substantially third order as shown in FIG. At the high temperature end, the load capacity changes greatly with respect to the temperature change. Then, there is a correlation between the phase noise and the compensation sensitivity, and when the compensation voltage noise is constant, if the noise is supplied to ML11 and MH10, the phase noise deteriorates in a state where the compensation sensitivity is high. In this embodiment, as described above, the MOS varactors 4 and 5 are provided as noise removing means, and the phase noise is positively removed only in the region where the compensation sensitivity is increased. That is, the gate electrode of the MOS varactor 4 is connected to a low temperature control voltage terminal VL that outputs a voltage VL whose voltage rises in a temperature range lower than normal temperature, and the gate electrode of the MOS varactor 5 is connected to a temperature range higher than normal temperature. Since the high-temperature control voltage terminal VH that outputs the voltage VH whose voltage rises at is connected, the MOS varactors 4 and 5 have a noise removal effect so that the capacity is maximized when the voltage at the temperature end is maximized. (The MOS varactor 4 has a maximum capacitance value at a low temperature, and the MOS varactor 5 has a maximum capacitance value at a high temperature).
Further, by connecting the capacitor 7 in series to the low temperature side MOS type varactor ML11, the high temperature side voltage VH and the low temperature side voltage VL can be cut in a DC manner.

図2は本発明の補償電圧の温度特性を表す図である。縦軸は補償電圧を表し、横軸は周囲温度を表す。図1を参照しながら説明する。補償電圧発生回路2から発生されるVrefは例えばプラスの一定の電圧21であり、抵抗13を介して接続点Rに供給する。接続点RはML11とMH10の異なる極性同士が接続されているので、ML11に対しては逆バイアスとなり、MH10に対しては順バイアスとなる。その状態でまず電圧VL20が−40℃から+90℃まで連続して変化したとして説明する。VL20は−40℃のときVref21との交点Rにあり、そのときのML11の容量は、ML11の端子間電圧が0Vであるときの所定の容量C0となる(図4(a)電位差0Vの容量)。そして温度が上昇するとVL20は直線的に低下し、それに伴ってML11の端子間電位差が大きくなり容量が増加して、その後も温度が上昇するとVL20は更に低下する。   FIG. 2 is a graph showing temperature characteristics of the compensation voltage according to the present invention. The vertical axis represents the compensation voltage, and the horizontal axis represents the ambient temperature. This will be described with reference to FIG. Vref generated from the compensation voltage generation circuit 2 is, for example, a constant positive voltage 21 and is supplied to the connection point R via the resistor 13. Since the connection point R is connected to different polarities of ML11 and MH10, it is reverse-biased with respect to ML11 and forward-biased with respect to MH10. In this state, it is assumed that the voltage VL20 has continuously changed from −40 ° C. to + 90 ° C. VL20 is at the intersection R with Vref21 at −40 ° C., and the capacity of ML11 at that time is a predetermined capacity C0 when the voltage between terminals of ML11 is 0V (FIG. 4 (a) capacity of potential difference 0V). ). When the temperature rises, VL20 decreases linearly, and accordingly, the potential difference between the terminals of ML11 increases and the capacity increases. When the temperature rises thereafter, VL20 further decreases.

次に電圧VH22の動作を温度が+90℃から−40℃まで連続して変化したとして説明する。VH22は+90℃のときVref21との交点Sにあり、そのときのMH10の容量はMH10の端子間電圧が0Vであるときの所定の容量C0となる(図4(a)電位差0Vの容量)。そして温度が低下するとVH22は直線的に低下し、それに伴ってMH10の端子間電位差が大きくなり容量が減少して、その後も温度が低下するとVH22は更に低下する。
ここで位相雑音とバラクタ感度の関係について考察すると、電圧VL20と電圧VH22がVrefとの交点R、Sにあるときは、図1のMOS型バラクタ(ノイズ除去手段)4、5の端子には逆バイアスとして電圧Vref21と同じ値の電圧が印加される。このMOS型バラクタの閾値電圧より高い電位であり、MOS型バラクタ4、5の端子間電圧がこの電圧となったときはMOS型バラクタ4、5の容量は図4(a)のように領域Bの容量となり、その値はある電位差の範囲で一定である。このとき補償電圧発生回路2の端子VLとVHにノイズが重畳した場合、MOS型バラクタ4、5の容量が大きいほどノイズインピーダンス(1/jωc)は小さくなり、ノイズ除去能力が高くなる。言い換えると、バラクタ感度と位相雑音の関係は図5に示したように、感度が低い常温付近では位相雑音は良く、感度が高い低温側と高温側では位相雑音が悪くなるので、低温側と高温側でMOS型バラクタ4、5の容量を最大にして位相雑音を低減し易くするものである。また電圧VLとVHが温度によりある程度変動しても(領域E)、図4(b)の領域Bに示すように容量は略一定であるので、安定したノイズ除去能力を発揮することができる。また、高温域ではMOS型バラクタ4が、低温域ではMOS型バラクタ5が小容量値となりノイズ除去機能が働かない状態となることにより、抵抗8とMOS型バラクタ5または抵抗6とMOS型バラクタ4を介して接地へ流れる漏れ電流の量を抑えて、結果、発振回路としての低消費電流化を図っている。
Next, the operation of the voltage VH22 will be described on the assumption that the temperature has continuously changed from + 90 ° C. to −40 ° C. VH22 is at the intersection S with Vref21 at + 90 ° C., and the capacity of MH10 at that time is a predetermined capacity C0 when the voltage across the terminals of MH10 is 0V (FIG. 4 (a) capacity of potential difference 0V). When the temperature decreases, VH22 decreases linearly, and accordingly, the potential difference between the terminals of MH10 increases and the capacity decreases. When the temperature decreases thereafter, VH22 further decreases.
Considering the relationship between phase noise and varactor sensitivity, when the voltages VL20 and VH22 are at the intersections R and S of Vref, the terminals of the MOS type varactors (noise removing means) 4 and 5 in FIG. A voltage having the same value as the voltage Vref21 is applied as a bias. When the voltage is higher than the threshold voltage of the MOS type varactor and the voltage between the terminals of the MOS type varactors 4 and 5 becomes this voltage, the capacitance of the MOS type varactors 4 and 5 is as shown in FIG. The value is constant within a certain potential difference range. At this time, when noise is superimposed on the terminals VL and VH of the compensation voltage generation circuit 2, the noise impedance (1 / jωc) decreases as the capacitance of the MOS varactors 4 and 5 increases, and the noise removal capability increases. In other words, as shown in FIG. 5, the relationship between varactor sensitivity and phase noise is such that the phase noise is good near room temperature where the sensitivity is low, and the phase noise worsens on the low temperature side and high temperature side where the sensitivity is high. On the side, the capacity of the MOS varactors 4 and 5 is maximized to facilitate the reduction of phase noise. Further, even if the voltages VL and VH vary to some extent depending on the temperature (region E), the capacitance is substantially constant as shown in region B of FIG. 4B, so that stable noise removal capability can be exhibited. Further, the MOS type varactor 4 in the high temperature region and the MOS type varactor 5 in the low temperature region have a small capacitance value, and the noise elimination function does not work. Thus, the resistor 8 and the MOS type varactor 5 or the resistor 6 and the MOS type varactor 4 As a result, the current consumption of the oscillation circuit is reduced.

本発明の温度補償型圧電発振器の部分構成を示すブロック図。The block diagram which shows the partial structure of the temperature compensation type | mold piezoelectric oscillator of this invention. 本発明の補償電圧の温度特性を表す図。The figure showing the temperature characteristic of the compensation voltage of this invention. 従来のMOS型バラクタを用いた温度補償回路の一例を示す図。The figure which shows an example of the temperature compensation circuit using the conventional MOS type | mold varactor. MOS型バラクタに印加する電位差と容量の関係を表す図。The figure showing the relationship between the electric potential difference applied to MOS type varactor, and a capacity | capacitance. 温度とバラクタ感度及び位相雑音の関係を表す図。The figure showing the relationship between temperature, varactor sensitivity, and phase noise.

符号の説明Explanation of symbols

1 周波数温度補償回路、2 温度補償用電圧発生回路、3 温度検出部、4、5 MOS型バラクタ、6、8、13 抵抗、7、9 直流阻止用コンデンサ、10、11 MOS型バラクタ、X 水晶振動子
DESCRIPTION OF SYMBOLS 1 Frequency temperature compensation circuit, 2 Temperature compensation voltage generation circuit, 3 Temperature detection part, 4, 5 MOS type | mold varactor, 6, 8, 13 Resistance, 7, 9 DC blocking capacitor, 10, 11 MOS type varactor, X crystal Vibrator

Claims (6)

圧電振動子と、該圧電素子を励振させる発振用増幅回路と、圧電振動子の周波数温度特性を補償する周波数温度補償回路と、を備えた温度補償型圧電発振器であって、
前記周波数温度補償回路は、発振用増幅回路の発振ループに挿入接続された可変容量部と、周囲の温度に応じた補償電圧を生成し前記可変容量部に供給する温度補償電圧発生部と、該度補償電圧発生部の出力と前記可変容量部との間に配置されるノイズ除去手段とを備えており、該ノイズ除去手段が少なくとも1つのMOS容量素子を用いて構成されていることを特徴とする温度補償型圧電発振器。
A temperature-compensated piezoelectric oscillator comprising: a piezoelectric vibrator; an oscillation amplifier circuit that excites the piezoelectric element; and a frequency temperature compensation circuit that compensates a frequency temperature characteristic of the piezoelectric vibrator,
The frequency temperature compensation circuit includes: a variable capacitor unit inserted and connected to an oscillation loop of an oscillation amplifier circuit; a temperature compensation voltage generator unit that generates a compensation voltage according to an ambient temperature and supplies the compensation voltage to the variable capacitor unit; A noise removing unit disposed between the output of the degree compensation voltage generating unit and the variable capacitance unit, and the noise removing unit is configured using at least one MOS capacitor element. Temperature compensated piezoelectric oscillator.
前記圧電振動子の周波数温度特性は3次曲線を呈するものであり、該3次曲線の変曲点に対応する温度を基準温度とし、これを境として高温側と低温側とするとき、
前記周波数温度補償回路は、低温側温度補償電圧発生部と低温側可変容量部とからなる低温側周波数温度補償回路と、高温側温度補償電圧発生部と高温側可変容量部とからなる高温側周波数温度補償回路とを備えており、低温側及び高温側周波数温度補償回路のそれぞれに前記ノイズ除去手段が配置されていることを特徴とする請求項1に記載の温度補償型圧電発振器。
The frequency temperature characteristic of the piezoelectric vibrator exhibits a cubic curve, and when the temperature corresponding to the inflection point of the cubic curve is set as a reference temperature, the high temperature side and the low temperature side are defined as a boundary.
The frequency temperature compensation circuit includes a low temperature side frequency temperature compensation circuit composed of a low temperature side temperature compensation voltage generation unit and a low temperature side variable capacitance unit, and a high temperature side frequency composed of a high temperature side temperature compensation voltage generation unit and a high temperature side variable capacitance unit. 2. The temperature-compensated piezoelectric oscillator according to claim 1, further comprising a temperature compensation circuit, wherein the noise removing unit is disposed in each of the low temperature side and high temperature side frequency temperature compensation circuits.
前記高温側周波数温度補償回路に配置された高温側のノイズ除去手段は基準温度より低温の所定温度以下にて容量値が最大となるように設定され、前記低温側周波数温度補償回路に配置された低温側のノイズ除去手段は基準温度より高温の所定温度以上にて容量値が最大となるように設定されていることを特徴とする請求項2に記載の温度補償型圧電発振器。   The high-temperature-side noise removing means arranged in the high-temperature-side frequency temperature compensation circuit is set so that the capacitance value becomes maximum at a predetermined temperature lower than a reference temperature, and arranged in the low-temperature-side frequency temperature compensation circuit. The temperature-compensated piezoelectric oscillator according to claim 2, wherein the low-temperature side noise removing means is set so that the capacitance value becomes maximum at a predetermined temperature higher than a reference temperature. 前記ノイズ除去手段は、低温側及び高温側温度補償電圧発生部の各出力端と接地との間にMOS容量素子のアノード側が接地されるように挿入接続した構造であることを特徴とする請求項2又は3に記載の温度補償型圧電発振器。   The noise removing means has a structure in which the anode side of the MOS capacitor element is inserted and connected between each output terminal of the low temperature side and high temperature side temperature compensation voltage generator and the ground. 4. The temperature compensated piezoelectric oscillator according to 2 or 3. 前記低温側及び高温側可変容量部が何れも少なくとも1つのMOS容量素子を用いて構成されていることを特徴とする請求項2乃至4のいずれか一項に記載の温度補償型圧電発振器。   5. The temperature compensated piezoelectric oscillator according to claim 2, wherein each of the low temperature side and high temperature side variable capacitance parts is configured using at least one MOS capacitor element. 6. 低温側及び低温側の各ノイズ除去手段と可変容量部との間にそれぞれ抵抗を挿入接続したことを特徴とする請求項2乃至5のいずれか一項に記載の温度補償型圧電発振器。
6. The temperature compensated piezoelectric oscillator according to claim 2, wherein a resistor is inserted and connected between each of the low temperature side and low temperature side noise removing means and the variable capacitance section.
JP2004321098A 2004-11-04 2004-11-04 Temperature compensation piezoelectric oscillator Pending JP2006135540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004321098A JP2006135540A (en) 2004-11-04 2004-11-04 Temperature compensation piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004321098A JP2006135540A (en) 2004-11-04 2004-11-04 Temperature compensation piezoelectric oscillator

Publications (1)

Publication Number Publication Date
JP2006135540A true JP2006135540A (en) 2006-05-25

Family

ID=36728701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004321098A Pending JP2006135540A (en) 2004-11-04 2004-11-04 Temperature compensation piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JP2006135540A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273087A (en) * 2008-05-12 2009-11-19 Epson Toyocom Corp Piezoelectric oscillator
CN115328227A (en) * 2022-08-29 2022-11-11 南京航空航天大学 Structural vibration semi-active control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273087A (en) * 2008-05-12 2009-11-19 Epson Toyocom Corp Piezoelectric oscillator
CN115328227A (en) * 2022-08-29 2022-11-11 南京航空航天大学 Structural vibration semi-active control device
CN115328227B (en) * 2022-08-29 2023-04-28 南京航空航天大学 Semi-active control device for structural vibration

Similar Documents

Publication Publication Date Title
US7986194B2 (en) Oscillator
JP2007043339A (en) Crystal oscillator
JP3921362B2 (en) Temperature compensated crystal oscillator
JP2003243932A (en) Temperature compensated crystal oscillator
JP2006197143A (en) Voltage controlled crystal oscillator
JP2006060797A (en) Voltage controlled oscillator
JP5034772B2 (en) Temperature compensated piezoelectric oscillator
JP2006135540A (en) Temperature compensation piezoelectric oscillator
JP4424001B2 (en) Temperature compensated piezoelectric oscillator
JP5115178B2 (en) Oscillator
JP3876594B2 (en) Temperature compensated oscillator
JP2005217773A (en) Voltage-controlled piezoelectric oscillator
JP2009272734A (en) Piezoelectric oscillator
JP2002290151A (en) Temperature compensated quartz oscillator with afc
JP4314982B2 (en) Temperature compensated piezoelectric oscillator
KR100836143B1 (en) Voltage controlled oscillator decreasing phase noise
JP4296982B2 (en) Oscillator circuit
JP2007019565A (en) Crystal oscillator
JP2000196356A (en) Voltage controlled crystal oscillator
JP4228758B2 (en) Piezoelectric oscillator
JP2013150032A (en) Temperature compensation type crystal oscillator
JP2004336373A (en) Temperature compensation piezoelectric oscillator
JP2009278218A (en) Piezoelectric resonator
JP2005033329A (en) Temperature compensated piezoelectric oscillator
JP5098979B2 (en) Piezoelectric oscillator