JP5037984B2 - Method for producing resorcin diester compound - Google Patents

Method for producing resorcin diester compound Download PDF

Info

Publication number
JP5037984B2
JP5037984B2 JP2007081071A JP2007081071A JP5037984B2 JP 5037984 B2 JP5037984 B2 JP 5037984B2 JP 2007081071 A JP2007081071 A JP 2007081071A JP 2007081071 A JP2007081071 A JP 2007081071A JP 5037984 B2 JP5037984 B2 JP 5037984B2
Authority
JP
Japan
Prior art keywords
water
general formula
resorcin
present
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007081071A
Other languages
Japanese (ja)
Other versions
JP2008239536A (en
Inventor
剛史 小林
清弥 城戸
勝彦 町田
昭憲 長友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2007081071A priority Critical patent/JP5037984B2/en
Publication of JP2008239536A publication Critical patent/JP2008239536A/en
Application granted granted Critical
Publication of JP5037984B2 publication Critical patent/JP5037984B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、空気入りタイヤや工業用ベルト等のゴム物品に用いられるスチールコード等の金属補強材との接着耐久性を向上させる目的で使用されるレゾルシンジエステル系化合物の製造方法に関する。   The present invention relates to a method for producing a resorcin diester compound used for the purpose of improving the durability of adhesion to a metal reinforcing material such as a steel cord used in rubber articles such as pneumatic tires and industrial belts.

自動車用タイヤ、コンベアベルト、ホース等、特に強度が要求されるゴム製品には、ゴムを補強し強度、耐久性を向上させる目的で、スチールコード等の金属補強材をゴム組成物で被覆した複合材料が用いられている。該ゴム−金属複合材料が高い補強効果を発揮し信頼性を得るためにはゴム−金属補強材間に混合、配合、貯蔵等の条件に左右されない安定した接着が必要である。かかる複合体を得るには、亜鉛、黄銅、真鍮等でメッキされたスチールコード等の金属補強材を、硫黄を配合したゴム組成物に埋設し加熱加硫時に、ゴムの加硫と同時に接着させるいわゆる直接加硫接着が広く用いられており、これまで該直接加硫接着におけるゴム−金属補強材間の接着性、特に耐湿熱接着性向上のため様々な検討が行われている。   For rubber products that require particularly high strength, such as automobile tires, conveyor belts, hoses, etc., composites in which a metal reinforcing material such as a steel cord is coated with a rubber composition to reinforce the rubber and improve its strength and durability. Material is used. In order for the rubber-metal composite material to exhibit a high reinforcing effect and to obtain reliability, stable adhesion that is not affected by the conditions of mixing, blending, storage and the like is necessary between the rubber-metal reinforcing material. In order to obtain such a composite, a metal reinforcing material such as a steel cord plated with zinc, brass, brass or the like is embedded in a rubber composition containing sulfur, and is adhered at the same time as rubber vulcanization at the time of heat vulcanization. So-called direct vulcanization bonding has been widely used, and various studies have been made so far in order to improve the adhesion between the rubber and the metal reinforcing material in the direct vulcanization bonding, particularly the wet heat resistance.

例えば、レゾルシン又は、レゾルシンとホルマリンを縮合して得られる、レゾルシン−ホルムアルデヒド樹脂(以下、「RF樹脂」と略記する。)を耐湿熱接着性向上の目的で配合したゴム組成物が報告されている(特許文献1)。   For example, there has been reported a rubber composition containing resorcin or resorcin-formaldehyde resin (hereinafter abbreviated as “RF resin”) obtained by condensing resorcin and formalin for the purpose of improving moisture and heat resistance. (Patent Document 1).

また、重量平均分子量が3000〜45000のレゾルシン骨格を有する混合ポリエステルからなる、接着材料が報告されている(特許文献2)。   In addition, an adhesive material made of a mixed polyester having a resorcin skeleton having a weight average molecular weight of 3000 to 45000 has been reported (Patent Document 2).

一方、我々は上記技術よりもさらに耐湿熱接着性を向上したものとしてレゾルシンジエステル系化合物および組成物を報告している(特許文献3)。該レゾルシンジエステル系化合物は通常、塩基性物質の存在下で2価カルボン酸ハライドとレゾルシンとを反応させて製造するが、エステル化反応液中には、塩基性物質とハロゲン化水素からなる副生塩が含まれており、エステル化反応液は、一部または全量の副生塩が析出したスラリーである。そのため、攪拌に負荷を与えたり、移液ラインを閉塞させたりと操作性の面で問題があった。また、高濃度の塩は設備材質選定上の制約を生じる場合がある。一方、該レゾルシンジエステル系化合物の単離においては水を貧溶媒として晶析する事で、原料レゾルシンや副生する塩と容易に分離できるが、その晶析マスあるいは晶析濾液は多量の塩を含んだ水溶液であり、ろ過機等の固液分離設備の選定も制限される等、設備面でも問題があった。
特開2001−234140号公報 特開平7−118621号公報 WO2005−087704号公報
On the other hand, we have reported a resorcin diester compound and a composition having improved wet heat resistance compared to the above technique (Patent Document 3). The resorcin diester compound is usually produced by reacting a divalent carboxylic acid halide with resorcin in the presence of a basic substance. In the esterification reaction solution, a by-product comprising a basic substance and hydrogen halide is produced. Salt is contained, and the esterification reaction liquid is a slurry in which a part or all of the by-product salt is deposited. For this reason, there is a problem in terms of operability such as applying a load to stirring and closing the transfer line. In addition, high-concentration salt may cause restrictions on equipment material selection. On the other hand, in the isolation of the resorcinol diester compound, water can be easily separated from the raw material resorcin and by-product salt by crystallization using a poor solvent. There was also a problem in terms of equipment, such as the aqueous solution contained, and the selection of solid-liquid separation equipment such as a filter was also restricted.
JP 2001-234140 A JP-A-7-118621 WO2005-087704 gazette

本発明は、レゾルシンと2価カルボン酸ハライドとを反応させてレゾルシンジエステル系化合物を効率よく製造する方法を提供するものである。   The present invention provides a method for efficiently producing a resorcin diester compound by reacting resorcin with a divalent carboxylic acid halide.

本発明者らはレゾルシンと2価カルボン酸ハライドとを反応させてレゾルシンジエステル系化合物を製造する方法を鋭意検討した結果、エステル化反応工程とオリゴマー分解工程の間に、エステル化反応液を水と接触させて副生塩を水相に抽出除去する「水洗工程」を導入する事で、実質的に副生塩を含まない有機層を得る事が可能となり、副生塩を含まない晶析マスあるいは晶析濾液が得られ、よって配管閉塞の懸念および設備材質に制限のないプロセスが成り立つ事を見出し、本発明を完成するに至った。
即ち本発明は、[1](a)実質的に水と不混和性の有機溶媒中、塩基性化合物の存在下でレゾルシンと一般式(1)で表されるカルボン酸ハライドを−20℃〜50℃で反応させる工程、
As a result of intensive studies on a method for producing a resorcin diester compound by reacting resorcin and a divalent carboxylic acid halide, the present inventors have determined that the esterification reaction liquid is mixed with water between the esterification reaction step and the oligomer decomposition step. By introducing a “washing process” in which by-product salt is extracted and removed from the aqueous phase by contact, an organic layer substantially free of by-product salt can be obtained. Alternatively, a crystallization filtrate was obtained, and thus it was found that a process with no concern about piping clogging and equipment material was established, and the present invention was completed.
That is, the present invention provides [1] (a) a resorcinol and a carboxylic acid halide represented by the general formula (1) in an organic solvent immiscible with water in the presence of a basic compound at -20 ° C to Reacting at 50 ° C.,

Figure 0005037984
Figure 0005037984

(式中Rは炭素数2〜10のアルキレン基、又はフェニレン基を表し、Xはハロゲン原子を表す。)
(b)前記(a)工程で副生する塩基性物質とハロゲン化水素との塩を、水との接触により水相に抽出除去する工程、
(c)105℃〜140℃で熱処理する工程、
(d)前記(c)で得られた反応混合物を水と接触させて生成物を析出させ、固液分離操作および乾燥により生成物を固体として得る工程、
からなる一般式(2)
(In the formula, R represents an alkylene group having 2 to 10 carbon atoms or a phenylene group , and X represents a halogen atom.)
(B) a step of extracting and removing a salt of the basic substance and hydrogen halide by-produced in the step (a) into an aqueous phase by contact with water;
(C) a step of heat treatment at 105 ° C to 140 ° C;
(D) contacting the reaction mixture obtained in (c) above with water to precipitate the product, and obtaining the product as a solid by solid-liquid separation operation and drying;
General formula (2) consisting of

Figure 0005037984
Figure 0005037984

(式中、Rは炭素数2〜10のアルキレン基、又はフェニレン基を表す。)
で表されるレゾルシンジエステル系化合物の製造方法。
[2]工程(b)で使用する水の量が、エステル化反応液に対して0.05重量倍〜10重量倍であり、且つ、抽出除去操作を2回〜5回分割して実施する事を特徴とする[1]記載の製造方法。
[3]一般式(2)で表される化合物中に、下記一般式(3)で表される化合物が0〜30%含まれても良い事を特徴とする[1]〜[2]に記載の製造方法。
(In the formula, R represents an alkylene group having 2 to 10 carbon atoms or a phenylene group .)
The manufacturing method of the resorcinol diester type compound represented by these.
[2] The amount of water used in the step (b) is 0.05 to 10 times by weight with respect to the esterification reaction solution, and the extraction and removal operation is divided into 2 to 5 times. The manufacturing method according to [1], characterized in that
[3] In [1] to [2], the compound represented by the general formula (2) may contain 0 to 30% of a compound represented by the following general formula (3). The manufacturing method as described.

Figure 0005037984
Figure 0005037984

(式中、Rは炭素数2〜10のアルキレン基、又はフェニレン基を表し、nは2〜6の整数を示す。) (In the formula, R represents an alkylene group having 2 to 10 carbon atoms or a phenylene group , and n represents an integer of 2 to 6)

本発明によれば、空気入りタイヤや工業用ベルト等のゴム物品に用いられるスチールコード等の金属補強材との接着耐久性を向上させる目的で使用されるレゾルシンジエステル系化合物の効率的な製造方法を提供する事が出来る。   According to the present invention, an efficient method for producing a resorcin diester compound used for the purpose of improving the durability of adhesion to a metal reinforcing material such as a steel cord used in rubber articles such as pneumatic tires and industrial belts. Can be provided.

以下に、本発明を詳細に説明する。
本発明に使用される一般式(1)で表されるカルボン酸ハライドにおいて、Rは、入手の容易さ等を考慮炭素数2〜10のアルキレン基およびフェニレン基であり、特にエチレン基、ブチレン基又はオクチレン基が好ましい。
The present invention is described in detail below.
In the carboxylic acid halide represented by the general formula (1) used in the present invention, R, considering easiness of availability is an alkylene group and phenylene group having 2 to 10 carbon atoms, in particular ethylene group, butylene Group or octylene group is preferred.

本発明に使用される一般式(1)で表されるカルボン酸ハライドにおいて、Xで示されるハロゲン原子としては、塩素、臭素が好ましい。   In the carboxylic acid halide represented by the general formula (1) used in the present invention, the halogen atom represented by X is preferably chlorine or bromine.

本発明に使用される一般式(1)で表されるカルボン酸ハライドとしては、コハク酸ジクロライド、グルタル酸ジクロライド、アジピン酸ジクロライド、スベリン酸ジクロライド、アゼライン酸ジクロライド、セバシン酸ジクロライド、1.10−デカンジカルボン酸ジクロライド等の脂肪族カルボン酸ジクロライド、イソフタル酸ジクロライド、テレフタル酸ジクロライド等の芳香族ジカルボン酸クロライド、コハク酸ジブロマイド、グルタル酸ジブロマイド、アジピン酸ジブロマイド、スベリン酸ジブロマイド、アゼライン酸ジブロマイド、セバシン酸ジブロマイド、1.10−デカンジカルボン酸ジブロマイド等の脂肪族カルボン酸ジブロマイド、イソフタル酸ジブロマイド、テレフタル酸ジブロマイド等の芳香族ジカルボン酸ブロマイドが挙げられる。これらの中でも、コハク酸ジクロライド、アジピン酸ジクロライド、アゼライン酸ジクロライド、セバシン酸ジクロライド、テレフタル酸ジクロライド、イソフタル酸ジクロライド、コハク酸ジブロマイド、アジピン酸ジブロマイド、アゼライン酸ジブロマイド、セバシン酸ジブロマイド、テレフタル酸ジブロマイド、イソフタル酸ジブロマイド等が好ましい。 Examples of the carboxylic acid halide represented by the general formula (1) used in the present invention include succinic acid dichloride, glutaric acid dichloride, adipic acid dichloride, suberic acid dichloride, azelaic acid dichloride, sebacic acid dichloride, 1.10-decane. Aliphatic carboxylic acid dichlorides such as dicarboxylic acid dichloride, aromatic dicarboxylic acid chlorides such as isophthalic acid dichloride, terephthalic acid dichloride, succinic acid dibromide, glutaric acid dibromide, adipic acid dibromide, suberic acid dibromide, azelaic acid dibromide , sebacic acid dibromide, 1.10- decanedicarboxylic acid dibromide aliphatic carboxylic di bromide such as, isophthalic acid dibromide, aromatic dicarboxylic acids such as terephthalic acid dibromide Bromma De, and the like. Among these, succinic acid dichloride, adipic acid dichloride, azelaic acid dichloride, sebacic acid dichloride, terephthalic acid dichloride, isophthalic acid dichloride, succinic acid dibromide, adipic acid dibromide, azelaic acid dibromide, sebacic acid dibromide, terephthalic acid Dibromide, isophthalic acid dibromide and the like are preferable.

本発明に使用される一般式(1)で表されるカルボン酸ハライドは、試薬等の市販品でも構わないし、対応するカルボン酸から、塩素化剤、臭素化剤等を作用させて合成したものを使用しても構わない。   The carboxylic acid halide represented by the general formula (1) used in the present invention may be a commercially available product such as a reagent, and is synthesized from the corresponding carboxylic acid by the action of a chlorinating agent, a brominating agent or the like. May be used.

本発明における、実質的に水と不混和性の有機溶媒は、水への溶解度が5%以下の有機溶媒を意味し、一般にはケトン系、エーテル系およびエステル系有機溶媒から選択される。ケトン系有機溶媒としてはメチルイソブチルケトン、エチルイソブチルケトン、ジイソブチルケトン等が挙げられる。エーテル系有機溶媒としてはジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル等が挙げられる。また、エステル系有機溶媒としては、酢酸エチル、酢酸ブチル、酢酸アミル等が挙げられる。これらの中でも、反応選択率、レゾルシンの回収率、沸点等の観点からメチルイソブチルケトンが最も好ましい。   The organic solvent substantially immiscible with water in the present invention means an organic solvent having a solubility in water of 5% or less, and is generally selected from ketone-based, ether-based and ester-based organic solvents. Examples of the ketone organic solvent include methyl isobutyl ketone, ethyl isobutyl ketone, and diisobutyl ketone. Examples of ether organic solvents include diethyl ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether and the like. Examples of the ester organic solvent include ethyl acetate, butyl acetate, amyl acetate and the like. Among these, methyl isobutyl ketone is most preferable from the viewpoint of reaction selectivity, resorcin recovery, boiling point, and the like.

本発明の塩基性化合物としては、有機塩基および無機塩基が用いられる。有機塩基としてはピリジン、β−ピコリン、N−メチルモルホリン、ジメチルアニリン、ジエチルアニリン、トリメチルアミン、トリエチルアミン、トリブチルアミン等の有機アミンが挙げられる。無機塩基としては水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、炭酸カリウム、炭酸ナトリウム等のアルカリ金属炭酸塩が用いられる。これらの中でも、価格面を考慮すれば無機塩基が好ましく、特に水酸化ナトリウム、水酸化カリウムが好ましい。これら無機塩基は固体のまま使用しても、水溶液として使用しても差し支えない。   As the basic compound of the present invention, an organic base and an inorganic base are used. Examples of the organic base include organic amines such as pyridine, β-picoline, N-methylmorpholine, dimethylaniline, diethylaniline, trimethylamine, triethylamine, and tributylamine. As the inorganic base, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkali metal carbonates such as potassium carbonate and sodium carbonate are used. Among these, an inorganic base is preferable from the viewpoint of price, and sodium hydroxide and potassium hydroxide are particularly preferable. These inorganic bases may be used as a solid or as an aqueous solution.

本発明において使用される塩基性化合物の量は、通常、反応に使用する一般式(1)で表されるカルボン酸ハライドの1.0〜1.5当量、好ましくは1.0〜1.2当量さらに好ましくは1.0〜1.05当量が採用される。この範囲未満では化学両論量より不足する。一方、この範囲を超えて使用した場合には収率が低下する傾向がある。 The amount of the basic compound used in the present invention is usually 1.0 to 1.5 equivalents, preferably 1.0 to 1.2, of the carboxylic acid halide represented by the general formula (1) used in the reaction. The equivalent is more preferably 1.0 to 1.05 equivalent. Below this range, the amount is less than the stoichiometric amount. On the other hand, when it exceeds this range, the yield tends to decrease.

本発明においては、レゾルシンを一般式(1)で表されるカルボン酸ハライドに対して4〜30倍、好ましくは5〜25倍、より好ましくは8〜20倍のモル比で反応させる。レゾルシンのモル比が上記範囲より低い場合は、オリゴエステルが主生成物となる。また、レゾルシンのモル比が上記範囲より高い場合、反応選択率に差が観られないばかりか、容積効率を悪化させる。   In the present invention, resorcin is reacted at a molar ratio of 4 to 30 times, preferably 5 to 25 times, more preferably 8 to 20 times with respect to the carboxylic acid halide represented by the general formula (1). If the molar ratio of resorcin is lower than the above range, the oligoester is the main product. Further, when the molar ratio of resorcin is higher than the above range, not only the difference in reaction selectivity is not observed, but also volume efficiency is deteriorated.

本発明の一般式(2)で表される化合物の具体例としては、コハク酸ビス(2−ヒドロキシフェニル)エステル、アジピン酸ビス(2−ヒドロキシフェニル)エステル、アゼライン酸ビス(2−ヒドロキシフェニル)エステル、セバシン酸ビス(2−ヒドロキシフェニル)エステル、テレフタル酸ビス(2−ヒドロキシフェニル)エステル、イソフタル酸ビス(2−ヒドロキシフェニル)エステル、コハク酸ビス(3−ヒドロキシフェニル)エステル、アジピン酸ビス(3−ヒドロキシフェニル)エステル、アゼライン酸ビス(3−ヒドロキシフェニル)エステル、セバシン酸ビス(3−ヒドロキシフェニル)エステル、テレフタル酸ビス(3−ヒドロキシフェニル)エステル、イソフタル酸ビス(3−ヒドロキシフェニル)エステル、コハク酸ビス(4−ヒドロキシフェニル)エステル、アジピン酸ビス(4−ヒドロキシフェニル)エステル、アゼライン酸ビス(4−ヒドロキシフェニル)エステル、セバシン酸ビス(4−ヒドロキシフェニル)エステル、テレフタル酸ビス(4−ヒドロキシフェニル)エステル、イソフタル酸ビス(4−ヒドロキシフェニル)エステル等が挙げられる。   Specific examples of the compound represented by the general formula (2) of the present invention include succinic acid bis (2-hydroxyphenyl) ester, adipic acid bis (2-hydroxyphenyl) ester, azelaic acid bis (2-hydroxyphenyl). Esters, bis (2-hydroxyphenyl) sebacate, bis (2-hydroxyphenyl) terephthalate, bis (2-hydroxyphenyl) isophthalate, bis (3-hydroxyphenyl) succinate, 3-hydroxyphenyl) ester, azelaic acid bis (3-hydroxyphenyl) ester, sebacic acid bis (3-hydroxyphenyl) ester, terephthalic acid bis (3-hydroxyphenyl) ester, isophthalic acid bis (3-hydroxyphenyl) ester , Koha Acid bis (4-hydroxyphenyl) ester, adipic acid bis (4-hydroxyphenyl) ester, azelaic acid bis (4-hydroxyphenyl) ester, sebacic acid bis (4-hydroxyphenyl) ester, terephthalic acid bis (4-hydroxy) Phenyl) ester, isophthalic acid bis (4-hydroxyphenyl) ester, and the like.

これらの中でも、コハク酸ビス(3−ヒドロキシフェニル)エステル、アジピン酸ビス(3−ヒドロキシフェニル)エステル、アゼライン酸ビス(3−ヒドロキシフェニル)エステル、セバシン酸ビス(3−ヒドロキシフェニル)エステルが好ましく、特にコハク酸ビス(3−ヒドロキシフェニル)エステル、アジピン酸ビス(3−ヒドロキシフェニル)エステル、セバシン酸ビス(3−ヒドロキシフェニル)エステルが好ましい。   Among these, succinic acid bis (3-hydroxyphenyl) ester, adipic acid bis (3-hydroxyphenyl) ester, azelaic acid bis (3-hydroxyphenyl) ester, sebacic acid bis (3-hydroxyphenyl) ester are preferable, In particular, succinic acid bis (3-hydroxyphenyl) ester, adipic acid bis (3-hydroxyphenyl) ester, and sebacic acid bis (3-hydroxyphenyl) ester are preferable.

本発明のエステル化反応とは、実質的に水と不混和性の有機溶媒中、塩基性化合物の存在下でレゾルシンと上記一般式(1)で表されるカルボン酸ハライドを反応させる工程である。   The esterification reaction of the present invention is a step of reacting resorcin with the carboxylic acid halide represented by the above general formula (1) in the presence of a basic compound in an organic solvent that is substantially immiscible with water. .

本発明の(a)エステル化反応工程は、一般式(1)で表されるカルボン酸ハライドを滴下装入しつつ行なわれる。カルボン酸ハライドの滴下速度は特に限定されず、エステル化工程の所望の温度が保持できる範囲で適宜決定すれば良い。使用する原料、塩基性化合物の種類、反応スケールにもよるが通常は2〜20時間程度で滴下する。カルボン酸ハライドの滴下終了をもってエステル化反応工程を終了しても差し支えないし、場合によっては熟成時間を設けても良い。熟成時間は通常1〜10時間程度が採用される。   The (a) esterification reaction step of the present invention is performed while dropping the carboxylic acid halide represented by the general formula (1) dropwise. The dropping rate of the carboxylic acid halide is not particularly limited, and may be determined as appropriate as long as the desired temperature in the esterification step can be maintained. Although it depends on the raw material used, the type of basic compound, and the reaction scale, it is usually added dropwise in about 2 to 20 hours. The esterification reaction step may be completed upon completion of the dropwise addition of the carboxylic acid halide, and in some cases, an aging time may be provided. The aging time is usually about 1 to 10 hours.

本発明の(a)エステル化反応工程は、通常、−20℃〜50℃、好ましくは−10℃〜40℃、より好ましくは0℃〜30℃で行なわれる。この範囲より低い温度では反応速度が低下し時間を要する。この範囲より高い温度では、カルボン酸ハライドの種類にもよるが、オリゴマー分解工程終了時点での反応選択率が低下する傾向にある。   The (a) esterification reaction step of the present invention is usually performed at -20 ° C to 50 ° C, preferably -10 ° C to 40 ° C, more preferably 0 ° C to 30 ° C. If the temperature is lower than this range, the reaction rate decreases and time is required. If the temperature is higher than this range, the reaction selectivity at the end of the oligomer decomposition step tends to decrease, depending on the type of carboxylic acid halide.

本発明の(a)エステル化反応工程の濃度は、所望の温度範囲にて攪拌が十分に行なわれるだけの液性が確保できれば特に限定されず、レゾルシンの仕込み濃度で5重量%〜60重量%、好ましくは10〜55重量%、さらに好ましくは20〜50重量%で行なわれる。この範囲より低濃度では容積効率が低い。また、この範囲より高濃度では粘度が高く攪拌に不具合が生じる傾向にある。   The concentration in the esterification reaction step (a) of the present invention is not particularly limited as long as liquidity sufficient to sufficiently stir in the desired temperature range can be secured, and the charged concentration of resorcin is 5% to 60% by weight. It is preferably carried out at 10 to 55% by weight, more preferably 20 to 50% by weight. Volumetric efficiency is low at concentrations below this range. Further, if the concentration is higher than this range, the viscosity is high and the stirring tends to fail.

本発明の工程(b)は、前記(a)工程で副生する塩基性物質とハロゲン化水素との塩を、水との接触により水相に抽出除去する工程[水洗工程]である。   The step (b) of the present invention is a step [water washing step] in which the salt of the basic substance and hydrogen halide produced as a by-product in the step (a) is extracted and removed into an aqueous phase by contact with water.

本発明の(b)[水洗工程]は、連続式抽出および回分式抽出の何れで実施しても構わない。   (B) [Washing step] of the present invention may be carried out by either continuous extraction or batch extraction.

本発明の[水洗工程]で使用する水の量は、エステル化反応液に対して0.05〜10重量倍、より好ましくは0.1〜5重量倍、さらに好ましくは0.5〜3重量倍が採用される。水の使用量は、多過ぎると容積効率が悪化すると共に、レゾルシンを水相にロスしてしまう。一方、少な過ぎると十分な水洗効果が得られない。水の量は、前記使用量の範囲内で任意に分割使用しても良く、回分式抽出の場合、通常、2〜5分割使用する。この工程で有機層に残存した副生塩は、その全量が晶析工程に持ち込まれ、さらにはその大部分が濾液に分配する。晶析マス、濾液は水を主成分としており、塩濃度により設備の腐食等の問題が発生する。例えばNaClの場合、温度にも依るが100ppm程度でSUS系材質に腐食をもたらすと言われており、上記[水洗工程]の条件は晶析マスあるいは濾液中の塩濃度を考慮して設定される。
また抽出液については、必要に応じて原料や副生物の回収を行うことができる。
The amount of water used in the [water washing step] of the present invention is 0.05 to 10 times by weight, more preferably 0.1 to 5 times by weight, still more preferably 0.5 to 3 weights with respect to the esterification reaction solution. Double is adopted. If the amount of water used is too large, the volumetric efficiency deteriorates and resorcin is lost to the aqueous phase. On the other hand, if the amount is too small, a sufficient washing effect cannot be obtained. The amount of water may be arbitrarily divided within the range of the amount used, and in the case of batch extraction, usually 2 to 5 portions are used. The by-product salt remaining in the organic layer in this step is entirely brought into the crystallization step, and most of it is distributed to the filtrate. Crystallization mass and filtrate are mainly composed of water, and problems such as corrosion of equipment occur due to salt concentration. For example, in the case of NaCl, although it depends on the temperature, it is said that the SUS material is corroded at about 100 ppm, and the conditions of the [water washing step] are set in consideration of the crystallization mass or the salt concentration in the filtrate. .
Moreover, about an extract, a raw material and a by-product can be collect | recovered as needed.

本発明において、系内に水を含んだままで(c)オリゴマー分解工程に進んでしまうと生成物の加水分解が懸念されるため、エステル化反応工程後に水を除去する必要がある。多くの場合、使用する実質的に水と不混和性の有機溶媒と共沸組成を有しており、公知の共沸脱水操作にて、留出液より分離した有機溶媒を系内に戻しつつ水を留去する。通常、系内の水分濃度が2重量%以下、好ましくは1重量%以下を脱水の目安とする。
本発明におけるオリゴマー分解とは工程(c)で得られた反応液を熱処理する事である。
In the present invention, if the process proceeds to the (c) oligomer decomposition step with water contained in the system, there is a concern about the hydrolysis of the product, so it is necessary to remove the water after the esterification reaction step. In many cases, it has an azeotropic composition with a substantially water-immiscible organic solvent to be used, and the organic solvent separated from the distillate is returned to the system by a known azeotropic dehydration operation. Water is distilled off. Usually, the water concentration in the system is 2% by weight or less, preferably 1% by weight or less as a guide for dehydration.
The oligomer decomposition in the present invention is to heat-treat the reaction solution obtained in the step (c).

本発明において、(c)オリゴマー分解工程は、通常、105℃〜140℃、好ましくは110℃〜130℃、さらに好ましくは115℃〜125℃で行なわれる。この範囲より低い温度ではオリゴマー分解速度が遅く時間を要する。この範囲より高い温度では、生成物の種類にもよるが、その骨格バランスが崩れる傾向があり、また、熱履歴により副生物が観られる事もある。   In the present invention, the (c) oligomer decomposition step is usually carried out at 105 ° C to 140 ° C, preferably 110 ° C to 130 ° C, more preferably 115 ° C to 125 ° C. At temperatures lower than this range, the oligomer decomposition rate is slow and requires time. At temperatures higher than this range, depending on the type of product, the skeletal balance tends to be lost, and by-products may be observed due to thermal history.

本発明の(c)オリゴマー分解工程はエステル化反応混合物(場合により脱水したもの)をそのまま使用しても良いし、有機溶媒を留去した混合物を用いても良い。使用する有機溶媒によっては所望のオリゴマー分解温度に達しない場合もある事から、有機溶媒を留去した後、あるいは留去しながらオリゴマー分解温度に昇温する事が多い。また、有機溶媒を留去する場合には、共沸脱水の際に相互溶解度の関係で十分に除去できなかった水分を除去できるメリットがある。   In the (c) oligomer decomposition step of the present invention, the esterification reaction mixture (dehydrated in some cases) may be used as it is, or a mixture obtained by distilling off the organic solvent may be used. Depending on the organic solvent used, the desired oligomer decomposition temperature may not be reached. Therefore, the temperature is often raised to the oligomer decomposition temperature after or after the organic solvent is distilled off. Further, when the organic solvent is distilled off, there is an advantage that moisture that cannot be sufficiently removed due to mutual solubility during azeotropic dehydration can be removed.

本発明のオリゴマー分解工程は、化合物の種類や温度にもよるが、通常、2〜20時間程度行なう。また、有機溶媒を留去しながら昇温する場合には、その時間も含める。この範囲より短い時間ではオリゴマー分解が不十分で製品組成がオリゴマーリッチとなる。この範囲より長時間の熱処理は組成変化が観られないので無駄になると共に、場合によっては熱履歴により副生物の生成が観られる事もある。   The oligomer decomposition step of the present invention is usually performed for about 2 to 20 hours, although it depends on the kind and temperature of the compound. When the temperature is raised while distilling off the organic solvent, the time is also included. In a time shorter than this range, oligomer decomposition is insufficient and the product composition becomes oligomer rich. Heat treatment longer than this range is wasted because no composition change is observed, and in some cases, by-product formation may be observed due to thermal history.

本発明における単離工程とは、前記(c)で得られた反応混合物を水と接触させて生成物を析出させ、固液分離操作および乾燥により生成物を固体として得る工程である。   The isolation step in the present invention is a step of bringing the reaction mixture obtained in (c) above into contact with water to precipitate the product, and obtaining the product as a solid by solid-liquid separation operation and drying.

本発明において有機溶媒を除去せずにオリゴマー分解工程を行なった場合、そのまま次工程である(d)単離工程に進んでも構わないし、有機溶媒を除去した後に(d)単離工程に進んでも良い。使用している有機溶媒の量にもよるが、貧溶媒である水に対する比率が高い場合には沈殿析出に悪影響を及ぼす可能性があり、濃縮等により量を削減した後に(d)単離工程に進む事が多い。濃縮後の混合液中の有機溶媒濃度として20%以下、好ましくは10%以下を濃縮の目安とすれば良い。   In the present invention, when the oligomer decomposition step is performed without removing the organic solvent, it may proceed to the next step (d) isolation step as it is, or may proceed to (d) the isolation step after removing the organic solvent. good. Depending on the amount of the organic solvent used, if the ratio of water to the poor solvent is high, precipitation may be adversely affected. After reducing the amount by concentration or the like, (d) isolation step There are many things to go to. The concentration of the organic solvent in the mixed solution after concentration may be 20% or less, preferably 10% or less as a standard for concentration.

本発明の(d)単離工程は、(c)オリゴマー分解工程により反応が完結した混合液を水と接触させて生成物を析出させる工程である。基本的には生成物である一般式(3)で表される化合物の貧溶媒であると共に、原料である一般式(1)で表される化合物の良溶媒であれば良く、通常は水が用いられる。また、プロセスの必要性に応じて、本製造法で使用及び/または生成する物質を含んでいても良い。   The (d) isolation step of the present invention is a step in which a product is precipitated by bringing the mixed solution that has been reacted in the (c) oligomer decomposition step into contact with water. Basically, it may be a poor solvent for the compound represented by the general formula (3) as a product and a good solvent for the compound represented by the general formula (1) as a raw material. Used. Moreover, the substance used and / or produced | generated by this manufacturing method may be included according to the necessity of the process.

本発明の(d)単離工程において貧溶媒として使用される水は、反応混合物に対して1重量倍〜100重量倍、好ましくは2重量倍〜50重量倍使用される。この範囲以下では、析出が不十分で収率が低い。またこの範囲以上では容積効率が悪化する。   The water used as a poor solvent in the (d) isolation step of the present invention is used in an amount of 1 to 100 times, preferably 2 to 50 times the reaction mixture. Below this range, precipitation is insufficient and the yield is low. Above this range, the volumetric efficiency deteriorates.

本発明の(d)単離工程において、反応混合物を貧溶媒である水と接触させる際の温度は通常、0℃〜40℃、好ましくは0℃〜25℃が採用される。この範囲より高い温度では、生成物の加水分解が懸念される。   In the (d) isolation step of the present invention, the temperature at which the reaction mixture is brought into contact with water which is a poor solvent is usually 0 ° C. to 40 ° C., preferably 0 ° C. to 25 ° C. At temperatures higher than this range, there is a concern about the hydrolysis of the product.

本発明の(d)単離工程において、反応混合物と貧溶媒である水を接触させる方法は特に限定されず、所望の温度を維持できれば良い。反応混合物は大半の溶媒が留去され、原料である一般式(1)で表される化合物に生成物が溶解している状態であるため、化合物種類にもよるがオリゴマー分解温度以下では流動性を維持できない場合が多い。従って、所望の温度に設定した水中に、加温下の反応混合物を滴下または分割装入しつつ沈殿を析出させる方法が採用される。装入の速度は所望の温度を維持できれば良く、特に限定はされないが0.5時間〜10時間かけて実施する。この範囲より時間が短い場合、得られる結晶の濾過速度が遅くなる傾向がある。この範囲より長時間かけても状態は特に変わらないが、攪拌によるせん断または破砕効果により結晶径に変化が生じて濾過速度が遅くなる場合もある。   In the (d) isolation step of the present invention, the method for bringing the reaction mixture into contact with water which is a poor solvent is not particularly limited as long as the desired temperature can be maintained. The reaction mixture is in a state in which most of the solvent is distilled off and the product is dissolved in the compound represented by the general formula (1) as a raw material. Often cannot be maintained. Therefore, a method is adopted in which the precipitate is deposited while dropping or dividing the reaction mixture under heating into water set to a desired temperature. The charging speed is not particularly limited as long as the desired temperature can be maintained, and the charging is performed for 0.5 to 10 hours. If the time is shorter than this range, the filtration rate of the crystals obtained tends to be slow. Although the state is not particularly changed even if it takes a longer time than this range, there is a case where the crystal speed changes due to the shearing or crushing effect caused by stirring, and the filtration rate may become slow.

本発明において、水との接触により得られた沈殿は、濾過、遠心分離などの固液分離操作により単離を行なう。   In the present invention, the precipitate obtained by contact with water is isolated by solid-liquid separation operations such as filtration and centrifugation.

本発明において固液分離操作により単離した湿体は、常圧または減圧下で乾燥する。乾燥温度は特に限定されないが20℃〜120℃、好ましくは40℃〜80℃で行なう事が多い。この範囲より高い温度では生成物の加水分解が懸念される。乾燥初期〜後半にかけて連続的あるいは段階的に温度を上げつつ乾燥する事で、加水分解を抑制しつつ乾燥時間を短くする事ができる。   In the present invention, the wet body isolated by the solid-liquid separation operation is dried under normal pressure or reduced pressure. The drying temperature is not particularly limited, but is often 20 ° C to 120 ° C, preferably 40 ° C to 80 ° C. If the temperature is higher than this range, the product may be hydrolyzed. By drying while increasing the temperature continuously or stepwise from the initial drying stage to the latter half, the drying time can be shortened while suppressing hydrolysis.

本発明において得られた乾燥固体は再結晶による精製や、カラム精製を行なっても良い。   The dried solid obtained in the present invention may be purified by recrystallization or column purification.

本発明においては、一般式(3)で表されるオリゴエステル体も含まれる事がある。通常、一般式(2)で表される化合物が60〜100重量%、一般式(3)におけるn=2の化合物が0〜20重量%、一般式(3)におけるn=3の化合物が0〜10重量%、一般式(3)におけるn=4〜6の化合物の総和が10重量%程度である量を含有する。これらの比率は一般式(1)で表されるカルボン酸ハライドとレゾルシンのモル比を変化させる事でコントロール可能である。即ち、カルボン酸ハライドに対するレゾルシンのモル比を高くするほど、一般式(3)で表されるオリゴエステル体の比率は低下する。これらオリゴエステル体を含んでいても、前記一般式(2)で表される化合物同様の方法により、これらを含む反応混合物から単離することができる。   In the present invention, the oligoester represented by the general formula (3) may be included. Usually, the compound represented by the general formula (2) is 60 to 100% by weight, the compound of n = 2 in the general formula (3) is 0 to 20% by weight, and the compound of n = 3 in the general formula (3) is 0. 10% by weight, and the total amount of the compounds of n = 4-6 in the general formula (3) is about 10% by weight. These ratios can be controlled by changing the molar ratio of the carboxylic acid halide and resorcin represented by the general formula (1). That is, the higher the molar ratio of resorcin to carboxylic acid halide, the lower the ratio of the oligoester represented by the general formula (3). Even if these oligoesters are contained, they can be isolated from the reaction mixture containing them by the same method as the compound represented by the general formula (2).

本発明において、固液分離操作により発生する廃水には、原料として過剰に使用したレゾルシンが含まれている。該廃水に、反応で用いたのと同一の実質的に水と不混和性の有機溶媒を添加し、レゾルシンを有機相に抽出した後にリサイクル使用する事も出来る。また、(b)水洗工程の抽出排水中にもレゾルシンをロスしているため、固液分離操作の排水と、水洗工程の抽出排水を合わせた後に、レゾルシンの抽出回収を行っても構わない。また、晶析に用いる反応槽の材質にもよるが水洗工程での抽出排水を(d)単離工程での晶析の貧溶媒として使用する事も可能である。   In the present invention, the wastewater generated by the solid-liquid separation operation contains resorcin used excessively as a raw material. The same substantially water-immiscible organic solvent as that used in the reaction is added to the waste water, and resorcin can be extracted into the organic phase and then recycled. Moreover, since resorcin is also lost in the extraction waste water of the (b) water washing step, the resorcin may be extracted and recovered after combining the waste water of the solid-liquid separation operation and the extraction waste water of the water washing step. Moreover, although it depends on the material of the reaction tank used for crystallization, it is also possible to use the extracted waste water in the washing step as a poor solvent for crystallization in the (d) isolation step.

以下に、実施例を上げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
レゾルシン330.6g(3.0mol)をメチルイソブチルケトン(以下、MIBKと略)330gに溶解し、30.6重量%のNaOH水溶液80.1g(0.612mol)を添加し部分中和した。その後、10℃に冷却し、10℃〜15℃を維持しながら塩化アジポイル(以下、ADCと略)54.9g(0.30mol)を1時間かけて滴下しつつエステル化反応を行い、同温度で1時間熟成を行なった。次いで、100gの蒸留水を添加し水洗/分液操作を3回実施した。その後、昇温しつつ減圧下(40torr前後)で共沸脱水を行なった。凡そ3時間後に内温が65℃に達した時点で共沸脱水を終了した。系内水分濃度は0.3%であった。その後、昇温しつつ減圧下(30torr)でMIBKを留去した。凡そ2時間後に内温が120℃に達した時点でMIBK留去を終了した。この時系内MIBK濃度は5重量%であった。同温度で2時間熟成しオリゴマー分解を行った後に、5℃に冷却した1620gの水中に30分かけて排出し、結晶を析出させた。ヌッチェでの減圧濾過により結晶を濾取し、1620gの水で洗浄した後に60℃/15時間、減圧乾燥し84.8gの白色〜淡黄色粉体を得た(粗収率85.7%/ADC)。HPLCにて分析した結果、アジピン酸ビス(3−ヒドロキシフェニル)エステルが84.0重量%、オリゴマー(二量体)が8.4重量%、原料レゾルシンが2.8重量%であった。
Example 1
330.6 g (3.0 mol) of resorcin was dissolved in 330 g of methyl isobutyl ketone (hereinafter abbreviated as MIBK), and 80.1 g (0.612 mol) of 30.6 wt% NaOH aqueous solution was added to partially neutralize. Thereafter, the mixture was cooled to 10 ° C., while maintaining 10 ° C. to 15 ° C., 54.9 g (0.30 mol) of adipoyl chloride (hereinafter abbreviated as ADC) was added dropwise over 1 hour, and the esterification reaction was performed. Aging was performed for 1 hour. Subsequently, 100 g of distilled water was added, and water washing / separation operation was performed 3 times. Thereafter, azeotropic dehydration was performed under reduced pressure (around 40 torr) while raising the temperature. The azeotropic dehydration was terminated when the internal temperature reached 65 ° C. after about 3 hours. The water concentration in the system was 0.3%. Thereafter, MIBK was distilled off under reduced pressure (30 torr) while raising the temperature. After about 2 hours, when the internal temperature reached 120 ° C., MIBK distillation was completed. At this time, the concentration of MIBK in the system was 5% by weight. After aging at the same temperature for 2 hours to decompose the oligomer, it was discharged into 1620 g of water cooled to 5 ° C. over 30 minutes to precipitate crystals. The crystals were collected by vacuum filtration with Nutsche, washed with 1620 g of water, and then dried under reduced pressure at 60 ° C. for 15 hours to obtain 84.8 g of white to pale yellow powder (crude yield 85.7% / ADC). As a result of analysis by HPLC, it was found that 84.0% by weight of bis (3-hydroxyphenyl) adipic acid ester, 8.4% by weight of oligomer (dimer), and 2.8% by weight of raw material resorcin.

一方、濾過により得られた濾液にSUS304材質およびSUS316L材質のテストピースを浸漬し20℃/1ヶ月および70℃/一ヶ月の材質試験を実施した。その結果、いずれの材質、温度で腐食は観られなかった。(同濾液の中のNaClは検出限界(5ppm)以下であった。)   On the other hand, a test piece made of SUS304 material and SUS316L material was immersed in the filtrate obtained by filtration, and a material test was conducted at 20 ° C./1 month and 70 ° C./month. As a result, no corrosion was observed at any material and temperature. (NaCl in the filtrate was below the detection limit (5 ppm).)

(比較例1)
レゾルシン330.6g(3.0mol)をMIBK330gに溶解し、30.6重量%のNaOH水溶液80.1g(0.612mol)を添加し部分中和した。その後、10℃に冷却し、10℃〜15℃を維持しながら塩化アジポイル(以下、ADCと略)54.9g(0.30mol)を1時間かけて滴下しつつエステル化反応を行い、同温度で1時間熟成を行なった。その後、昇温しつつ減圧下(40torr前後)で共沸脱水を行なった。凡そ3時間後に内温が65℃に達した時点で共沸脱水を終了した。系内水分濃度は0.25%であった。その後、昇温しつつ減圧下(30torr)でMIBKを留去した。凡そ2時間後に内温が120℃に達した時点でMIBK留去を終了した。この時系内MIBK濃度は5重量%であった。同温度で2時間熟成しオリゴマー分解を行った後の反応液を滴下ロートに移液し、5℃に冷却した1620gの水中に排出し晶析を行なった。途中、食塩の結晶が目詰まりし滴下が止まる現象が観られたので時折、ガラス棒で滴下ロート内の反応液をかき混ぜながら滴下を継続した。ヌッチェでの減圧濾過により結晶を濾取し、1620gの水で洗浄した後に60℃/15時間、減圧乾燥し87.8gの白色〜淡黄色粉体を得た(粗収率88.7%/ADC)。一方、濾過により得られた濾液にSUS304材質およびSUS316L材質のテストピースを浸漬し20℃/1ヶ月および70℃/一ヶ月の材質試験を実施した。その結果、SUS304では全面に孔食が観られ、且つ隙間腐食も観られた。一方、SUS316Lでは、一部に孔食が観られ、且つ隙間腐食も観られた。
(Comparative Example 1)
330.6 g (3.0 mol) of resorcin was dissolved in 330 g of MIBK, and 80.1 g (0.612 mol) of 30.6 wt% NaOH aqueous solution was added to partially neutralize. Thereafter, the mixture was cooled to 10 ° C., while maintaining 10 ° C. to 15 ° C., 54.9 g (0.30 mol) of adipoyl chloride (hereinafter abbreviated as ADC) was added dropwise over 1 hour, and the esterification reaction was performed. Aging was performed for 1 hour. Thereafter, azeotropic dehydration was performed under reduced pressure (around 40 torr) while raising the temperature. The azeotropic dehydration was terminated when the internal temperature reached 65 ° C. after about 3 hours. The water concentration in the system was 0.25%. Thereafter, MIBK was distilled off under reduced pressure (30 torr) while raising the temperature. After about 2 hours, when the internal temperature reached 120 ° C., MIBK distillation was completed. At this time, the concentration of MIBK in the system was 5% by weight. The reaction solution after aging at the same temperature for 2 hours to decompose the oligomer was transferred to a dropping funnel and discharged into 1620 g of water cooled to 5 ° C. for crystallization. On the way, a phenomenon in which salt crystals were clogged and dripping stopped was observed, so that the dropping was continued while stirring the reaction solution in the dropping funnel with a glass rod occasionally. The crystals were collected by vacuum filtration with Nutsche, washed with 1620 g of water, and then dried under reduced pressure at 60 ° C. for 15 hours to obtain 87.8 g of white to pale yellow powder (crude yield 88.7% / ADC). On the other hand, a test piece made of SUS304 material and SUS316L material was immersed in the filtrate obtained by filtration, and a material test was conducted at 20 ° C./1 month and 70 ° C./month. As a result, in SUS304, pitting corrosion was observed on the entire surface, and crevice corrosion was also observed. On the other hand, in SUS316L, pitting corrosion was observed in part and crevice corrosion was also observed.

比較例から明らかな様に、水洗工程のないプロセスでは、晶析濾液への浸漬試験でSUS304およびSUS316L共に腐食が発生しており、晶析槽、固液分離器(濾過器)等の設備でSUS材質が使用できないため、設備設計上の制約が生じる。
一方、実施例の如く、水洗工程を導入に塩を除去した場合には、SUS材質に腐食が観られておらず、背粒設計上の制約はないと言える。
尚、HPLCの分析条件は下記の通りである。
1.アジピン酸ビス(3−ヒドロキシフェニル)エステル、RSの分析
カラム : YMC社 A−312 ODS
カラム温度: 40℃
溶離液 : メタノール/水=7/3(リン酸でpH=3に調整)
検出 : UV(254nm)
2.オリゴマーの分析
カラム : YMC社 A−312 ODS
カラム温度: 40℃
溶離液 : アセトニトリル/水=8/2(酢酸でpH=3.5に調整)
検出 : UV(254nm)
As is clear from the comparative example, in the process without the water washing step, corrosion occurred in both SUS304 and SUS316L in the immersion test in the crystallization filtrate. Since SUS material cannot be used, there are restrictions on equipment design.
On the other hand, when the salt is removed by introducing the water washing step as in the embodiment, the SUS material is not corroded, and it can be said that there is no restriction on the spine design.
The HPLC analysis conditions are as follows.
1. Analysis of adipic acid bis (3-hydroxyphenyl) ester and RS Column: YMC A-312 ODS
Column temperature: 40 ° C
Eluent: Methanol / water = 7/3 (adjusted to pH = 3 with phosphoric acid)
Detection: UV (254 nm)
2. Analysis of oligomer Column: YMC A-312 ODS
Column temperature: 40 ° C
Eluent: acetonitrile / water = 8/2 (adjusted to pH = 3.5 with acetic acid)
Detection: UV (254 nm)

Claims (3)

(a)実質的に水と不混和性の有機溶媒中、塩基性化合物の存在下でレゾルシンと一般式
(1)で表されるカルボン酸ハライドを−20℃〜50℃で反応させる工程、
Figure 0005037984
(式中Rは炭素数2〜10のアルキレン基、又はフェニレン基を表し、Xはハロゲン原子を表す。)
(b)前記工程(a)で副生する塩基性物質とハロゲン化水素との塩を、水との接触により水相に抽出除去する工程、
(c)105℃〜140℃で熱処理する工程、
(d)前記(c)で得られた反応混合物を水と接触させて生成物を析出させ、固液分離操作および乾燥により生成物を固体として得る工程、
からなる一般式(2)
Figure 0005037984
(式中、Rは炭素数2〜10のアルキレン基、又はフェニレン基を表す。)
で表されるレゾルシンジエステル系化合物の製造方法。
(A) a step of reacting resorcin with a carboxylic acid halide represented by the general formula (1) at −20 ° C. to 50 ° C. in an organic solvent immiscible with water in the presence of a basic compound;
Figure 0005037984
(In the formula, R represents an alkylene group having 2 to 10 carbon atoms or a phenylene group , and X represents a halogen atom.)
(B) a step of extracting and removing a salt of the basic substance and hydrogen halide by-produced in the step (a) into an aqueous phase by contact with water;
(C) a step of heat treatment at 105 ° C to 140 ° C;
(D) contacting the reaction mixture obtained in (c) above with water to precipitate the product, and obtaining the product as a solid by solid-liquid separation operation and drying;
General formula (2) consisting of
Figure 0005037984
(In the formula, R represents an alkylene group having 2 to 10 carbon atoms or a phenylene group .)
The manufacturing method of the resorcinol diester type compound represented by these.
工程(b)で使用する水の量が、エステル化反応液に対して0.05重量倍〜10重量倍であり、且つ、抽出除去操作を2回〜5回分割して実施する事を特徴とする請求項1記載の製造方法。   The amount of water used in the step (b) is 0.05 to 10 times by weight with respect to the esterification reaction solution, and the extraction and removal operation is performed in 2 to 5 times. The manufacturing method according to claim 1. 一般式(2)で表される化合物中に、下記一般式(3)で表される化合物が0〜30%含まれても良い事を特徴とする請求項1〜2に記載の製造方法。
Figure 0005037984
(式中、Rは炭素数2〜10のアルキレン基、又はフェニレン基を表し、nは2〜6の整数を示す。)
The production method according to claim 1, wherein the compound represented by the general formula (2) may contain 0 to 30% of a compound represented by the following general formula (3).
Figure 0005037984
(In the formula, R represents an alkylene group having 2 to 10 carbon atoms or a phenylene group , and n represents an integer of 2 to 6)
JP2007081071A 2007-03-27 2007-03-27 Method for producing resorcin diester compound Active JP5037984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081071A JP5037984B2 (en) 2007-03-27 2007-03-27 Method for producing resorcin diester compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081071A JP5037984B2 (en) 2007-03-27 2007-03-27 Method for producing resorcin diester compound

Publications (2)

Publication Number Publication Date
JP2008239536A JP2008239536A (en) 2008-10-09
JP5037984B2 true JP5037984B2 (en) 2012-10-03

Family

ID=39911296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081071A Active JP5037984B2 (en) 2007-03-27 2007-03-27 Method for producing resorcin diester compound

Country Status (1)

Country Link
JP (1) JP5037984B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5362703B2 (en) * 2008-03-19 2013-12-11 三井化学株式会社 Method for producing dihydroxybenzene derivative

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676583B2 (en) * 1987-05-18 1994-09-28 キヤノン株式会社 Liquid crystal composition and liquid crystal element
JP4860069B2 (en) * 2001-08-29 2012-01-25 株式会社ダイセル Method for producing methacrylic acid ester having cyclic skeleton
GB0310685D0 (en) * 2003-05-09 2003-06-11 Ciba Sc Holding Ag Heat sensitive recording material
JP4220888B2 (en) * 2003-11-27 2009-02-04 出光興産株式会社 Adamantane derivative and method for producing the same
JP4866009B2 (en) * 2004-03-12 2012-02-01 三井化学株式会社 Compound and composition containing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5362703B2 (en) * 2008-03-19 2013-12-11 三井化学株式会社 Method for producing dihydroxybenzene derivative

Also Published As

Publication number Publication date
JP2008239536A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5897243B2 (en) Process for preparing aromatic polycarboxylic acids by liquid phase oxidation
CN1942425B (en) Liquid phase oxidation of p-xylene to terephthalic acid in the presence of a catalyst system containing nickel, manganese, and bromine atoms
JP6230597B2 (en) Method for producing glycolide
WO2004048440A1 (en) Method for producing polyether polyol
US2873299A (en) Halomethylation of aromatic compounds
JP5000986B2 (en) Method for producing dihydroxybenzene derivative
JP5037984B2 (en) Method for producing resorcin diester compound
JP5962929B2 (en) Integrated production method of diallyl bisphenols
US5525683A (en) Ether-linked amine-terminated polyesters and a process for their production
JP5362703B2 (en) Method for producing dihydroxybenzene derivative
JPS6176442A (en) Production of composite ester
JP5236887B2 (en) Continuous production method of dihydroxybenzene derivative
JP5037907B2 (en) Method for producing resorcin diester compound
JP4645032B2 (en) Method for producing spiroglycol
JP6406094B2 (en) Method for recovering catalyst, method for producing diphenyl carbonate using the recovered catalyst, and method for producing polycarbonate using the diphenyl carbonate
JP5920622B2 (en) Method for producing azodicarboxylic acid diester compound
WO2023156905A1 (en) A process for the preparation of triclopyr-butotyl
JP5203619B2 (en) Method for producing resorcin-based diester compound
JP6245097B2 (en) Method for producing diphenyl carbonate and method for producing polycarbonate
US7772418B1 (en) Process for producing 3,4′ diacetoxybenzophenone
JP2001322984A (en) New fluorinating agent and method for producing fluorine-containing compound
JP3775953B2 (en) Method for producing aromatic dicarboxylic acid diaryl ester
JP5189001B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
JPH10147552A (en) Production of acyloxy-alpha-methylstyrene and hydroxy-alpha-methylstyrene
JP2001097918A (en) Production method for biphenyldicarboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090716

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5037984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250