JP5036443B2 - Photocatalytic material - Google Patents

Photocatalytic material Download PDF

Info

Publication number
JP5036443B2
JP5036443B2 JP2007199520A JP2007199520A JP5036443B2 JP 5036443 B2 JP5036443 B2 JP 5036443B2 JP 2007199520 A JP2007199520 A JP 2007199520A JP 2007199520 A JP2007199520 A JP 2007199520A JP 5036443 B2 JP5036443 B2 JP 5036443B2
Authority
JP
Japan
Prior art keywords
photocatalytic
particles
site
crystal structure
photocatalytic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007199520A
Other languages
Japanese (ja)
Other versions
JP2009034584A (en
Inventor
慎一 大越
裕子 所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
University of Tokyo NUC
Original Assignee
Dowa Electronics Materials Co Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, University of Tokyo NUC filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2007199520A priority Critical patent/JP5036443B2/en
Publication of JP2009034584A publication Critical patent/JP2009034584A/en
Application granted granted Critical
Publication of JP5036443B2 publication Critical patent/JP5036443B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光触媒材料に関し、特に特定の結晶構造を有する光触媒材料に関するものである。   The present invention relates to a photocatalytic material, and particularly to a photocatalytic material having a specific crystal structure.

従来、光触媒材料としては、代表的なものとして酸化チタン光触媒が知られている。この酸化チタン光触媒は、光を吸収すると、主に、酸化作用、及び超親水作用を発現する。酸化チタン光触媒の酸化作用は、水を酸素と水素に分解するほど顕著であるので、太陽エネルギーから水素を生成するクリーンエネルギーの循環サイクルの実用化の礎を担う材料として期待されている。また、この酸化作用を利用して、有害物質を分解することにより、殺菌や、脱臭処理を行うこともできる。このような光触媒作用を利用して、光触媒をセラミック多孔体(セラミックフォーム)の表面に担持させてなる光触媒フィルタが、空調機、空気清浄機、分煙機、レンジフード用フィルタや水処理装置等に応用されている(例えば、特許文献1)。   Conventionally, a titanium oxide photocatalyst is known as a typical photocatalyst material. When this titanium oxide photocatalyst absorbs light, it mainly exhibits an oxidizing action and a superhydrophilic action. The oxidation action of the titanium oxide photocatalyst is so prominent that water is decomposed into oxygen and hydrogen. Therefore, the titanium oxide photocatalyst is expected as a material for the practical use of a clean energy circulation cycle that generates hydrogen from solar energy. In addition, sterilization and deodorization treatment can be performed by decomposing harmful substances using this oxidizing action. A photocatalytic filter in which a photocatalyst is supported on the surface of a ceramic porous body (ceramic foam) using such a photocatalytic action is an air conditioner, an air purifier, a smoke separator, a filter for a range hood, a water treatment device, etc. (For example, Patent Document 1).

一方、酸化チタン光触媒の超親水作用は、自動車のバックミラーなどにコーティングすることにより、バックミラーに細かい水滴が付着するのを防止できるので、視認性を向上できるという効果が得られる。また、建物の外壁などにコーティングを施すことによって、雨水により表面が洗浄され、セルフクリーニング効果を得ることができる。   On the other hand, the superhydrophilic action of the titanium oxide photocatalyst can be applied to an automobile rearview mirror or the like to prevent fine water droplets from adhering to the rearview mirror, so that the visibility can be improved. Further, by coating the outer wall of the building or the like, the surface is washed with rainwater, and a self-cleaning effect can be obtained.

このように代表的な酸化チタン光触媒では、種々の用途が試されているだけでなく、今後の用途のさらなる広がりが期待されている。
特開平3−157125号公報
Thus, in a typical titanium oxide photocatalyst, not only various applications have been tried, but further expansion of future applications is expected.
Japanese Patent Laid-Open No. 3-157125

しかしながら、酸化チタンと似た電子構造を有する光触媒材料は、他にも存在するものの、現時点において顕著な光触媒活性が見当たらない。また、光触媒作用のみならず、他の物性を備えた粒子を提供することができれば、上記したような用途をさらに広げることも期待できる。   However, although there are other photocatalytic materials having an electronic structure similar to titanium oxide, no remarkable photocatalytic activity is found at present. Moreover, if the particle | grains provided with not only a photocatalytic action but another physical property can be provided, it can also anticipate extending the above uses.

そこで本発明は上記した問題点に鑑み、酸化チタン以外の光触媒材料として、光触媒作用のみならず、他の物性を備えた特定の結晶構造を有した光触媒材料を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a photocatalytic material having a specific crystal structure having not only a photocatalytic action but also other physical properties as a photocatalytic material other than titanium oxide.

そこで、本願発明者らは上記の目的を達成するために材料を種々検討したところ、ε−Fe相を主体とする粒子には光触媒作用のみならず、磁気特性をも具備することを知った。 Accordingly, the inventors of the present application have studied various materials in order to achieve the above-described object. As a result, the particles mainly composed of the ε-Fe 2 O 3 phase have not only a photocatalytic action but also magnetic characteristics. Knew.

すなわち、請求項1に係る発明は、一般式ε−A Fe 2−x (但し、0<x<2)を主相とし、前記Aが、Al,Ga,及びInの中から選択されるいずれか1種の元素であることを特徴とする。 That is, the invention according to claim 1 has a general formula ε-A x Fe 2−x O 3 (where 0 <x <2) as the main phase, and A is selected from Al, Ga, and In. Any one of the above elements is characterized.

本発明の光触媒材料は、特定の結晶構造(一般式ε−Fe)を有する磁性酸化鉄粒子で構成され磁性を発現させることができる。さらに、1種又は2種の元素をFeイオンサイトの一部と置換することにより、磁性において熱安定性にすぐれた光触媒材料を得ることができる。 The photocatalytic material of the present invention is composed of magnetic iron oxide particles having a specific crystal structure (general formula ε-Fe 2 O 3 ) and can exhibit magnetism. Further, by substituting one or two kinds of elements with a part of the Fe ion site, a photocatalytic material excellent in thermal stability in magnetism can be obtained.

以下本発明の好適な実施形態について説明する。図1は、本発明に係る光触媒材料の結晶構造であり、一般式:ε−Feで表されるイプシロン型の磁性酸化鉄粒子、又は、ε−Feの前記Fe3+イオンサイトの一部が、互いに異なる1種類または2種類の元素と置換された構造を有している。つまり、一般式:ε−AFe2−xまたはε−BFe2−y−zと表記される(但し、A、B、Cは、Feを除く、互いに異なる元素である。)イプシロン型の磁性酸化鉄粒子である。尚、上述の式に記載された元素以外であっても、製造上の不純物等の成分や化合物の含有は許容される。因みに、この磁性酸化鉄粒子は、粒径が100nm以下、特に10nm〜50nmのものが好適である。これにより、光の波長よりずっと小さく、光が散乱しないため透明性を高めることができる。
(Feを除く、1種類または互いに異なる2種類の元素A、B、Cについて)
まず、Fe3+イオンサイトの一部と置換された元素が1種類の場合、ε−Feの結晶構造を安定に保つため、Aとしては、3価の元素を用いることが好ましい。さらにAとしては、Al,Sc,Ti,V,Cr,Ga,In,Yから選択される1種の元素を挙げることができる。尚、xは、0<x<2の範囲であればよい。
Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 is a crystal structure of a photocatalytic material according to the present invention, which is an epsilon-type magnetic iron oxide particle represented by a general formula: ε-Fe 2 O 3 , or the Fe 3+ ion of ε-Fe 2 O 3. A part of the site has a structure in which one or two different elements are substituted. In other words, the general formula: ε-A x Fe 2- x O 3 or denoted as ε-B y C z Fe 2 -y-z O 3 ( where, A, B, C except the Fe, differ from each other Epsilon-type magnetic iron oxide particles. In addition, inclusion of components such as impurities in production and compounds other than the elements described in the above formula is allowed. Incidentally, the magnetic iron oxide particles preferably have a particle size of 100 nm or less, particularly 10 nm to 50 nm. Thereby, since it is much smaller than the wavelength of light and light is not scattered, transparency can be improved.
(About one element or two different elements A, B, and C except for Fe)
First, when one element is substituted for a part of the Fe 3+ ion site, it is preferable to use a trivalent element as A in order to keep the crystal structure of ε-Fe 2 O 3 stable. Furthermore, examples of A include one element selected from Al, Sc, Ti, V, Cr, Ga, In, and Y. Note that x may be in the range of 0 <x <2.

これらの元素のうち、Al及びGaは、Fe3+イオンサイトの一部であるFe4サイトと置換し、Sc,Ti,V,Cr,In,及びYは、Fe3+イオンサイトの一部であるFe1サイトと置換する。 Of these elements, Al and Ga replace Fe4 sites that are part of Fe 3+ ion sites, and Sc, Ti, V, Cr, In, and Y are Fe1 that are part of Fe 3+ ion sites. Replace with site.

また、Fe3+イオンサイトの一部と置換された元素が互いに異なる2種類で構成される場合、ε−Feの結晶構造を安定に保つため、Bとしては4価の元素、Cとしては2価の元素を用いることが好ましい。さらにBとしてはTi、Cとしては、Co,Ni,Mn,Cu及びZnから選択される1種の元素を挙げることができる。尚、x,yは、0<x,y<1の範囲であればよい。 Further, in the case where the element substituted with a part of the Fe 3+ ion site is composed of two different types, B is a tetravalent element and C is C in order to keep the crystal structure of ε-Fe 2 O 3 stable. Is preferably a divalent element. Further, as B, Ti, and C can include one element selected from Co, Ni, Mn, Cu, and Zn. X and y may be in the range of 0 <x and y <1.

上記Bを構成するTiは、Fe3+イオンサイトの一部であるFe4サイトと置換する。また、上記Cを構成するCo,Ni,Mn,Cu及びZnは、いずれもFe3+イオンサイトの一部であるFe1サイトと置換する。 Ti constituting the B substitutes for the Fe4 site which is a part of the Fe3 + ion site. Further, Co, Ni, Mn, Cu and Zn constituting the C are all replaced with Fe1 sites which are part of Fe 3+ ion sites.

尚、当該A、B、CからFeを除くのは、当該ε−FeのFe3+イオンサイトの一部を、1種類または互いに異なる2種類の元素で置換するためである。
(本発明に係る光触媒材料の製造方法)
次に本発明に係る光触媒材料の製造方法の一例について説明する。以下に説明する製造方法は、逆ミセル法とゾル−ゲル法との組み合わせ法によるものである。ここでの逆ミセル法とは、界面活性剤を含んだミセル溶液α(原料ミセル)と、ミセル溶液β(中和剤ミセル)との2種類を混合することによって、ミセル内で水酸化鉄の沈殿反応を進行させる工程をさす。一方、ここでのゾル−ゲル法とは、ミセル内で生成した水酸化鉄微粒子の表面にシリカコートを施す工程をいう。
The reason for removing Fe from A, B, and C is to replace a part of the Fe 3+ ion site of the ε-Fe 2 O 3 with one or two different elements.
(Method for producing photocatalytic material according to the present invention)
Next, an example of the method for producing the photocatalytic material according to the present invention will be described. The manufacturing method described below is based on a combination method of the reverse micelle method and the sol-gel method. Here, the reverse micelle method is a mixture of two kinds of micelle solution α (raw material micelle) containing a surfactant and micelle solution β (neutralizer micelle). It refers to the process of advancing the precipitation reaction. On the other hand, the sol-gel method here refers to a step of applying a silica coat to the surface of iron hydroxide fine particles generated in a micelle.

逆ミセル法とゾル−ゲル法との両方法を組み合わせることで、シリカによる被覆層をもつ水酸化鉄微粒子を得ることが出来る。得られたシリカコートをもつ水酸化鉄微粒子は、液から分離されたあと、所定の温度(700〜1300℃の範囲内)で大気雰囲気下での熱処理に供されることにより、単相のε−Feを生成する。 By combining both the reverse micelle method and the sol-gel method, iron hydroxide fine particles having a coating layer of silica can be obtained. The obtained iron hydroxide fine particles having a silica coat are separated from the liquid, and then subjected to a heat treatment in an air atmosphere at a predetermined temperature (in the range of 700 to 1300 ° C.), whereby a single-phase ε to generate a -Fe 2 O 3.

以下、具体例を挙げて説明する。まず、n−オクタンを油相とするミセル溶液αの水相に、硝酸鉄(III)と界面活性剤(例えば臭化セチルトリメチルアンモニウム(本明細書において、CTABと記載する場合がある。)を溶解する。その際、CTABを効率よく溶解させるため、直鎖のアルコール、例えばブチルアルコールを添加しても差し支えない。ここで、ミセル溶液αの水相に溶解させる硝酸鉄(III)の一部を、他元素A、B、Cに置き換えることもできる。同じく、n−オクタンを油相とするミセル溶液βの水相にはアンモニア水溶液を用いる。   Hereinafter, a specific example will be described. First, iron (III) nitrate and a surfactant (for example, cetyltrimethylammonium bromide (in this specification, sometimes referred to as CTAB) are added to the aqueous phase of the micelle solution α containing n-octane as the oil phase. In this case, in order to dissolve CTAB efficiently, a linear alcohol such as butyl alcohol may be added, where a part of iron (III) nitrate dissolved in the aqueous phase of the micelle solution α. Can be replaced with other elements A, B, and C. Similarly, an aqueous ammonia solution is used for the aqueous phase of the micelle solution β using n-octane as the oil phase.

尚、ミセル溶液αの水相に形状制御剤として、適量のアルカリ土類元素(Ba、Sr、Caなど)の硝酸塩を溶解させておくこともできる。この形状制御剤添加を行うことで、単相のε−Fe粒子を棒状の形状とすることが出来る。しかし、当該アルカリ土類元素が、生成する結晶の表層部に残存することがある。この場合、残存するアルカリ土類元素の含有量が8質量%を超えなければ、当該形状制御剤が他の物性に与える影響は、それ程強くはない。従って、本発明に係る光触媒材料の原料へは、形状制御剤としてアルカリ土類元素の少なくとも1種を、8質量%以下の量で添加することが出来る。 An appropriate amount of an alkaline earth element (Ba, Sr, Ca, etc.) nitrate may be dissolved in the aqueous phase of the micelle solution α as a shape control agent. By adding this shape control agent, the single-phase ε-Fe 2 O 3 particles can be formed into a rod shape. However, the alkaline earth element may remain in the surface layer portion of the generated crystal. In this case, unless the content of the remaining alkaline earth element exceeds 8% by mass, the influence of the shape control agent on other physical properties is not so strong. Therefore, at least one alkaline earth element as a shape control agent can be added to the raw material of the photocatalytic material according to the present invention in an amount of 8% by mass or less.

ミセル溶液αとβとを混合し、シランを適宜添加することで、ゾル−ゲル法により、得られた棒状、もしくはそれ以外の形状を有する水酸化鉄粒子表面にシリカによる被覆を施す。これらの反応はミセル中で行われており、ミセル内では、ナノオーダーの微細な水酸化鉄粒子の表面において加水分解が起こり、表面がシリカで被覆された粒子を得ることができる。   By mixing the micelle solutions α and β and adding silane appropriately, the surface of the obtained iron hydroxide particles having a rod-like shape or other shapes is coated by silica by a sol-gel method. These reactions are carried out in micelles. In the micelles, hydrolysis occurs on the surface of fine iron hydroxide particles of nano order, and particles whose surfaces are coated with silica can be obtained.

次いで、シリカコーティングされた水酸化鉄粒子を液から分離し、洗浄・乾燥の後、水酸化鉄粒子粉体を得る。得られた粒子粉体を炉内に装入し、空気中で700〜1300℃の温度範囲で熱処理(焼成)する。この熱処理により、水酸化鉄粒子はシリカ殻内部での酸化反応により、微細なε−Fe粒子が生成する。この酸化反応の際、水酸化鉄粒子がシリカにより被覆されていることが、α−Feやγ−Feではなく、ε−Fe単相が生成するのに寄与していると考えられる。加えて、当該シリカコートは、粒子同士の焼結を防止する作用を果たす。また、上述したように、適量の形状保持剤としてアルカリ土類元素が共存していると、棒状のε−Fe単相粒子に成長し易くなる。 Next, the silica-coated iron hydroxide particles are separated from the liquid, and after washing and drying, iron hydroxide particle powder is obtained. The obtained particle powder is placed in a furnace and heat-treated (fired) in the temperature range of 700 to 1300 ° C. in air. By this heat treatment, fine ε-Fe 2 O 3 particles are generated from the iron hydroxide particles by an oxidation reaction inside the silica shell. During this oxidation reaction, the fact that the iron hydroxide particles are coated with silica contributes to the formation of ε-Fe 2 O 3 single phase, not α-Fe 2 O 3 or γ-Fe 2 O 3. it seems to do. In addition, the silica coat serves to prevent sintering of the particles. Further, as described above, when an alkaline earth element coexists as an appropriate amount of the shape retention agent, it becomes easy to grow into rod-like ε-Fe 2 O 3 single phase particles.

このようにして、ε−Feと同じ結晶構造を有しながら、Fe3+イオンサイトの一部が置換されたε−AFe2−x単相粒子や、ε−BFe2−y−z単相粒子を合成できる。従って、本発明によれば、磁気特性を備える光触媒材料を提供することができる。
(実施例)
上記した製造方法により、Fe3+イオンサイトの一部を前記AとしてのGaと置換して実施例に係る試料を合成した。本実施例に係る試料のTEM像を図2に示す。この試料に対し、組成分析と、VSM(振動試料型磁力計)測定を行った結果を表1に示す。この結果から組成割合を計算したところ、本実施例に係る試料は、ε−Ga0.47Fe1.53であった。
In this way, ε-A x Fe 2-x O 3 single-phase particles in which a part of the Fe 3+ ion site is substituted while having the same crystal structure as ε-Fe 2 O 3, and ε-B y It can be synthesized C z Fe 2-y-z O 3 single phase particle. Therefore, according to the present invention, a photocatalytic material having magnetic properties can be provided.
(Example)
A sample according to the example was synthesized by replacing a part of the Fe 3+ ion site with Ga as A by the manufacturing method described above. A TEM image of the sample according to this example is shown in FIG. Table 1 shows the results of composition analysis and VSM (vibrating sample magnetometer) measurement performed on this sample. When the composition ratio was calculated from this result, the sample according to this example was ε-Ga 0.47 Fe 1.53 O 3 .

X線回折結晶構造解析の結果を図3に示す。因みに、この試料の結晶構造において、図1に示す各FeサイトのGaイオン占有率は、Fe1サイトとFe2サイトが共に0であるのに対し、Fe3サイトが0.21、Fe4サイトが0.75であった。   The results of X-ray diffraction crystal structure analysis are shown in FIG. Incidentally, in the crystal structure of this sample, the Ga ion occupancy of each Fe site shown in FIG. 1 is 0 for both Fe1 site and Fe2 site, whereas 0.23 for Fe3 site and 0.75 for Fe4 site. Met.

さらに、得られた試料の粒径分布を図4に、ヒステリシスループを図5に示す。さらに、10[Oe]の外部磁場のもとでの各温度における磁化を測定した。この測定は、試料を1K/minの速度で加熱及び冷却しながら磁化を測定した。その結果(図6)、キュリー点(Tc)は408Kであった。   Furthermore, the particle size distribution of the obtained sample is shown in FIG. 4, and the hysteresis loop is shown in FIG. Furthermore, magnetization at each temperature under an external magnetic field of 10 [Oe] was measured. In this measurement, the magnetization was measured while heating and cooling the sample at a rate of 1 K / min. As a result (FIG. 6), the Curie point (Tc) was 408K.

次に、上記試料の光触媒活性を、図7に示すように、2−プロパノール(IPA)気相酸化分解反応で評価した。500mlのガラスベッセル内に25mmφの試料を載置して石英フタで密閉した。密閉した前記ガラスベッセル中に2−プロパノールを充満させ、暗室においてランプ光を照射し、所定時間毎にガラスベッセル中の気体成分をガスクロマトグラフィにより測定した。   Next, the photocatalytic activity of the sample was evaluated by 2-propanol (IPA) gas phase oxidative decomposition reaction as shown in FIG. A 25 mmφ sample was placed in a 500 ml glass vessel and sealed with a quartz lid. The sealed glass vessel was filled with 2-propanol, irradiated with lamp light in a dark room, and gas components in the glass vessel were measured by gas chromatography every predetermined time.

図8はランプ光として水銀灯による紫外光を用いた場合(λ=310〜370nm、400mW/cm、吸収率=98.8%)の測定結果である。尚、2−プロパノールの初期濃度は、294ppmである。図8中、1はCO、2はアセトン、3は2−プロパノールの濃度をそれぞれ表す。32時間から93時間のCO増加量で計算した量子効率は、1.4×10−3%であった。 FIG. 8 shows the measurement results when ultraviolet light from a mercury lamp is used as lamp light (λ = 310 to 370 nm, 400 mW / cm 2 , absorptance = 98.8%). The initial concentration of 2-propanol is 294 ppm. In FIG. 8, 1 represents the concentration of CO 2 , 2 represents acetone, and 3 represents the concentration of 2-propanol. The quantum efficiency calculated with the CO 2 increase from 32 hours to 93 hours was 1.4 × 10 −3 %.

また、図9はランプ光として水銀キセノンランプによる可視光を用いた場合(λ=437nm、30mW/cm、吸収率=98.8%)の結果である。尚、2−プロパノールの初期濃度は、247ppmである。図9中、4はCO、5はアセトン、6は2−プロパノールの濃度をそれぞれ表す。565時間から853時間のCO増加量で計算した量子効率は、2.4×10−3%であった。この結果から、可視光においても紫外光とほぼ同様の光触媒活性が得られることが分かった。 FIG. 9 shows the results when visible light from a mercury xenon lamp is used as the lamp light (λ = 437 nm, 30 mW / cm 2 , absorptance = 98.8%). The initial concentration of 2-propanol is 247 ppm. In FIG. 9, 4 represents the concentration of CO 2 , 5 represents acetone, and 6 represents the concentration of 2-propanol. The quantum efficiency calculated with the CO 2 increase from 565 hours to 853 hours was 2.4 × 10 −3 %. From this result, it was found that substantially the same photocatalytic activity as that of ultraviolet light can be obtained in visible light.

以上より、ε−Feと同じ結晶構造を有する試料においては、磁気特性のみならず光触媒活性を得ることができることが分かった。 From the above, it was found that a sample having the same crystal structure as ε-Fe 2 O 3 can obtain not only magnetic properties but also photocatalytic activity.

本発明は、本実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。   The present invention is not limited to this embodiment, and various modifications can be made within the scope of the gist of the present invention.

本発明に係る光触媒材料の結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure of the photocatalyst material which concerns on this invention. 本発明に係る光触媒材料のTEM像(×300,000)である。It is a TEM image (x300,000) of the photocatalytic material according to the present invention. 本発明に係る光触媒材料のX線回折結晶構造解析の結果を示す図である。It is a figure which shows the result of the X ray diffraction crystal structure analysis of the photocatalyst material which concerns on this invention. 本発明に係る光触媒材料の粒径分布を示す図である。It is a figure which shows the particle size distribution of the photocatalyst material which concerns on this invention. 本発明に係る光触媒材料のヒステリシスループであり、(A)300K雰囲気、(B)2K雰囲気における測定結果を示す図である。It is a hysteresis loop of the photocatalyst material which concerns on this invention, and is a figure which shows the measurement result in (A) 300K atmosphere and (B) 2K atmosphere. 本発明に係る光触媒材料のFCM曲線である。It is a FCM curve of the photocatalyst material which concerns on this invention. 本発明の実施例に係る試料の光触媒活性評価方法を示す図である。It is a figure which shows the photocatalytic activity evaluation method of the sample which concerns on the Example of this invention. 同上、水銀灯による紫外光を用いた場合の光触媒活性評価の測定結果を示す図である。It is a figure which shows the measurement result of photocatalytic activity evaluation at the time of using the ultraviolet light by a mercury lamp same as the above. 同上、水銀キセノンランプによる可視光を用いた場合の光触媒活性評価の測定結果を示す図である。It is a figure which shows the measurement result of photocatalytic activity evaluation at the time of using visible light by a mercury xenon lamp same as the above.

Claims (1)

一般式ε−AFe2−x(但し、0<x<2)を主相とし、前記Aが、Al,Ga,及びInの中から選択されるいずれか1種の元素であることを特徴とする光触媒材料。 Formula ε-A x Fe 2-x O 3 ( where, 0 <x <2) was used as a main phase, wherein A is, Al, Ga, and either one element selected from among In A photocatalytic material characterized by being.
JP2007199520A 2007-07-31 2007-07-31 Photocatalytic material Expired - Fee Related JP5036443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007199520A JP5036443B2 (en) 2007-07-31 2007-07-31 Photocatalytic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007199520A JP5036443B2 (en) 2007-07-31 2007-07-31 Photocatalytic material

Publications (2)

Publication Number Publication Date
JP2009034584A JP2009034584A (en) 2009-02-19
JP5036443B2 true JP5036443B2 (en) 2012-09-26

Family

ID=40437016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007199520A Expired - Fee Related JP5036443B2 (en) 2007-07-31 2007-07-31 Photocatalytic material

Country Status (1)

Country Link
JP (1) JP5036443B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102139209B (en) * 2011-02-23 2012-09-05 南京大学 Core-shell gadolinium indium antimony base composite magnetic-particle photochemical catalyst as well as preparation and application thereof
CN102151563B (en) * 2011-02-23 2012-07-25 南京大学 Gadolinium-yttrium-antimony based composite magnetic particle photo catalyst of core-shell structure, preparation and application thereof
CN102145288A (en) * 2011-02-23 2011-08-10 南京大学 Bismuth iron niobium-based composite magnetic particle photocatalyst with core-shell structure, preparation and application of bismuth iron niobium-based composite magnetic particle photocatalyst
CN108745390B (en) * 2018-06-05 2020-10-27 嘉禾县佳禾米业股份有限公司 Visible light photocatalyst and preparation and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3782835B2 (en) * 1994-11-30 2006-06-07 大塚化学ホールディングス株式会社 Method for producing photolysis catalyst
JP3933640B2 (en) * 2004-03-30 2007-06-20 独立行政法人産業技術総合研究所 photocatalyst
JP2006273660A (en) * 2005-03-29 2006-10-12 Konoshima Chemical Co Ltd Photocatalytic inorganic building material
JP4730905B2 (en) * 2006-03-17 2011-07-20 国立大学法人 東京大学 Magnetic material and memory and sensor using the same
JP5013505B2 (en) * 2006-03-31 2012-08-29 国立大学法人 東京大学 Magnetic material
JP4728916B2 (en) * 2006-08-31 2011-07-20 国立大学法人 東京大学 Magnetic material
JP4859791B2 (en) * 2006-09-01 2012-01-25 国立大学法人 東京大学 Magnetic crystals and radio wave absorbers for radio wave absorbing materials
JP5105503B2 (en) * 2006-10-19 2012-12-26 国立大学法人 東京大学 ε Iron oxide production method
JP5142354B2 (en) * 2007-01-16 2013-02-13 国立大学法人 東京大学 ε-Fe2O3 crystal manufacturing method

Also Published As

Publication number Publication date
JP2009034584A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
Assayehegn et al. Fabrication of tunable anatase/rutile heterojunction N/TiO2 nanophotocatalyst for enhanced visible light degradation activity
Nasir et al. Characterization and activity of the Ce and N co-doped TiO2 prepared through hydrothermal method
Stefan et al. Magnetic recoverable Fe3O4-TiO2: Eu composite nanoparticles with enhanced photocatalytic activity
Chandrappa et al. Electrochemical synthesis and photocatalytic property of zinc oxide nanoparticles
JP5355095B2 (en) Production of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and alloys
Li et al. Enhanced visible light-responsive photocatalytic activity of LnFeO3 (Ln= La, Sm) nanoparticles by synergistic catalysis
Manikandan et al. Aloe vera plant extracted green synthesis, structural and opto-magnetic characterizations of spinel Co x Zn1-x Al2O4 nano-catalysts
WO1997037933A1 (en) Composite oxide having oxygen absorption and release capabilities and process for preparing the same
KR101813665B1 (en) Copper-manganese oxides for removing hazardous gas removal and preparation thereof
EP2519348A2 (en) Method of production of photocatalytic powder comprising titanium dioxide and manganese dioxide active under ultraviolet and visible light
Phadtare et al. Crystalline LaCoO3 perovskite as a novel catalyst for glycerol transesterification
JP5036443B2 (en) Photocatalytic material
TW201121645A (en) Photocatalytic materials and process for producing the same
Li et al. Enhanced photocatalytic and magnetic recovery performance of Co-doped BiFeO3 based on MOFs precursor
Dinh et al. Starch-assisted sol–gel synthesis of magnetic CuFe 2 O 4 powder as photo-Fenton catalysts in the presence of oxalic acid
Supin et al. Effects of calcinations temperatures on structural, optical and magnetic properties of MgO nanoflakes and its photocatalytic applications
JP2009178636A (en) Titanium oxide photocatalyst showing high photocatalytic activity under visible light, and its manufacturing method
Singh et al. Oxygen hyper stoichiometric trimetallic titanium doped magnesium ferrite: Structural and photocatalytic studies
Liu et al. Efficient degradation of methylene blue dye by catalytic oxidation using the Na 8 Nb 6 O 19· 13H 2 O/H 2 O 2 system
JP2008230950A (en) N- and/or s-doped tubular titanium oxide particle and method for producing the same
JP2020083741A (en) Shell burned product
Chen et al. Template-engaged solid-state synthesis of barium–strontium silicate hexagonal tubes
JP6237350B2 (en) Photocatalytic glass and method for producing the same
JP2006289356A (en) Functional hyperfine particulate material for photocatalyst, its manufacturing method and its product
JP2017141123A (en) Low temperature operable perovskite type oxide absorbent and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100701

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111021

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5036443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees