JP5032009B2 - Magnetic sensor, magnetic head, and magnetic recording / reproducing apparatus - Google Patents

Magnetic sensor, magnetic head, and magnetic recording / reproducing apparatus Download PDF

Info

Publication number
JP5032009B2
JP5032009B2 JP2005225715A JP2005225715A JP5032009B2 JP 5032009 B2 JP5032009 B2 JP 5032009B2 JP 2005225715 A JP2005225715 A JP 2005225715A JP 2005225715 A JP2005225715 A JP 2005225715A JP 5032009 B2 JP5032009 B2 JP 5032009B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetic layer
magnetization
film surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005225715A
Other languages
Japanese (ja)
Other versions
JP2006086508A (en
Inventor
藤 利 江 佐
島 公 一 水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005225715A priority Critical patent/JP5032009B2/en
Publication of JP2006086508A publication Critical patent/JP2006086508A/en
Application granted granted Critical
Publication of JP5032009B2 publication Critical patent/JP5032009B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は磁気センサ、磁気ヘッド、および磁気記録再生装置に関する。   The present invention relates to a magnetic sensor, a magnetic head, and a magnetic recording / reproducing apparatus.

巨大磁気抵抗効果(GMR効果)を利用したGMRヘッドの登場以来、磁気記録の記録密度は、年率100%で向上している。GMR素子は、強磁性層/非磁性層/強磁性層のサンドイッチ構造の積層膜からなる。GMR素子は、一方の強磁性層に交換バイアスを及ぼして磁化を固着し、他方の強磁性層の磁化方向を外部磁界により変化させ、2つの強磁性層の磁化方向の相対角度の変化を抵抗値の変化として検出する、いわゆるスピンバルブ膜の磁気抵抗効果を利用した素子である。スピンバルブ膜の膜面に電流を流し、抵抗変化を検出するCIP(Current In Plane)−GMR素子と、スピンバルブ膜の膜面に垂直に電
流を流し抵抗変化を検出するCPP(Current Perpendicular to Plane)−GMR素子が開発されている。その磁気抵抗比(MR比)はCIP−GMR素子、CPP−GMR素子とも数%程度であり、200Gbit/inch程度の記録密度まで対応可能であろうと考えられている。
Since the advent of GMR heads using the giant magnetoresistive effect (GMR effect), the recording density of magnetic recording has improved at an annual rate of 100%. The GMR element is composed of a laminated film having a sandwich structure of ferromagnetic layer / nonmagnetic layer / ferromagnetic layer. The GMR element applies an exchange bias to one of the ferromagnetic layers to fix the magnetization, changes the magnetization direction of the other ferromagnetic layer by an external magnetic field, and resists a change in the relative angle between the magnetization directions of the two ferromagnetic layers. It is an element that utilizes the magnetoresistive effect of a so-called spin valve film that is detected as a change in value. A CIP (Current In Plane) -GMR element that detects a resistance change by passing a current through the film surface of the spin valve film, and a CPP (Current Perpendicular to Plane) that detects a resistance change by flowing a current perpendicular to the film surface of the spin valve film ) -GMR elements have been developed. The magnetoresistance ratio (MR ratio) of both the CIP-GMR element and the CPP-GMR element is about several percent, and it is considered that a recording density of about 200 Gbit / inch 2 can be handled.

より高密度な磁気記録に対応するため、トンネル磁気抵抗効果(TMR効果)を利用したTMR素子の開発が進められている。TMR素子は強磁性層/絶縁体/強磁性層の積層膜からなり、強磁性層間に電圧を印加しトンネル電流を流す。TMR素子は、トンネル電流の大きさが上下の強磁性層の磁化の向きによって変化することを利用し、磁化の相対的角度の変化をトンネル抵抗値の変化として検出する素子である。MR比は最大で50%程度の素子が得られている。TMR素子は、GMR素子よりもMR比が大きいため、信号電圧も大きくなる。   In order to cope with higher-density magnetic recording, development of a TMR element using the tunnel magnetoresistance effect (TMR effect) has been advanced. The TMR element is composed of a laminated film of a ferromagnetic layer / insulator / ferromagnetic layer, and applies a voltage between the ferromagnetic layers to cause a tunnel current to flow. The TMR element is an element that detects a change in the relative angle of magnetization as a change in tunnel resistance value by utilizing the fact that the magnitude of the tunnel current changes depending on the magnetization directions of the upper and lower ferromagnetic layers. An element having an MR ratio of about 50% at maximum is obtained. Since the TMR element has a larger MR ratio than the GMR element, the signal voltage is also increased.

しかしながら、純粋な信号成分だけでなく、ショットノイズによる雑音成分も大きくなり、S/N比(信号対雑音比)がよくならないという問題を抱えている。ショットノイズは、電子がトンネル障壁を不規則に通過することによって発生する電流の揺らぎに起因しており、トンネル抵抗値の平方根に比例して増大する。従ってショットノイズを抑え、必要な信号電圧を得るには、トンネル絶縁層を薄くし、トンネル抵抗を低抵抗化する必要がある。   However, not only a pure signal component but also a noise component due to shot noise is increased, and the S / N ratio (signal-to-noise ratio) is not improved. Shot noise is caused by fluctuations in current generated by electrons passing irregularly through the tunnel barrier, and increases in proportion to the square root of the tunnel resistance value. Therefore, in order to suppress shot noise and obtain a necessary signal voltage, it is necessary to make the tunnel insulating layer thin and to reduce the tunnel resistance.

記録密度が高密度化するほど素子サイズは記録ビットと同程度のサイズに小さくする必要があるため、高密度になるほどトンネル絶縁層の接合抵抗を小さく、つまり、絶縁層を薄くする必要がある。300Gbit/inchの記録密度では1Ω・cm以下の接合抵抗が必要とされ、Al−O(アルミニウム酸化膜)トンネル絶縁層の膜厚に換算して原子2層分の厚さのトンネル絶縁層を形成しなければならない。トンネル絶縁層を薄くするほど上下電極間の短絡が生じやすくMR比の低下を招くため、素子の作製は飛躍的に困難になっていく。以上の理由によってTMR素子の限界は300Gbit/inchであろうと見積もられている。 As the recording density increases, the element size needs to be reduced to the same size as the recording bit. Therefore, the higher the density, the smaller the junction resistance of the tunnel insulating layer, that is, the thinner the insulating layer. With a recording density of 300 Gbit / inch 2 , a junction resistance of 1 Ω · cm 2 or less is required, and the tunnel insulating layer has a thickness of two atoms in terms of the thickness of the Al—O (aluminum oxide film) tunnel insulating layer. Must be formed. As the tunnel insulating layer is made thinner, a short circuit between the upper and lower electrodes is more likely to occur, and the MR ratio is lowered. For the above reasons, it is estimated that the limit of the TMR element will be 300 Gbit / inch 2 .

上に述べた素子はいずれも広い意味での磁気抵抗効果を利用しているが、これらの素子に共通した磁気的白色雑音(ホワイトノイズ)の問題が近年急浮上している。この雑音は上に述べたショットノイズなどの電気的ノイズとは異なり、磁化の熱ゆらぎに起因して生じるため素子の微細化に伴いより支配的となり200Gbpsi〜300Gbpsi対応の素子では電気的雑音を凌駕すると考えられている。磁気的白色雑音を回避し、磁気記録の記録密度をさらに高めるためには従来の磁気抵抗効果とは異なった原理により動作する微小磁気センサが必要となるが、そのような磁気センサとして共鳴磁気抵抗効果素子の開発が進めら
れている(例えば、非特許文献1参照)。
R. Sato, et. al. J. Magn. Magn. Mat. vol.279, p.36 (2004)
All of the above-described elements utilize the magnetoresistive effect in a broad sense, but the problem of magnetic white noise (white noise) common to these elements has recently emerged rapidly. Unlike electrical noise such as shot noise described above, this noise is caused by thermal fluctuations in magnetization, so that it becomes more dominant as devices become smaller, and exceeds 200 Gbpsi to 300 Gbpsi for electrical noise. It is considered to be. In order to avoid magnetic white noise and further increase the recording density of magnetic recording, a micromagnetic sensor that operates on a principle different from the conventional magnetoresistive effect is required. Development of effect elements is underway (for example, see Non-Patent Document 1).
R. Sato, et. Al. J. Magn. Magn. Mat. Vol. 279, p. 36 (2004)

従来の共鳴磁気抵抗効果素子は、膜厚が1nm以下の非磁性層を磁化の方向が垂直である強磁性層で挟んだ構造の、磁性体として欠陥の少ない人工反強磁性体を用いることにより実効高周波磁場の強度を増大させ特性向上を図ってきた。しかし、この人工反強磁性体は、高度の成膜技術を必要とするため実用化には多くの困難を抱えている。このため、現在十分な特性が得られていない。   A conventional resonant magnetoresistive effect element uses an artificial antiferromagnet having a small number of defects as a magnetic body having a structure in which a nonmagnetic layer having a thickness of 1 nm or less is sandwiched between ferromagnetic layers having a perpendicular magnetization direction. We have attempted to improve the characteristics by increasing the strength of the effective high-frequency magnetic field. However, since this artificial antiferromagnetic material requires advanced film formation technology, it has many difficulties in practical use. For this reason, sufficient characteristics are not currently obtained.

上に述べたように、高密度磁気記録において大きな問題となっている磁気的白色雑音の問題を解決するために共鳴磁気抵抗効果を用いた新しい磁気センサの開発が進められているが、現在十分な特性が得られていない。   As described above, a new magnetic sensor using the resonant magnetoresistive effect is being developed to solve the magnetic white noise problem, which is a major problem in high-density magnetic recording. The characteristic is not acquired.

本発明は、上記事情を考慮してなされたものであって、磁気的白色雑音を可及的に抑制することのできる磁気センサ、磁気ヘッド、磁気記録再生装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a magnetic sensor, a magnetic head, and a magnetic recording / reproducing apparatus that can suppress magnetic white noise as much as possible.

本発明の第1の態様による共鳴磁気抵抗効果素子は、磁化の向きが膜面に実質的に平行な第1磁性層と、磁化の向きが膜面に実質的に垂直な第2磁性層と、前記第1および第2磁性層の間に設けられた第1非磁性層とを備えていることを特徴とする。   The resonant magnetoresistive element according to the first aspect of the present invention includes a first magnetic layer whose magnetization direction is substantially parallel to the film surface, and a second magnetic layer whose magnetization direction is substantially perpendicular to the film surface. And a first nonmagnetic layer provided between the first and second magnetic layers.

また、本発明の第2の態様による共鳴磁気抵抗効果素子は、磁化の向きが膜面に実質的に平行な第1および第2磁性層と、前記第1および第2磁性層間に設けられ、磁化の向きが膜面に実質的に垂直な第3磁性層および非磁性層が複数個積層された積層膜とを備えていることを特徴とする。
また、本発明の第3の態様による磁気ヘッドは、上記共鳴磁気抵抗効果素子を再生素子として搭載したことを特徴とする。
また、本発明の第4の態様による磁気記録再生装置は、上記磁気ヘッドを備えていることを特徴とする。
The resonant magnetoresistive effect element according to the second aspect of the present invention is provided between the first and second magnetic layers whose magnetization directions are substantially parallel to the film surface, and the first and second magnetic layers, A third magnetic layer having a magnetization direction substantially perpendicular to the film surface; and a laminated film in which a plurality of nonmagnetic layers are laminated.
A magnetic head according to a third aspect of the present invention is characterized in that the resonant magnetoresistive element is mounted as a reproducing element.
A magnetic recording / reproducing apparatus according to the fourth aspect of the present invention includes the above magnetic head.

本発明によれば、磁気的白色雑音を可及的に抑制することができる。   According to the present invention, magnetic white noise can be suppressed as much as possible.

まず、本発明の実施形態を説明する前に、磁性発信素子の一種である共鳴磁気抵抗効果素子について、説明する。共鳴磁気抵抗効果素子は軟磁性体において不可避な磁化の熱ゆらぎを積極的に利用するもので、強磁性体の磁化の熱ゆらぎによって生じる伝導電子のスピンゆらぎを磁性体に注入することを特徴とするものである。注入された伝導電子のスピンゆらぎはsd交換相互作用などの相互作用を介して磁性体に実効高周波磁場として作用し、磁性体に磁気共鳴を誘起する。外部磁場が変化し強磁性体磁化のゆらぎが変化すると磁性体に誘起される磁気共鳴の強度が変化するが、この変化は磁性体の実効的電気抵抗の変化として検知される。このような原理により約10エルステッドの外部磁場の変化に対して数10%〜数100%の素子抵抗変化が得られ、微小高感度磁気センサとして機能する。   First, before describing an embodiment of the present invention, a resonant magnetoresistive element, which is a kind of magnetic transmission element, will be described. Resonant magnetoresistive elements actively utilize thermal fluctuations of magnetization that are unavoidable in soft magnetic materials, and are characterized by injecting spin fluctuations of conduction electrons caused by thermal fluctuations of magnetization of ferromagnetic materials into magnetic materials. To do. The spin fluctuation of the injected conduction electrons acts as an effective high-frequency magnetic field on the magnetic material through an interaction such as sd exchange interaction, and induces magnetic resonance in the magnetic material. When the external magnetic field changes and the fluctuation of the ferromagnetic magnetization changes, the intensity of magnetic resonance induced in the magnetic substance changes. This change is detected as a change in the effective electrical resistance of the magnetic substance. By such a principle, an element resistance change of several 10% to several 100% is obtained with respect to an external magnetic field change of about 10 Oersteds, and functions as a minute high sensitivity magnetic sensor.

以下、本発明の実施形態について、図面を参照しつつ詳細に説明する。尚、以後の説明では、共通の構成に同一の符号を付すものとし、重複する説明は省略する。また、各図は模式図であり、その形状や寸法、比などは実際の装置と異なる個所も含んでいるが、実際に素子等を製造する際には、以下の説明と公知の技術の参酌により適宜変更することができる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same reference numerals are assigned to the common components, and duplicate descriptions are omitted. Each figure is a schematic diagram, and its shape, dimensions, ratio, etc. include parts that are different from the actual device. However, when actually manufacturing elements etc., the following explanation and consideration of known techniques are considered. Can be changed as appropriate.

(第1実施形態)
本発明の第1実施形態による共鳴磁気抵抗効果素子の構成を図1に示す。図1は本実施形態による共鳴磁気抵抗効果素子の構成を示す断面図である。本実施形態による共鳴磁気抵抗効果素子は、基板1上に設けられ、磁気シールドを兼ねた下部電極3と、この下部電極3上に設けられ磁化の向きが膜面に実質的に垂直な強磁性層5と、強磁性層5上に設けられた非磁性層7と、この非磁性層7上に設けられ磁化の向きが膜面に実質的に平行な強磁性層9と、強磁性層9上に設けられ磁気シールドを兼ねた上部電極11とを備えている。強磁性層5、非磁性層7、および強磁性9は平面形状が同一の積層膜4となっている。強磁性層5は磁化の向きが膜面に実質的に垂直すなわち磁化容易軸が膜面に垂直な方向であり、強磁性層9は磁化の向きが膜面に実質的に平行な方向すなわち磁化容易軸が膜面に平行な方向である。なお、本実施形態においては、「実質的に垂直」とは、完全に垂直な状態から±15度の傾斜を含んでおり、「実質的に平行」とは、完全に平行な状態から±15度の傾斜を含んでいる。
(First embodiment)
The configuration of the resonant magnetoresistive element according to the first embodiment of the present invention is shown in FIG. FIG. 1 is a cross-sectional view showing the configuration of the resonant magnetoresistive element according to the present embodiment. The resonant magnetoresistive element according to the present embodiment is provided on the substrate 1 and has a lower electrode 3 that also serves as a magnetic shield, and a ferromagnetic that is provided on the lower electrode 3 and whose magnetization direction is substantially perpendicular to the film surface. A layer 5, a nonmagnetic layer 7 provided on the ferromagnetic layer 5, a ferromagnetic layer 9 provided on the nonmagnetic layer 7 and having a magnetization direction substantially parallel to the film surface, and a ferromagnetic layer 9 And an upper electrode 11 also serving as a magnetic shield. The ferromagnetic layer 5, the nonmagnetic layer 7, and the ferromagnet 9 are the laminated films 4 having the same planar shape. The ferromagnetic layer 5 has a magnetization direction substantially perpendicular to the film surface, that is, a direction in which the easy axis is perpendicular to the film surface, and the ferromagnetic layer 9 has a magnetization direction substantially parallel to the film surface, that is, magnetization. The easy axis is a direction parallel to the film surface. In this embodiment, “substantially vertical” includes an inclination of ± 15 degrees from a completely vertical state, and “substantially parallel” means ± 15 from a completely parallel state. Includes a degree tilt.

下部電極3と上部電極11は配線も兼ねているため、図1の紙面横方向に伸びており、その端部において素子に流す電流を制御する電流供給回路や読出し(センス)回路などと接続される。なお、下部電極3と上部電極11は磁気シールドと配線も兼ねているが、磁気シールドや配線を下部電極や上部電極と別に設けることも可能である。この場合にも、磁気シールドや配線は、下部電極3、上部電極11および強磁性層9の膜面と平行な面内(図1の断面では紙面左右方向に伸びる平面内)に形成することができる。   Since the lower electrode 3 and the upper electrode 11 also serve as wiring, the lower electrode 3 and the upper electrode 11 extend in the horizontal direction in FIG. 1, and are connected to a current supply circuit, a reading (sense) circuit, or the like that controls the current flowing through the element at the end. The The lower electrode 3 and the upper electrode 11 also serve as a magnetic shield and a wiring. However, the magnetic shield and the wiring can be provided separately from the lower electrode and the upper electrode. Also in this case, the magnetic shield and the wiring may be formed in a plane parallel to the film surfaces of the lower electrode 3, the upper electrode 11, and the ferromagnetic layer 9 (in the plane extending in the left-right direction on the paper surface in the cross section of FIG. 1). it can.

本実施形態の共鳴磁気抵抗効果素子は、強磁性体において不可避な磁化の熱ゆらぎを積極的に利用する。つまり、強磁性層9の磁化の熱ゆらぎに起因する伝導電子のスピンゆらぎを、非磁性層7を介して強磁性層5に注入するものである。注入された伝導電子のスピンゆらぎは、sd交換相互作用などを介して強磁性層5にスピントルクを及ぼすため実効高周波磁場として作用し、強磁性層5に閾値電流Ith以上で磁気共鳴を誘起する。外部磁場が変化して強磁性層9の磁化のゆらぎスペクトルが変化すると、強磁性層5に誘起される磁気共鳴の強度が変化するが、この強度変化は共鳴磁気抵抗効果素子の実効的電気抵抗の変化として検知される。このような原理により、数10エルステッド(Oe)の外部磁場の変化に対して数100%〜数1000%の素子抵抗変化が得られる。 The resonant magnetoresistive element according to the present embodiment positively utilizes thermal fluctuations of magnetization that are unavoidable in ferromagnetic materials. That is, the spin fluctuation of conduction electrons caused by the thermal fluctuation of the magnetization of the ferromagnetic layer 9 is injected into the ferromagnetic layer 5 through the nonmagnetic layer 7. Spin fluctuation of the injected conduction electrons, induce magnetic resonance, such as over a sd exchange interaction acts as an effective high frequency magnetic field to exert a spin torque to the ferromagnetic layer 5, a ferromagnetic layer 5 in the threshold current I th or To do. When the external magnetic field changes and the fluctuation spectrum of the magnetization of the ferromagnetic layer 9 changes, the intensity of magnetic resonance induced in the ferromagnetic layer 5 changes. This intensity change depends on the effective electrical resistance of the resonant magnetoresistive element. Is detected as a change. According to such a principle, a device resistance change of several hundreds to several thousand% can be obtained with respect to a change of an external magnetic field of several tens of Oersted (Oe).

このように本実施形態の共鳴磁気抵抗効果素子は微小高感度磁気センサとして機能する。本実施形態の共鳴磁気抵抗効果素子は後に詳述するように強磁性層9および強磁性層5の磁化の熱ゆらぎを利用するため、素子の接合面積(強磁性層5、非磁性層7、強磁性層9間の接合面積)が減少しても、感度およびSN比がほとんど低減しないという特徴を有する。よって、磁気情報再生用磁気ヘッドへ応用した場合には、記録密度が数100Gbpsiから1Tbpsiを超える超高密度記録への対応が可能である。   Thus, the resonant magnetoresistive effect element of this embodiment functions as a minute high-sensitivity magnetic sensor. As will be described in detail later, the resonant magnetoresistive element of the present embodiment uses thermal fluctuations in magnetization of the ferromagnetic layer 9 and the ferromagnetic layer 5, so that the junction area (ferromagnetic layer 5, nonmagnetic layer 7, Even if the junction area between the ferromagnetic layers 9 is reduced, the sensitivity and the SN ratio are hardly reduced. Therefore, when applied to a magnetic head for reproducing magnetic information, it is possible to cope with ultra-high density recording in which the recording density exceeds several hundred Gbpsi to 1 Tbpsi.

本実施形態では、強磁性層の一例として、1Tb/inch対応の読出用磁気ヘッドを想定して強磁性層9は平面積が約30×30nm、厚さが約1nmとした。なお、強磁性層5と非磁性層7も強磁性層9の平面積と同じにすることができる。つまり、本実施形態の共鳴磁気抵抗効果素子の接合面積は、約30×30nmとなる。また、本実施形態では、強磁性層5、非磁性層7および強磁性層9からなる積層膜4は底面が正方形の柱体をなすように形成されており、その四方側面は非磁性絶縁体(図示せず)で囲まれている。この積層膜4の形状は、底面が円の円柱、底面が三角形の三角柱、底面が多角形の多角柱などの他の形状に適宜変形することがきる。 In this embodiment, assuming that a read magnetic head compatible with 1 Tb / inch 2 is assumed as an example of the ferromagnetic layer, the ferromagnetic layer 9 has a plane area of about 30 × 30 nm 2 and a thickness of about 1 nm. The ferromagnetic layer 5 and the nonmagnetic layer 7 can have the same plane area as the ferromagnetic layer 9. That is, the junction area of the resonant magnetoresistive element of this embodiment is about 30 × 30 nm 2 . In this embodiment, the laminated film 4 composed of the ferromagnetic layer 5, the nonmagnetic layer 7, and the ferromagnetic layer 9 is formed so as to form a column with a square bottom surface, and the four side surfaces thereof are nonmagnetic insulators. (Not shown). The shape of the laminated film 4 can be appropriately changed to other shapes such as a circular cylinder with a bottom surface, a triangular prism with a triangular bottom surface, and a polygonal column with a polygonal bottom surface.

強磁性層9の材料として、Fe、Co、Ni及びそれらの合金や、CuMnAl、NiMnIn、CuMnIn、CuMnSn、NiMnSn、CoMnSnなどのホイスラー合金や、Fe、LaSrMnO等の導電性磁性化合物を用いることができる。しかし、後に式で示すように磁化の熱ゆらぎの大きさが磁性体の体積および磁化の平方根に反比例するので磁化が1000G以下で厚さが0.1nm以上3nm以下の強磁性体が好ましい。非磁性層7の材料としては、Al、Pt、Au、Ag、Cu等の貴金属、あるいはCr、Ru、Pd等の非磁性遷移金属等を用いることができる。非磁性層7の厚さは約1nmから数10nm、例えば約5nmとすることができる。非磁性層7は、強磁性層9と強磁性層5との間に働く交換相互作用を遮断し、同時に強磁性層9に発生した伝導電子のスピンゆらぎを強磁性層5へ輸送する役目を担っている。 Examples of the material of the ferromagnetic layer 9 include Fe, Co, Ni, and alloys thereof, Heusler alloys such as Cu 2 MnAl, Ni 2 MnIn, Cu 2 MnIn, Cu 2 MnSn, Ni 2 MnSn, and Co 2 MnSn, Fe 3 Conductive magnetic compounds such as O 4 and LaSrMnO 3 can be used. However, since the magnitude of the thermal fluctuation of the magnetization is inversely proportional to the volume of the magnetic material and the square root of the magnetization as will be shown later, a ferromagnetic material having a magnetization of 1000 G or less and a thickness of 0.1 nm to 3 nm is preferable. As a material of the nonmagnetic layer 7, a noble metal such as Al, Pt, Au, Ag, or Cu, or a nonmagnetic transition metal such as Cr, Ru, or Pd can be used. The thickness of the nonmagnetic layer 7 can be about 1 nm to several tens of nm, for example, about 5 nm. The nonmagnetic layer 7 serves to block the exchange interaction between the ferromagnetic layer 9 and the ferromagnetic layer 5 and simultaneously transport the spin fluctuation of the conduction electrons generated in the ferromagnetic layer 9 to the ferromagnetic layer 5. I'm in charge.

強磁性層5の材料として、例えば六方晶系のCoなどを用いることができる。Coを用いた場合、下地金属の種類や膜厚を制御することによりその垂直異方性磁場(垂直異方性定数)を変化させることができる。強磁性層9が発生する数GHz〜数10GHzの磁気ゆらぎに共鳴するためには垂直異方性磁場の大きさが1kOe以上であることが望ましい。強磁性層5の材料としてCo以外では、CoCrTa,CoCrTaPt,CoCrTaNbなどのCoCr系合金、Co/Pd,Co/Pt,Co−Cr−Ta/PdなどのCo多層膜、CoCrPt系合金、FePt系合金、さらに希土類を含むSmCo系合金やTbFeCo合金などが利用できる。また強磁性層5の厚さは後に述べる理由により0.1以上3nm以下が好ましい。   As the material of the ferromagnetic layer 5, for example, hexagonal Co can be used. When Co is used, the vertical anisotropy magnetic field (vertical anisotropy constant) can be changed by controlling the type and film thickness of the underlying metal. In order to resonate with magnetic fluctuations of several GHz to several tens of GHz generated by the ferromagnetic layer 9, the magnitude of the perpendicular anisotropic magnetic field is desirably 1 kOe or more. Other than Co as the material of the ferromagnetic layer 5, CoCr alloys such as CoCrTa, CoCrTaPt, and CoCrTaNb, Co multilayer films such as Co / Pd, Co / Pt, and Co—Cr—Ta / Pd, CoCrPt alloys, and FePt alloys Furthermore, rare earth-containing SmCo alloys and TbFeCo alloys can be used. The thickness of the ferromagnetic layer 5 is preferably 0.1 to 3 nm for the reason described later.

下部電極3および上部電極11の材料には、Al、Cu、Au、Ag、Ru等の金属を使用する。特にCoを強磁性層5として用いる場合にはRuを用いることが好ましい。また、下部電極3および上部電極11が磁気シールドを兼ねる場合には、上記の金属からなる膜とNiFe等の公知のシールド材料膜とのを積層膜を形成する。なお、基板1にはシリコンやSiO・Al・TiCなどの非磁性絶縁体の基板など、一般に磁気素子を形成するに適した基板材料を用いる。 As the material of the lower electrode 3 and the upper electrode 11, a metal such as Al, Cu, Au, Ag, Ru is used. In particular, when Co is used as the ferromagnetic layer 5, it is preferable to use Ru. When the lower electrode 3 and the upper electrode 11 also serve as a magnetic shield, a laminated film is formed of the above-described metal film and a known shield material film such as NiFe. For the substrate 1, a substrate material generally suitable for forming a magnetic element, such as a substrate of nonmagnetic insulator such as silicon or SiO 2 / Al 2 O 3 / TiC, is used.

次に、強磁性層9における磁化の熱ゆらぎについて説明する。図2(a)は、強磁性層9の熱ゆらぎのパワースペクトルS<mt>を模式的に示した図である。図2(b)は、強磁性層9の膜面内の磁化成分を示しており、Msは強磁性層9の飽和磁化、Mtは強磁性層9の磁化の飽和磁化と直交する横成分である。Mtと飽和磁化Msとの比であるmtは強磁性層9の磁化の熱ゆらぎの角度(radian)を表している。温度T(Kelvin)における強磁性層9の磁化の熱ゆらぎは、mt(=Mt/Ms)の二乗平均<mt 2>のパワースペクトルS<mt>を用いて近似的に(1)式のように表される。

Figure 0005032009
Next, the thermal fluctuation of magnetization in the ferromagnetic layer 9 will be described. FIG. 2A is a diagram schematically showing a power spectrum S <mt> of thermal fluctuation of the ferromagnetic layer 9. FIG. 2B shows the magnetization component in the film surface of the ferromagnetic layer 9, where M s is the saturation magnetization of the ferromagnetic layer 9, and M t is the transverse magnetization perpendicular to the saturation magnetization of the magnetization of the ferromagnetic layer 9. It is an ingredient. Which is the ratio of the M t and the saturation magnetization M s m t represents the angle (radian) of the thermal fluctuation of the magnetization of the ferromagnetic layer 9. The thermal fluctuation of the magnetization of the ferromagnetic layer 9 at the temperature T (Kelvin) is approximately (1) using the power spectrum S <mt> of the root mean square <m t 2 > of m t (= M t / M s ). )
Figure 0005032009

(1)式中、χ"FMは強磁性層9の高周波帯磁率の虚数部、VFMは強磁性層9の体積、αは強磁性層9のギルバートの減衰係数、γ(=19×10rad/sOe)はジャイロ磁気比、fFMは強磁性層9の共鳴周波数、Hは強磁性層9が受ける外部磁場、HKは強磁性層9の異方性磁場である。(1)式および図2(a)から、外部磁場周波数fが共鳴周波数fFM近傍において、高周波帯磁率χ"FMが増大し、強磁性層9の磁化ゆらぎのパワースペクトルS<mt>も増大することが分かる。S<mt>のピーク周波数fFMでの値は体積VFMおよび飽和磁化Msに反比例する。強磁性層9として体積VFMが約30×30×1nmのパーマロイ(飽和磁化M=800Gauss)を用いた場合、共鳴周波数f=10GHz、ギルバートの減衰係数α=0.01とすると、外部磁場の周波数f=fFM、バンド幅Δfにおける強磁性層9の磁化の熱ゆらぎ<mt 21/2は(2)式のようになる。

Figure 0005032009
In the equation (1), χ ″ FM is the imaginary part of the high-frequency magnetic susceptibility of the ferromagnetic layer 9, V FM is the volume of the ferromagnetic layer 9, α is the Gilbert attenuation coefficient of the ferromagnetic layer 9, and γ (= 19 × 10 6 rad / SOE) is the gyromagnetic ratio, f FM is the resonant frequency of the ferromagnetic layer 9, H is the external magnetic field, H K of the ferromagnetic layer 9 undergoes an anisotropy field of the ferromagnetic layer 9. (1) From the equation and FIG. 2A, when the external magnetic field frequency f is in the vicinity of the resonance frequency f FM , the high-frequency magnetic susceptibility χ ″ FM increases and the power spectrum S <mt> of the magnetization fluctuation of the ferromagnetic layer 9 also increases. I understand. The value of S <mt> at the peak frequency f FM is inversely proportional to the volume V FM and the saturation magnetization M s . When a permalloy (saturated magnetization M s = 800 Gauss) having a volume V FM of about 30 × 30 × 1 nm 3 is used as the ferromagnetic layer 9, assuming that the resonance frequency f 0 = 10 GHz and Gilbert's attenuation coefficient α = 0.01, The thermal fluctuation <m t 2 > 1/2 of the magnetization of the ferromagnetic layer 9 at the frequency f = f FM of the external magnetic field and the bandwidth Δf is expressed by equation (2).
Figure 0005032009

ここで、バンド幅Δfは強磁性層9の共鳴線の全半値幅であって

Figure 0005032009
と表され、Δf=5.6×10Hzである。 Here, the bandwidth Δf is the full width at half maximum of the resonance line of the ferromagnetic layer 9.
Figure 0005032009
And Δf = 5.6 × 10 8 Hz.

このような磁化のゆらぎを持つ強磁性層9の中の伝導電子には、強磁性層9の磁化の熱ゆらぎに起因するスピンゆらぎが生じる。このスピンゆらぎを持つ伝導電子は、強磁性層9/非磁性層7/強磁性層5からなる積層膜4に流れる電流により輸送されて非磁性層7を通過して強磁性層5に注入される。注入された伝導電子のスピンゆらぎは、sd交換相互作用などを介して強磁性層5に高周波トルク(実効高周波磁場)を及ぼし、強磁性層5に磁気共鳴を誘起する。スピンsが磁性体に及ぼすトルクは(3)式で表される。

Figure 0005032009
In the conduction electrons in the ferromagnetic layer 9 having such magnetization fluctuations, spin fluctuations caused by thermal fluctuations in the magnetization of the ferromagnetic layer 9 occur. The conduction electrons having the spin fluctuation are transported by the current flowing through the laminated film 4 composed of the ferromagnetic layer 9 / nonmagnetic layer 7 / ferromagnetic layer 5, pass through the nonmagnetic layer 7 and injected into the ferromagnetic layer 5. The The spin fluctuation of the injected conduction electrons applies a high frequency torque (effective high frequency magnetic field) to the ferromagnetic layer 5 through sd exchange interaction and the like, and induces magnetic resonance in the ferromagnetic layer 5. The torque that the spin s exerts on the magnetic material is expressed by equation (3).
Figure 0005032009

(3)式において太字のMは強磁性層5の磁化ベクトルであり、Mハットおよびsハットは磁化ベクトルMおよびスピンs方向の単位ベクトルである。h=(h +h 1/2は実効磁場の大きさである。hは電流密度j、電流のスピン分極率p、強磁性層5の厚さd、および磁化ベクトルの大きさである磁化Mに依存する。厚さdが薄いほど、また磁化Mが小さいほどhは大きくなるので厚さdは0.1nm以上3nm以下、磁化Mは1000G以下とすることが望ましい。電流のスピン分極率pは0.8程度であり、d=1nm、M=1000Gでは、j(A/cm)の電流密度の下でh=10−4j(Oe)程度である。 In equation (3), bold M is a magnetization vector of the ferromagnetic layer 5, and M hat and s hat are a magnetization vector M and a unit vector in the spin s direction. h = (h 1 2 + h 2 2 ) 1/2 is the magnitude of the effective magnetic field. h depends on the current density j, the spin polarizability p of the current, the thickness d of the ferromagnetic layer 5, and the magnetization M which is the magnitude of the magnetization vector. As the thickness d is thinner and the magnetization M is smaller, h becomes larger. Therefore, it is desirable that the thickness d is 0.1 nm or more and 3 nm or less, and the magnetization M is 1000 G or less. The spin polarizability p of the current is about 0.8, and when d = 1 nm and M = 1000 G, h = 10 −4 j (Oe) at a current density of j (A / cm 2 ).

(3)式からスピンゆらぎ<m >によって生じる高周波磁場のパワースペクトルはG(f)=h<mt>となる。 From the equation (3), the power spectrum of the high-frequency magnetic field generated by the spin fluctuation <m t 2 > is G (f) = h 2 S <mt> .

強磁性層5の帯磁率の虚数部は(4)式で表される。

Figure 0005032009
The imaginary part of the magnetic susceptibility of the ferromagnetic layer 5 is expressed by equation (4).
Figure 0005032009

(4)式においてfは強磁性層5の共鳴周波数、HAは異方性磁場、α´は強磁性層5のギルバートの減衰定数であり、H−4πM=3500(Oe)のCoを強磁性層5に用いた場合f≒10GHzとなる。 In Equation (4), f 0 is the resonance frequency of the ferromagnetic layer 5, H A is the anisotropic magnetic field, α ′ is the Gilbert damping constant of the ferromagnetic layer 5, and Co of H A −4πM = 3500 (Oe) Is used for the ferromagnetic layer 5, f 0 ≈10 GHz.

通常の強磁性共鳴の場合ように磁化の向きが膜面に垂直な強磁性層5の磁化の熱ゆらぎが小さく無視できる場合には、強磁性層5および強磁性層9の共鳴周波数が等しければ上述の高周波磁場はその大きさにかかわらず強磁性層5に磁気共鳴を誘起することができる。しかしながら現在の素子では強磁性層5の熱ゆらぎは大きく、強磁性層9の熱ゆらぎと同程度である。強磁性層9および強磁性層5における磁化の熱ゆらぎには位相の相関がなく、また位相の相関時間も1/(αfFM)=1/(α'fPFM)程度なので、高周波磁場が小さい場合には時間平均するとエネルギーの吸収は生じない。しかしながら電流が増加するとそれに比例して高周波磁場が増大するため、強磁性層5の磁化Mの運動は高周波磁場に支配されるようになり、ついには高周波磁場と同位相になりエネルギー吸収が生じる。h=h・jとすると、強磁性層9および強磁性層5の厚さが等しい場合、共鳴吸収が生じる閾値電流密度は(5)式で表される。

Figure 0005032009
When the thermal fluctuation of the magnetization of the ferromagnetic layer 5 whose direction of magnetization is perpendicular to the film surface is small and can be ignored as in the case of normal ferromagnetic resonance, the resonance frequency of the ferromagnetic layer 5 and the ferromagnetic layer 9 should be equal. The above-described high-frequency magnetic field can induce magnetic resonance in the ferromagnetic layer 5 regardless of its magnitude. However, in the present element, the thermal fluctuation of the ferromagnetic layer 5 is large and is about the same as the thermal fluctuation of the ferromagnetic layer 9. The thermal fluctuation of magnetization in the ferromagnetic layer 9 and the ferromagnetic layer 5 has no phase correlation, and the phase correlation time is also about 1 / (αf FM ) = 1 / (α′f PFM ), so the high frequency magnetic field is small. In some cases, no energy absorption occurs when time averaged. However, when the current increases, the high-frequency magnetic field increases in proportion thereto, so that the movement of the magnetization M of the ferromagnetic layer 5 is dominated by the high-frequency magnetic field, and finally becomes in phase with the high-frequency magnetic field and energy absorption occurs. When h = h 0 · j, when the thicknesses of the ferromagnetic layer 9 and the ferromagnetic layer 5 are equal, the threshold current density at which resonance absorption occurs is expressed by equation (5).
Figure 0005032009

p=0.8、M=1000G、d=1nmの場合h=1.4×10−4Oe/(A/cm)と見積もられるので、臨界電流密度jthは、jth=2.8×10A/cmとなる。hは磁性層の膜厚に反比例するので膜厚が薄いほど低い閾値電流密度で共鳴吸収を起こすことができる。hが膜厚に依存するため閾値電流は強磁性層9および強磁性層5の厚さには依存するが、(5)式から分かるように素子面積に依存しない。 In the case of p = 0.8, M = 1000 G, and d = 1 nm, it is estimated that h 0 = 1.4 × 10 −4 Oe / (A / cm 2 ), so that the critical current density j th is j th = 2. 8 × 10 4 A / cm 2 . h 0 can cause a resonance absorption at a low threshold current density as a thin film thickness is inversely proportional to the thickness of the magnetic layer. The threshold current for the h 0 is dependent on the film thickness depends on the thickness of the ferromagnetic layer 9 and the ferromagnetic layer 5, but does not depend on the element area as seen from the equation (5).

電流密度jが臨界電流密度jth以上では強磁性層5のゆらぎは強磁性層9のゆらぎと同位相になっているので、この高周波トルクにより強磁性層9のゆらぎはさらに増大する。すなわちj>jthでは強磁性層5の磁化と強磁性層9の磁化の運動の間に正帰還ループが形成され、ゆらぎの振幅は磁化の大きさMとほぼ等しくなるまで増大する。 Since the current density j is a critical current density j th least fluctuation of the ferromagnetic layer 5 is in the same phase and fluctuations of the ferromagnetic layer 9, the fluctuation of the ferromagnetic layer 9 by the high-frequency torque further increases. That is, when j> j th , a positive feedback loop is formed between the magnetization of the ferromagnetic layer 5 and the magnetization movement of the ferromagnetic layer 9, and the amplitude of the fluctuation increases until it becomes substantially equal to the magnitude M of the magnetization.

電流密度jが臨海電流密度jth以上での強磁性層5での共鳴吸収パワーは(6)式で評価することができる。

Figure 0005032009
The resonance absorption power in the ferromagnetic layer 5 when the current density j is equal to or greater than the sea current density jth can be evaluated by the equation (6).
Figure 0005032009

M=1000G、VPFM =30×30×1nm、h=1.4×10−4×j O
eを代入するとj=jth=2.8×10A/cmにおける吸収はWPFM=1.1×10−4erg/s=1.1×10−11ワットとなる。強磁性層5のゆらぎに伴う高周波トルクが強磁性層9に作用する効果を取り入れて、強磁性層9における同量の吸収を加えると素子全体の吸収WとしてW=2.2×10−11ワットが得られる。素子電圧および抵抗は、素子の平面積がA=30×30nmであるから、I≒Ith=jth・A=2.5×10−7AにおいてそれぞれΔV=W/Ith=0.88×10−4VおよびΔR=ΔV/Ith=350Ωとなる。I>Ithにおいて吸収パワーはW=8.8×10−5Iのように電流に比例して増大するのでΔVは一定のままである。非共鳴時の抵抗Rは界面抵抗を1.0×10−11Ωcm、平均的バルク抵抗を5×10−6Ωcmとすると約5Ωなので、ΔR(Ith)/R〜70(7000%)となる。
M = 1000G, V PFM = 30 × 30 × 1 nm 3 , h = 1.4 × 10 −4 × j O
Substituting e, the absorption at j = j th = 2.8 × 10 4 A / cm 2 is WPFM = 1.1 × 10 −4 erg / s = 1.1 × 10 −11 watts. Taking in the effect that the high frequency torque accompanying the fluctuation of the ferromagnetic layer 5 acts on the ferromagnetic layer 9 and adding the same amount of absorption in the ferromagnetic layer 9, W = 2.2 × 10 −11 as the absorption W of the entire element. Watts are obtained. The element voltage and resistance are such that the plane area of the element is A = 30 × 30 nm 2 , and therefore , ΔV = W / I th = 0.I at I≈I th = j th · A = 2.5 × 10 −7 A. 88 × 10 −4 V and ΔR = ΔV / I th = 350Ω. Absorbing power at I> I th remains ΔV is constant because increases in proportion to the current as W = 8.8 × 10 -5 I. The resistance R 0 at non-resonance is about 5Ω when the interface resistance is 1.0 × 10 −11 Ωcm 2 and the average bulk resistance is 5 × 10 −6 Ωcm, so ΔR (I th ) / R 0 to 70 (7000) %).

(1)式から外部磁場の変化δHにより、微小磁性体のゆらぎのパワースペクトルのピーク周波数fFMは(7)式のように変化するが、垂直磁化膜の共鳴周波数はH<<H=3500Oeではほとんど変化しない。

Figure 0005032009
From the expression (1), the peak frequency f FM of the fluctuation power spectrum of the micromagnetic material changes as shown in the expression (7) due to the change δH of the external magnetic field, but the resonance frequency of the perpendicular magnetization film is H << HA = Almost no change at 3500 Oe.
Figure 0005032009

すなわち素子は外部磁場を印加することにより共鳴状態から非共鳴状態へと変化し、出力電圧ΔVは減少する。   That is, the element changes from a resonance state to a non-resonance state by applying an external magnetic field, and the output voltage ΔV decreases.

本実施形態の共鳴磁気抵抗効果素子の特性を図3に示す。外部磁場が変化し共鳴磁気抵抗効果素子が共鳴状態から非共鳴状態に変化すると、点線で示したように閾値電流が変化し、矢印で示したように出力電圧が大きく変化する。   The characteristics of the resonant magnetoresistive element of this embodiment are shown in FIG. When the external magnetic field changes and the resonant magnetoresistive element changes from the resonance state to the non-resonance state, the threshold current changes as indicated by the dotted line, and the output voltage changes significantly as indicated by the arrow.

本実施形態の共鳴磁気抵抗効果素子は磁化の熱ゆらぎを利用しているが、その特性は強磁性層9および磁化の向きが膜面に垂直な強磁性層5における熱ゆらぎの相対的大きさに依存する。このため、それぞれの膜が単磁区構造を有する限り素子サイズには依存せず機能する。しかしながら、磁性体のサイズが小さいほど単磁区構造の磁性層は得られやすいため、1μm以下の素子サイズであることが望ましい。また熱ゆらぎのカットオフ周波数kT/h(k:ボルツマン定数、T:温度、h:プランク定数)が共鳴周波数に比べて十分高い温度範囲では特性の温度依存性は小さいので、一般に熱ゆらぎが小さくなる低温においても動作する。 The resonant magnetoresistive element of this embodiment uses thermal fluctuations of magnetization, and the characteristics thereof are the relative magnitude of thermal fluctuations in the ferromagnetic layer 9 and the ferromagnetic layer 5 in which the magnetization direction is perpendicular to the film surface. Depends on. For this reason, as long as each film has a single domain structure, it functions independently of the element size. However, since as the size of the magnetic material is small magnetic layer of a single-domain structure can be easily obtained, it is desirable that the element size of 1 [mu] m 2 or less. In addition, in the temperature range where the cutoff frequency kT / h (k: Boltzmann constant, T: temperature, h: Planck constant) of the thermal fluctuation is sufficiently higher than the resonance frequency, the temperature dependence of the characteristics is small, so the thermal fluctuation is generally small. It operates even at low temperatures.

次に、本実施形態による共鳴磁気抵抗効果素子の電気的、磁気的ノイズについて述べる。図1に示す共鳴磁気抵抗効果素子は多数の強磁性体と非磁性体の界面を含むが、素子にかかる全電圧V0は数mV程度なので、eV0<<kTの関係が成り立ち、電気的ノイズとしては(8)式で表される熱雑音velが支配的となる。

Figure 0005032009
Next, electrical and magnetic noise of the resonant magnetoresistive element according to the present embodiment will be described. The resonant magnetoresistive element shown in FIG. 1 includes a large number of ferromagnetic and nonmagnetic interfaces. However, since the total voltage V 0 applied to the element is about several mV, the relationship of eV 0 << kT is established, As the noise, the thermal noise vel expressed by the equation (8) becomes dominant.
Figure 0005032009

ここでBはバンド幅である。またこの素子の磁気的白色雑音は0.1μV以下となり無視することができる。B=300MHz、R=5Ω、ΔV=0.1mVの場合、SN比(SNR)は、SNR=ΔV/velと表され、SNR=20(26dB)となる。 Here, B is a bandwidth. The magnetic white noise of this element is 0.1 μV or less and can be ignored. B = 300MHz, R 0 = 5Ω , if the [Delta] V = 0.1 mV, SN ratio (SNR) is expressed as SNR = ΔV / v el, the SNR = 20 (26dB).

以上説明したように、本実施形態によれば、磁気的白色雑音を可及的に抑制することができる。   As described above, according to the present embodiment, magnetic white noise can be suppressed as much as possible.

なお、本実施形態の共鳴磁気抵抗効果素子を磁気ヘッドの再生素子として用いる場合は、図8に示すように、強磁性層5、非磁性層7および強磁性層9からなる積層膜4の側部に水平磁化バイアス膜20を設けることが必要となる。   When the resonant magnetoresistive element of this embodiment is used as a reproducing element of a magnetic head, as shown in FIG. 8, the side of the laminated film 4 composed of the ferromagnetic layer 5, the nonmagnetic layer 7, and the ferromagnetic layer 9 is used. It is necessary to provide the horizontal magnetization bias film 20 in the part.

(第2実施形態)
第1実施形態では強磁性層9と磁化の向きが膜面に実質的に垂直な強磁性層5がそれぞれ単層であって、非磁性層7を介して形成された積層膜4を1個有する共鳴磁気抵抗効果素子であった。
(Second Embodiment)
In the first embodiment, the ferromagnetic layer 9 and the ferromagnetic layer 5 whose magnetization direction is substantially perpendicular to the film surface are each a single layer, and one laminated film 4 formed via the nonmagnetic layer 7 is provided. It was a resonance magnetoresistive effect element.

本実施形態の共鳴磁気抵抗効果素子は、第1実施形態の積層膜4を複数個積層した構造を有している。第1実施形態の積層膜を複数個積層することにより磁化の向きが膜面に実質的に平行な強磁性層によって生じたスピンゆらぎが磁化の向きが膜面に垂直な強磁性層に順次、共鳴を誘起することにより、より大きな出力電圧ΔVを得ることができる。図4(a)に示すように、磁化の向きが膜面に実質的に垂直な強磁性層5と、磁化の向きが膜面に実質的に平行な強磁性層9を非磁性層7を介して交互に積層することが好ましいが、図4(b)に示すように磁化の向きが膜面に実質的に平行な2層の強磁性層9の間に、磁化の向きが膜面に実質的に垂直な強磁性層5を非磁性層7を介して複数層積層しても出力電圧を第1実施形態に比べて大きくすることができる。   The resonant magnetoresistive effect element according to the present embodiment has a structure in which a plurality of stacked films 4 according to the first embodiment are stacked. By laminating a plurality of the laminated films of the first embodiment, spin fluctuations caused by the ferromagnetic layer whose magnetization direction is substantially parallel to the film surface are sequentially applied to the ferromagnetic layer whose magnetization direction is perpendicular to the film surface. By inducing resonance, a larger output voltage ΔV can be obtained. As shown in FIG. 4A, a ferromagnetic layer 5 whose magnetization direction is substantially perpendicular to the film surface, a ferromagnetic layer 9 whose magnetization direction is substantially parallel to the film surface, and a nonmagnetic layer 7 However, as shown in FIG. 4B, the magnetization direction is between the two ferromagnetic layers 9 substantially parallel to the film surface and the magnetization direction is on the film surface. Even when a plurality of substantially perpendicular ferromagnetic layers 5 are laminated via the nonmagnetic layer 7, the output voltage can be increased as compared with the first embodiment.

この実施形態も、第1実施形態と同様に磁気的白色雑音を可及的に抑制することができる。   This embodiment can also suppress magnetic white noise as much as possible as in the first embodiment.

(第3実施形態)
次に、本発明の第3実施形態による共鳴磁気抵抗効果素子を図9を参照して説明する。本実施形態の共鳴磁気抵抗効果素子は、第1または第2実施形態の共鳴磁気抵抗効果素子において、強磁性層9と上部電極11との間に垂直磁化バイアス膜22を設けた構成となっている。
(Third embodiment)
Next, a resonant magnetoresistive element according to a third embodiment of the invention will be described with reference to FIG. The resonant magnetoresistive element of this embodiment has a configuration in which a perpendicular magnetization bias film 22 is provided between the ferromagnetic layer 9 and the upper electrode 11 in the resonant magnetoresistive element of the first or second embodiment. Yes.

第1、第2の実施形態においては、強磁性層5の面内に印加された外部磁場の変化を(7)式で示される強磁性層5の共鳴周波数の変化として検知するが、第3実施形態では強磁性層9の共鳴周波数の変化として検出する。磁化が垂直な強磁性層5の共鳴周波数の磁場変化は形状異方性磁場4πMと膜面に垂直方向の結晶異方性磁場Hとの差が小さいほど大きい。このため、本実施形態の共鳴磁気抵抗効果素子をセンサとして用いる場合は0Oe≦(H−4πM )≦500Oeであることが望ましい。また強磁性層9についても形状異方性磁場4πMと膜面に垂直方向の結晶異方性磁場HA1との差を小さくすることにより、膜面に垂直方向の磁場変化を検知することができるが、高い感度を持つためには0Oe≦(4πM−HA1)≦500Oeであることが望ましい。この場合、垂直磁化バイアス膜22からのバイアス磁場により磁性層9の磁化の方向を膜面に実質的に垂直に向けた状態でセンサとして機能させることにより、さらに高い感度が得られる。 In the first and second embodiments, a change in the external magnetic field applied in the plane of the ferromagnetic layer 5 is detected as a change in the resonance frequency of the ferromagnetic layer 5 expressed by equation (7). In the embodiment, it is detected as a change in the resonance frequency of the ferromagnetic layer 9. Magnetization is greater the smaller the difference between the vertical direction of the crystal anisotropy field H A in magnetic field change the shape anisotropy field 4πM the film surface of the resonant frequency of the vertical ferromagnetic layer 5. For this reason, when the resonant magnetoresistive element of this embodiment is used as a sensor, 0 Oe ≦ ( HA −4πM ) ≦ 500 Oe. In the ferromagnetic layer 9 as well, the magnetic field change in the direction perpendicular to the film surface can be detected by reducing the difference between the shape anisotropy field 4πM s and the crystal anisotropy magnetic field H A1 in the direction perpendicular to the film surface. However, in order to have high sensitivity, it is desirable that 0Oe ≦ (4πM s −H A1 ) ≦ 500 Oe. In this case, higher sensitivity can be obtained by causing the magnetic layer 9 to function as a sensor in a state in which the magnetization direction of the magnetic layer 9 is substantially perpendicular to the film surface by the bias magnetic field from the perpendicular magnetization bias film 22.

なお、本実施形態においては、強磁性層9と上部電極11との間に垂直磁化バイアス膜22を設けたが、図10に示すように、強磁性層5、非磁性層7および強磁性層9の積層膜4の側部に垂直磁化バイアス膜24を設けてもよい。   In this embodiment, the perpendicular magnetization bias film 22 is provided between the ferromagnetic layer 9 and the upper electrode 11. However, as shown in FIG. 10, the ferromagnetic layer 5, the nonmagnetic layer 7, and the ferromagnetic layer are provided. The perpendicular magnetization bias film 24 may be provided on the side of the laminated film 4.

(第4実施形態)
次に、本発明の第4実施形態による磁気記録再生装置について説明する。図1乃至図10に関して説明した第1乃至第3実施形態による共鳴磁気抵抗効果素子を再生素子として備えた磁気ヘッドは、例えば、記録再生一体型の磁気ヘッドアセンブリに組み込まれ、磁気記録再生装置に搭載することができる。
(Fourth embodiment)
Next explained is a magnetic recording / reproducing apparatus according to the fourth embodiment of the invention. A magnetic head provided with the resonant magnetoresistive effect element according to the first to third embodiments described with reference to FIGS. 1 to 10 as a reproducing element is incorporated into a recording / reproducing integrated magnetic head assembly, for example, in a magnetic recording / reproducing apparatus. Can be installed.

図11は、このような磁気記録再生装置の概略構成を例示する要部斜視図である。すなわち、本実施形態による磁気記録再生装置150は、ロータリーアクチュエータを用いた形式の装置である。同図において、長手記録用または垂直記録用磁気ディスク200は、スピンドル152に装着され、図示しない駆動装置制御部からの制御信号に応答する図示しないモータにより矢印Aの方向に回転する。磁気ディスク200は、長手記録用または垂直記録用の記録層を有する。磁気ディスク200は、磁気ディスク200に格納される情報の記録再生を行うヘッドスライダ153は、薄膜状のサスペンション154の先端に取り付けられている。ここで、ヘッドスライダ153は、前述したいずれかの実施形態による共鳴磁気抵抗効果素子を再生素子として備えた磁気ヘッドをその先端付近に搭載している。   FIG. 11 is a perspective view of a main part illustrating the schematic configuration of such a magnetic recording / reproducing apparatus. That is, the magnetic recording / reproducing apparatus 150 according to the present embodiment is an apparatus using a rotary actuator. In the figure, a magnetic disk 200 for longitudinal recording or perpendicular recording is mounted on a spindle 152 and rotated in the direction of arrow A by a motor (not shown) that responds to a control signal from a drive device control unit (not shown). The magnetic disk 200 has a recording layer for longitudinal recording or perpendicular recording. In the magnetic disk 200, a head slider 153 that records and reproduces information stored in the magnetic disk 200 is attached to the tip of a thin film suspension 154. Here, the head slider 153 has a magnetic head equipped with the resonant magnetoresistive element according to any one of the above-described embodiments as a reproducing element mounted near the tip thereof.

磁気ディスク200が回転すると、ヘッドスライダ153の媒体走行面(ABS)は磁気ディスク200の表面から所定の浮上量をもって保持される。   When the magnetic disk 200 rotates, the medium running surface (ABS) of the head slider 153 is held with a predetermined flying height from the surface of the magnetic disk 200.

サスペンション154は、図示しない駆動コイルを保持するボビン部などを有するアクチュエータアーム155の一端に接続されている。アクチュエータアーム155の他端には、リニアモータの一種であるボイスコイルモータ156が設けられている。ボイスコイルモータ156は、アクチュエータアーム155のボビン部に巻き上げられた図示しない駆動コイルと、このコイルを挟み込むように対向して配置された永久磁石および対向ヨークからなる磁気回路とから構成される。   The suspension 154 is connected to one end of an actuator arm 155 having a bobbin portion for holding a drive coil (not shown). A voice coil motor 156, which is a kind of linear motor, is provided at the other end of the actuator arm 155. The voice coil motor 156 is composed of a drive coil (not shown) wound around the bobbin portion of the actuator arm 155, and a magnetic circuit composed of a permanent magnet and a counter yoke arranged so as to sandwich the coil.

アクチュエータアーム155は、固定軸157の上下2箇所に設けられた図示しないボールベアリングによって保持され、ボイスコイルモータ156により回転摺動が自在にできるようになっている。   The actuator arm 155 is held by ball bearings (not shown) provided at two locations above and below the fixed shaft 157, and can be freely rotated and slid by a voice coil motor 156.

図12は、アクチュエータアーム155から先の磁気ヘッドアセンブリをディスク側から眺めた拡大斜視図である。すなわち、磁気ヘッドアッセンブリ160は、例えば駆動コイルを保持するボビン部などを有するアクチュエータアーム155を有し、アクチュエータアーム155の一端にはサスペンション154が接続されている。   FIG. 12 is an enlarged perspective view of the magnetic head assembly ahead of the actuator arm 155 as viewed from the disk side. That is, the magnetic head assembly 160 includes an actuator arm 155 having, for example, a bobbin portion that holds a drive coil, and a suspension 154 is connected to one end of the actuator arm 155.

サスペンション154の先端には、前述したいずれかの磁気ヘッドを具備するヘッドスライダ153が取り付けられている。再生用ヘッドを組み合わせても良い。サスペンション154は信号の書き込みおよび読み取り用のリード線164を有し、このリード線164とヘッドスライダ153に組み込まれた磁気ヘッドの各電極とが電気的に接続されている。図中165は磁気ヘッドアッセンブリ160の電極パッドである。   A head slider 153 including any of the magnetic heads described above is attached to the tip of the suspension 154. A reproducing head may be combined. The suspension 154 has a lead wire 164 for writing and reading signals, and the lead wire 164 and each electrode of the magnetic head incorporated in the head slider 153 are electrically connected. In the figure, reference numeral 165 denotes an electrode pad of the magnetic head assembly 160.

次に、本発明の実施例を説明する。   Next, examples of the present invention will be described.

(実施例1)
次に、本発明の実施例1による共鳴磁気抵抗効果素子の構成を図5に示す。図5は本実施例の構成を示す断面図である。本実施例の共鳴磁気抵抗効果素子は以下のように作製される。
Example 1
Next, the configuration of the resonant magnetoresistive element according to Example 1 of the present invention is shown in FIG. FIG. 5 is a cross-sectional view showing the configuration of this embodiment. The resonant magnetoresistive element of the present example is manufactured as follows.

スパッタ成膜と電子線リソグラフィーを用いてサファイア基板1上に積層膜を形成した。この積層膜は、基板1側から順に、Ruからなる非磁性層3、Coからなる強磁性層5、Cuからなる非磁性層7、Feからなる強磁性層9、Cuからなる非磁性層13、Taからなる非磁性層15、Cuからなる非磁性層を有する。   A laminated film was formed on the sapphire substrate 1 using sputtering film formation and electron beam lithography. The laminated film includes, in order from the substrate 1 side, a nonmagnetic layer 3 made of Ru, a ferromagnetic layer 5 made of Co, a nonmagnetic layer 7 made of Cu, a ferromagnetic layer 9 made of Fe, and a nonmagnetic layer 13 made of Cu. , Ta nonmagnetic layer 15 and Cu nonmagnetic layer.

各層の厚さは、Ru層3が約100nm、Co層5が約1nm、Cu層7が約10nm、Fe層9が約1nm、Cu層13が約10nm、Ta層15が約20nm、Cu層11が約100nmとした。強磁性のCo層5、Fe層9と非磁性のCu層7、13との各接合面積は約100×100nmとし、層間絶縁膜にはSiOを用いた。 The thickness of each layer is about 100 nm for the Ru layer 3, about 1 nm for the Co layer 5, about 10 nm for the Cu layer 7, about 1 nm for the Fe layer 9, about 10 nm for the Cu layer 13, about 20 nm for the Ta layer 15, Cu layer 11 was about 100 nm. Each junction area of the ferromagnetic Co layer 5 and Fe layer 9 and the nonmagnetic Cu layers 7 and 13 was about 100 × 100 nm 2, and SiO 2 was used for the interlayer insulating film.

Co層5は磁化の向きが膜面に実質的に垂直な強磁性層であり、磁化の向きが膜面に実質的に平行な強磁性層であるFe層9の形成は、約1000Oeの磁場を膜面に平行方向に印加しながら成膜することで磁気的一軸異方性を付与した。Co層5およびFe層9の磁気特性は素子作製と同一条件で作製したRu層3/Co層5/Cu層7からなる積層膜およびCu層7/Fe層9/Cu層13からなる積層膜の磁化測定および強磁性共鳴測定により調べた。Co層5の磁化は920G、膜面に垂直な異方性磁場の大きさは3500Oeであり、Fe層9の磁化は1050G、膜面に平行な異方性磁場の大きさは410Oeであった。   The Co layer 5 is a ferromagnetic layer whose magnetization direction is substantially perpendicular to the film surface, and the formation of the Fe layer 9 which is a ferromagnetic layer whose magnetization direction is substantially parallel to the film surface is a magnetic field of about 1000 Oe. Magnetic uniaxial anisotropy was imparted by applying the film in a direction parallel to the film surface. The magnetic characteristics of the Co layer 5 and the Fe layer 9 are a laminated film made of Ru layer 3 / Co layer 5 / Cu layer 7 and a laminated film made of Cu layer 7 / Fe layer 9 / Cu layer 13 prepared under the same conditions as the element production. Was measured by magnetization measurement and ferromagnetic resonance measurement. The magnetization of the Co layer 5 was 920 G, the magnitude of the anisotropic magnetic field perpendicular to the film surface was 3500 Oe, the magnetization of the Fe layer 9 was 1050 G, and the magnitude of the anisotropic magnetic field parallel to the film surface was 410 Oe. .

Co層5の共鳴周波数は9.8GHzであり、Fe層9は膜面内にバイアス磁場を調整することにより共鳴周波数を9.55GHzとした。オフ時の抵抗Rは1Ω、閾値電流は1.4μA、共鳴電圧ΔVは0.12mVであり、オン時の実効抵抗は(ΔV/Ith)+R=87Ωである。この実施例の共鳴磁気抵抗効果素子に2μAの電流を流した状態で外部磁場を印加するとFe層9の共鳴周波数が変化するため図6に示したようにΔVが変化し、磁気センサとして機能することがわかった。 The resonance frequency of the Co layer 5 is 9.8 GHz, and the Fe layer 9 has a resonance frequency of 9.55 GHz by adjusting a bias magnetic field in the film surface. The off-state resistance R 0 is 1Ω, the threshold current is 1.4 μA, the resonance voltage ΔV is 0.12 mV, and the on-state effective resistance is (ΔV / I th ) + R 0 = 87Ω. When an external magnetic field is applied to the resonant magnetoresistive effect element of this embodiment with a current of 2 μA flowing, the resonant frequency of the Fe layer 9 changes, so that ΔV changes as shown in FIG. 6 and functions as a magnetic sensor. I understood it.

(実施例2)
次に、本発明の実施例2による共鳴磁気抵抗効果素子の構成を図7に示す。図7は本実施例の共鳴磁気抵抗効果素子の構成を示す断面図である。本実施例の共鳴磁気抵抗効果素子は、実施例1の強磁性層5、非磁性層7、および強磁性層9の積層構造を2周期積層した構成となっている。本実施例の共鳴磁気抵抗効果素子は以下のように作製される。
(Example 2)
Next, FIG. 7 shows the configuration of a resonant magnetoresistive element according to Example 2 of the present invention. FIG. 7 is a cross-sectional view showing the configuration of the resonant magnetoresistive element of this example. The resonant magnetoresistive effect element of this example has a structure in which the laminated structure of the ferromagnetic layer 5, the nonmagnetic layer 7, and the ferromagnetic layer 9 of Example 1 is laminated for two periods. The resonant magnetoresistive element of the present example is manufactured as follows.

実施例1の場合と同様に、スパッタ成膜と電子線リソグラフィーを用いてサファイア基板1上に積層膜を形成した。この積層膜は、基板1から順にRuからなる非磁性層3、Coからなる強磁性層5、Cuからなる非磁性層7、NiFeからなる強磁性層9、Cuからなる非磁性層7、Coからなる強磁性層5、Cuからなる非磁性層7、NiFeからなる強磁性層9、Cuからなる非磁性層13、Taからなる非磁性層15、およびCuからなる非磁性層11を備えている。 As in the case of Example 1, a laminated film was formed on the sapphire substrate 1 using sputtering film formation and electron beam lithography. This laminated film includes a nonmagnetic layer 3 made of Ru in order from the substrate 1, a ferromagnetic layer 5 1 made of Co, a nonmagnetic layer 7 1 made of Cu, a ferromagnetic layer 9 1 made of NiFe, and a nonmagnetic layer made of Cu. 7, a ferromagnetic layer 5 2 made of Co, a nonmagnetic layer 7 2 made of Cu, a ferromagnetic layer 9 2 made of NiFe, a nonmagnetic layer 13 made of Cu, a nonmagnetic layer 15 made of Ta, and a nonmagnetic layer made of Cu A magnetic layer 11 is provided.

各層の厚さは、Ru層3が約100nm、Co層5、5が約1nm、Cu層7、7、7が約5nm、NiFe層9、9が約1nm、Cu層13が約10nm、Ta層15が約20nm、Cu層11が約100nmとした。素子サイズは約100×100nmとし、層間絶縁膜にはSiOを用いた。 The thickness of each layer, Ru layer 3 is about 100 nm, Co layer 5 1, 5 2 is about 1 nm, Cu layer 7 1, 7, 7 2 of about 5 nm, NiFe layer 9 1, 9 2 of about 1 nm, Cu layer 13 is about 10 nm, Ta layer 15 is about 20 nm, and Cu layer 11 is about 100 nm. The element size was about 100 × 100 nm 2 and SiO 2 was used for the interlayer insulating film.

Co層5、5は磁化の向きが膜面に実質的に垂直な磁性膜であり、磁化の向きが膜面に実質的に平行な磁性膜であるNiFe層9、9の形成は、約1000Oeの磁場を膜面に平行に印加しながら成膜することで磁気的一軸異方性を付与した。Co層5、5およびNiFe層9、9の磁気特性は素子作製と同一条件で作製したRu層3/Co層5/Cu7層の積層膜およびCu層7/NiFe層9/Cu層7の積層膜の磁化測定および強磁性共鳴測定により調べた。Co層5の磁化は920G、膜面に垂直な異方性磁場の大きさは3500Oeであり、NiFe層9の磁化は810G、面内異方性磁場の大きさは220Oeであった。 The Co layers 5 1 and 5 2 are magnetic films whose magnetization direction is substantially perpendicular to the film surface, and the formation of NiFe layers 9 1 and 9 2 that are magnetic films whose magnetization direction is substantially parallel to the film surface. Gave a magnetic uniaxial anisotropy by applying a magnetic field of about 1000 Oe in parallel to the film surface. The magnetic properties of the Co layers 5 1 , 5 2 and the NiFe layers 9 1 , 9 2 are the same as those of the element fabrication: Ru layer 3 / Co layer 5 1 / Cu7 1 layer stack film and Cu layer 7 1 / NiFe layer It investigated by the magnetization measurement and the ferromagnetic resonance measurement of the laminated film of 9 1 / Cu layer 7. Magnetization of the Co layer 5 1 920G, the magnitude of the perpendicular anisotropy field to the film plane is 3500 Oe, the magnetization of the NiFe layer 9 1 810G, the magnitude of the in-plane anisotropy field was 220Oe.

Co層5、5の共鳴周波数は9.8GHzであり、NiFe層9、9は膜面内にバイアス磁場を調整することにより共鳴周波数を9.6GHzとした。オフ時の抵抗Rは1.3Ω、閾値電流は1.8μA、共鳴電圧ΔVは0.21mVであり、オン時の実効抵抗は(ΔV/Ith)+R=118Ωとなり、積層数を増すことにより共鳴電圧を大きくすることができた。 Resonance frequency of the Co layer 5 1, 5 2 is 9.8 GHz, NiFe layer 9 1, 9 2 was 9.6GHz resonant frequency by adjusting a bias magnetic field to the film plane. The off-state resistance R 0 is 1.3Ω, the threshold current is 1.8 μA, the resonance voltage ΔV is 0.21 mV, and the on-state effective resistance is (ΔV / I th ) + R 0 = 118Ω, increasing the number of layers. As a result, the resonance voltage could be increased.

(実施例3)
実施例1と同様な方法で実施例1における厚さ1nmのFe層を厚さ1.2 nmのCo膜(面内磁化膜)で置き換えた以外は同様な構造の素子を作製した。磁化測定からこのCo膜の形状異方性磁場4πMと膜面に垂直方向の結晶異方性磁場HA1との差(4πM−HA1)は350Oeであることが分かった。この素子に500Oeのバイアス磁場を膜面に垂直方向に印加し、厚さ1.2nmのCo層の磁化を膜面垂直にした状態で電流を流したところ、2μA以上で0.15mVの共鳴電圧が観測された。さらにバイアス磁場と逆向きに外部磁場を印加したところ30Oeの磁場印加により共鳴電圧が0.5mVに減少することが観測されこの素子が膜面に垂直方向の磁場に対する磁気センサーとしても機能することが確認された。
(Example 3)
A device having the same structure was produced in the same manner as in Example 1, except that the 1 nm thick Fe layer in Example 1 was replaced with a 1.2 nm thick Co film (in-plane magnetic film). From the magnetization measurement, it was found that the difference (4πM s −H A1 ) between the shape anisotropy field 4πM s of this Co film and the crystal anisotropy field H A1 perpendicular to the film surface was 350 Oe. When a bias magnetic field of 500 Oe was applied to this element in a direction perpendicular to the film surface, and a current was passed with the magnetization of the Co layer having a thickness of 1.2 nm perpendicular to the film surface, a resonance voltage of 0.15 mV at 2 μA or more. Was observed. Furthermore, when an external magnetic field was applied in the direction opposite to the bias magnetic field, it was observed that the resonance voltage was reduced to 0.5 mV by applying a magnetic field of 30 Oe, and this element can also function as a magnetic sensor for a magnetic field perpendicular to the film surface. confirmed.

以上、本発明の実施の形態と実施例について説明したが、本発明はこれらに限られず、特許請求の範囲に記載の発明の要旨の範疇において様々に変更可能である。   Although the embodiments and examples of the present invention have been described above, the present invention is not limited to these, and various modifications can be made within the scope of the gist of the invention described in the claims.

また、本発明は、実施段階においてその要旨を逸脱しない範囲で種々に変形することが可能である。   In addition, the present invention can be variously modified without departing from the scope of the invention in the implementation stage.

以上述べたように、本実施例の共鳴磁気抵抗効果素子は、通常の成膜技術を用いて作製することができ、また素子の接合面積が減少しても感度およびSN比が低減しないという特徴を有し、高密度と高い磁気抵抗変化を実現することができる。   As described above, the resonant magnetoresistive effect element of this embodiment can be manufactured by using a normal film forming technique, and the sensitivity and SN ratio are not reduced even if the junction area of the element is reduced. It is possible to realize high density and high magnetoresistance change.

本発明の第1実施形態による共鳴磁気抵抗効果素子を示す断面図。Sectional drawing which shows the resonant magnetoresistive effect element by 1st Embodiment of this invention. 強磁性体の磁化の熱ゆらぎのパワースペクトルを説明する図。The figure explaining the power spectrum of the thermal fluctuation of magnetization of a ferromagnetic. 第1実施形態による共鳴磁気抵抗効果素子の素子特性を示す図。The figure which shows the element characteristic of the resonant magnetoresistive effect element by 1st Embodiment. 本発明の第2実施形態による共鳴磁気抵抗効果素子を示す断面図。Sectional drawing which shows the resonant magnetoresistive effect element by 2nd Embodiment of this invention. 本発明の実施例1による共鳴磁気抵抗効果素子を示す断面図。Sectional drawing which shows the resonance magnetoresistive effect element by Example 1 of this invention. 実施例1による共鳴磁気抵抗効果素子の抵抗値が外部磁場に依存することを示す図。The figure which shows that the resistance value of the resonant magnetoresistive effect element by Example 1 depends on an external magnetic field. 本発明の実施例2による共鳴磁気抵抗効果素子を示す断面図。Sectional drawing which shows the resonant magnetoresistive effect element by Example 2 of this invention. 第1実施形態の変形例による共鳴磁気抵抗効果素子を示す断面図。Sectional drawing which shows the resonance magnetoresistive effect element by the modification of 1st Embodiment. 本発明の第3実施形態による共鳴磁気抵抗効果素子を示す断面図。Sectional drawing which shows the resonant magnetoresistive effect element by 3rd Embodiment of this invention. 第3実施形態の変形例による共鳴磁気抵抗効果素子を示す断面図。Sectional drawing which shows the resonance magnetoresistive effect element by the modification of 3rd Embodiment. 磁気記録再生装置の概略構成を示す要部斜視図。FIG. 2 is a perspective view of a main part showing a schematic configuration of a magnetic recording / reproducing apparatus. アクチュエータアームから先の磁気ヘッドアセンブリをディスク側から眺めた拡大斜視図。The enlarged perspective view which looked at the magnetic head assembly ahead from an actuator arm from the disk side.

符号の説明Explanation of symbols

1 基板
3 下部電極
5 強磁性層
7 非磁性層
9 強磁性層
11 上部電極
1 Substrate 3 Lower electrode 5 Ferromagnetic layer 7 Nonmagnetic layer 9 Ferromagnetic layer 11 Upper electrode

Claims (13)

磁化の向きが膜面に平行な第1磁性層と、磁化の向きが膜面に垂直な単一の磁性体である第2磁性層と、前記第1および第2磁性層の間に設けられた第1非磁性層と、を有する積層膜が第2非磁性層を介して複数個積層された積層構造と、
前記積層構造の、積層方向の一方の端面側に設けられ前記一方の端面と電気的に接続する第1電極と、
前記積層構造の、積層方向の他方の端面側に設けられ前記他方の端面と電気的に接続する第2電極と、
前記積層構造と前記第1電極との間に設けられた垂直磁化バイアス膜と、
を備え、前記第2磁性層から前記第1磁性層に向かう方向に電流を流すことにより、前記第1磁性層のスピンゆらぎを前記第2磁性層に注入して前記第2磁性層に磁気共鳴を誘起することを特徴とする磁気センサ。
A first magnetic layer having a magnetization direction parallel to the film surface, a second magnetic layer that is a single magnetic body having a magnetization direction perpendicular to the film surface, and the first and second magnetic layers. A laminated structure in which a plurality of laminated films having the first nonmagnetic layer are laminated via the second nonmagnetic layer ;
A first electrode provided on one end face side in the stacking direction of the laminated structure and electrically connected to the one end face;
A second electrode provided on the other end face side in the stacking direction of the stacked structure and electrically connected to the other end face;
A perpendicular magnetization bias film provided between the stacked structure and the first electrode;
And applying a current in a direction from the second magnetic layer to the first magnetic layer, thereby injecting spin fluctuations of the first magnetic layer into the second magnetic layer to cause magnetic resonance in the second magnetic layer. Inductive magnetic sensor.
磁化の向きが膜面に平行な第1磁性層と、磁化の向きが膜面に垂直な単一の磁性体である第2磁性層と、前記第1および第2磁性層の間に設けられた第1非磁性層と、を有する積層膜が第2非磁性層を介して複数個積層された積層構造と、
前記積層構造の側部に設けられた水平磁化バイアス膜と、
を備え、前記第2磁性層から前記第1磁性層に向かう方向に電流を流すことにより、前記第1磁性層のスピンゆらぎを前記第2磁性層に注入して前記第2磁性層に磁気共鳴を誘起することを特徴とする磁気センサ。
A first magnetic layer having a magnetization direction parallel to the film surface, a second magnetic layer that is a single magnetic body having a magnetization direction perpendicular to the film surface, and the first and second magnetic layers. A laminated structure in which a plurality of laminated films having the first nonmagnetic layer are laminated via the second nonmagnetic layer;
A horizontal magnetization bias film provided on a side of the laminated structure ;
And applying a current in a direction from the second magnetic layer to the first magnetic layer, thereby injecting spin fluctuations of the first magnetic layer into the second magnetic layer to cause magnetic resonance in the second magnetic layer. Inductive magnetic sensor.
磁化の向きが膜面に平行な第1磁性層と、磁化の向きが膜面に垂直な単一の磁性体である第2磁性層と、前記第1および第2磁性層の間に設けられた第1非磁性層と、を有する積層膜が第2非磁性層を介して複数個積層された積層構造と、
前記積層構造の側部に設けられた垂直磁化バイアス膜と、
を備え、前記第2磁性層から前記第1磁性層に向かう方向に電流を流すことにより、前記第1磁性層のスピンゆらぎを前記第2磁性層に注入して前記第2磁性層に磁気共鳴を誘起することを特徴とする磁気センサ。
A first magnetic layer having a magnetization direction parallel to the film surface, a second magnetic layer that is a single magnetic body having a magnetization direction perpendicular to the film surface, and the first and second magnetic layers. A laminated structure in which a plurality of laminated films having the first nonmagnetic layer are laminated via the second nonmagnetic layer;
A perpendicular magnetization bias film provided on a side of the laminated structure ;
And applying a current in a direction from the second magnetic layer to the first magnetic layer, thereby injecting spin fluctuations of the first magnetic layer into the second magnetic layer to cause magnetic resonance in the second magnetic layer. Inductive magnetic sensor.
前記第1および第2磁性層はそれぞれ単層であることを特徴とする請求項1乃至のいずれかに記載の磁気センサ。 The magnetic sensor according to any of claims 1 to 3, wherein the first and second magnetic layers are each monolayer. 前記第1磁性層における形状異方性磁場と膜面に垂直方向の結晶異方性磁場の大きさの差が500Oe以下であることを特徴とする請求項1乃至のいずれかに記載の磁気センサ。 Magnetic according to any one of claims 1 to 4, characterized in that the size difference of the crystal anisotropy field of the first shape anisotropy field in the magnetic layer and the film surface in the vertical direction is less 500Oe Sensor. 前記第2磁性層における形状異方性磁場と膜面に垂直方向の結晶異方性磁場の大きさの差が500Oe以下であることを特徴とする請求項1乃至のいずれかに記載の磁気センサ。 Magnetic according to any one of claims 1 to 5 size difference of the crystal anisotropy field of the second direction perpendicular to the shape anisotropy field and the film surface of the magnetic layer is equal to or less than 500Oe Sensor. 前記第1磁性層と前記第2磁性層の少なくても一方が単磁区構造であることを特徴とする請求項1乃至のいずれかに記載の磁気センサ。 The magnetic sensor according to any of claims 1 to 6, characterized in that one be less of the second magnetic layer and the first magnetic layer has a single domain structure. 前記第1および第2磁性層の厚さがそれぞれ3nm以下であることを特徴とする請求項1乃至3のいずれかに記載の磁気センサ。 The magnetic sensor according to any one of claims 1 to 3, wherein the thickness of said first and second magnetic layer is 3nm or less, respectively. 前記請求項1乃至3のいずれかに記載の磁気センサを再生素子として搭載していることを特徴とする磁気ヘッド。 Magnetic head is characterized in that by mounting a magnetic sensor according as the reproduction device to any of claims 1 to 3. 請求項9記載の磁気ヘッドを備えていることを特徴とする磁気記録再生装置。   A magnetic recording / reproducing apparatus comprising the magnetic head according to claim 9. 磁化の向きが膜面に平行な第1および第2磁性層と、前記第1および第2磁性層間に設けられ、磁化の向きが膜面に垂直な単一の磁性体である第3磁性層および非磁性層が複数個積層された積層膜とを備え、前記第1および第2磁性層に電流を流すことにより、前記第1または第2磁性層のスピンゆらぎを前記第3磁性層に注入して前記第3磁性層に磁気共鳴を誘起することを特徴とする磁気センサ。   First and second magnetic layers whose magnetization direction is parallel to the film surface, and a third magnetic layer which is provided between the first and second magnetic layers and is a single magnetic body whose magnetization direction is perpendicular to the film surface And a laminated film in which a plurality of nonmagnetic layers are laminated, and by causing a current to flow through the first and second magnetic layers, the spin fluctuation of the first or second magnetic layer is injected into the third magnetic layer And magnetic resonance is induced in the third magnetic layer. 前記第1および第2磁性層と、前記第3磁性層との少なくても一方が単磁区構造であることを特徴とする請求項11記載の磁気センサ。   12. The magnetic sensor according to claim 11, wherein at least one of the first and second magnetic layers and the third magnetic layer has a single magnetic domain structure. 前記第1乃至第3磁性層の厚さがそれぞれ3nm以下であることを特徴とする請求項12記載の磁気センサ。   13. The magnetic sensor according to claim 12, wherein each of the first to third magnetic layers has a thickness of 3 nm or less.
JP2005225715A 2004-08-17 2005-08-03 Magnetic sensor, magnetic head, and magnetic recording / reproducing apparatus Expired - Fee Related JP5032009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225715A JP5032009B2 (en) 2004-08-17 2005-08-03 Magnetic sensor, magnetic head, and magnetic recording / reproducing apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004237463 2004-08-17
JP2004237463 2004-08-17
JP2005225715A JP5032009B2 (en) 2004-08-17 2005-08-03 Magnetic sensor, magnetic head, and magnetic recording / reproducing apparatus

Publications (2)

Publication Number Publication Date
JP2006086508A JP2006086508A (en) 2006-03-30
JP5032009B2 true JP5032009B2 (en) 2012-09-26

Family

ID=36164711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225715A Expired - Fee Related JP5032009B2 (en) 2004-08-17 2005-08-03 Magnetic sensor, magnetic head, and magnetic recording / reproducing apparatus

Country Status (1)

Country Link
JP (1) JP5032009B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799348B2 (en) 2006-09-28 2011-10-26 株式会社東芝 Magnetic sensor and magnetic recording / reproducing apparatus
US7724469B2 (en) * 2006-12-06 2010-05-25 Seagate Technology Llc High frequency field assisted write device
JP5233201B2 (en) * 2007-08-09 2013-07-10 Tdk株式会社 Magnetic device and frequency detector
US8149547B2 (en) 2008-03-13 2012-04-03 Tdk Corporation Magnetoresistive effect element and thin-film magnetic head with the magnetoresistive effect element
JP5361259B2 (en) 2008-06-19 2013-12-04 株式会社東芝 Spin torque oscillator, magnetic recording head, magnetic head assembly, and magnetic recording apparatus
JP2010040060A (en) * 2008-07-31 2010-02-18 Toshiba Corp Magnetic head for high-frequency field assist recording and magnetic recording apparatus using the same
JP2010040126A (en) * 2008-08-06 2010-02-18 Toshiba Corp Magnetic recording head, magnetic head assembly, and magnetic recording device
JP5558698B2 (en) 2008-11-28 2014-07-23 株式会社東芝 Magnetic recording head, magnetic head assembly, magnetic recording apparatus, and magnetic recording method
US9842612B2 (en) 2009-10-01 2017-12-12 Seagate Technology Llc On head microelectronics for write synchronization
JP5606482B2 (en) 2012-03-26 2014-10-15 株式会社東芝 Magnetic head, magnetic head assembly, magnetic recording / reproducing apparatus, and magnetic head manufacturing method
JP6958587B2 (en) 2019-03-12 2021-11-02 Tdk株式会社 Magnetic flux absorber and magnetic sensor equipped with it
JP7446600B2 (en) 2019-12-23 2024-03-11 国立大学法人 鹿児島大学 Manufacturing method of Cu-Mn-Al magnet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745884A (en) * 1993-07-28 1995-02-14 Matsushita Electric Ind Co Ltd Magnetoresistive effect thin-film magnetic head
JP3679593B2 (en) * 1998-01-28 2005-08-03 キヤノン株式会社 Magnetic thin film element, magnetic thin film memory element and recording / reproducing method thereof
FR2817998B1 (en) * 2000-12-07 2003-01-10 Commissariat Energie Atomique SPIN POLARIZATION MAGNETIC DEVICE WITH MAGNIFICATION ROTATION, MEMORY AND WRITING METHOD USING THE DEVICE
JP2003229612A (en) * 2002-01-31 2003-08-15 Toshiba Corp Magnetoresistance effect sensor and magnetic disk device
US6838740B2 (en) * 2002-09-27 2005-01-04 Grandis, Inc. Thermally stable magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
JP4297739B2 (en) * 2003-06-17 2009-07-15 独立行政法人科学技術振興機構 Spin-injection magnetization reversal magnetoresistive element using quantum size effect

Also Published As

Publication number Publication date
JP2006086508A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP5032009B2 (en) Magnetic sensor, magnetic head, and magnetic recording / reproducing apparatus
US8411394B2 (en) Magneto resistive effect element with a magnetic film generating spin fluctuation of conduction electrons
JP5764684B2 (en) Magnetic reading sensor using spin Hall effect
JP4942445B2 (en) Magnetoresistive element, thin film magnetic head, head gimbal assembly, head arm assembly, and magnetic disk apparatus
US6633464B2 (en) Synthetic antiferromagnetic pinned layer with Fe/FeSi/Fe system
US8325442B2 (en) Spin torque oscillator, magnetic recording head, magnetic head assembly and magnetic recording apparatus
US8467148B2 (en) Spin torque oscillator, magnetic recording head, magnetic head assembly and magnetic recording apparatus
US7542248B2 (en) Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system
US7336451B2 (en) Magnetic sensing element containing half-metallic alloy
US8233247B2 (en) Scissoring-type current-perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) sensors with damped free layer structures
US8194361B2 (en) Spin-torque oscillator, magnetic head including the spin-torque oscillator, and magnetic recording and reproducing apparatus
US6636391B2 (en) Magnetoresistive sensor, magnetic head and magnetic disk apparatus
US8514525B2 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with reference layer integrated in magnetic shield
US8379350B2 (en) CPP-type magnetoresistive element including spacer layer
US6181537B1 (en) Tunnel junction structure with junction layer embedded in amorphous ferromagnetic layers
US8780506B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with side shields and an antiparallel structure top shield
US7330339B2 (en) Structure providing enhanced self-pinning for CPP GMR and tunnel valve heads
JP2010533366A (en) Low noise magnetic field sensor
US8203808B2 (en) Magneto-resistance effect element including free layer having multilayer constitution including magnetic body mixed with element having 4F electrons
US8467154B2 (en) Magnetic sensors having perpendicular anisotropy free layer
JP2002314165A (en) Magnetoresistance effect type element, thin film magnetic head using the same, magnetic head unit and magnetic disc unit
JP2005044895A (en) Magnetoresistance effect element, magnetic head, and magnetic recording and reproducing device
JP2008090877A (en) Magnetic head and magnetic recording device
JP2001236612A (en) Magneto-resistive sensor, thin film magnetic head, magnetic head device and magnetic disk device
JP2002032904A (en) Magnetic head and magnetic information recording/ reproducing device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120628

R151 Written notification of patent or utility model registration

Ref document number: 5032009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees