JP5028668B2 - Cathode active material for alkaline battery and alkaline battery - Google Patents

Cathode active material for alkaline battery and alkaline battery Download PDF

Info

Publication number
JP5028668B2
JP5028668B2 JP2001285788A JP2001285788A JP5028668B2 JP 5028668 B2 JP5028668 B2 JP 5028668B2 JP 2001285788 A JP2001285788 A JP 2001285788A JP 2001285788 A JP2001285788 A JP 2001285788A JP 5028668 B2 JP5028668 B2 JP 5028668B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
powder
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001285788A
Other languages
Japanese (ja)
Other versions
JP2002260653A (en
Inventor
吉行 正地
幸治 田上
義和 尾本
正行 仁科
俊雄 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2001285788A priority Critical patent/JP5028668B2/en
Publication of JP2002260653A publication Critical patent/JP2002260653A/en
Application granted granted Critical
Publication of JP5028668B2 publication Critical patent/JP5028668B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,アルカリ電池用の正極活物質およびそれを用いたアルカリ電池に関する。
【0002】
【従来の技術】
従来より,時計,計測機器,カメラ等に装着されるアルカリ電池(通称ボタン電池)として酸化銀電池が普及している。酸化銀電池は,正極活物質として酸化銀(Ag2O),負極活物質として亜鉛末,電解液としてアルカリ溶液例えばKOHやNaOHの水溶液を用いて構成されるものが一般である。銀は高価な材料であるが,酸化銀は小型でも高容量が要求される場合の不可欠な正極活物質とされており,このためにボタン電池の殆んどは酸化銀電池で構成されていると言っても過言ではない。なお,正極活物質は正極作用物質または陽極作用物質と呼ばれることもあり,同様に負極活物質は負極作用物質または陰極作用物質と呼ばれることもある。
【0003】
通常,酸化銀電池単価に占める正極活物質(Ag2O)の割合は非常に高い。また,Ag2Oは導電性が低く,電池の内部抵抗が高くなって電池の放電容量が低くなるという問題もある。このため,Ag2OにMnO2を混合して正極活物質とする場合や,特開昭60-105170 号公報, 特開昭57-849号公報, 特開平10-188975 号公報のように他のAg系化合物例えばAgNiO2を配合して導電性を改良する案等が提案されている。
【0004】
同様に,特開昭52-142241 号公報には酸化銀を主体とする陽極に酸化ビスマス (Bi23)を添加するとガス発生が抑制でき且つ放電末期の予知ができると教示している。また米国特許第 5,389,469号明細書, その分割出願である米国特許第5,589,109 号明細書および米国特許第6,001,508 号明細書には,AgOのコアの周囲にAg2Oの中間層を介して銀とビスマスの外皮 (AgBiO2またはAgBiO3からなる外皮) をもつAgO系の正極活物質を開示しており,このものは,AgO粉とビスマス化合物 (硫化ビスマスなど) とをアルカリ溶液中で還元反応させることによって得られると記載されている。
【0005】
【発明が解決しようとする課題】
酸化銀電池のコスト高を抑制するには,銀以外の安価な物質を正極活物質に共存させてAg使用量を相対的に低くすることが有利であり, このために, 前記のような各種の提案がなされてきた。しかし,該物質としてMnO2を共存させる例では,MnO2は真比重が小さく,また放電電位の平坦性が悪いという性質があるから,電池容量としてはそれほど期待できず放電が進むと放電電位の低下が著しいという問題が付随する。Ni等との化合物を形成する場合には, これを全て正極活物質とする訳ではなく, 放電後に水酸化物を形成して体積膨張を起こすことから,せいぜい数割の添加しか許容できない。したがって,それほどコスト抑制効果は期待できない。
【0006】
特開昭52-142241 号公報のように酸化ビスマスを添加する例では,酸化銀との酸化還元電位の差を利用して放電末期に2段の電位を得ることにより,この2段電位発生を検知して電池の消耗時を予知するものであるから,その使用量も自ずと限界があり,正極全量に対して高々3〜12重量%である。同様に米国特許第 5,389,469号明細書(ほか2件も同様)のように,酸化銀粒子の表面に亜酸化銀とビスマス系化合物の被膜を形成するものでも,Agの含有量として少なくとも78wt%を必要としており,Ag使用量の低減の意味からは充分ではなく,またコア部が不安定な過酸化銀(AgO)であるために,長期的な信頼性に不安があると共に放電態様も多段階になりやすい。長期的な信頼性は開回路電圧で評価することができ,活物質の開回路電圧が高すぎると電解液の分解によるガス発生やセパレータの酸化といった長期的な信頼性に問題が生ずるようになるので,正極の開回路電圧は低い方がよいことになる。
【0007】
したがって,本発明の課題は前記のような問題を解決して,Agの使用量を低減しても放電特性が悪くならず,しかも開回路電圧が低くて長期的な信頼性が得られるような安価且つ新規な電池用正極活物質を得ることにある。
【0008】
【課題を解決するための手段】
前記の課題を解決するため,本発明者らはAg−Bi−O系の化合物に着目して種々の試験研究を続けてきたが,湿式法によって銀塩とビスマス塩の中和澱物を得たうえ,これを適正に酸化処理すると正極活物質に適した化合物が得られることを知見した。このものは,粒子内に化合物結晶を有し且つ粒子内全域にBiが分散している粒子からなる新規物質であると考えられ,その正極活物質としての放電特性その他については,先の特願2000−275124号の明細書および図面に記載した。
【0009】
本発明者らは,前記の銀塩とビスマス塩に対してさらにNi,Co,Mnなどの遷移金属の塩を加えて中和殿物を得たうえ,これを適正に酸化処理した場合にも正極活物質に適した新たな化合物が得られることを見い出した。したがって本発明は,前記課題を解決できる正極活物質として,Ag,Bi,M(Mは遷移金属の少なくとも1種の金属,好ましくはMn,NiまたはCoの少なくとも1種の金属を表す)およびO(酸素)からなる粒子であって,Ag,Bi,MおよびOからなる化合物の結晶を粒子内に有し且つ粒子内全域にBiが分散している粒子からなる電池用正極活物質を提供するものである。
【0010】
より具体的には,銀,ビスマスおよびM’(M’はマンガン,ニッケルまたはコバルトの少なくとも一種の金属を表す)の無機酸塩を水酸化アルカリと水媒体中で反応させて得たAg−Bi−M’含有中和殿物を酸化剤で酸化してなるAg−Bi−M’含有酸化生成物からなるアルカリ電池用の正極活物質:更には,銀,ビスマスおよびM’(M’はマンガン,ニッケルまたはコバルトの少なくとも一種の金属を表す)の無機酸塩と水酸化アルカリとを水媒体中で且つ酸化剤の存在下で反応させて得たAg−Bi−M’含有酸化生成物からなるアルカリ電池用の正極活物質:を提供する。この正極活物質すなわち該酸化生成物は,銀,ビスマス,M’および酸素からなる化合物の結晶を有する粒子であって,粒子表面から中心まで全体にわたってビスマスが存在している粒子からなる。この粒子は,Ag/(Bi+M’)のモル比が1〜7で,Bi/M’のモル比が0.1〜100の範囲にあり,酸素含有量が5重量%以上の組成を有し,好ましくは粒径が0.1〜10μmである。また,この正極活物質はAg含有量が75重量%以下,好ましくは70重量%以下であり,銀の化合物Ag2OおよびAgOを含まないか,含んだとしても不純物程度(1重量%以下,好ましくは0.5重量%以下)しか含まない。
【0011】
【発明の実施の形態】
本発明に従うアルカリ電池用正極活物質は,基本的にはAg,Bi,MおよびOの4元素からなる粒子であり,この粒子内に化合物結晶を有しており且つ粒子内全域にBiが分散しているという特徴がある。Mは遷移金属の少なくとも1種であることができるが,マンガン,ニッケルまたはコバルトの少なくとも一種であるのが好ましい。Mがマンガン,ニッケルまたはコバルトの少なくとも一種である場合をM’と表示する。
【0012】
粒子内の化合物結晶は,代表的にはAg−Bi−M−O系の化合物であり,好ましくはAg2OまたはAgOの化合物の結晶を粒子内に有せず,有するとしても,不純物程度にしか有しないという特徴がある。
【0013】
また,この粒子粉末は,Ag/(Bi+M)のモル比が1以上7以下,好ましくは2以上5以下で且つ酸素含有量が5重量%以上の組成を有している。Ag含有量は80重量%以下,好ましくは75重量%以下,さらに好ましくは70重量%以下,場合によっては60重量%以下であることもできる。Bi/Mのモル比については,0.1以上100未満の範囲であればよいが,好ましくは1以上10以下である。好ましい組成範囲は,Ag:45〜75%,Bi:10〜40%,M:0.5〜10%,O(酸素):5〜15%,残部:不可避的不純物である。粒子の粒径は0.1〜15μm,好ましくは0.2〜10μmである。平均粒径は0.1〜10μmの範囲にある。
【0014】
このような粒子からなる粉体を正極活物質の主材として使用した場合,従来の酸化銀電池の場合に比べて銀量が低量であるにも拘わらず同等の放電特性を得ることができる。加えてこの粉体の導電率は酸化銀に比べると3桁ほど高いので,酸化銀電池では黒鉛等の導電材の配合を必要としたが,このような導電材が不要となる点でも有利である。
【0015】
したがって,本発明に従う正極活物質は,前掲の米国特許第 5,389,469号明細書(ほか2件も同様)の粒子と比べた場合にも,粒子内部まで,すなわち粒子内全域にBiが分散している点,AgOやAg2Oの結晶が実質的に存在しない点,更にはAg量が少ない点などで相違しており,このため,各種粉体特性,放電特性,導電特性等についても従来品のものにはない新規な性質を示すと共に,銀量が少ないので安価である。
【0016】
本発明の正極活物質は,次のような工程を順に経る製法によって得ることができる。ただし,中和工程と酸化工程は同時に実施してもよい。
(1) 「銀の無機酸塩,ビスマスの無機酸塩およびMの無機酸塩」と「水酸化アルカリ」を水中で反応させて中和殿物を得る工程(中和工程と言う),
(2) 得られた中和殿物の懸濁液に酸化剤を添加して該澱物を酸化する工程(酸化工程という),
(3) その酸化殿物の懸濁液を固液分離して固体の酸化殿物を回収する工程,
(4) 回収した酸化殿物を水洗乾燥する工程,
(5) 得られた乾燥ケーキを解砕して粉体にする工程。
以下に各工程をMがM’である場合を例として詳しく説明する。
【0017】
〔中和工程〕
中和工程では,Agの無機酸塩と水酸化アルカリとを水中で反応させて殿物を得る中和反応を,「Biの無機酸塩とMの無機酸塩」との共存下で行わせることによって,殿物中に目標量の「Bi+M’」を含有させる。この処理は,Ag,BiおよびMの無機酸塩と,水酸化アルカリとの反応により,Ag,BiおよびM’の酸化物と水が生成する反応(すなわち中和反応)を行わせるものであり,この中和反応では出発物質の金属イオンの価数変化を起こさない。換言すれば,本発明が採用する中和反応は,還元条件下や酸化条件下での反応ではなく,したがって, 金属イオンの価数変化を伴う反応は含まない。
【0018】
中和反応に用いる水酸化アルカリとしては,水酸化ナトリウム(NaOH)や水酸化カリウム (KOH)を使用することができる。「Ag,BiおよびM’の無機酸の塩」としては,これら各金属の硝酸塩,硫酸塩,塩酸塩またはリン酸塩等が使用可能であるが,各金属の硝酸塩または硫酸塩が好ましく,代表的には各金属の硝酸塩を使用することができる。例えば, 硝酸銀(AgNO3)に対して,所望モル数の硝酸ビスマス[Bi(NO3)3]と, さらに必要量の硝酸マンガン [Mn(NO3)2], 硝酸ニッケル [Ni(NO3)2・6H2O] または硝酸コバルト [Co(NO3)2・6H2O] を組み合わせて水酸化アルカリと水中で反応させる。
【0019】
以下,説明の便宜上,「Ag,BiおよびM’の無機酸塩」がこれらの金属の「硝酸塩」である場合を例として説明するが,これらの無機酸の塩は前記のとおり硝酸の塩に限られるものではない。
【0020】
中和処理は,水酸化アルカリを溶解した水溶液に「Ag,Bi,M’の硝酸塩の粉体」を添加する方法, アルカリ水溶液と「Ag,Bi,M’の硝酸塩を溶解した水溶液」を混合する方法, 「Ag,Bi,M’の硝酸塩を溶解した水溶液」に固体の水酸化アルカリを添加する方法のいずれの方法でもよいが,アルカリ水溶液と「Ag,Bi,M’の硝酸塩の水溶液」を混合する方法が好ましい。
【0021】
この中和処理にあたってはアルカリ度は高い方がよく,例えば「Ag+Bi+M’」に対して, モル比で10倍程度のアルカリが存在した方が反応が進み易い。反応温度は特に限定されないが室温から110℃迄が好ましい。攪拌については,中和反応が均一に進行する程度の攪拌強度が必要である。
【0022】
中和処理に使用する金属塩中のAg/(Bi+M’)のモル比を変えることによって,最終化合物中のAg/(Bi+M’)の原子比,ひいては粒子中のAg/(Bi+M’)の原子比を調節することができる。本発明者らの経験によると金属塩中のAg/(Bi+M’)のモル比を1以上7以下,好ましくは,2以上5以下の範囲で調節するのがよい。このモル比が小さくなるほど得られる正極活物質の放電容量の低下が大きくなり,逆にこの比があまり大きくなるとAg量が多くなって,その分,Ag量低減という本発明の目的が達成できなくなる。
【0023】
〔酸化工程〕
酸化工程では通常の酸化剤,例えばKMnO4(過マンガン酸カリ), NaOCl(次亜塩素酸ナトリウム), H22(過酸化水素), K228(ペルオクソ2硫酸カリウム),Na228(ペルオクソ2硫酸ナトリウム),オゾン等を用いて中和殿物を酸化処理するものであり,中和殿物中の銀, ビスマスさらにはM’の価数を上げる (酸化する) ことを内容とする処理である。この工程は中和殿物の生成と同時に行うこともできるが,好ましくは,中和工程と酸化工程は分離して行う。そして中和工程と酸化工程の間に殿物を含む液を昇温する工程を挿入するのが好ましい。
【0024】
酸化処理中は液温を50℃以上,好ましくは70℃以上として攪拌下に酸化剤を添加するのがよい。しかし,あまり温度が高すぎると酸化剤の分解が進むので110℃以下が好ましい。前述のように,この酸化処理は中和殿物中の金属成分の価数を上げる処理,例えばAg+1をAg+2に,Bi+3をBi+3.5やBi+5に,M'+2をM'+3, M'+3やM'+4等に酸化する処理であり,この価数変化が充分に行える量の酸化剤を添加することが必要である。具体的には,この価数変化に対して当量以上,好ましくは2倍当量程度の酸化剤を添加するのがよい。
【0025】
酸化量は,中和処理に用いる原料硝酸塩の金属元素の価数のほか,Ag,Bi,M’の相対割合によっても変化し,これに伴って酸化処理後の生成物中のAg−Bi−M’−Oの組成比も変化することになるが,完全酸化を行うことによって,全体としてAg−Bi−M’−O系の結晶性の化合物からなる微細な粒子の集合体が生成することになる。後記の実施例に示すように,本発明者らの調査によれば,この結晶性微粒子内はもとより,微粒子の集合体(Ag−Bi−M’含有酸化生成物)にはAg2O等の低価数の化合物はもとより,AgO,独立したBiの酸化物,独立したM’の酸化物等が存在する機会も殆んどなくなり,正極活物質に適したAg−Bi−M’−O系の結晶性の化合物が得られる。
【0026】
別法として,このような酸化は中和殿物の生成と同時に行うこともできる。この場合には,前記の中和処理を前記の酸化剤の存在下で行えばよく,アルカリ水溶液に対して,Ag,Bi,M’の無機酸塩と酸化剤を同時に添加する方法や,アルカリ水溶液に酸化剤を予め投入しておき,この液にAg,Bi,M’の無機酸塩を添加する方法を採用すればよい。例えば後記の実施例に示すように,中和工程と酸化工程を同時に行っても,両者を分離して行った場合と実質的に同じ本発明に従うAg−Bi−M’含有酸化生成物(酸化殿物)を得ることができる。
【0027】
〔固液分離・乾燥・解砕工程〕
次いで,酸化殿物の固液分離を処理を行い,水洗し乾燥して黒色のケーキを得る。固液分離を行う前に,酸化殿物を熟成する工程を挿入するのがよい。この熟成工程は,酸化処理後の液をその温度で20〜120分程度保持する処理であり,この熟成処理を行うことによって,酸化殿物の均質化を図ることができる。より具体的には,粒子間で組成のばらつきが少なくなり且つ安定したAg−Bi−M’−O系化合物の粒子からなる殿物を得ることができる。濾別水洗した殿物の乾燥は50〜200℃の温度で行うのがよい。200℃を超える温度では生成した化合物が分解するおそれがある。得られた乾燥ケーキは,解砕機で解砕することによって,Ag−Bi−M’含有酸化生成物からなるアルカリ電池用の正極活物質として使用可能な粉体を得ることができる。
【0028】
このような製法で得られるAg−Bi−M’−O系化合物からなる粉末は後記の実施例に示すように,そのX線パターン(銅ターゲット使用,波長=1.5405オングストローム) の主ピーク群はX線回折データベース(ICDD)のどの化合物のものとも一致しない。また,この粉末のX線回折では,AgOまたはAg2Oの主ピーク群は現れない。したがって,この粉末中にはAgOまたはAg2Oとしての化合物は存在しないと言える。存在したとしてもそれは不純物としてのものであり,この不純物量はAgOとAg2Oの両者の合計量として高々1重量%以下,好ましくは0.5重量%以下,さらに好ましくはX線回折での検量限界以下の量である。したがって,本発明によれば,これまで知られていない結晶構造と組成をもつAg−Bi−M’−O系化合物を提供するものであり,前記の製法におけるこの物質の生成反応も新規な反応であると考えられる。
【0029】
本発明者らは,本発明に従う化合物を得る反応について,下記のような反応式に基づくものであろうと考えている。ただし,中和反応に使用するAg, Bi, M’の無機酸塩が, 硝酸銀 (AgNO3),硝酸ビスマス[Bi(NO3)3]および硝酸ニッケル[Ni(NO3)2]であり,水酸化アルカリが水酸化ナトリウム(NaOH)であり,酸化剤はペルオクソ2硫酸ナトリウム(Na2S2O8) であるとする。
【0030】
中和反応( 1≦X≦7, 0.1≦Y≦0.99..)
xAgNO3+yBi(NO3)3 +(1-y)Ni(NO3)2+(x+y+2)NaOH
→ AgxBiyNi(1-y)O(x+y+2)/2+(x+y+2)NaNO3+(x+y+2)/2H2O
【0031】
酸化反応〔 Ag(1)→Ag(1.25), Bi(3)→Bi(3.5) および Ni(2)→Ni(3) の酸化反応〕
AgxBiyNi(1-y)O(x+y+2)/2+(0.25x-0.5y+1)/2Na2S2O8
+(0.25x-0.5y+1)NaOH → AgxBiyNi(1-y)O(1.25x+0.5y+3)/2
+(0.25x-0.5y+1)Na2SO4+(0.25x-0.5y+1)/2H2O
【0032】
以下に本発明者らの行った代表的な試験結果を実施例としてあげ,本発明の正極活物質をさらに説明する。
【0033】
【実施例】
〔実施例1〕
前述した中和工程において,Ag/(Bi+Ni)のモル比が3,Bi/Niのモル比が1となるように硝酸銀 (AgNO3),硝酸ビスマス[Bi(NO3)3]および硝酸ニッケル[ Ni(NO3)2・6 H2O ] を秤量して溶解した水溶液を,液温が50℃で(Ag+Bi+Ni)に対してモル比で10倍の水酸化ナトリウムを溶解した水溶液(1.5リットル)に攪拌下で加えて中和殿物を得た。この中和殿物の懸濁液を90℃に昇温し,酸化剤としてペルオクソ2硫酸カリウム(K2S2O8)を,(Ag+Bi+Ni)に対してモル比で2倍量で,該懸濁液に添加して酸化処理した。酸化処理終了後,90℃の温度に30分間保持する熟成を行ったあと,殿物を濾別し,水洗し100℃で乾燥し,その乾燥品を解砕機で解粉して粉体を得た。
【0034】
得られた粉体の組成分析を行った結果,
Ag=63.5重量%,
Bi=18.5重量%,
Ni=6.2 重量%,
O =11.1重量%,
Total =99.3重量%であった。
【0035】
また,この粉体の比表面積を測定したところBET法測定値で18.8m2/g ,圧縮密度を測定したところ6.30g/cm3であった。また,この粉体のSEM像から観測された一次粒子の粒径は0.1〜10μmの範囲内に分布していた。
【0036】
さらに,この粉体を粉末X線回折に供したところ,図1の図形No.Aが得られた。図1にはAgOおよびAg2OのX線回折図形も併記したが,AgOおよびAg2OのピークとNo.Aの粉体のピークとは相違していることがわかる。また図1においてAg:Bi=3:1として示したX線回折図形は,先の特願2000−275124号の実施例においてAg/Biのモル比が3となるようにして製造したAg−Bi−O系粉体のものである。
【0037】
また,正極活物質として酸化銀 (Ag2O) 粉末を測定する場合と同じ方法で,この粉体の導電率を測定したところ,8.2 ×100 S/cmであった。ちなみに酸化銀粉体の導電率は 4.8×10-5 S/cm 程度である。さらにこの粉体を正極活物質とした場合の開回路電圧を, ほぼ同様の圧縮密度 (6.6 g/cm3) をもつ正極物質として製品化されている酸化銀 (Ag2O) の粉末と同じ条件で調べた。すなわち,開回路電圧は電池作成後25℃で1時間放置後の電圧を測定した。その結果,開回路電圧=1.735 V であり,Ag2Oのものでは 1.647 Vであった。なお, 特願2000−275124号のAg/Bi=3の粉体では 1.758 Vであった。
【0038】
このように,本例で得られた粉体は,銀含有量が63.5重量%と低いにも拘わらず,正極活物質として良好な開回路電圧特性を示している。したがって,酸化銀に充分に代替できる安価な正極活物質が得られたことがわかる。しかも,この粉体の圧縮密度は6.30g/cm3と高いので単位体積中に装填できる活物質の量も充分に確保でき,電池の体積エネルギー密度上昇にとっても有利である。X線回折結果ではこの粉体のピーク群はX線データベース(ICDD)のどの化合物のものとも一致しないので,新しい化合物結晶からなるものであると考えられる。すなわち,この正極活物質は,Ag,Bi,NiおよびOの4元素の組合せからなる化合物の結晶を粒子内に有している新規物質であると見てよい。
【0039】
〔実施例2〕
Ag:Bi:Niのモル比が表1に表示の値となるように,中和工程で使用した硝酸銀,硝酸ビスマスおよび硝酸ニッケルの配合割合を変えた以外は実施例1を繰り返し,それぞれのAg−Bi−Ni−O系の粉体を得た。各粉体を化学分析してその組成を調べた。その結果を表1に示した。表3中のNo.3の粉体は前記実施例1で得られたものである。
また,中和工程において硝酸ニッケルに代えて硝酸コバルトを使用し,Ag:Bi:Coのモル比が表1に表示の値となるように,硝酸銀,硝酸ビスマスおよび硝酸コバルトの配合割合を変えた以外は実施例1を繰り返し,それぞれのAg−Bi−Co−O系の粉体を得た。化学分析して得たそれらの組成も表1に併記した。
【0040】
【表1】

Figure 0005028668
【0041】
〔実施例3〕
Ag:Bi:Niのモル比が表2に表示の値となるように,中和工程で使用した硝酸銀,硝酸ビスマスおよび硝酸ニッケルの配合割合を変えた以外は実施例1を繰り返し,それぞれのAg−Bi−Ni−O系の粉体を得た。各粉体の圧縮密度を測定した結果を表2に示した。表2では,各粉末を得るのに配合したAg/(Bi+Ni)比とBi/Niの影響も知るために,両者の比で整理して圧縮密度の値(g/cm3)を表中に記した。
【0042】
比較のために先の特願2000−275124号に記載したAg−Bi−O系の粉体(Ni無添加のもの)の圧縮密度も表2に併記した。
【0043】
【表2】
Figure 0005028668
【0044】
表2から,M添加によって圧縮密度が高くなる傾向があることがわかる。
【0045】
〔実施例4〕
Ag:Bi:Niのモル比が表3に表示の値となるように,中和工程で使用した硝酸銀,硝酸ビスマスおよび硝酸ニッケルの配合割合を変えた以外は実施例1を繰り返し,それぞれのAg−Bi−Ni−O系の粉体を得た。各粉体の比表面積をBET法で測定し,その値(m2/g )を,前記の表2と同様の表示法に従って,表3に示した。また,比較のためにAg−Bi−O系の粉体(Ni無添加のもの)の比表面積も表3に併記した。
【0046】
【表3】
Figure 0005028668
【0047】
表3の結果から,Mを添加すると比表面積が高くなる傾向が見られる。
【0048】
〔実施例5〕
Ag:Bi:Niのモル比が表4に表示の値となるように,中和工程で使用した硝酸銀,硝酸ビスマスおよび硝酸ニッケルの配合割合を変えた以外は実施例1を繰り返し,それぞれのAg−Bi−Ni−O系の粉体を得た。各粉体を正極活物質とした場合の開回路電圧を, 正極活物質として製品化されている酸化銀(Ag2O)の粉末と同じ条件( Ag2Oでは開回路電圧=1.647 V )で測定し,前記の表2〜3と同様の表示法に従って,表4に示した。比較のためにAg−Bi−O系の粉体(Ni無添加のもの)の開回路電圧も表4に併記した。
【0049】
【表4】
Figure 0005028668
【0050】
表4の結果から,本発明に従うAg−Bi−Ni−O系の粉体は正極活物質として使用した場合に,Ni無添加のAg−Bi−O系の粉体を用いた場合よりも低い開回路電圧が得られることがわかる。
【0051】
〔実施例6〕
中和工程において硝酸ニッケルに代えて硝酸コバルトを使用し,Ag:Bi:Coのモル比が表5に表示の値となるように,硝酸銀,硝酸ビスマスおよび硝酸コバルトの配合割合を変えた以外は実施例1を繰り返し,それぞれのAg−Bi−Co−O系の粉体を得た。各粉体を正極活物質とした場合の放電特性 (開回路電圧) を, 実施例5と同様に測定し,その結果を表5に示した。
また,硝酸ニッケルに代えて硝酸マンガンを使用した以外は実施例1を繰り返して得た粉末についても,同様に開回路電圧を測定した。その結果を表5に併記した。
【0052】
【表5】
Figure 0005028668
【0053】
表5から,遷移金属元素MとしてNiに代えてCoまたはMnを用いても,Niを用いた場合と同様の開回路電圧を示すAg−Bi−Co−O系またはAg−Bi−Mn−O系の正極活物質が得られることがわかる。
【0054】
また,表5のうち,Ag/(Bi+Co)=3/1で且つBi/Co= 0.95/0.05の粉体と,Ag/(Bi+Mn)=3/1で且つBi/Mn= 0.9/0.1の粉体についてX線回折に供したところ,図1の図形No.BとNo.CのX線チャートが得られた。これらには,No.Aの粉体と同様に,Ag2O,AgOおよびBi23 の化合物のピークは存在しない。すなわち,この粉体もAg,Bi,MおよびOの4元素の組合せからなる化合物の結晶を粒子内に有する新規物質であると見てよい。
【0055】
表6には,前例粉体数種についての導電率を,Ag2Oのものと対比して示した。表6の結果から,本発明に従う粉体はAg2Oよりも3桁もしくは5桁ほど導電率が高いことがわかる。
【0056】
【表6】
Figure 0005028668
【0057】
〔実施例7〕
中和工程において,Ag/(Bi+Ni)のモル比が表7および表8に表示の値となるように,硝酸銀 (AgNO3),硝酸ビスマス[Bi(NO3)3]および硝酸ニッケル[ Ni(NO3)2・6 H2O ] を秤量して 0.8リットルの水に溶解した。他方, NaOHをモル濃度で1mol/リットルに調整した液温50℃のアルカリ水溶液(1.6 リットル) を準備し,このアルカリ水溶液に対し, 前記の塩類を溶解した水溶液と48%NaOH水溶液を同時に添加して中和殿物を得た。そのさい,48%NaOH水溶液の添加量については, 槽内に存在した当初のNaOH総量から,前記塩類の添加によって増加したNO3 -イオンを中和するに要するNaOH量を差引いた場合にも,常に1mol/リットルのNaOH濃度が槽内で維持されるように, 調整した。得られた中和殿物の懸濁液を90℃に昇温し,酸化剤としてペルオクソ2硫酸ナトリウム(Na2S2O8)を,(Ag+Bi+Ni)に対してモル比で1倍量で,該懸濁液に添加して酸化処理した。酸化処理終了後,90℃の温度に30分間保持する熟成を行ったあと,殿物を濾別し,水洗し100℃で乾燥し,その乾燥品を解砕機で解粉して粉体を得た。各粉体を正極活物質とした場合の開回路電圧を, 実施例2と同じ条件で測定し,得られた各粉体の測定値を表7中に記入した。また,各粉体の放電容量( at 1.4 V)の測定値を表8中に記入した。
【0058】
また,本例で得られた粉体のうち,代表例として,Ag/(Bi+Ni)=3/1で且つBi/Ni= 0.7/0.3 の粉体 (すなわち, Ag:Bi:Ni=3:0.7:0.3 の粉体) と,Ag:Bi:Ni=4:0.7:0.3 の粉体の放電曲線を図2に示した。図2には比較のためにAgOの放電曲線も併せて示した。
表7および8の結果および図2から,本発明に従うAg−Bi−Ni−O系の粉体は正極活物質として使用した場合に,好ましい開回路電圧および放電容量を示すことがわかる。
【0059】
【表7】
Figure 0005028668
【0060】
【表8】
Figure 0005028668
【0061】
さらに,本例で得られた粉体のうち,代表的例としてAg:Bi:Ni=3:0.5:0.5 の粉体, Ag:Bi:Ni=5:0.7:0.3 の粉体,Ag:Bi:Ni=4:0.7:0.3 の粉体,およびAg:Bi:Ni=3:0.7:0.3 の粉体のX線回折結果を図3に示した。図3には比較のためにAgO粉体およびAg2O粉体のX線回折結果も併記した。図3の結果から,これら本例の粉体は,AgOやAg2Oとは異なる結晶構造をもつ化合物であること,そして,BiとNiの配合量によって僅かに変位が見られるものの,主要なピークが共通する類似の結晶構造を有していることがわかる。これら主要な3本のピークの面間隔は 3.02 ±0.05,2.55±0.05 および 2.33 ±0.05 (オングストローム) であった。このようなピークをもつAg−Bi−Ni−O系の化合物はこれまで知られていない。図4には,図1のNo.Bの粉体(Ag:Bi:Co=3:0.5:0.5 の粉体)のX線回折結果を拡大し, 且つピークに指数(格子面間隔:単位オングストローム)を記載したものを示したが,図4と図3を対比すると明らかなように,MがNiまたはCoでも,主要なピークは共通しており,両者は同じ類型の結晶構造を有することがわかる。
【0062】
次に,本例で得られた粉体のうち代表例としてAg:Bi:Ni=3:0.7:0.3 の粉体から微量の粒子 (平均粒径 0.6μm) をサンプリングし,ESCAによって粒子中のBi濃度分布の分析を試みた。測定装置はアルバックファイ株式会社製5800であり,X線源はAl陽極線源 (300 V), 粒子表面からの深さエッチング速度は 0.32 nm/minである。測定結果を図5に示した。図5の横軸は sputter time, 縦軸はBiの原子濃度( %) である。エッチングを約 800分行った (sputter timeが約800 mim)が,これはエッチング速度から換算すると約 0.25 μm深さまで, すなわち,粒径 0.6μmの粒子のほぼ中心にまでエッチングしたことになる。図5の結果は,粒子中のBi濃度は,粒子表面から sputter
time 800 分まで殆んど変化せず,ほぼ一定の値を維持している。
【0063】
〔実施例8〕
本例は,中和と酸化を同時に行って得た本発明の正極活物質の例を示すものである。
【0064】
Ag/(Bi+Ni)のモル比が表9および表10に示した値となるように,それぞれ、硝酸銀 (AgNO3),硝酸ビスマス[Bi(NO3)3]および硝酸ニッケル[ Ni(NO3)2・6 H2O ] を秤量して、0.8 リットルの水溶液とした。ただし,表9と表10においてBi/Ni=1.0/0と記したのは,硝酸ニッケルを加えないで硝酸Agと硝酸ビスマスだけを表示の割合で溶解したことを示す。
【0065】
他方,ペルオクソ二硫化カリウム(k2S2O8)を前記の硝酸塩に対してモル比で1倍量秤量し,1.4 リットルの水溶液とした。
【0066】
硝酸塩の合計量に対しモル比で5倍量のNaOHを溶解した溶液1.6リットルを準備し,このNaOH溶液に対して,液温を104℃に維持しながら,前記の塩類の水溶液とペルオクソ二硫化カリウムの水溶液を30分間かけて同時に添加した。
【0067】
添加後終了後,104℃の温度に30分間保持する熟成を行ったあと、液から殿物を濾別し、水洗し、100℃で乾燥し、その乾燥品を解砕機で解粉した。
【0068】
得られた各粉体を正極活物質とした場合の開回路電圧と放電容量(at 1.4V)を実施例1と同じ条件で測定し,それらの結果を表9および表10に示した。
【0069】
また,本例で得られた各粉体(合計4種)のそれぞれのX線回折結果を図6に示した。図6の結果から,本例で得られたAg:Bi:Ni=5: 0.7:0.3の粉体, =3: 0.7: 0.3の粉体, および=3: 0.5: 0.5の粉体はいずれも図3のものに似たX線パターンを有しており,中和と酸化を同時に行っても分離して行った場合と同様の結晶構造をもつ粉体が得られることがわかる。
【0070】
【表9】
Figure 0005028668
【0071】
【表10】
Figure 0005028668
【0072】
さらに本例で得られたAg:Bi:Ni=5: 0.7: 0.3の粉体, =3: 0.7: 0.3の粉体, および=3: 0.5: 0.5の粉体の放電曲線を図7に示した。表9および表10と図7から,本例で得られたAg−Bi−M−O系の粉体は正極活物質として使用した場合に、好ましい電池特性を持つことがわかる。
【発明の効果】
以上説明したように,本発明によれば,アルカリ電池の正極活物質として,従来の代表的なAg2O粉末よりAg量が低くても同等の放電特性を示すAg−Bi−M(M’)−O系の新規な正極活物質が提供され,しかも,この正極活物質は導電率が酸化銀に比べると非常に良好である。したがって,本発明の正極活物質は安価でありながら高導電率で放電特性に優れ長期的な信頼性に優れるから,正極活物質, 負極物質および電解質からなる高性能で且つ安価な電池を構成する上で貢献するところが極めて大である。
【図面の簡単な説明】
【図1】本発明に従う正極活物質のX線回折チャート(ターゲット:Cu,以下同じ)を他の粉体のものと対比して示したものである。
【図2】本発明に従う正極活物質の放電曲線をAgOと比較して示したものである。
【図3】本発明に従う他の正極活物質のX線回折チャートを他の粉体のものと対比して示したものである。
【図4】図1のNo.Bの正極活物質についてのX線回折チャートを拡大しピークの指数を記載したものである。
【図5】本発明に従う正極活物質の粒子中のBi濃度分布をESCAで測定した結果を示す図である。
【図6】本発明に従う他の正極活物質のX線回折チャートである。
【図7】本発明に従う正極活物質の放電曲線の例を示したものである。[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a positive electrode active material for alkaline batteries.And alkaline battery using the sameAbout.
[0002]
[Prior art]
Conventionally, silver oxide batteries have been widely used as alkaline batteries (commonly called button batteries) attached to watches, measuring instruments, cameras, and the like. Silver oxide batteries have silver oxide (Ag) as the positive electrode active material.2O), zinc powder as the negative electrode active material, and an alkaline solution such as an aqueous solution of KOH or NaOH as the electrolytic solution is generally used. Silver is an expensive material, but silver oxide is considered an indispensable positive electrode active material when high capacity is required even though it is small. For this reason, most button batteries are composed of silver oxide batteries. It is no exaggeration to say. The positive electrode active material is sometimes called a positive electrode active material or an anodic active material. Similarly, the negative electrode active material is sometimes called a negative electrode active material or a cathode active material.
[0003]
Usually, the positive electrode active material (Ag) in the silver oxide battery unit price2The proportion of O) is very high. Ag2O has a problem that the conductivity is low, the internal resistance of the battery is high, and the discharge capacity of the battery is low. For this reason, Ag2O to MnO2Or other Ag-based compounds such as AgNiO, as disclosed in JP-A-60-105170, JP-A-57-849, JP-A-10-188975.2There have been proposed proposals for improving conductivity by blending.
[0004]
Similarly, Japanese Patent Application Laid-Open No. 52-142241 discloses an anode mainly composed of silver oxide with bismuth oxide (Bi2OThree) Can suppress gas generation and predict the end of discharge. In addition, US Pat. No. 5,389,469, its divisional application US Pat. No. 5,589,109 and US Pat. No. 6,001,508 include an AgO core around an AgO core.2Silver and bismuth hulls (AgBiO through an intermediate layer of O2Or AgBiOThreeAn AgO-based positive electrode active material having an outer skin composed of the following is disclosed, which is obtained by a reduction reaction of AgO powder and a bismuth compound (such as bismuth sulfide) in an alkaline solution. .
[0005]
[Problems to be solved by the invention]
In order to suppress the high cost of the silver oxide battery, it is advantageous to make the amount of Ag used relatively low by coexisting an inexpensive material other than silver in the positive electrode active material. Has been proposed. However, as the substance, MnO2In the example of coexisting MnO2Has a characteristic that the true specific gravity is small and the flatness of the discharge potential is poor, so that the battery capacity cannot be expected so much, and there is a problem that the discharge potential is remarkably lowered as the discharge proceeds. When a compound such as Ni is formed, not all of this is used as a positive electrode active material, but a hydroxide is formed after discharge to cause volume expansion, so that only a few percent can be added at most. Therefore, the cost control effect cannot be expected so much.
[0006]
In an example in which bismuth oxide is added as in Japanese Patent Laid-Open No. 52-142241, this two-stage potential generation is obtained by obtaining a two-stage potential at the end of discharge using the difference in oxidation-reduction potential with silver oxide. Since it detects and predicts when the battery is depleted, the amount of its use is naturally limited, and it is 3 to 12% by weight based on the total amount of the positive electrode. Similarly, as in US Pat. No. 5,389,469 (the same applies to the other two cases), even if a film of silver suboxide and bismuth compound is formed on the surface of silver oxide particles, the content of Ag should be at least 78 wt%. It is necessary and is not sufficient in terms of reducing the amount of Ag used, and because the core part is unstable silver peroxide (AgO), there are concerns about long-term reliability and the discharge mode is multistage. It is easy to become. Long-term reliability can be evaluated by open-circuit voltage. If the open-circuit voltage of the active material is too high, problems will arise in long-term reliability such as gas generation due to decomposition of the electrolyte and oxidation of the separator. Therefore, the lower the open circuit voltage of the positive electrode, the better.
[0007]
Therefore, the problem of the present invention is to solve the above-mentioned problems, and even if the amount of Ag used is reduced, the discharge characteristics are not deteriorated, and the open circuit voltage is low and long-term reliability can be obtained. The object is to obtain an inexpensive and novel positive electrode active material for a battery.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have continued various studies focusing on Ag-Bi-O compounds, but obtained a neutralized starch of silver salt and bismuth salt by a wet method. In addition, it was found that a compound suitable for the positive electrode active material can be obtained by appropriately oxidizing it. This is considered to be a new substance consisting of particles having compound crystals in the particles and Bi dispersed throughout the particles. It described in the specification and drawing of 2000-275124.
[0009]
The present inventors also added a transition metal salt such as Ni, Co, and Mn to the silver salt and bismuth salt to obtain a neutralized precipitate, and also when this was appropriately oxidized. It has been found that a new compound suitable for a positive electrode active material can be obtained. Therefore, the present invention provides Ag, Bi, M (M represents at least one metal of transition metal, preferably at least one metal of Mn, Ni or Co) and O as positive electrode active materials capable of solving the above-mentioned problems. Provided is a positive electrode active material for a battery comprising particles comprising (oxygen), and comprising particles of a compound comprising Ag, Bi, M and O in the particles, and Bi is dispersed throughout the particles. Is.
[0010]
More specifically, Ag—Bi obtained by reacting an inorganic acid salt of silver, bismuth and M ′ (M ′ represents at least one metal of manganese, nickel or cobalt) with an alkali hydroxide in an aqueous medium. A positive electrode active material for an alkaline battery comprising an oxidation product of Ag-Bi-M 'formed by oxidizing a neutralized precipitate containing M' with an oxidizing agent: silver, bismuth and M '(M' is manganese And an oxidation product containing Ag-Bi-M 'obtained by reacting an inorganic acid salt of alkali metal hydroxide with an alkali acid hydroxide in the presence of an oxidizing agent. A positive electrode active material for an alkaline battery is provided. This positive electrode active material, that is, the oxidation product is composed of particles having crystals of a compound composed of silver, bismuth, M ′ and oxygen, and bismuth is present throughout the surface from the particle surface to the center. The particles have a composition in which the molar ratio of Ag / (Bi + M ′) is 1 to 7, the molar ratio of Bi / M ′ is in the range of 0.1 to 100, and the oxygen content is 5% by weight or more. The particle size is preferably 0.1 to 10 μm. The positive electrode active material has an Ag content of 75% by weight or less, preferably 70% by weight or less, and is a silver compound Ag.2O and AgO are not included, or even if they are included, they only contain impurities (1 wt% or less, preferably 0.5 wt% or less).
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The positive electrode active material for an alkaline battery according to the present invention is basically composed of four elements of Ag, Bi, M, and O, and has a compound crystal in the particle and Bi is dispersed throughout the particle. There is a feature that is. M can be at least one transition metal, but is preferably at least one of manganese, nickel or cobalt. A case where M is at least one of manganese, nickel or cobalt is denoted as M '.
[0012]
The compound crystals in the particles are typically Ag-Bi-MO based compounds, preferably Ag.2Even if it does not have crystals of O or AgO compounds in the grains, it has a feature that it has only to the extent of impurities.
[0013]
The particle powder has a composition in which the molar ratio of Ag / (Bi + M) is 1 to 7, preferably 2 to 5, and the oxygen content is 5% by weight or more. The Ag content may be 80% by weight or less, preferably 75% by weight or less, more preferably 70% by weight or less, and in some cases 60% by weight or less. The Bi / M molar ratio may be in the range of 0.1 or more and less than 100, but is preferably 1 or more and 10 or less. Preferred composition ranges are Ag: 45 to 75%, Bi: 10 to 40%, M: 0.5 to 10%, O (oxygen): 5 to 15%, and the balance: inevitable impurities. The particle diameter is 0.1 to 15 μm, preferably 0.2 to 10 μm. The average particle size is in the range of 0.1 to 10 μm.
[0014]
When a powder composed of such particles is used as the main material of the positive electrode active material, it is possible to obtain the same discharge characteristics even though the amount of silver is lower than that of a conventional silver oxide battery. . In addition, the electrical conductivity of this powder is about three orders of magnitude higher than that of silver oxide, so the silver oxide battery required the blending of a conductive material such as graphite. This is also advantageous in that such a conductive material is not necessary. is there.
[0015]
Therefore, in the positive electrode active material according to the present invention, Bi is dispersed to the inside of the particle, that is, the entire region within the particle even when compared with the particle of the above-mentioned US Pat. No. 5,389,469 (the same applies to the other two cases). Dot, AgO and Ag2The difference is that there is virtually no O crystal, and the Ag content is small. For this reason, various powder characteristics, discharge characteristics, conductive characteristics, etc. are not found in conventional products. In addition to showing properties, it is inexpensive because of its low silver content.
[0016]
The positive electrode active material of this invention can be obtained by the manufacturing method which passes through the following processes in order. However, the neutralization step and the oxidation step may be performed simultaneously.
(1) A step of obtaining a neutralized product by reacting “inorganic acid salt of silver, inorganic acid salt of bismuth and M inorganic acid salt” with “alkali hydroxide” in water (referred to as neutralization step),
(2) A step of oxidizing the starch by adding an oxidizing agent to the obtained suspension of neutralized precipitate (referred to as an oxidation step),
(3) recovering the solid oxide precipitate by solid-liquid separation of the oxide precipitate suspension;
(4) A process of washing and drying the collected oxide residue,
(5) A step of crushing the obtained dry cake into powder.
Hereinafter, each step will be described in detail by taking as an example the case where M is M ′.
[0017]
[Neutralization process]
In the neutralization step, the neutralization reaction of obtaining a residue by reacting Ag inorganic acid salt with alkali hydroxide in water is carried out in the coexistence of “Bi inorganic acid salt and M inorganic acid salt”. As a result, the target amount “Bi + M ′” is contained in the temple. This treatment causes a reaction (namely, neutralization reaction) in which an oxide of Ag, Bi, and M ′ and water are formed by a reaction between an inorganic acid salt of Ag, Bi, and M and an alkali hydroxide. This neutralization reaction does not change the valence of the starting metal ion. In other words, the neutralization reaction employed by the present invention is not a reaction under reducing conditions or oxidizing conditions, and therefore does not include reactions involving changes in the valence of metal ions.
[0018]
Sodium hydroxide (NaOH) or potassium hydroxide (KOH) can be used as the alkali hydroxide used for the neutralization reaction. As the “salt of inorganic acid of Ag, Bi and M ′”, nitrates, sulfates, hydrochlorides or phosphates of these metals can be used, but nitrates or sulfates of each metal are preferred, Specifically, a nitrate of each metal can be used. For example, silver nitrate (AgNOThree) To the desired number of moles of bismuth nitrate [Bi (NOThree)Three] And the required amount of manganese nitrate [Mn (NOThree)2], Nickel nitrate [Ni (NOThree)2・ 6H2O] or cobalt nitrate [Co (NOThree)2・ 6H2O] in combination is reacted with alkali hydroxide in water.
[0019]
Hereinafter, for convenience of explanation, the case where “inorganic acid salt of Ag, Bi and M ′” is “nitrate” of these metals will be described as an example. However, as described above, these inorganic acid salts are converted into nitric acid salts. It is not limited.
[0020]
Neutralization treatment is a method of adding “Ag, Bi, M ′ nitrate powder” to an aqueous solution in which alkali hydroxide is dissolved. Mixing an alkaline aqueous solution and “aqueous solution in which Ag, Bi, M ′ nitrate is dissolved” Any method of adding a solid alkali hydroxide to an “aqueous solution in which nitrates of Ag, Bi, and M ′ are dissolved” may be used, but an alkaline aqueous solution and an “aqueous solution of an Ag, Bi, and M ′ nitrate” The method of mixing is preferable.
[0021]
In this neutralization treatment, the alkalinity should be high. For example, the reaction is more likely to occur when alkali having a molar ratio of about 10 times that of “Ag + Bi + M ′” is present. Although reaction temperature is not specifically limited, Room temperature to 110 degreeC is preferable. About stirring, the stirring intensity | strength of the grade which neutralization reaction advances uniformly is required.
[0022]
By changing the molar ratio of Ag / (Bi + M ′) in the metal salt used for the neutralization treatment, the atomic ratio of Ag / (Bi + M ′) in the final compound, and hence the Ag / (Bi + M ′) atom in the particle The ratio can be adjusted. According to the experience of the present inventors, the molar ratio of Ag / (Bi + M ′) in the metal salt should be adjusted in the range of 1 to 7, preferably 2 to 5. The smaller the molar ratio, the greater the reduction in the discharge capacity of the positive electrode active material obtained. Conversely, when this ratio is too large, the Ag amount increases, and the object of the present invention, that is, the Ag amount reduction cannot be achieved. .
[0023]
[Oxidation process]
In the oxidation process, the usual oxidizing agent, for example KMnOFour(Potassium permanganate), NaOCl (sodium hypochlorite), H2O2(Hydrogen peroxide), K2S2O8(Potassium peroxodisulfate),Na2S2O8(Sodium peroxodisulfate), which is used to oxidize neutralized precipitates using ozone, etc., and is intended to increase (oxidize) the valence of silver, bismuth and M 'in the neutralized precipitates. It is processing to do. Although this step can be performed simultaneously with the formation of the neutralized precipitate, preferably, the neutralization step and the oxidation step are performed separately. And it is preferable to insert the process of heating up the liquid containing the residue between the neutralization process and the oxidation process.
[0024]
During the oxidation treatment, the liquid temperature is set to 50 ° C. or higher, preferably 70 ° C. or higher, and the oxidizing agent is added with stirring. However, if the temperature is too high, decomposition of the oxidant proceeds, so that it is preferably 110 ° C. or lower. As described above, this oxidation treatment is a treatment for increasing the valence of the metal component in the neutralized precipitate, for example, Ag.+1Ag+2And Bi+3Bi+3.5And Bi+5And M '+2M '+3, M '+3And M '+4It is necessary to add an oxidizing agent in an amount that can sufficiently change the valence. Specifically, it is preferable to add an oxidizing agent equivalent to, or preferably about twice as much as this valence change.
[0025]
The amount of oxidation varies depending on the valence of the metal element of the raw material nitrate used for the neutralization treatment, and also the relative proportion of Ag, Bi, M ′, and accompanying this, Ag—Bi— in the product after the oxidation treatment Although the composition ratio of M′-O also changes, by performing complete oxidation, an aggregate of fine particles composed of a crystalline compound of Ag—Bi—M′—O system as a whole is generated. become. As shown in the examples described later, according to the investigation by the present inventors, the aggregate of fine particles (Ag-Bi-M′-containing oxidation product) as well as the crystalline fine particles is not Ag.2In addition to low-valence compounds such as O, there is almost no opportunity for AgO, an independent Bi oxide, an independent M ′ oxide, etc., and Ag—Bi-M ′ suitable for a positive electrode active material. A —O-based crystalline compound is obtained.
[0026]
Alternatively, such oxidation can occur simultaneously with the formation of neutralized precipitate. In this case, the neutralization treatment may be performed in the presence of the oxidizing agent, and a method of simultaneously adding an inorganic acid salt of Ag, Bi, M ′ and an oxidizing agent to an alkaline aqueous solution, A method of adding an oxidizing agent to the aqueous solution in advance and adding an inorganic acid salt of Ag, Bi, M ′ to the liquid may be adopted. For example, as shown in the Examples below, even if the neutralization step and the oxidation step are performed simultaneously, the oxidation product containing Ag-Bi-M ′ according to the present invention (oxidation step) is substantially the same as when the two steps are performed separately. Can be obtained).
[0027]
[Solid-liquid separation, drying, crushing process]
Next, solid oxide separation is processed, washed with water and dried to obtain a black cake. It is advisable to insert a process for aging the oxide before solid-liquid separation. This ripening step is a treatment for holding the liquid after the oxidation treatment at that temperature for about 20 to 120 minutes. By performing this ripening treatment, it is possible to homogenize the oxidized precipitate. More specifically, it is possible to obtain a product composed of particles of Ag-Bi-M'-O-based compounds with less variation in composition among particles and stable. It is good to dry the residue washed with water by filtration at a temperature of 50 to 200 ° C. If the temperature exceeds 200 ° C., the produced compound may be decomposed. The obtained dried cake can be crushed by a crusher to obtain a powder that can be used as a positive electrode active material for an alkaline battery made of an oxidation product containing Ag-Bi-M '.
[0028]
The powder composed of an Ag-Bi-M'-O-based compound obtained by such a production method has an X-ray pattern (using a copper target, wavelength = 1.5405 angstroms) having a main peak group of X as shown in the examples below. It does not match that of any compound in the line diffraction database (ICDD). In addition, in the X-ray diffraction of this powder, AgO or Ag2The main peak group of O does not appear. Therefore, this powder contains AgO or Ag2It can be said that there is no compound as O. Even if it exists, it is an impurity, and the amount of this impurity is AgO and Ag.2The total amount of both O is at most 1% by weight, preferably at most 0.5% by weight, and more preferably below the calibration limit in X-ray diffraction. Therefore, according to the present invention, an Ag-Bi-M'-O-based compound having a crystal structure and composition that has not been known so far is provided, and the production reaction of this substance in the above-mentioned production method is also a novel reaction. It is thought that.
[0029]
The present inventors consider that the reaction for obtaining the compound according to the present invention will be based on the following reaction formula. However, the inorganic acid salt of Ag, Bi, M 'used for the neutralization reaction is silver nitrate (AgNOThree), Bismuth nitrate [Bi (NOThree)Three] And nickel nitrate [Ni (NOThree)2The alkali hydroxide is sodium hydroxide (NaOH) and the oxidizing agent is sodium peroxodisulfate (Na2S2O8).
[0030]
Neutralization reaction (1 ≦ X ≦ 7, 0.1 ≦ Y ≦ 0.99 ..)
xAgNOThree+ YBi (NOThree)Three + (1-y) Ni (NOThree)2+ (X + y + 2) NaOH
→ AgxBiyNi(1-y)O(x + y + 2) / 2+ (X + y + 2) NaNOThree+ (X + y + 2) / 2H2O
[0031]
Oxidation reaction (Oxidation reaction of Ag (1) → Ag (1.25), Bi (3) → Bi (3.5) and Ni (2) → Ni (3))
AgxBiyNi(1-y)O(x + y + 2) / 2+ (0.25x-0.5y + 1) / 2Na2S2O8
+ (0.25x-0.5y + 1) NaOH → AgxBiyNi(1-y)O(1.25x + 0.5y + 3) / 2
+ (0.25x-0.5y + 1) Na2SOFour+ (0.25x-0.5y + 1) / 2H2O
[0032]
Hereinafter, typical test results conducted by the present inventors will be described as examples, and the positive electrode active material of the present invention will be further described.
[0033]
【Example】
[Example 1]
In the neutralization step described above, silver nitrate (AgNO) is used so that the molar ratio of Ag / (Bi + Ni) is 3 and the molar ratio of Bi / Ni is 1.Three), Bismuth nitrate [Bi (NOThree)Three] And nickel nitrate [Ni (NOThree)2・ 6 H2O] was weighed and dissolved in an aqueous solution (1.5 liters) in which sodium hydroxide was dissolved 10 times in molar ratio with respect to (Ag + Bi + Ni) at a liquid temperature of 50 ° C. under neutralization. I got a temple. The suspension of this neutralized residue was heated to 90 ° C. and potassium peroxodisulfate (K2S2O8) Was added to the suspension in an amount twice as much as (Ag + Bi + Ni) in a molar ratio and oxidized. After completion of the oxidation treatment, after aging for 30 minutes at a temperature of 90 ° C., the product is filtered off, washed with water and dried at 100 ° C., and the dried product is pulverized with a crusher to obtain a powder. It was.
[0034]
As a result of composition analysis of the obtained powder,
Ag = 63.5% by weight,
Bi = 18.5% by weight,
Ni = 6.2% by weight,
O = 11.1% by weight,
Total = 99.3% by weight.
[0035]
Further, when the specific surface area of this powder was measured, the measured value by the BET method was 18.8 m.2/ G, compression density measured 6.30g / cmThreeMet. Moreover, the primary particle diameter observed from the SEM image of this powder was distributed within the range of 0.1 to 10 μm.
[0036]
Furthermore, when this powder was subjected to powder X-ray diffraction, the figure No. A in FIG. 1 was obtained. FIG. 1 shows AgO and Ag2The X-ray diffraction pattern of O is also shown, but AgO and Ag2It can be seen that the O peak is different from the No. A powder peak. Further, the X-ray diffraction pattern shown as Ag: Bi = 3: 1 in FIG. 1 is an Ag-Bi produced with the Ag / Bi molar ratio of 3 in the example of the above Japanese Patent Application No. 2000-275124. -O-based powder.
[0037]
In addition, silver oxide (Ag2O) The electrical conductivity of this powder was measured in the same way as when measuring the powder.0 S / cm. By the way, the conductivity of silver oxide powder is 4.8 × 10-Five It is about S / cm. Furthermore, when this powder was used as the positive electrode active material, the open circuit voltage was almost the same as the compression density (6.6 g / cmThree) Silver oxide (Ag2It was examined under the same conditions as the powder of O). That is, the open circuit voltage was measured after leaving the battery at 25 ° C. for 1 hour. As a result, the open circuit voltage = 1.735 V, and Ag2For O, it was 1.647 V. In addition, the powder of Ag / Bi = 3 in Japanese Patent Application No. 2000-275124 was 1.758 V.
[0038]
Thus, although the powder obtained in this example has a low silver content of 63.5% by weight, it exhibits good open circuit voltage characteristics as a positive electrode active material. Therefore, it can be seen that an inexpensive positive electrode active material that can be sufficiently substituted for silver oxide was obtained. Moreover, the compression density of this powder is 6.30 g / cm.ThreeTherefore, the amount of active material that can be loaded in a unit volume can be secured sufficiently, which is advantageous for increasing the volumetric energy density of the battery. In the X-ray diffraction results, the peak group of this powder does not match that of any compound in the X-ray database (ICDD), so it is considered that the powder consists of new compound crystals. That is, this positive electrode active material can be regarded as a new material having in its particles crystals of a compound composed of a combination of four elements of Ag, Bi, Ni, and O.
[0039]
[Example 2]
Example 1 was repeated except that the mixing ratio of silver nitrate, bismuth nitrate and nickel nitrate used in the neutralization step was changed so that the molar ratio of Ag: Bi: Ni would be the value shown in Table 1. A —Bi—Ni—O-based powder was obtained. Each powder was subjected to chemical analysis to examine its composition. The results are shown in Table 1. The powder No. 3 in Table 3 was obtained in Example 1.
In addition, cobalt nitrate was used instead of nickel nitrate in the neutralization step, and the mixing ratio of silver nitrate, bismuth nitrate and cobalt nitrate was changed so that the molar ratio of Ag: Bi: Co would be the value shown in Table 1. Example 1 was repeated with the exception that Ag-Bi-Co-O-based powders were obtained. Their compositions obtained by chemical analysis are also shown in Table 1.
[0040]
[Table 1]
Figure 0005028668
[0041]
Example 3
Example 1 was repeated except that the mixing ratio of silver nitrate, bismuth nitrate and nickel nitrate used in the neutralization step was changed so that the molar ratio of Ag: Bi: Ni would be the value shown in Table 2. A —Bi—Ni—O-based powder was obtained. The results of measuring the compression density of each powder are shown in Table 2. In Table 2, in order to know the influence of the Ag / (Bi + Ni) ratio and Bi / Ni blended to obtain each powder, the compression density values (g / cmThree) Was noted in the table.
[0042]
For comparison, the compression density of the Ag-Bi-O-based powder (without Ni addition) described in the previous Japanese Patent Application No. 2000-275124 is also shown in Table 2.
[0043]
[Table 2]
Figure 0005028668
[0044]
From Table 2, it can be seen that the compression density tends to increase with the addition of M.
[0045]
Example 4
Example 1 was repeated except that the mixing ratio of silver nitrate, bismuth nitrate and nickel nitrate used in the neutralization step was changed so that the molar ratio of Ag: Bi: Ni would be the value shown in Table 3, and each Ag was repeated. A —Bi—Ni—O-based powder was obtained. The specific surface area of each powder was measured by the BET method and the value (m2/ G) is shown in Table 3 according to the display method similar to Table 2 above. For comparison, the specific surface area of Ag-Bi-O-based powder (without Ni addition) is also shown in Table 3.
[0046]
[Table 3]
Figure 0005028668
[0047]
From the results shown in Table 3, the specific surface area tends to increase when M is added.
[0048]
Example 5
Example 1 was repeated except that the mixing ratio of silver nitrate, bismuth nitrate and nickel nitrate used in the neutralization step was changed so that the molar ratio of Ag: Bi: Ni would be the value shown in Table 4. A —Bi—Ni—O-based powder was obtained. The open circuit voltage when each powder is used as the positive electrode active material is the silver oxide (Ag2O) Same conditions as powder (Ag2O was measured at an open circuit voltage = 1.647 V) and shown in Table 4 according to the display method similar to Tables 2 and 3 above. For comparison, the open circuit voltage of Ag-Bi-O-based powder (without Ni addition) is also shown in Table 4.
[0049]
[Table 4]
Figure 0005028668
[0050]
From the results in Table 4, the Ag-Bi-Ni-O-based powder according to the present invention is lower when used as the positive electrode active material than when the Ni-free Ag-Bi-O-based powder is used. It can be seen that an open circuit voltage is obtained.
[0051]
Example 6
In the neutralization step, cobalt nitrate was used instead of nickel nitrate, and the mixing ratio of silver nitrate, bismuth nitrate and cobalt nitrate was changed so that the molar ratio of Ag: Bi: Co would be the value shown in Table 5. Example 1 was repeated to obtain respective Ag—Bi—Co—O-based powders. The discharge characteristics (open circuit voltage) when each powder was used as the positive electrode active material were measured in the same manner as in Example 5. The results are shown in Table 5.
Moreover, the open circuit voltage was similarly measured about the powder obtained by repeating Example 1 except having used manganese nitrate instead of nickel nitrate. The results are also shown in Table 5.
[0052]
[Table 5]
Figure 0005028668
[0053]
From Table 5, even if Co or Mn is used as the transition metal element M instead of Ni, an Ag—Bi—Co—O system or an Ag—Bi—Mn—O that exhibits the same open circuit voltage as when Ni is used. It can be seen that a positive electrode active material is obtained.
[0054]
In Table 5, Ag / (Bi + Co) = 3/1 and Bi / Co = 0.95 / 0.05 powder, and Ag / (Bi + Mn) = 3/1 and Bi / Mn = 0.9 / 0.1 powder. When the body was subjected to X-ray diffraction, the X-ray charts of figures No. B and No. C in FIG. 1 were obtained. These include Ag as well as No. A powder.2O, AgO and Bi2OThree There is no peak of the compound. That is, this powder can be regarded as a novel substance having crystals of a compound composed of a combination of four elements of Ag, Bi, M and O in the particles.
[0055]
Table 6 shows the electrical conductivity of several examples of the previous powders as Ag.2Shown in comparison with O. From the results in Table 6, the powder according to the present invention is Ag.2It can be seen that the conductivity is higher by 3 or 5 digits than O.
[0056]
[Table 6]
Figure 0005028668
[0057]
Example 7
In the neutralization step, silver nitrate (AgNO) is used so that the molar ratio of Ag / (Bi + Ni) becomes the value shown in Table 7 and Table 8.Three), Bismuth nitrate [Bi (NOThree)Three] And nickel nitrate [Ni (NOThree)2・ 6 H2O] was weighed and dissolved in 0.8 liter of water. On the other hand, an alkaline aqueous solution (1.6 liters) with a temperature of 50 ° C. adjusted to 1 mol / liter of NaOH in molar concentration was prepared, and an aqueous solution in which the above salts were dissolved and a 48% aqueous NaOH solution were added simultaneously to this alkaline aqueous solution. A neutralized temple was obtained. At that time, the added amount of 48% NaOH aqueous solution was increased from the initial total amount of NaOH present in the tank by the addition of the above-mentioned salts.Three -Even when the amount of NaOH required to neutralize ions was subtracted, adjustment was made so that a NaOH concentration of 1 mol / liter was always maintained in the tank. The resulting neutralized suspension was heated to 90 ° C. and sodium peroxodisulfate (Na2S2O8) Was added to the suspension at a molar ratio of (Ag + Bi + Ni) to the suspension and oxidized. After completion of the oxidation treatment, after aging for 30 minutes at a temperature of 90 ° C., the product is filtered off, washed with water and dried at 100 ° C., and the dried product is pulverized with a crusher to obtain a powder. It was. The open circuit voltage when each powder was used as the positive electrode active material was measured under the same conditions as in Example 2. The measured values of each obtained powder were entered in Table 7. In addition, the measured value of the discharge capacity (at 1.4 V) of each powder was entered in Table 8.
[0058]
Further, among the powders obtained in this example, as a representative example, a powder of Ag / (Bi + Ni) = 3/1 and Bi / Ni = 0.7 / 0.3 (that is, Ag: Bi: Ni = 3: 0.7). : 0.3) and the discharge curve of the powder of Ag: Bi: Ni = 4: 0.7: 0.3 is shown in FIG. FIG. 2 also shows a discharge curve of AgO for comparison.
From the results in Tables 7 and 8 and FIG. 2, it can be seen that the Ag—Bi—Ni—O-based powder according to the present invention exhibits a preferable open circuit voltage and discharge capacity when used as a positive electrode active material.
[0059]
[Table 7]
Figure 0005028668
[0060]
[Table 8]
Figure 0005028668
[0061]
Further, among the powders obtained in this example, representative examples are Ag: Bi: Ni = 3: 0.5: 0.5 powder, Ag: Bi: Ni = 5: 0.7: 0.3 powder, Ag: Bi : X-ray diffraction results of the powder of Ni: 4: 0.7: 0.3 and the powder of Ag: Bi: Ni = 3: 0.7: 0.3 are shown in FIG. FIG. 3 shows AgO powder and Ag for comparison.2The X-ray diffraction results of the O powder are also shown. From the results of FIG. 3, the powders of these examples are AgO and Ag.2It can be seen that it is a compound having a crystal structure different from O, and has a similar crystal structure in which major peaks are common, although slight displacement is observed depending on the amount of Bi and Ni. The spacing between these three major peaks was 3.02 ± 0.05, 2.55 ± 0.05 and 2.33 ± 0.05 (angstrom). An Ag—Bi—Ni—O-based compound having such a peak has not been known so far. 4 shows an enlarged X-ray diffraction result of No. B powder (Ag: Bi: Co = 3: 0.5: 0.5 powder) in FIG. 1, and an index (lattice spacing: unit angstrom) at the peak. As shown in FIG. 4 and FIG. 3, it is clear that even if M is Ni or Co, the main peaks are common and both have the same type of crystal structure. Recognize.
[0062]
Next, as a representative example of the powder obtained in this example, a small amount of particles (average particle diameter 0.6 μm) was sampled from the powder of Ag: Bi: Ni = 3: 0.7: 0.3, An attempt was made to analyze the Bi concentration distribution. The measuring device is 5800 manufactured by ULVAC-PHI, the X-ray source is an Al anode source (300 V), and the depth etching rate from the particle surface is 0.32 nm / min. The measurement results are shown in FIG. In FIG. 5, the horizontal axis represents sputter time, and the vertical axis represents Bi atomic concentration (%). Etching was carried out for about 800 minutes (sputter time was about 800 mim), which is about 0.25 μm deep, that is, about the center of a particle with a particle size of 0.6 μm when converted from the etching rate. The results in Fig. 5 show that the Bi concentration in the particles
Time remains almost constant until 800 minutes, and remains almost constant.
[0063]
Example 8
This example shows an example of the positive electrode active material of the present invention obtained by simultaneously performing neutralization and oxidation.
[0064]
Silver nitrate (AgNO) was used so that the molar ratio of Ag / (Bi + Ni) was the value shown in Table 9 and Table 10.Three), Bismuth nitrate [Bi (NOThree)Three] And nickel nitrate [Ni (NOThree)2・ 6 H2O] was weighed into a 0.8 liter aqueous solution. However, in Tables 9 and 10, Bi / Ni = 1.0 / 0 indicates that Ag nitrate and bismuth nitrate were dissolved at the indicated ratio without adding nickel nitrate.
[0065]
On the other hand, potassium peroxodisulfide (k2S2O8) Was weighed in a molar ratio with respect to the nitrate to give a 1.4 liter aqueous solution.
[0066]
Prepare 1.6 liters of a solution in which 5 times the amount of NaOH is dissolved in molar ratio to the total amount of nitrate, and maintain the solution temperature at 104 ° C. while maintaining the solution temperature at 104 ° C. An aqueous solution of potassium disulfide was added simultaneously over 30 minutes.
[0067]
After completion of the addition, aging was carried out at a temperature of 104 ° C. for 30 minutes, and then the residue was filtered from the liquid, washed with water and dried at 100 ° C., and the dried product was pulverized with a crusher.
[0068]
The open circuit voltage and discharge capacity (at 1.4 V) when each obtained powder was used as the positive electrode active material were measured under the same conditions as in Example 1. The results are shown in Tables 9 and 10.
[0069]
Moreover, each X-ray-diffraction result of each powder (total 4 types) obtained by this example was shown in FIG. From the result of FIG. 6, the powders of Ag: Bi: Ni = 5: 0.7: 0.3, = 3: 0.7: 0.3, and = 3: 0.5: 0.5 obtained in this example are all. It has an X-ray pattern similar to that of FIG. 3, and it can be seen that a powder having a crystal structure similar to that obtained when the neutralization and oxidation are performed separately is obtained.
[0070]
[Table 9]
Figure 0005028668
[0071]
[Table 10]
Figure 0005028668
[0072]
Furthermore, FIG. 7 shows the discharge curves of Ag: Bi: Ni = 5: 0.7: 0.3 powder obtained in this example, = 3: 0.7: 0.3 powder, and = 3: 0.5: 0.5 powder. It was. From Table 9 and Table 10 and FIG. 7, it can be seen that the Ag-Bi-MO powder obtained in this example has favorable battery characteristics when used as a positive electrode active material.
【The invention's effect】
As described above, according to the present invention, as a positive electrode active material of an alkaline battery, a conventional representative Ag is used.2A novel positive electrode active material based on Ag-Bi-M (M ')-O, which exhibits equivalent discharge characteristics even when the Ag content is lower than that of O powder, is provided, and this positive electrode active material has a conductivity of silver oxide. Very good compared. Therefore, since the positive electrode active material of the present invention is inexpensive, it has high conductivity, excellent discharge characteristics, and excellent long-term reliability. Therefore, it constitutes a high-performance and inexpensive battery comprising a positive electrode active material, a negative electrode material, and an electrolyte. The contribution to the above is extremely large.
[Brief description of the drawings]
FIG. 1 shows an X-ray diffraction chart (target: Cu, the same applies hereinafter) of a positive electrode active material according to the present invention in comparison with those of other powders.
FIG. 2 shows a discharge curve of a positive electrode active material according to the present invention in comparison with AgO.
FIG. 3 shows an X-ray diffraction chart of another positive electrode active material according to the present invention in comparison with that of other powders.
4 is an enlarged X-ray diffraction chart for the positive electrode active material of No. B in FIG.
FIG. 5 is a diagram showing the results of measuring the Bi concentration distribution in the particles of the positive electrode active material according to the present invention by ESCA.
FIG. 6 is an X-ray diffraction chart of another positive electrode active material according to the present invention.
FIG. 7 shows an example of a discharge curve of a positive electrode active material according to the present invention.

Claims (4)

銀,ビスマスおよびM’(M’はマンガン,ニッケルまたはコバルトの少なくとも一種の金属を表す)の無機酸塩と水酸化アルカリとを水媒体中で且つ酸化剤の存在下で反応させて得たAg−Bi−M’含有酸化生成物からなるアルカリ電池用の正極活物質であって,該酸化生成物は銀,ビスマス,M’および酸素からなる化合物の結晶を有する粒子からなり、その粒子は粒子表面から中心まで全体にわたってビスマスが存在しているものであるアルカリ電池用の正極活物質。 Ag obtained by reacting an inorganic acid salt of silver, bismuth and M ′ (M ′ represents at least one metal of manganese, nickel or cobalt) with an alkali hydroxide in an aqueous medium in the presence of an oxidizing agent. -Bi-M 'is a positive electrode active material for an alkaline battery comprising a containing oxidation products, the oxidation products are silver, bismuth, M' consists particles having a crystal of a compound consisting of and oxygen, the particles particles A positive electrode active material for an alkaline battery , in which bismuth is present from the surface to the center. 該酸化生成物は銀含有量が75重量%以下であり且つ該化合物の結晶はAg,Bi,M’およびOからなる請求項に記載の正極活物質。2. The positive electrode active material according to claim 1 , wherein the oxidation product has a silver content of 75 wt% or less, and crystals of the compound are composed of Ag, Bi, M ′, and O. 3. 負極活物質,正極活物質および電解質からなるアルカリ電池において,前記の正極活物質が, 銀,ビスマスおよびM’(M’はマンガン,ニッケルまたはコバルトの少なくとも一種の金属を表す)の無機酸塩を水酸化アルカリと水媒体中で反応させて得たAg−Bi−M’含有中和殿物を酸化剤で酸化してなるAg−Bi−M’含有酸化生成物からなるアルカリ電池であって,該酸化生成物は銀,ビスマス,M’および酸素からなる化合物の結晶を有する粒子からなり,その粒子は粒子表面から中心まで全体にわたってビスマスが存在しているものであるアルカリ電池。 In an alkaline battery comprising a negative electrode active material, a positive electrode active material, and an electrolyte, the positive electrode active material is an inorganic acid salt of silver, bismuth, and M ′ (M ′ represents at least one metal of manganese, nickel, or cobalt). An alkaline battery comprising an Ag-Bi-M'-containing oxidation product obtained by oxidizing an Ag-Bi-M'-containing neutralized product obtained by reacting with an alkali hydroxide in an aqueous medium with an oxidizing agent, The alkaline product is an alkaline battery in which the oxidation product is composed of particles having a crystal of a compound composed of silver, bismuth, M ′, and oxygen , and the particles have bismuth throughout the surface from the particle surface. 負極活物質,正極活物質および電解質からなるアルカリ電池において,前記の正極活物質が, 銀,ビスマスおよびM’(M’はマンガン,ニッケルまたはコバルトの少なくとも一種の金属を表す)の無機酸塩と水酸化アルカリとを水媒体中で且つ酸化剤の存在下で反応させて得たAg−Bi−M’含有酸化生成物からなるアルカリ電池であって,該酸化生成物は銀,ビスマス,M’および酸素からなる化合物の結晶を有する粒子からなり,その粒子は粒子表面から中心まで全体にわたってビスマスが存在しているものであるアルカリ電池。 In an alkaline battery comprising a negative electrode active material, a positive electrode active material and an electrolyte, the positive electrode active material is an inorganic acid salt of silver, bismuth and M ′ (M ′ represents at least one metal of manganese, nickel or cobalt) An alkaline battery comprising an Ag-Bi-M'-containing oxidation product obtained by reacting an alkali hydroxide with an aqueous hydroxide in the presence of an oxidizing agent, the oxidation product comprising silver, bismuth, M ' alkaline batteries and made of particles having a crystalline compound consisting of oxygen, the particles are those of bismuth is present throughout the particle surface to the center.
JP2001285788A 2000-12-27 2001-09-19 Cathode active material for alkaline battery and alkaline battery Expired - Lifetime JP5028668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001285788A JP5028668B2 (en) 2000-12-27 2001-09-19 Cathode active material for alkaline battery and alkaline battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000398336 2000-12-27
JP2000-398336 2000-12-27
JP2000398336 2000-12-27
JP2001285788A JP5028668B2 (en) 2000-12-27 2001-09-19 Cathode active material for alkaline battery and alkaline battery

Publications (2)

Publication Number Publication Date
JP2002260653A JP2002260653A (en) 2002-09-13
JP5028668B2 true JP5028668B2 (en) 2012-09-19

Family

ID=26606877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001285788A Expired - Lifetime JP5028668B2 (en) 2000-12-27 2001-09-19 Cathode active material for alkaline battery and alkaline battery

Country Status (1)

Country Link
JP (1) JP5028668B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7083742B2 (en) 2018-12-14 2022-06-13 ボーンズ株式会社 Thermal response element, breaker, safety circuit and secondary battery pack

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407726B2 (en) * 2003-09-16 2008-08-05 The Gillette Company Primary alkaline battery containing bismuth metal oxide
EP3565039B1 (en) 2017-03-22 2023-10-11 Maxell, Ltd. Silver oxide secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2453109A1 (en) * 1979-04-02 1980-10-31 Accumulateurs Fixes DOUBLE CHROMATE OF SILVER AND BISMUTH, PROCESS FOR THE PREPARATION THEREOF, AND APPLICATION OF SAID CHROMATE IN ELECTROCHEMICAL GENERATORS
JPH067495B2 (en) * 1988-10-03 1994-01-26 工業技術院長 Gas regenerative secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7083742B2 (en) 2018-12-14 2022-06-13 ボーンズ株式会社 Thermal response element, breaker, safety circuit and secondary battery pack

Also Published As

Publication number Publication date
JP2002260653A (en) 2002-09-13

Similar Documents

Publication Publication Date Title
WO2002023647A1 (en) Positive electrode active material for alkaline cell
KR101306532B1 (en) Inorganic Compounds
EP2471976B1 (en) Electrolytic manganese dioxide, method for producing same, and use of same
JP5678482B2 (en) Manganese oxide and method for producing the same
JP3493470B2 (en) Nickel (II) hydroxide containing manganese (III) for secondary battery production
EP1975129A1 (en) Lithium nickel manganese cobalt composite oxide and lithium rechargeable battery
JP4904457B2 (en) Alkaline battery positive electrode material, method for producing the same, and alkaline battery positive electrode material
EP1675199B1 (en) Battery positive electrode material
JP2009135067A (en) Electrolytic manganese dioxide, and production method and application therefor
WO2015093578A1 (en) Electrolytic manganese dioxide, method for producing same, and use of same
JP4234418B2 (en) Manganese nickel composite hydroxide particles
EP2645458B1 (en) Alkaline storage battery
JP5028668B2 (en) Cathode active material for alkaline battery and alkaline battery
JP6492617B2 (en) Manganese dioxide and manganese dioxide mixtures and their production and use
JPH1081522A (en) Particulate composition and its production
JP5028667B2 (en) Cathode active material for alkaline battery and alkaline battery
JP7063007B2 (en) Electrolyzed manganese dioxide, its manufacturing method and its uses
WO2021235497A1 (en) Oxygen catalyst, electrode using said oxygen catalyst, and electrochemical measurement method
JP4271407B2 (en) Method for producing positive electrode active material for alkaline storage battery
EP2829515B1 (en) Manganomanganic oxide and process for producing same
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
WO2019038157A1 (en) Introduction of titanium homogeneously into a solid material
DE2835755A1 (en) TWO-VALUE SILVER OXIDE, METHOD OF ITS MANUFACTURING AND USE IN A GALVANIC ELEMENT
JP2005071991A (en) Alkaline battery
JP2003249218A (en) Positive electrode active material for cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120606

R150 Certificate of patent or registration of utility model

Ref document number: 5028668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term